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Abstract 

 

New species arise from pre-existing species and inherit similar genomes and 

environments. This predicts greater similarity of mutation rates and the tempo of 

molecular evolution between direct ancestors and descendants, resulting in 

autocorrelation of evolutionary rates within lineages in the tree of life. Surprisingly, 

molecular sequence data have not confirmed this expectation, possibly because available 

methods lack power to detect autocorrelated rates. Here we present a machine learning 

method to detect the presence evolutionary rate autocorrelation in large phylogenies. The 

new method is computationally efficient and performs better than the available state-of-

the-art methods. Application of the new method reveals extensive rate autocorrelation in 

DNA and amino acid sequence evolution of mammals, birds, insects, metazoans, plants, 

fungi, and prokaryotes. Therefore, rate autocorrelation is a common phenomenon 

throughout the tree of life. These findings suggest concordance between molecular and 

non-molecular evolutionary patterns and will foster unbiased and precise dating of the 

tree of life.  
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Introduction  

Rates of molecular sequence evolution vary extensively among species (Ho and Duchêne 

2014; Kumar and Hedges 2016; dos Reis et al. 2016). The causes and consequences of 

this evolutionary rate variation are of fundamental importance in molecular phylogenetics 

and systematics (Kimura 1983; Lanfear et al. 2010; Lynch 2010), not only to inform about 

the relationship among molecular, biological, and life history traits, but also as a 

prerequisite for reliable estimation of divergence times among species and genes (Ho 

and Duchêne 2014; Kumar and Hedges 2016). Three decades ago, Gillespie (1984) 

proposed that molecular evolutionary rates within a phylogeny will be autocorrelated due 

to similarities in genomes, biology and environments between ancestral species and their 

immediate progeny. This idea led to statistical modelling of the variability of evolutionary 

rates among branches and formed the basis of the earliest relaxed clock methods for 

estimating divergence times without assuming a strict molecular clock (Sanderson 1997; 

Thorne et al. 1998; Kumar 2005; Ho and Duchêne 2014; Kumar and Hedges 2016). 

However, the independent branch rate (IBR) model has emerged as a strong alternative 

to the autocorrelated branch rate (ABR) model. IBR posits that rates vary randomly 

throughout the tree, such that the evolutionary rate similarity between an ancestor and its 

descendant is, on average, no more than that between more distantly-related branches 

in a phylogeny (Drummond et al. 2006; Ho and Duchêne 2014). 

The IBR model is now widely used in estimating divergence times from molecular 

data for diverse groups of species, including mammals (Drummond et al. 2006), birds 

(Brown et al. 2008; Claramunt and Cracraft 2015; Prum et al. 2015), amphibians (Feng 

et al. 2017), plants (Moore and Donoghue 2007; Bell et al. 2010; Smith et al. 2010; Linder 

et al. 2011; Lu et al. 2014; Barreda et al. 2015; Barba-Montoya et al. 2018), and viruses 

(Drummond et al. 2006; Buck et al. 2016; Metsky et al. 2017). If the IBR model best 

explains the variability of evolutionary rates, then we must infer a decoupling of molecular 

and biological evolution, because morphology, behavior, and other life history traits are 

more similar between closely-related species (Sargis and Dagosto 2008; Lanfear et al. 

2010; Cox and Hautier 2015) and are correlated with taxonomic or geographic distance 

(Wyles et al. 1983; Shao et al. 2016).   
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Alternatively, the widespread use of the IBR model (Drummond et al. 2006; Moore 

and Donoghue 2007; Brown et al. 2008; Bell et al. 2010; Smith et al. 2010; Linder et al. 

2011; Lu et al. 2014; Claramunt and Cracraft 2015; Prum et al. 2015; Buck et al. 2016; 

Feng et al. 2017; Metsky et al. 2017) may be explained by the fact that the currently 

available statistical tests lack sufficient power to reject the IBR model (Ho et al. 2015). In 

fact, some studies report finding extensive branch rate autocorrelation (e.g., Lepage et 

al. (2007)), but others do not agree (e.g., Linder et al. (2011)). Consequently, many 

researchers use both ABR and IBR models when applying Bayesian methods to date 

divergences (Wikstrӧm et al. 2001; Drummond et al. 2006; Bell et al. 2010; Erwin et al. 

2011; Meredith et al. 2011; dos Reis et al. 2012; Magallón et al. 2013; Jarvis et al. 2014; 

Hertweck et al. 2015; dos Reis et al. 2015; Foster et al. 2016; Liu et al. 2017; Pacheco et 

al. 2018; dos Reis et al. 2018; Takezaki 2018), a practice that often generates controversy 

via widely differing time estimates (Battistuzzi et al. 2010; Christin et al. 2014; dos Reis 

et al. 2014; dos Reis et al. 2015; Foster et al. 2016; Liu et al. 2017; Pacheco et al. 2018; 

Takezaki 2018). 

Therefore, we need a powerful method to accurately test whether evolutionary 

rates are autocorrelated in a phylogeny. Application of this method to molecular datasets 

representing taxonomic diversity across the tree of life will enable an assessment of the 

preponderance of autocorrelated rates in nature. Here, we introduce a new machine 

learning approach (CorrTest) that shows high power to detect autocorrelation between 

molecular rates. CorrTest is computationally efficient, and its application to a large 

number of datasets establishes the pervasiveness of rate autocorrelation in the tree of 

life. 

 

New Method 

Machine learning (McL) is widely used to solve problems in many fields, including ecology 

(Christin et al. 2018; Willcock et al. 2018) and population genetics (Saminadin-Peter et 

al. 2012; Schrider and Kern 2016; Schrider and Kern 2018). We present a supervised 

machine learning (McL) framework (Bzdok et al. 2018) to build a predictive model that 

distinguishes between ABR and IBR models, which is a challenge in molecular 

phylogenetics and phylogenomics. In our McL approach, the input is a molecular 
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phylogeny with branch lengths and the output is a classification that corresponds to 

whether or not the evolutionary rates in the phylogeny are autocorrelated among 

branches (ABR or IBR, respectively). An overview of our McL approach is presented in 

figure 1. 

To build a predictive model, McL needs measurable properties (features) that can 

be derived from the input data (phylogeny with branch lengths). The selection of 

informative and discriminating features (Fig. 1g and h) is critical for the success of McL. 

We derive relative lineage rates using a given molecular phylogeny with branch (“edge”) 

lengths (Fig. 1e and 1f) by using Tamura et al.’s method (Tamura et al. 2018), and use 

these lineage rates to generate informative features. This is necessary because we 

cannot derive branch rates without knowing node times in the phylogeny. For example, 

we need to know node times ti’s in figure 2 to convert branch lengths into branch rates, 

but these node times are what investigators wish to estimate by using a Bayesian 

approach which requires selection of a rate model. In contrast, estimation of relative 

lineage rates does not require the knowledge of divergence times, because an 

evolutionary lineage includes all the branches in the descendant subtree (e.g., lineage a 

contains branches with lengths b1, b2, and b5 in figure 2) and the relative rate between 

sister lineages is simply the ratio of the evolutionary depths of the two lineages (Tamura 

et al. 2018). In figure 2, Ra and Rb are two lineage rates, whose relative value can be 

estimated by the ratio of La and Lb. Tamura et al. (2018) presented the relative rate 

framework (RRF)  to estimate these relative lineage rates analytically by using branch 

lengths only. Furthermore, Tamura et al. (2018)’s method generates relative lineage rates 

such that all the lineage rates in a phylogeny are relative to the rate of the ingroup root 

lineage (R0, Fig. 2). This enables us to develop a number of features for building a McL 

predictive model. 

We considered correlation between ancestral and descendant lineage rates (ρad), 

the correlation between the sister lineage rates (ρs), and the decay in ρad when one or 

two parents are skipped (d1 and d2, respectively) (see Materials and Methods). ρad was 

considered as a feature because our analyses of simulated data showed that ρad was 

much higher for phylogenetic trees in which molecular sequences evolved under an ABR 

model (0.96) than the IBR model (0.54, Fig. 3a). Importantly, ρad is not expected to be 
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zero under the IBR model because ρad is a correlation between ancestral and descendant 

lineages, not branches, and the evolutionary rate of an ancestral lineage depends on the 

evolutionary rates of its descendant lineages (Tamura et al. 2018). While ρad is greater 

than zero, it showed distinct patterns for ABR and IBR models and is, thus, a good 

candidate feature for McL (Fig. 3a). As our second feature, we considered the correlation 

between the sister lineages (ρs), because ρs was higher for the ABR model (0.89) than 

the IBR model (0.00, Fig. 3b). Two additional features considered were the decay in ρad 

when one or two parent branches are skipped (d1 and d2, respectively). We expect that 

ρad will decay slower under ABR than IBR, which was confirmed (Fig. 3c). The selected 

set of candidate features (ρs, ρad, d1, and d2) can be measured for any phylogeny with 

branch lengths, e.g., derived from molecular data using the Maximum Likelihood method. 

They are then used to train the machine learning classifier (Fig. 1i and j). For this purpose, 

we need a large set of phylogenies in which branch rates are autocorrelated (ABR = 1, 

Fig. 1d) and phylogenies in which the branch rates are independent (IBR = 0, Fig. 1c). 

However, there is a paucity of empirical data for which ABR and IBR rates are 

firmly established. We, therefore, trained our McL model on a simulated dataset, a 

common practice in machine learning applications when reliable real world training 

datasets are few in number (Saminadin-Peter et al. 2012; Schrider and Kern 2016; 

Ekbatani et al. 2017; Le et al. 2017). We used computer simulations to generate 1,000 

molecular datasets that evolved with ABR models and 1,000 molecular datasets that 

evolved with IBR models (Fig. 1a and b). To ensure the general utility of our model for 

analyses of diverse data, we simulated molecular sequences with varying numbers of 

species, degrees of rate autocorrelation, diversity of evolutionary rate and substitution 

pattern parameters (see Materials and Methods). Candidate features were computed for 

all 2,000 training datasets (Fig. 1g and h), each of which was associated with a numerical 

output state (IBR = 0 and ABR = 1; Fig. 1c and d). These features were used to build a 

predictive model by employing logistic regression (Fig. 1j). This predictive model was then 

used to generate a correlation score (CorrScore) for any phylogeny with branch lengths. 

We also developed a conventional statistical test (CorrTest) based on CorrScore, 

which provides a P-value to decide whether the IBR model should be rejected. A high 

CorrScore indicates a high probability that the branch rates are autocorrelated. At a 
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CorrScore greater than 0.5, Type I error (rejecting IBR when it was true) was less than 

5%. Type I error of 1% (P-value of 0.01) was achieved with a CorrScore greater than 0.83 

(Fig. 3e). CorrTest is available at Github (https://github.com/cathyqqtao/CorrTest) and in 

MEGA X (Kumar et al. 2018). 

RESULTS 

We evaluated the sensitivity and specificity of our predictive model using receiver 

operating characteristic (ROC) curves, which measured the sensitivity of our method to 

detect rate autocorrelation when it is present (True Positive Rate, TPR) and when it was 

not present (False Positive Rate, FPR) at different CorrScore thresholds. The ROC curve 

for McL using all four features was the best, which led to the inclusion of all four features 

in the predictive model (Fig. 3d; Material and Methods). The area under the ROC 

(AUROC) was 99%, with a 95% TPR (i.e., ABR detection) achieved at the expense of 

only 5% FPR (Fig. 3d, black line). The area under the precision recall (AUPR) curve was 

also extremely high (0.99; Fig. 3d inset), which suggested that that CorrTest detects the 

presence of rate autocorrelation with very high accuracy and precision. 

We also performed standard cross-validation tests using the simulated data to 

evaluate the accuracy of the predictive models when only a subset of data are used for 

training. In 10-fold cross-validation, the predictive model was developed using 90% of the 

synthetic datasets, and then its performance was tested on the remaining 10% of the 

datasets. The AUROC was greater than 0.99 and the accuracy was high (>94%). Even 

in the 2-fold cross-validation, where only half of the datasets (500 ABR and 500 IBR 

datasets) were used for training the model and the remaining half were used for testing, 

the AUROC was greater than 0.99 and the classification accuracy was greater than 92%. 

This suggested that the predictive model is robust. 

We tested the performance of CorrTest on a large collection of simulated datasets 

where the correct rate model is known (Fig. 1l). In these datasets (Tamura et al. 2012), a 

different software and simulation schemes were used to generate sequences with a wide 

range of empirically derived G+C contents, transversion/transition ratios, and evolutionary 

rates under both ABR and IBR models (see Materials and Methods). CorrTest accuracy 

was greater than 94% in detecting ABR and IBR models correctly for datasets that were 

simulated with low and high G+C contents (Fig. 4a), small and large substitution rate 
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biases (Fig. 4b), and different rates of evolution (Fig. 4c). As expected, CorrTest 

performed best on datasets that contain more and longer sequences (Fig. 4d). 

In the above analyses, we used the correct tree topology and nucleotide 

substitution model. We relaxed this requirement and evaluated CorrTest by first inferring 

a phylogeny using the Neighbor-joining method (Saitou and Nei 1987) with an 

oversimplified substitution model (Kimura 1980). Naturally, many inferred phylogenies 

contained topological errors, but we found the accuracy of CorrTest to be high as long as 

the dataset contained >100 sequences of length >1,000 base pairs (Fig. 4e). CorrTest 

also performed well when 20% of the tree partitions were incorrect in the inferred 

phylogeny (Fig. 4f). Therefore, CorrTest will be most reliable for large datasets, and is 

relatively robust to errors in phylogenetic inference.  

CorrTest versus Bayes factor analysis 

We compared the performance of CorrTest with that of the Bayes factor approach. 

Because the Bayes factor method is computationally demanding, we limited our 

comparison to 100 datasets containing 100 sequences each (see Material and Methods). 

We computed Bayes factors (BF) by using the stepping-stone sampling (SS) method (see 

Materials and Methods). BF-SS analysis detected autocorrelation (P < 0.05) for 33% of 

the autocorrelated rate datasets (Fig. 5a, red curve in the ABR zone). This is because, 

for these datasets, the marginal log-likelihoods under the ABR model for 67% were very 

similar to or lower than that for the IBR model. Therefore, BF was conservative in rejecting 

the IBR model, as has been reported before (Ho et al. 2015). CorrTest performed better, 

it correctly detected the ABR model for 88% of the datasets (P < 0.05; Fig. 5b, red curve 

in ABR zone). For datasets that evolved with IBR model, BF-SS correctly detected the 

IBR model for 89% (Fig. 5a, blue curves in the IBR zone), whereas CorrTest correctly 

detected 86% (Fig. 5b, blue curve in the IBR zone). Therefore, BF performs well in 

correctly classifying phylogenies that evolved under IBR, but not ABR. The power of 

CorrTest to correctly infer ABR is responsible for its higher overall accuracy (87% vs. 61% 

for BF). Such a difference in accuracy was observed at different levels of statistical 

significance (Fig. 5c), for datasets that evolved with high and low rate autocorrelation (Fig. 

5d), and for datasets that were simulated with low and high degrees of independent rate 

variation (Fig. 5e). These comparisons suggest that the machine learning method enables 
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highly accurate detection of rate correlation in a given phylogeny and presents a 

computationally feasible alternative to Bayes Factor analyses for large datasets. 

Correlation of rates is common in molecular evolution  

The high accuracy and fast computational speed of CorrTest enabled us to test the 

presence of autocorrelation in 16 large datasets from 12 published studies of eukaryotic 

species and 2 published studies of prokaryotic species encompassing diverse groups 

across the tree life. This included nuclear, mitochondrial and plastid DNA, and protein 

sequences from mammals, birds, insects, metazoans, plants, fungi, and prokaryotes 

(Table 1). CorrTest rejected the IBR model for all datasets (P < 0.05). In these analyses, 

we assumed a time-reversible process for base substitution. However, the violation of this 

assumption may produce biased results in phylogenetic analysis (Jayaswal et al. 2014). 

We, therefore, applied an unrestricted substitution model for analyzing all the nuclear 

datasets and confirmed that CorrTest rejected the IBR model in every case (P < 0.05). 

This robustness stems from the fact that the branch lengths estimated under the time-

reversible and the unrestricted model are highly correlated for these data (r2 > 0.99). This 

is the reason why CorrTest produces reliable results even when an oversimplified model 

was used in analyzing the computer simulated data in which a complex model of 

sequence evolution was used to generate the sequence alignments (Fig. 4e and f). 

These results suggest that the correlation of rates among lineages is the rule, 

rather than the exception in molecular phylogenies. This pattern contrasts starkly with 

those reported in many previous studies (Drummond et al. 2006; Moore and Donoghue 

2007; Brown et al. 2008; Bell et al. 2010; Smith et al. 2010; Linder et al. 2011; Jarvis et 

al. 2014; Lu et al. 2014; Barreda et al. 2015; Claramunt and Cracraft 2015; Prum et al. 

2015; Feng et al. 2017; Barba-Montoya et al. 2018). In fact, all but three datasets 

(Battistuzzi and Hedges 2009; Erwin et al. 2011; Calteau et al. 2014) received very high 

prediction scores in CorrTest, resulting in extremely significant P-values (P < 0.001). The 

IBR model was also rejected for the other three datasets (P < 0.05), but their test scores 

were not as high, likely because they sparsely sample a large phylogenetic space. For 

example, the metazoan dataset (Erwin et al. 2011) contains sequences primarily from 

highly divergent species that shared common ancestors hundreds of millions of years 

ago. In this case, tip lineages in the phylogeny are long and their evolutionary rates are 
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influenced by many un-sampled lineages. Such sampling effects weaken the rate 

correlation signal. We verified this behavior via an analysis of simulated data and found 

that CorrTest’s prediction scores decreased when taxon sampling and density were 

lowered (Fig. 6). Overall, CorrTest detected rate correlation in all the empirical datasets.  

Magnitude of the rate correlation in molecular data 

CorrScore is influenced by the size of the dataset in addition to the degree of 

autocorrelation, so it is not a direct measure of the degree of rate autocorrelation (effect 

size) in a phylogeny. Instead, one should use a Bayesian approach to estimate the degree 

of rate correlation, for example, under Kishino et al. (2001)’s autocorrelated rate model. 

In this model, a single parameter (ν) captures the degree of autocorrelation among 

branches in a phylogenetic tree. A low value of ν indicates high autocorrelation, so, we 

use the inverse of v to represent the degree of rate autocorrelation. MCMCTree (Yang 

2007) analyses of simulated datasets confirmed that the estimated v is linearly related to 

the true value (Fig. 7). In empirical data analyses, we find that the inverse of v is high for 

all datasets examined, which suggests ubiquitous high rate autocorrelation across the 

tree of life.  

Other interesting patterns emerge from this analysis. First, rate autocorrelation is 

highly significant not only for mutational rates (= substitution rate at neutral positions), 

which are expected to be similar in sister species because they inherit cellular machinery 

from a common ancestor, but also amino acid substitution rates, which are more strongly 

influenced by natural selection (Table 1). For example, synonymous substitution rates in 

the third codon positions and the four-fold degenerate sites in mammals (Meredith et al. 

2011), which are largely neutral and are the best reflection of mutation rates (Kumar and 

Subramanian 2002), received high CorrScores of 0.99 and 0.98, respectively (P < 0.001). 

Second, our model also detected a strong signal of correlation for amino acid substitution 

rates in the same proteins (CorrScore = 0.99). Bayesian analyses showed that the degree 

of correlation is high in both cases: inverse of v was 3.21 in 4-fold degenerate sites and 

3.11 in amino acid sequences. Third, mutational and substitution rates in both nuclear 

and mitochondrial genomes are highly autocorrelated (Table 1). These results establish 

that molecular and non-molecular evolutionary patterns are concordant, because 

morphological characteristics are also found to be similar between closely-related species 
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(Sargis and Dagosto 2008; Lanfear et al. 2010; Cox and Hautier 2015) and correlated 

with taxonomic or geographic distance (Wyles et al. 1983; Shao et al. 2016). 

Discussion  

Our results demonstrate that the machine learning framework is useful to develop a 

method to detect the presence of rate autocorrelation among branches in a phylogeny. 

This method yields CorrScore estimates that we found to be useful to develop a 

conventional statistical test, CorrTest, and generate an associated P-value. This model 

can be used for datasets with small and large number of sequences, because we already 

tested if higher CorrTest accuracy could be achieved by building specific predictive 

models that were trained separately by using data with ≤ 100 (M100), 100 – 200 (M200), 

200 – 300 (M300), and > 300 (M400) sequences. A specific threshold was determined for 

each training subset and then was tested each model using Tamura et al. (2012)’s data 

with the corresponding number of sequences. For example, we used the threshold 

determined by the model trained with small data (≤ 100 sequences) on the test data that 

contain less than 100 sequences, and used the threshold determined by the model 

trained with large data (>300 sequences) on the large test data (400 sequences). We 

found that the accuracy of using the specific thresholds (Fig. 8) is similar to the accuracy 

when we used a global threshold (Fig. 4d - f). This is because the machine learning 

algorithm has automatically incorporated the impact of the number of sequences when it 

determined the relationship of four selected features (ρad, ρs, d1 and d2). This justifies the 

usage of the globally trained CorrTest that we used in all the empirical analyses. 

Our results suggest that the autocorrelated rate model should be the default in 

molecular clock analysis, and CorrTest can be used to test the independent rate model 

when sufficient numbers of sequences are available. Use of the autocorrelated rate model 

is important because model selection has a strong influence on the posterior credible 

intervals of divergence times (Battistuzzi et al. 2010). For example, the use of IBR model 

produces estimates of divergence time of two major groups of grasses that are 66% older 

(Christin et al. 2014) and origin of a major group of mammal (Erinaceidea) to be 30% 

older (Meredith et al. 2011) than estimates under ABR model. In fact, substantial 

differences between node age estimates under IBR and ABR models have been reported 

in many studies (Battistuzzi et al. 2010; Bell et al. 2010; Christin et al. 2014; dos Reis et 
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al. 2015; Foster et al. 2016; Liu et al. 2017; Pacheco et al. 2018; Takezaki 2018). Thus, 

the use of an incorrect rate model has a large impact on time estimates, which may not 

always be alleviated by adding calibrations (Battistuzzi et al. 2010). Knowledge that 

evolutionary rates are generally autocorrelated within lineages will foster unbiased and 

precise dating of the tree of life, whenever one needs to choose a rate model to generate 

accurate Bayesian time estimates for use in studies of biodiversity, phylogeography, 

development, and genome evolution. However, it is important to appreciate that no single 

rate model may be adequate for Bayesian dating analyses, and one may need to use a 

mixture of models because different groups of species and genes in a large phylogeny 

may have evolved with different levels of autocorrelation (e.g., Lartillot et al. (2016)). In 

this sense, the results produced by CorrTest (and by Bayes Factor) analyses primarily 

detect the presence of rate autocorrelation, but they do not tell us if the rate 

autocorrelation exists in every clade of a phylogeny or if the degree of autocorrelation is 

the same in all the clades. One may apply CorrTest to individual clades (subtrees) to 

evaluate these patterns. For example, we applied CorrTest on subtrees to detect the 

existence of clade specific rate autocorrelation by dividing a few large empirical 

phylogenies (Meredith et al. 2011; dos Reis et al. 2012; Misof et al. 2014; Prum et al. 

2015) into subtrees with at least 50 sequences. We found rate autocorrelation to be 

present in a vast majority of data subsets (results not shown), which supports the 

conclusion that rate autocorrelation is a common feature of molecular evolution of DNA 

and amino acid sequences.  
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Materials and Methods 

Machine learning (McL) model 

Training data for McL. We simulated nucleotide alignments using independent branch 

rate (IBR) and autocorrelated branch rate (ABR) models using the NELSI package (Ho et 

al. 2015) with a variety of empirically drived parameters or parameters that were used in 

a previous study. In IBR, branch-specific rates were drawn from a lognormal distribution 

with a mean gene rate and a standard deviation (in log-scale) that varied from 0.1 to 0.4, 

previously used in a study simulating independent rates with different levels of variation 

(Ho et al. 2015). In ABR, branch-specific rates were simulated under an autocorrelated 

process (Kishino et al. 2001) with an initial rate set as the mean rate derived from an 

empirical gene and an autocorrelated parameter, ν, that was randomly chosen from 0.01 

to 0.3, previously used in a study simulating low, moderate and high degrees of 

autocorrelated rates (Ho et al. 2015). We used SeqGen (Grassly et al. 1997) to generate 

alignments under Hasegawa-Kishino-Yano (HKY) model (Hasegawa et al. 1985) with 4 

discrete gamma categories by using a master phylogeny, consisting of 60-400 ingroup 

taxa randomly sampled from the bony-vertebrate clade in the Timetree of Life (Hedges 

and Kumar 2009). Mean evolutionary rates, G+C contents, transition/transversion ratios 

and numbers of sites for simulation were derived from empirical distributions (Rosenberg 

and Kumar 2003). 1,000 molecular datasets were generated under ABR and IBR model 

separately and these 2,000 simulated datasets were used as training data in building the 

machine learning model.  

Calculation of features for McL. Lineage-specific rate estimates (Ri’s) were obtained using 

equations [28] - [31] and [34] - [39] in Tamura et al. (2018). For any given node in the 

phylogeny, we extracted the relative rates of its ancestral clade (Ra) and two direct 

descendant clades (R1 and R2). Then, we calculated correlation between ancestral 

lineage and its direct descendant lineage rate to obtain estimates of ancestor-descendant 

rate correlation (ρad). We also calculated correlation between sister lineage rates (ρs), for 

which the lineage rates of sister pairs are randomly labeled. The labeling of sister pairs 

have small impact on ρs when the number of sequences in the phylogeny is not too small 

(>50). For smaller datasets, we found that it is best to generate multiple ρs estimates, 
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each using randomly labelled sister pairs, in order to eliminate any bias that may result 

from the arbitrary designation of sister pairs. In this case, we use the mean ρs from 

multiple replicates in the CorrTest analysis. To avoid the assumption of linear correlation 

between lineages, we used Spearman rank correlation because it can capture both linear 

and non-linear correlation between two vectors. Two additional features included in McL 

measure the decay in ρad when one or two intervening branches are skipped (d1 and d2, 

respectively). We first estimated ρad_skip1 as the correlation between rates where the 

ancestor and descendant were separated by one intervening branch, and ρad_skip2 as the 

correlation between rates where the ancestor and descendant were separated by two 

intervening branches. This skipping reduces ancestor-descendant correlation, which we 

then used to derive the decay of correlation values by using equations d1 = (ρad - 

ρad_skip1)/ρad and d2 = (ρad - ρad_skip2)/ρad. These two features improved the accuracy of our 

model slightly. In the analyses of empirical datasets, we found that a large amount of 

missing data (>50%) can result in unreliable estimates of branch lengths and other 

phylogenetic errors (Wiens and Moen 2008; Lemmon et al. 2009; Filipski et al. 2014; Xi 

et al. 2015; Marin and Hedges 2018). In this case, we recommend computing selected 

features using only those lineage pairs for which >50% of the positions contain valid data, 

or remove sequences with a large amount of missing data. 

Building the McL predictive model. We trained a logistic regression model using the skit-

learn module (Pedregosa et al. 2011), which is a python toolbox for data mining and data 

analysis using machine learning algorithms, with only ρad, only ρs or all 4 features (ρs, ρad, 

d1 and d2) using 2,000 simulated training datasets (1,000 with ABR model and 1,000 with 

IBR model). For each training data, we inferred the branch lengths from the molecular 

sequences with a fixed topology first and used these inferred branch lengths to estimate 

relative lineage rates for computing all the selected features. A response value of 1 was 

given to true positive cases (autocorrelated rates) and 0 was assigned to true negative 

cases (independent rates). Thus, the prediction scores (CorrScore) were between 0 and 

1. A high score representing a higher probability that the rates are autocorrelated. Then 

the thresholds at 5% and 1% significant levels can be determined. 
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Test datasets 

Tamura et al. (2012)’s simulated data were used to evaluate CorrTest’s performance. We 

present the test results for the data simulated using ABR model (autocorrelated lognormal 

distribution) and IBR model (independent uniform distribution with 50% rate variation) 

here. We tested the performance of our model on ABR and IBR data with different GC 

contents, transition/transversion ratios, and evolutionary rates. We randomly sampled 50, 

100, 200, and 300 sequences from the original 400 sequences and conducted CorrTest 

using the correct, error-prone topology inferred by the Neighbor-joining method (Saitou 

and Nei 1987) with an oversimplified substitution model (Kimura 1980). We also tested 

CorrTest’s performance on data simulated under an IBR model process with 100% rate 

variation and found that CorrTest works perfectly (100% accuracy; results not shown). In 

addition, we conducted another set of simulations using IBR (independent lognormal 

distribution) and ABR (autocorrelated lognormal distribution) (Kishino et al. 2001) model 

with 100 replicates each using the same strategy as a training data simulation (described 

above) on a master phylogeny of 100 taxa randomly sampled from the bony-vertebrate 

clade in the Timetree of Life (Hedges and Kumar 2009). These 200 datasets were used 

to conduct CorrTest and Bayes factor analyses and to obtain the autocorrelation 

parameter (v) in MCMCTree (Yang 2007). 

 

CorrTest analyses 

All CorrTest analyses were conducted using a customized R code (available from 

https://github.com/cathyqqtao/CorrTest). We estimated branch lengths of a tree topology 

on sequence alignments using maximum likelihood method (or Neighbor-Joining method 

when we tested the robustness of our model to topological error) in MEGA (Kumar et al. 

2012; Kumar et al. 2016). Then we used those estimated branch lengths to compute 

relative lineages rates using RRF (Tamura et al. 2012; Tamura et al. 2018) and calculated 

the value of selected features (ρs, ρad, d1 and d2) to obtain the CorrScore. We conducted 

CorrTest on the CorrScore to estimate the P-value of detecting rate autocorrealtion. No 

calibration was needed for CorrTest analyses. 
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Bayes factor analyses 

We computed the Bayes factor via stepping-stone sampling (BF-SS) (Xie et al. 2011) with 

n = 20 and a = 5 using mcmc3r package (dos Reis et al. 2018). We chose BF-SS because 

the harmonic mean estimator has many statistical shortcomings (Lepage et al. 2007; Xie 

et al. 2011; Baele et al. 2013) and thermodynamic integration (Silvestro et al. 2011; dos 

Reis et al. 2018) is less efficient than BF-SS. For each dataset, we computed the log-

likelihoods (lnK) of using IBR model and ABR model. The Bayes factor posterior 

probability for ABR was calculated as shown in dos Reis et al. (2018). We used only one 

calibration point at the root (true age with a narrow uniform distribution) in all the Bayesian 

analyses, as it is the minimum number of calibrations required by MCMCTree (Yang 

2007). For other priors, we used diffused distributions of “rgene_gamma = 1 1”, 

“sigma2_gamma=1 1” and “BDparas = 1 1 0”. In all Bayesian analyses, two independent 

runs of 5,000,000 generations each were conducted, and results were checked in Tracer 

(Rambaut et al. 2014) for convergence. ESS values were higher than 200 after removing 

10% burn-in samples for each run. 

Analysis of empirical datasets.  

We used 16 datasets from 12 published studies of eukaryotes and 2 published studies of 

prokaryotes that cover the major groups in the tree of life (Table 1).These were selected 

because they did not contain too much missing data (<50%) and represented >80 

sequences. As we know, a large amount of missing data (>50%) can result in unreliable 

estimates of branch lengths and other phylogenetic errors (Wiens and Moen 2008; 

Lemmon et al. 2009; Filipski et al. 2014; Xi et al. 2015; Marin and Hedges 2018) and 

potentially bias CorrTest result. When a phylogeny and branch lengths were available 

from the original study, we estimated relative rates directly from the branch lengths via 

the relative rate framework (Tamura et al. 2018) and computed selected features to 

conduct CorrTest. Otherwise, maximum likelihood estimates of branch lengths were 

obtained in MEGA (Kumar et al. 2012; Kumar et al. 2016) using the published topology, 

sequence alignments, and the substitution model specified in the original article.  

To obtain the autocorrelation parameter (v), we used MCMCTree (Yang 2007) with 

the same input priors as the original study, but no calibration priors were used in order to 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/346635doi: bioRxiv preprint 

https://doi.org/10.1101/346635
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

avoid the undue influence of calibration uncertainty densities on the estimate of v. We 

did, however, provide a root calibration because MCMCTree requires it. For this purpose, 

we used the root calibration provided in the original article or selected the median age of 

the root node in the TimeTree database (Hedges et al. 2006; Kumar et al. 2017) ± 50My 

(soft uniform distribution) as the root calibration, as this does not impact the estimation of 

v. Bayesian analyses required long computational times, so we used the original 

alignments in MCMCTree to infer v if alignments were shorter than 20,000 sites. If the 

alignments were longer than 20,000 sites, we randomly selected 20,000 sites from the 

original alignments. However, one dataset (Ruhfel et al. 2014) contained more than 300 

ingroup species, such that even alignments of 20,000 sites required prohibitive amounts 

of memory. In this case, we randomly selected 2,000 sites from the original alignments to 

use in MCMCtree for v inference (similar results were obtained with a different site 

subset). Two independent runs of 5,000,000 generations each were conducted, and 

results were checked in Tracer (Rambaut et al. 2014) for convergence. ESS values were 

higher than 200 after removing 10% burn-in samples for each run. All empirical datasets 

are available at https://github.com/cathyqqtao/CorrTest.  
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Table 1. Patterns of rate autocorrelation inferred using the CorrTest approach. 

 

Taxonomic 

Group Data type 

Sequence 

counta 

Sequence 

length 

Substitution 

model 

CorrTest 

score P-value 1/νb Reference 

Mammals 
Nuclear 4-fold 

degenerate sites 
138 1,671 GTR + Γ 0.98 < 0.001 3.21 Meredith et al. (2011) 

Mammals Nuclear 3rd codon 138 11,010 GTR + Γ 0.99 < 0.001 4.42 Meredith et al. (2011) 

Mammals Nuclear proteins 138 11,010 JTT + Γ 0.99 < 0.001 3.11 Meredith et al. (2011) 

Mammals Mitochondrial DNA 271 7,370 HKY + Γ 0.98 < 0.001 3.77 dos Reis et al. (2012) 

Birds Nuclear DNA 198 101,781 GTR + Γ 1.00 < 0.001 2.07 Prum et al. (2015) 

Birds 
Nuclear 3rd codon 

positions 
222 1,364 GTR + Γ 1.00 < 0.001 2.11 Claramunt et al. (2015) 

Birds 
Nuclear 1st and 2nd 

codon positions 
222 2,728 GTR + Γ 1.00 < 0.001 2.53 Claramunt et al. (2015) 

Insects Nuclear proteins 143 220,091 LG +  Γ 1.00 < 0.001 8.68 Misof et al. (2014) 

Metazoans 
Mitochondrial & 

nuclear proteins 
113 2,049 LG + Γ 0.65 < 0.05 40.0 Erwin et al. (2011) 

Plants 
Plastid 3rd codon 

positions 
335 19,449 GTR + Γ 1.00 < 0.001 2.28 Ruhfel et al. (2014) 

Plants Plastid proteins 335 19,449 JTT + Γ 1.00 < 0.001 2.46 Ruhfel et al. (2014)  

Plants 
Nuclear 1st and 2nd 

codon positions 
99 220,091 GTR + Γ 1.00 < 0.001 5.50 Wickett et al. (2014) 

Plants 
Chloroplast and 

nuclear DNA 
124 5,992 GTR + Γ 1.00 < 0.001 2.64 Beaulieu et al. (2015) 

Fungi Nuclear proteins 85 609,772 LG + Γ 0.97 < 0.001 3.78 Shen et al. (2016) 

Prokaryotes Nuclear proteins 197 6,884 JTT + Γ 0.79 < 0.05 2.54 Battistuzzi et al. (2009) 

Prokaryotes Nuclear proteins 126 3,145 JTT + Γ 0.83 < 0.05 1.23 Calteau et al. (2014) 

 

aSequence count excludes the outgroup. 

b1/ν is the inverse of the autocorrelation parameter that is estimated by MCMCTree with 

the autocorrelated rate model in the time unit of 100My.  
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Figure Legends 

Figure 1. A flowchart showing an overview of the machine learning (McL) approach 

applied to develop the predictive model (CorrTest). We generated (a) 1,000 synthetic 

datasets that were evolved using an IBR model and (b) 1,000 synthetic datasets that were 

evolved using an ABR model. The numerical label (c) for all IBR datasets was 0 and (d) 

for all ABR datasets was 1. For each dataset, we estimated a molecular phylogeny with 

branch lengths (e and f) and computed ρs, ρad, d1, and d2 (g and h) that served as features 

during the supervised machine learning. (i) Supervised machine learning was used to 

develop a predictive relationship between the input features and labels. (j) The predictive 

model produces a CorrScore for an input phylogeny with branch lengths. The predictive 

model was (k) validated with 10-fold and 2-fold cross-validation tests, (l) tested using 

external simulated data, and then (m) applied to empirical data to examine the prevalence 

of rate autocorrelation in the tree of life.  

Figure 2. An evolutionary tree showing branch lengths (b), lineage lengths (L), lineage 

rates (R), and node times (t). Relative linage rates are computed from branch lengths 

using equations [28] - [31] and [34] - [39] in Tamura et al. (2018).  Node times and branch 

rates are not required for estimating relative lineage rates.   

Figure 3. The relationship of (a) ancestral and direct descendant lineage rates and (b) 

sister lineage rates when the simulated evolutionary rates were autocorrelated with each 

other (red) or varied independently (blue). The correlation coefficients are shown. (c) The 

decay of correlation between ancestral and descendant lineages when we skip one 

intervening branch (1st decay, d1) and when we skip two intervening branches (2nd decay, 

d2). Percent decay values are shown. (d) Receiver Operator Characteristic (ROC) and 

Precision Recall (PR) curves (inset) of CorrTest for detecting branch rate model by using 

only ancestor-descendant lineage rates (ρad, green), only sister lineage rates (ρs, orange), 

and all four features (all, black). The area under the curve is provided. (e) The relationship 

between the CorrScore produced by the machine learning model and the P-value. 
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Independent rate model can be rejected when the CorrScore is greater than 0.83 at a 

significant level of P < 0.01, or when the CorrScore is greater than 0.5 at P < 0.05.  

Figure 4. The performance of CorrTest in detecting autocorrelation and independent rate 

models in the analysis of datasets (Tamura et al. 2012) that were simulated with different 

(a) G+C contents, (b) transition/transversion rate ratios, and (c) average molecular 

evolutionary rates. Darker color indicates higher accuracy. The evolutionary rates are in 

the units of 10-3 substitutions per site per million years. (d – f) Patterns of CorrTest 

accuracy for datasets containing increasing number of sequences. The accuracy of 

CorrTest for different sequence length is shown when (d) the correct topology was 

assumed and (e) the topology was inferred. (f) The accuracy of CorrTest for datasets in 

which the inferred the topology contained small and large number of topological errors.  

Figure 5. Comparisons of the performance of CorrTest and Bayes Factor analyses. (a) 

Distributions of 2 times the differences of marginal log-likelihood (2lnK) estimated via 

stepping-stone sampling method for datasets that were simulated with autocorrelated 

branch rates (ABR, red) and independent branch rates (IBR, blue). ABR is preferred (P < 

0.05) when 2lnK is greater than 3.841 (ABR zone), and IBR is preferred when 2lnK is less 

than -3.841 (IBR zone). When 2lnK is between -3.841 and 3.841, the fit of the two rate 

models is not significantly different (gray shade). (b) The distributions of CorrScores in 

analyses of ABR (red) and IBR (blue) datasets. Rates are predicted to be autocorrelated 

if the CorrScore is greater than 0.5 (P < 0.05, ABR zone) and vary independently if the 

CorrScore is less than 0.5 (IBR zone). (c) The rate of detecting ABR model correctly (True 

Positive Rate) at different levels of statistical significance in Bayes factor (BF-SS) and 

CorrTest analyses. Posterior probabilities for ABR in BF-SS analysis are derived using 

the log-likelihood patterns in panel a. CorrTest P-values are derived using the CorrScore 

pattern in panel b. (d) The accuracy of identifying ABR model for datasets simulated with 

low (v < 0.1), moderate (0.1 ≤ v < 0.2), and high (v ≥ 0.2) levels of rate autocorrelation in 

Kishino et al. (2001)’s model. (e) The accuracy of identifying IBR model for datasets 

simulated at different degree of rate variation in Drummond et al. (2006): low (standard 
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deviation < 0.2), moderate (0.2 ≤ standard deviation < 0.3), and high (standard deviation 

≥ 0.3). 

Figure 6. The distribution of CorrScore when data have different taxon sampling 

densities. The CorrScore decreases when the density of taxon sampling is lower, as there 

is much less information to discriminate between ABR and IBR. Red, dashed lines mark 

two statistical significance levels of 5% and 1%.  

Figure 7. The relationship between the inferred autocorrelation parameter from 

MCMCTree and the true value. The gray line represents the best-fit regression line, 

which has a slope of 1.09. 

Figure 8. Patterns of CorrTest accuracy using M100, M200, M300, and M400 models for 

the corresponding test datasets (Tamura et al. 2012). Accuracies are shown for 

increasing number of sequences. The accuracy of CorrTest for different sequence length 

is shown when (a) the correct topology was assumed and (b) the topology was inferred. 

(c) The accuracy of CorrTest for datasets in which the inferred the topology contained 

small and large number of topological errors.  
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