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Abstract 22 

 23 

Mutations frequently have outcomes that differ across individuals, even when these individuals 24 

are genetically identical and share a common environment.  Moreover, individual microbial and 25 

mammalian cells can vary substantially in their proliferation rates, stress tolerance, and drug 26 

resistance, with important implications for the treatment of infections and cancer. To investigate 27 

the causes of cell-to-cell variation in proliferation, we developed a high-throughput automated 28 

microscopy assay and used it to quantify the impact of deleting >1,500 genes in yeast.   29 

Mutations affecting mitochondria were particularly variable in their outcome.  In both mutant 30 

and wild-type cells mitochondria state – but not content – varied substantially across individual 31 

cells and predicted cell-to-cell variation in proliferation, mutation outcome, stress tolerance, and 32 

resistance to a clinically used anti-fungal drug. These results suggest an important role for cell-33 

to-cell variation in the state of an organelle in single cell phenotypic variation.  34 

 35 

 36 

 37 
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Introduction 39 

 40 

Isogenic populations often exhibit considerable phenotypic heterogeneity even in an identical 41 

environment. One common phenotypic variation that has been observed in isogenic populations 42 

of microbial and mammalian cells, including cancer cells is variation in proliferation rate [1-9]. 43 

Phenotypic variations that are often coupled with variation in proliferation rate are the abilities of 44 

an individual cell to survive stress and drug treatment [3,4]. In this regard, the existence of 45 

“persister” cells in microbial populations is well known and poses a significant challenge for 46 

antibiotic treatment [2,10-14]. Similarly, individual cells in tumors have been shown to vary in 47 

their ability to survive anticancer drugs and can lead to drug-resistant populations [15-20]. 48 

Recent advances in single-cell techniques are revealing the extent of transcriptomic and 49 

metabolic differences among isogenic cells [21,22].  The existence of such heterogeneity in gene 50 

expression in isogenic microbial and animal populations has been shown – to some extent – to 51 

underlie the variable outcome of mutations [23-27].  Incomplete mutation penetrance and 52 

variable expressivity is also common in human disease [28-31]. 53 

 54 

Heterogeneity can arise due to stochastic fluctuations in biological processes taking place inside 55 

cells. This can happen due to the small numbers of molecules involved in processes such as 56 

transcription [32-34] or during stochastic partitioning of cellular components during cell division 57 

[35,36]. Although cell-to-cell variation in the expression level of single genes has been 58 

correlated with variation in proliferation rate and stress and drug resistance [3,4,15,24-26,37,38], 59 

the true underlying causes of such phenotypic heterogeneity are poorly understood.  60 

 61 

To identify genes and cellular processes involved in the generation of phenotypic heterogeneity 62 

we set up a high-throughput microscopy assay to quantify proliferation heterogeneity in a yeast 63 

population. Using this assay, we quantify the impact of deletion of >1,500 genes on proliferation 64 

heterogeneity. We present evidence that the variation in mitochondria state is an important 65 

determinant of phenotypic heterogeneity in individual cells. We also show that mitochondria 66 

state impacts gene expression and stress and drug resistance in individual cells. Taken together, 67 

our work suggests an important role for an organelle in generating phenotypic heterogeneity 68 

across individual cells in a homogenous environment.  69 
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Results  70 
 71 

Natural and lab yeast populations show proliferation heterogeneity 72 

 73 

To investigate cell-to-cell variation in proliferation rates, we developed a high-throughput 74 

automated time-lapse microscopy assay that measures the proliferation rates of thousands of 75 

single-cells per plate as they grow into micro-colonies. The assay uses a microscope with laser-76 

based autofocus for image acquisition and a liquid handling robot to minimize density-dependent 77 

effects on proliferation. The data obtained are highly reproducible with mode proliferation rate of 78 

a lab strain being 0.407±0.011 h
-1

, (mean±sd) during >2 years of data collection (n=44 batches; 79 

Fig 1A).  80 

 81 

Laboratory strains of the budding yeast Saccharomyces cerevisiae showed substantial cell-to-cell 82 

variation in proliferation, with ~10% of cells forming a slow growing sub-population in defined 83 

growth medium (Fig. 1A) [3,39]. This slow growing sub-fraction is not unique to laboratory 84 

strains but exists in all natural and clinical isolates that we tested (Fig. 1B; Supplementary table 85 

1) [39].  Growth of the culture for an additional 20 generations did not alter the proliferation rate 86 

distribution; the mixture of slow and fast proliferating cells is maintained (Fig. 1C). Proliferation 87 

is therefore a stable heterogeneous phenotype within a population, with the amount of 88 

heterogeneity depending on the genetic background.   89 

 90 

A genome-scale screen to identify genes that alter proliferation heterogeneity 91 

 92 

The effect of individual gene deletions on population-level growth rate has been well studied 93 

[40,41].  Many deletions have been shown to reduce population growth rate and can do so in 94 

different ways. Deletions can uniformly affect fitness of all the cells or alternatively, can affect 95 

fitness of a sub-population whereas the rest of the population remains unaffected. Inter-96 

individual variation in the outcome of mutations has been observed before in multicellular 97 

organisms [23-25] but its relative occurrence has not been systematically quantified.  98 

 99 
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We therefore used the automated microscopy assay to quantify proliferation rate heterogeneity in 100 

triplicate for 1,600 gene deletion mutants (Supplementary table 2, including 1,150 gene deletions 101 

previously reported as affecting growth rates) [40,41].  We obtained reproducible data (where at 102 

least two replicate measurements showed good agreement) for 1,520 deletions, with 1,112 of 103 

these reducing the population proliferation rate in our experiment (Mann-Whitney U test, 104 

FDR<0.1).   105 

 106 

Deletion strains with similar population proliferation rates often showed strikingly different 107 

degrees of intra-population heterogeneity (Fig, 2A-C). At the single cell level, ~39% of all 108 

mutants with a significant reduction in population proliferation rate (1112 mutants) showed 109 

significantly higher variation in mutation outcome compared to the WT strain. Among these 110 

mutants, ~13% had the same mode growth rate as the WT strain while showing higher variability. 111 

However, almost all mutants (1111 or 1112) had a subset of cells proliferating at the same rate as 112 

the bulk of the wild-type (WT) population (one sample Wilcoxon rank-sum test for overlap with 113 

bulk WT distribution differing from zero, FDR<0.1; Supplementary fig. 1, Fig. 2D). Thus, a 114 

highly variable outcome is actually the normal outcome for proliferation rate at the single cell 115 

level when a non-essential gene is inactivated (Fig. 2D, Supplementary fig. 2A). 116 

 117 

Deletion of genes involved in mitochondrial function alter heterogeneity 118 

 119 

To identify the determinants of this cell-to-cell variation in growth-rate and mutational impact 120 

we classified each of the deletions by how it affected both the mode and distribution of cellular 121 

proliferation rates (Supplementary table 2, Fig. 2A,B). Approximately 17% of the mutants 122 

showed no change in either mode proliferation rate or percentage of slow sub-population (in 123 

grey), whereas ~43% exhibited a change in mode proliferation rate but no change in slow 124 

fraction (in light blue). Interestingly, 48 mutants reduced the slow fraction without any change in 125 

mode proliferation rate (in red) and 97 mutants increased the slow fraction without altering the 126 

mode proliferation rate (in blue). In addition, there were 78 mutants that reduced both the slow 127 

fraction and the mode proliferation rate (in orange).  Finally, 370 mutants reduced the mode 128 

growth rate but increased the slow sub-population (Fig. 2A). Across mutants, we observed a 129 
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strong inverse relationship between mean growth rate and noise (co-efficient of variation) (Fig. 130 

2C), as has been observed for gene expression [42,43]. 131 

 132 

To identify biological processes associated with changes in the slow growing sub-population, we 133 

performed a GO functional enrichment analysis on genes in these categories (FDR<0.1). 134 

Deletions causing the largest increase in the fraction of slow proliferating cells were highly 135 

enriched for nuclear genes encoding mitochondrial proteins (Fig 2C,E). Among the mutants that 136 

increased the slow fraction but also reduced mode growth rate (Fig. 2E, magenta), ~30% 137 

localized to mitochondria (~1.2-fold enrichment), ~13% localized to the mitochondrial envelope 138 

(>1.6-fold enrichment) and ~4.6% were involved in cellular respiration (~2-fold enrichment). In 139 

particular, deletion of genes that localized to the mitochondrial envelope resulted in a large 140 

increase in slow fraction and noise (Fig. 2E, Supplementary fig. 2B, Supplementary table 2). 141 

Mutations that affect mitochondria, and in particular the mitochondria membrane, increase 142 

heterogeneity, suggesting that heterogeneity in proliferation might be associated with cell-to-cell 143 

variation in mitochondria.  144 

 145 

Mitochondria state but not content predicts slow growth  146 

 147 

To further investigate the role of mitochondria in proliferation heterogeneity we used the 148 

MitoTracker dye to quantify mitochondrial content in WT cells and five deletion strains with 149 

very different proliferation distributions. Total mitochondria content varied little across the 150 

strains (Supplementary fig. 2C), ruling out cell-to-cell variation in segregation of the organelle as 151 

a driver of heterogeneity.   However, signal from the mitochondria membrane potential dye 152 

TMRE varied substantially across WT, mutants and natural strains (Fig 3A,B). This suggested 153 

that the state of the mitochondria – but not their content – might be driving proliferation 154 

heterogeneity.  155 

 156 

To determine if mitochondria state is correlated with variation in growth rate within a population 157 

we sorted wild-type cells according to their TMRE staining and measured the fraction of slow 158 

proliferating cells.  The population with high TMRE was highly enriched for slowly proliferating 159 

cells (Fig. 3C).  This same fraction was also strongly enriched for respiration deficient cells (Fig. 160 
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3D). This strong enrichment for slow proliferation and respiration deficiency was also observed 161 

for the cells with high TMRE in gene deletion strains and in natural isolates (Supplementary fig. 162 

3A-D).  163 

 164 

We further quantified the TMRE signal and proliferation distribution in a set of twelve strains 165 

that differ only by naturally occurring polymorphisms known to affect mitochondrial function by 166 

altering mtDNA inheritance [44]. Across all datasets, the percentage of slowly proliferating cells 167 

showed a high correlation with the percentage of respiration-deficient cells (Fig. 3E,F) as well as 168 

with the percentage of high TMRE cells (Supplementary fig. 4A).  169 

 170 

Although cell-to-cell variation in mitochondrial content did not predict proliferation rate 171 

variation (Supplementary fig. 4B), mtDNA copy number was substantially lower in the cells 172 

with high TMRE (Fig. 4A; Supplementary fig. 5A,B), suggesting a likely role of mtDNA copy 173 

number in defining mitochondrial state and ultimately, in generation of growth rate heterogeneity.  174 

 175 

To establish a causal relationship between mtDNA copy number and slow growth, we introduced 176 

an extra copy of the mitochondrial DNA polymerase Mip1[45], which increased mtDNA copy 177 

number 3-fold (Fig. 4B). This reduced both the fraction of slow proliferating and respiration-178 

deficient cells and the fraction of cells with high TMRE signal (Fig. 4C,D), suggesting that 179 

variation in mtDNA copy number can be causal for variation in both mitochondria state and 180 

proliferation. Consistent with an effect of mtDNA copy number on growth, knocking out of 181 

Mip1 gene led to complete loss of mtDNA and resulted in completely slow growing yeast 182 

population compared to WT (Supplementary fig. 5C,D) [45]. Furthermore, mtDNA copy number 183 

showed a strong correlation with the percentage of slow proliferating cells across mutants (Fig. 184 

4E, Supplementary fig. 5E). Finally, forcing cells to respire by pre-growing them on ethanol as 185 

the sole carbon source prior to growth in glucose decreased the fraction of slowly proliferating 186 

cells (Fig. 4F).  Taken together, these results suggest that alterations in mitochondria state, which 187 

can be caused by mtDNA copy number reduction below a threshold and other mechanisms is the 188 

underlying cause of slow growth in individual cells. 189 

 190 
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Cells with high, medium or low TMRE regenerated the original TMRE distribution and growth 191 

distribution on 48 hours of growth after sorting (Supplementary fig. 6,7A,B). High TMRE cells 192 

could give rise to low TMRE cells and vice versa. Similarly, analysis of growth over a series of 193 

time points showed that a small fraction of cells from all sorted bins could switch from the slow 194 

growing state to fast growing state and vice versa (Supplementary fig. 7C). However, a subset of 195 

cells did not recover their mtDNA copy number or their ability to respire after seven days of 196 

growth and remained slow-growing (Supplementary fig. 7D,E).  We conclude that cells switch 197 

between fast and slow growing states, but that a subset of cells become permanently slow 198 

growing, presumably because of an inability to recover functional mitochondria because of 199 

mtDNA loss. 200 

 201 

Variation in mitochondrial state predicts additional phenotypic heterogeneity including 202 

drug resistance  203 

To systematically understand the physiological differences between sub-populations that vary by 204 

mitochondria state, we analyzed the transcriptome by RNA sequencing. Cells with high TMRE 205 

have low expression of respiratory and proliferation-associated genes (Fig. 5A, Supplementary 206 

fig. 8A,B).  Consistent with previous analyses of slow proliferating cells [4,46], they also exhibit 207 

a DNA damage response (Fig. 5B) and signs of iron starvation (Fig. 5C), which has previously 208 

been reported for respiration deficient cells [47,48].  Cells with intermediate TMRE have very 209 

similar proliferation distributions to cells with low potential (Fig. 5C).  However, their gene 210 

expression was substantially different (Supplementary fig. 8C,D), including reduced expression 211 

of respiratory genes (Supplementary fig. 8D).   212 

 213 

In bacteria [49] and yeast [3,50,51], slow growing cells can have increased stress resistance.  We 214 

therefore tested whether the cells with high TMRE in a population are more resistant to acute 215 

heat stress. However, cells with high TMRE were more sensitive to heat shock as well as to 216 

oxidative stress (Supplementary fig. 9A, B) and expressed some stress-response genes at lower 217 

levels (Supplementary fig. 9C).  218 

 219 

Slow growing microbes and cancer cells often have increased drug resistance [2,4,12,17,52,53]. 220 

Moreover, in several species of fungi, complete loss of mitochondria is associated with elevated 221 
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resistance to some antifungal drugs [54-56] and respiration deficient strains are often isolated 222 

from drug-treated patients [57-59].   223 

 224 

We tested therefore whether the high TMRE cells differed in their sensitivity to a clinically used 225 

antifungal drug, fluconazole. We found that cells with high TMRE were ~5-7-fold more resistant 226 

to high concentrations of fluconazole (Fig. 5D,E; Supplementary fig. 10A).  The cells surviving 227 

fluconazole treatment included a sub-fraction able to respire (Fig. 5F).  Cell-to-cell variation in 228 

mitochondria state is therefore also an important predictor of cell-to-cell variation in drug 229 

resistance. 230 

 231 

Fluconazole targets the cytochrome P450 14α-sterol demethylase enzyme (ERG11), resulting in 232 

depletion of ergosterol, a key component of the yeast cell membrane [60,61].  Resistance to 233 

fluconazole has been previously reported to depend on the multidrug transporter PDR5 [62-64].  234 

High TMRE cells had significantly higher level of PDR5 expression (Fig. 5G; Supplementary fig. 235 

10B) as well as higher expression of the ergosterol biosynthesis pathway (Supplementary fig. 236 

10D). Consistent with previous work [65,66], the elevated expression of PDR5 in the high 237 

membrane potential cells was dependent on the PDR3 transcription factor (Supplementary fig. 238 

10C).  Thus, the increased resistance to fluconazole of high TMRE cells is likely to be mediated, 239 

at least in part, by increased expression of a multidrug transporter. 240 

 241 

 242 

  243 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/346361doi: bioRxiv preprint 

https://doi.org/10.1101/346361
http://creativecommons.org/licenses/by/4.0/


10 
 

Discussion 244 

 245 

In summary, we have shown here that mitochondria state – but not content – varies substantially 246 

and reversibly across individual yeast cells and that this is associated with cell-to-cell 247 

heterogeneity in proliferation, mutation outcome, and stress and drug resistance.  Laboratory 248 

strains of yeast have long been known to generate respiratory deficient ‘petite’ colonies at quite 249 

high frequency [44,67,68]. However, a slow growing sub-population of cells was observed in all 250 

the laboratory, natural, and clinical strains that we tested (Fig. 1A,B).  We propose that ‘petite’ 251 

colonies are an irreversible extreme phenotype that is generated as part of the more general 252 

variation in mitochondria state across single cells that we have identified here. 253 

 254 

Although, mitochondrial genes showed the strongest enrichment for an increased slow fraction in 255 

our gene deletion screen, other causes of slow growth will, of course, also exist.  For example,  256 

deletions of genes associated with chromosome segregation and nucleus organization also 257 

affected heterogeneity but had no apparent relation to mitochondrial function.  258 

 259 

Previous theoretical studies have proposed that variability in the partitioning of cellular 260 

components could lead to heterogeneity [35,36]. However, prior experimental work on the 261 

fidelity of mitochondria inheritance has shown it to be high, suggesting it is likely to be of little 262 

phenotypic consequence for single cells [69].  In contrast, we have shown here that cell-to-cell 263 

variation in the state of the organelle can be high and predicts phenotypic variation among single 264 

cells. Variation in mitochondria state was related to variation in mtDNA copy number in 265 

individual cells, but we do not currently know if this is the only – or even the most common – 266 

cause of variation in the state of the organelle across single cells.  Future work will be required to 267 

track down the upstream, proximal causes of this cell-to-cell variation in organelle functional 268 

state.  The list of gene deletions that alter growth heterogeneity that we have reported here 269 

provide a rich resource for this future work.  However, it is clear from the results of our screen 270 

that many different perturbations to mitochondria – and in particular to the mitochondria 271 

envelope and the respiratory complexes – increase this heterogeneity. 272 

 273 

 274 
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Prior work on the causes of variation in proliferation rates, stress and drug resistance, and 275 

mutation outcome across individuals and individual cells has focused on fluctuations in gene 276 

expression as causative influences [3,4,15,24-26,37,38].  Here we have shown that, in yeast, 277 

variation in an organelle is strongly associated with heterogeneity in gene expression across 278 

single cells.  In animals, inherited and somatic genetic variation in the mitochondrial genome can 279 

act as an important modifier of phenotypic variation [70-73]. Recent work has also revealed 280 

substantial variation in mtDNA copy number across human tumors [74]. Moreover, in 281 

mammalian cells, mitochondrial variability has been suggested to be an important influence on 282 

cell-to-cell variation in gene expression and splicing [75-77] and to influence variability in cell 283 

death by modulating apoptotic gene expression [20]. Taken together, these results suggest 284 

important roles for cellular organelles, in general, and mitochondria, in particular, in the 285 

generation of heterogeneity among individual cells. In future work, therefore, it will be important 286 

to test the extent to which cell-to-cell variation in the state of mitochondria and other organelles 287 

also contributes to variable phenotypic outcomes, mutation effects, and drug resistance in human 288 

cells, including in cancer. 289 

 290 

  291 
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Methods 292 

 293 

High-throughput microscopy assay 294 

96 strains were grown from glycerol stocks in a 96-well plate containing Synthetic Complete 295 

medium (0.67% Yeast Nitrogen Base without amino acids and 0.079% Complete Synthetic 296 

Supplement (ForMedium, UK)) with 2% glucose (SCD) for 24 hours at 30°C. The cells were 297 

diluted 1:50 in fresh medium, grown for 20 hours and diluted again 1:50 in fresh medium. 298 

Finally, cells were grown for 4 hours, cell densities were determined by OD at 600nm in a Tecan 299 

plate reader and then were diluted to another plate containing SCD or appropriate medium 300 

required for microscopy experiment using a Biomek NX (Beckman Coulter) liquid handling 301 

robot, capable of pipetting variable volumes of cells across wells in a 96 plate, to a target density 302 

of ~17000 cells/μl. This minimized any possible bias due to variability in cell densities among 303 

strains. A final 5-fold dilution was done by pipetting 80μl cells onto a pre-coated 96-well 304 

microscopy plate containing 320μl of SCD. The microscopy plate was then sealed with 305 

LightCycler 480 sealing foils (Roche), cells were spun at 450 rpm for 2 minutes and taken for 306 

microscopy observations.  307 

 308 

Microscopy plates (96-well glass bottom, MGB096-1-2-LG-L, Brooks Life Science Systems) 309 

were coated with 200μl sterile solution of 200μg/ml concanavalin A (type IV, Sigma) at 37°C for 310 

16-18 hours. The solutions were then pipetted out and the plates were washed twice with sterile 311 

milli-q water. Plates were dried at 4°C for at least 24 hours. Imaging was performed using an 312 

ImageXpress Micro (Molecular Devices) microscope, with laser autofocusing, at an interval of 313 

90 minutes for up to 12 hours. The microscope chamber was maintained at 30°C.   314 

     315 

Image processing  316 

Images were processed using custom scripts written in perl. Yeast cells were identified by 317 

juxtaposition of bright and dark pixels (10,36). A pixel was considered ‘bright’ if its intensity 318 

exceeded mean+2.2 s.d. value and a pixel was considered ‘dark’ if its intensity was below mean-319 

2.2 s.d. value. In addition, Sobel’s edge detection algorithm [78] was applied for identifying 320 

yeast cell boundaries with sharp changes in pixel intensity. Clustering was used to identify the 321 

microcolonies and the centroid position for each microcolony was calculated. Microcolonies 322 
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were tracked through centroid tracking over time. Sudden increase or decrease in centroid 323 

number in a time series indicated a failure in image acquisition or image processing and such 324 

images were discarded from the analysis. To differentiate cells from cellular debris, residuals of 325 

concanavalin A coating etc., two filtering steps were used. First, only objects that were bigger 326 

than 50 pixels at the start of observation were considered. Second, the object had to increase its 327 

size to greater than 2-fold at the end of observation. Whether neighbouring colonies touch each 328 

other at any point in time during microscopy observation was also checked. If they did, they 329 

were tracked only up to the time they touched each other. To calculate growth rate, linear 330 

regression on natural log-transformed area vs. time for three consecutive time points was 331 

performed. This was repeated using a three-point moving window over all time points. Of all 332 

these regressions, the maximum value was chosen as the microcolony growth rate to avoid biases 333 

because of slow down of growth during lag and/or due to possible substrate limitation near the 334 

end of observation.  335 

 336 

Screening of deletion mutants, classification and functional enrichment analysis 337 

Growth distributions for deletion mutants were measured in three independent experiments on 338 

different days. To calculate reproducibility of growth rate between replicates, mean growth rate 339 

was allowed to vary up to 0.05 h
-1

 and then Kolmogorov-Smirnov distance (K-S distance) [79] 340 

was calculated between all replicates after shifting one of them (through addition/subtraction) by 341 

difference in mean growth rates. Three replicates were considered as three nodes in a graph with 342 

K-S distance between them as the edge weight. If the K-S distance between two replicates 343 

exceeded 0.1, no edge was drawn between those two nodes. The sub-graph where the maximum 344 

number of nodes was connected to each other directly and via shortest possible distance was 345 

considered as reproducible replicates. Only mutants with at least two reproducible replicates 346 

were considered in our analysis. The number of reproducible replicates for each mutant is given 347 

in supplementary table 2.    348 

 349 

To calculate slow fraction from a proliferation distribution, first, a cumulative distribution 350 

function (cdf) was calculated with density being calculated at an interval of 0.01 h
-1

. The cdf 351 

function was then scanned for maximum slope using a window of 5 points. At the point with 352 

maximum slope, a line with the maximum slope was fitted and the points that deviated from the 353 
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fitted line by >0.02 h
-1

 were considered as the edges of the main subpopulation. In the next step, 354 

if the left sub-population was bigger than the right sub-population, the percentage of slow 355 

fraction was calculated as (% left sub-population-% right sub-population) and the percentage of 356 

fast sub-population was set to zero. If the right sub-population was bigger than the left sub-357 

population, the percentage of fast fraction was calculated as (% right sub-population-% left sub-358 

population) and the percentage of slow sub-population was set to zero. 359 

 360 

If the mode of a growth distribution is reduced (compared to WT) and the growth rate of slow 361 

fraction is not reduced, the main sub-population growth distribution is likely to overlap with and 362 

mask a slow growing sub-population. To avoid such scenarios, all the reproducible growth 363 

distributions for the WT strain were collected and the mode growth rate was computationally 364 

reduced in steps of 0.01 h
-1 

without changing the growth rate of the slow sub-population. The 365 

percentage slow fraction was calculated at each step. As expected, reduction in mode growth rate 366 

without moving the slow fraction led to a reduction in % of slow fraction (Supplementary fig. 367 

2A).  368 

 369 

Mutants with altered mode proliferation rate compared to WT strain were identified through 370 

Mann-Whitney U test (FDR<0.1). Mutants with altered slow fraction were identified by Mann-371 

Whitney U test (FDR<0.1) after correcting for any change in mode growth rate (Supplementary 372 

fig. 2A). Comparison between replicate measurements of mode growth rate and percentage of 373 

slow fraction was done (Supplementary fig. 11A). The mean proliferation rate of mutant strains 374 

obtained in our assay was comparable with published values (Supplementary fig. 11B).  375 

 376 

We used GOslim gene annotation [80,81] for functional class enrichment analysis and we 377 

performed a hypergeometric test as follows. Let us assume that in a group ‘g’ from screening 378 

(for example, the group with increased slow fraction but no change in mode growth rate), out of 379 

total Ng genes, Xg genes are associated with function f according to GOslim annotation.  Let us 380 

also assume that out of total N genes screened in our data, X genes belong to the functional class 381 

f according to GOslim annotation. Thus, the probability that the group ‘g’ contains more number 382 

of genes of functional class f than expected by chance alone is given by p=∑
(𝑋

𝑖 )( 𝑁−𝑋
𝑁𝑔−𝑖)

( 𝑁
𝑁𝑔

)

𝑁𝑔

𝑖=𝑋𝑔
 , which 383 
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gives the p-value. A further multiple testing correction was done using Benjamini-Hochberg 384 

procedure with FDR<0.1.  385 

 386 

Quantification of incomplete penetrance 387 

Incomplete penetrance was calculated for all mutants that showed significant reduction in mean 388 

proliferation rate compared to the WT strain (Mann-Whitney U test, FDR<0.1). For each of these 389 

mutants, replicate proliferation distributions were compared with replicate proliferation 390 

distributions of WT strain that were reproducible across the screening experiment. Average 391 

overlap of the mutant proliferation distributions with the bulk sub-population of each of the WT 392 

proliferation distribution was calculated. For WT strain, to calculate bulk sub-population from a 393 

proliferation distribution, first, a cumulative distribution function (cdf) was calculated with 394 

density being calculated at an interval of 0.01 h
-1

. The cdf function was then scanned for 395 

maximum slope using a window of 5 points. At the point with maximum slope, a line with the 396 

maximum slope was fitted and the point that deviated from the fitted line by > -0.02 h
-1

 was 397 

considered as the edge of the bulk sub-population. Thus, for each mutant, this led to a 398 

distribution of a percentage of cells showing WT-like proliferation (Supplementary fig. 1). In the 399 

next step, it was tested whether the distribution of percentage of WT-like cells was significantly 400 

different from zero (Wilcoxon rank-sum test for one sample) and an FDR correction for multiple 401 

testing was performed (FDR<0.1).   402 

 403 

Mitotracker green and TMRE staining  404 

To perform mitotracker green (MitoTracker Green FM, Molecular Probes, Thermo Fisher 405 

Scientific) staining, cells were centrifuged at maximum speed for 2 minutes and washed twice 406 

with buffer containing 10mM HEPES (pH 7.4) and 5% glucose. Cells were then re-suspended in 407 

the same buffer and Mitotracker Green (10μM stock dissolved in DMSO) was added to a final 408 

conc. of 100nM. Cells were incubated for 20 mins at 30°C, washed twice with PBS (pH 7.4) and 409 

quantified by flow cytometry (LSR Fortessa, BD Biosciences). For TMRE (Molecular Probes, 410 

Thermo Fisher Scientific) staining, cells were washed twice with PBS, were re-suspended in 411 

PBS, and TMRE was added to a final conc. of 100nM from a 10mM stock dissolved in DMSO. 412 

Cells were incubated at 30°C for 30 minutes, were washed twice with PBS and were analysed by 413 

flow cytometry or were sorted. There was a gap of 15-20 minutes between the end of staining 414 
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and beginning of flow cytometry experiments due to the time required for cleaning, priming and 415 

setting up of flow cytometry machine parameters. Day-to-day variations were observed in 416 

measurement of TMRE distributions.  417 

  418 

Cell sorting and growth measurement of sorted bins 419 

Cells were sorted by TMRE signal into four bins HI, M1, M2, LO (Fig. 3C) in an Aria II SORP 420 

cell sorter (BD Biosciences). For growth rate measurement, stress resistance measurement, and 421 

mitochondrial DNA quantitation by qPCR in the sorted bins, 100,000 cells per bin were sorted at 422 

room temperature into 1.5ml tubes pre-filled with 600μl of PBS. After sorting, 200μl of YPD 423 

was added to each tube, cells were centrifuged for 5 mins at maximum speed at room 424 

temperature, and the supernatant was thrown away. Cells were re-suspended in 600μl of PBS 425 

before proceeding for subsequent experiments. For heat shock experiments, 100μl of sorted cells 426 

were put into PCR tubes and were subjected to heat shock in a PCR machine, put on ice for 1 427 

min before measurement of growth and viability. For RNA sequencing experiments, 750,000 428 

cells per bin were sorted in three 1.5ml tubes, each pre-filled with 800μl of PBS. After sorting, 429 

200μl of YPD was added to each tube, centrifuged at maximum speed for 5 minutes, and 430 

supernatants were discarded. The cell pellets were gently washed twice using PBS. Total RNA 431 

was isolated using MasterPure yeast RNA isolation kit (Epicentre) following manufacturer’s 432 

protocol. 433 

 434 

To determine percentage of respiration deficient cells, cells were plated on plates containing 435 

Synthetic Complete medium with 3% glycerol and 0.1% glucose (SCDG) solidified with 1.5% 436 

agar to a target density of ~100-150 colonies per plate.  After 5-7 days, number of small and big 437 

colonies were counted and the percentage of respiration deficient cells were determined as -  438 

percentage of respiration deficient cells = 
Number of small colonies

(Number of small+big colonies)
 ×100 439 

 440 

To test for switching of microcolony growth from slow to fast state or from fast to slow state, 441 

microcolony growth rates were calculated for each time point using linear regression with data 442 

from 3 time-points and with R
2
>=0.9. Microcolonies for which growth rate changed from over 443 

0.3 h
-1

 to less than 0.3 h
-1

 over time were counted as microcolonies switching from fast to slow 444 

state. For fast to slow state transition, the transition must happen before last 4 time-points so as 445 
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to discount slowdown due to nutrient deprivation. Microcolonies for which growth rate changed 446 

from less than 0.3 h
-1

 to more than 0.3 h
-1

 over time were counted as microcolonies switching 447 

from slow to fast state. For this switching, the transition must happen after first 4 time-points so 448 

as not to count lag to log phase switching.   449 

 450 

 451 

Measurement of mtDNA copy number by qPCR 452 

To determine mtDNA copy number per cell using quantitative PCR (qPCR), five primer pairs 453 

specific to nuclear DNA (ACT1, ALG9, KRE11, TAF10, COX9) and five primer pairs specific 454 

to mitochondrial DNA (COX1, ATP6, COX3, ATP9, tRNA – primer picked around tQ(UUG)Q 455 

gene) were used (Supplementary table 3). A standard curve for each of primer was made, using 456 

six concentrations of genomic DNA serially diluted from the highest concentration by 4-fold at 457 

each step. Absolute quantification of DNA copy number was performed using the standard curve. 458 

Three technical replicates for each primer and for each sample were set up totaling 30 reactions 459 

per sample. To compare mtDNA copy number across sorted bins, nuclear DNA and mtDNA 460 

copy numbers in all bins were normalized by the respective values for LO bin. Two sample t-test 461 

was used to check whether the normalized value for nuclear DNA differs significantly from the 462 

normalized value for mtDNA and a p-value was calculated using a two-sample t-test. Mean 463 

mtDNA copy number per cell was calculated by the ratio of mtDNA to nuclear DNA and 464 

standard deviations were calculated by taking error propagation models into account.  465 

 466 

To overexpress the MIP1 gene, the MIP1 gene under the control of the native promoter (930bp 467 

upstream and 262bp downstream, total insert length - 4957bp) was cloned into pRS413 plasmid 468 

and then transformed into NEB 10B electrocompetent E. coli cells. The plasmid with the verified 469 

construct was then isolated and transformed into yeast cells.  470 

  471 

RNA sequencing experiment and data analysis 472 

Isolated total RNA (using MasterPure yeast RNA isolation kit (Epicentre)) was checked and 473 

quantified using bioanalyzer. 200ng of total RNA for each sample was taken and was mixed with 474 

4μl of 1:1000 dilution of ERCC spike-in mix1 (Thermo Fisher Scientific). Sequencing was done 475 

in Illumina HiSeq with paired end 2×50bp reads. Quality of the sequenced reads was checked 476 
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using FastQC [82] and then the reads were mapped to reference yeast transcriptome (R64-1-1 477 

reference cdna sequence from Ensembl [83]) using bowtie2 [84]. Mapping statistics was 478 

calculated using a custom script where only read pairs mapping concordantly and uniquely to the 479 

reference sequence were considered. The data were normalized using ERCC spike-in reads as 480 

controls using RUVg method in R package RUVSeq [85]. Correlation between replicates were 481 

checked through distance heatmap and PCA analysis (Supplementary fig. 12A,B), using R 482 

package DESeq2 [86]. Differentially expressed genes were identified using package DESeq2. 483 

Functional enrichment analysis on sets of differentially expressed genes was done using a 484 

hypergeometric test as described above with multiple testing correction (FDR<0.1) (Benjamini-485 

Hochberg method) with GOslim gene annotations.  486 

 487 

Reconstruction of single mutants  488 

Gene deletion mutants were remade in the WT strain using sequence specific homologous 489 

recombination. First, the deletion cassette from the appropriate deletion strain from the collection 490 

was amplified using primers such that the amplified region contained the deletion cassette with 491 

KanMX marker and 50-300bp of overhang on either side of the cassette. Particular care was 492 

taken to avoid neighbouring genes from being amplified. The PCR product was transformed into 493 

competent yeast cells (prepared using lithium acetate and PLI – made by mixing 1ml water, 1ml 494 

1M lithium acetate and 8ml 50% PEG3350) and colonies were selected on G418 plates. Two 495 

verified clones for each mutant were picked for experiments. Some of the mutants associated 496 

with mitochondrial function were found to be compensated in the deletion collection 497 

(Supplementary fig. 12C,D). Beyond the initial high-throughput measurement of proliferation 498 

distribution of deletion mutants, all experiments were performed with freshly made deletion 499 

mutants.  500 

 501 

Long-term microscopy-based growth measurements  502 

To observe growth of yeast cells in drug (fluconazole dissolved in DMSO, stock conc. 5mg/ml) 503 

over 7 days, yeast cells were imaged under the microscope every ~24 hours. To have a bigger 504 

part of a well imaged and to increase the number of data points, 48 fields of view per well were 505 

imaged in these experiments. Yeast cells and microcolonies were identified as above. Before 506 

tracking the microcolonies over time, the images for all fields of view in a well were merged 507 
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which allowed tracking of microcolonies even if the plate was positioned slightly differently in 508 

the microscope at different time points. Microcolonies were tracked over time and growth rates 509 

were calculated. A growth rate of 0.02 h
-1

 after first time point was taken as cut-off for survival 510 

on fluconazole, as most colonies showed initial growth but then stopped growing. For 511 

calculating % survival in heat shock and hydrogen peroxide treatment, the number of colonies 512 

showing growth under stressed condition compared to the total number of colonies showing 513 

growth under unstressed condition was considered.  514 

 515 

Measurement of respiration capability in drug resistant cells 516 

To test whether the cells that survive fluconazole treatment can still respire, the drug resistance 517 

in the sorted cells from the HI and LO bins were measured on agar plates after 15 days of growth 518 

in SCD medium supplemented with fluconazole (9.5 or 10µg/ml) and solidified with 1.5% agar. 519 

This assay needed lower concentrations of fluconazole compared to the microscopy-based assay, 520 

as only the colonies that divided multiple times were visible on the plate. Sorted cells from bins 521 

HI and LO were plated directly after sorting onto the drug plates (5-6 replicates per bin), onto 522 

plates without any drug as well as onto SCDG plates to calculate the percentage of cells capable 523 

of respiration. Cells were counted after 15 days and 40-50 colonies from each plate were 524 

randomly picked and checked for respiration capability by plating onto plates containing 3% 525 

glycerol as the carbon source.  526 

 527 

Data availability 528 

RNA-sequencing data that support the findings of this study have been deposited in NCBI GEO 529 

with the accession code GSE104343 and reviewer token “mtabqsqebncphaz”. 530 

 531 

Code availability 532 

Custom codes for analyzing microscopy images are available at  533 

https://github.com/riddhimandhar/MicroscopyCode.git 534 

  535 
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 832 

Figure 1: High-throughput analysis of single cell proliferation rate heterogeneity (A) High 833 

throughput microscopy setup – log phase yeast cells were diluted onto conA coated microscopy 834 

plate using Biomek NX liquid handling system to have similar cell density across wells. Cells 835 

were observed using an ImageXpress Micro system. Images were processed using custom scripts 836 

and data for area of microcolony vs. time were obtained. The points in the area vs. time graph 837 

show actual data and the solid lines show lowess fits. Data collected from all fields of view in a 838 

well constitute a microcolony proliferation rate distribution for a strain. The common lab yeast 839 

strain BY4741 (WT) has ~10% slow proliferating sub-population. The density shows mean 840 
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density and the shaded areas in grey represent ±1 s.d. value at each point. The dotted red line 841 

shows the expected proliferation distribution if it were normally distributed. (B) Natural strains 842 

of yeast [39] also have slow proliferating sub-populations. Each point represents data for one 843 

strain. Solid lines show median value.  (C) WT strain re-created the original proliferation 844 

distribution even after 20 generations of growth. The plot shows data from two replicate 845 

measurements.  846 

 847 

Figure 2: Single cell proliferation rate distributions for 1,500 gene deletions. (A) Mode 848 

growth rate (h
-1

) and % slow fraction for 1520 deletion strains. The points represent average 849 

values across replicates and the bars represent ± 1 s.d. values. The colours show classification of 850 

mutants into different categories according to change in mode growth rate (see Methods, 851 

FDR<0.1) and change in % slow fraction (FDR<0.1) compared to the wild-type (WT) strain. The 852 

table and pie chart show the number and proportion of strains in each group (colour coded). 853 

Replicate data for WT strain are shown by multiple black points. (B) Examples of growth 854 

distributions of mutants classified into different groups which are colour coded as in A. The 855 

distribution in dark grey shows WT growth distribution. (C) Coefficient of variation (CV) vs. 856 

mean growth rate for all strains. WT values are shown in black; mutants of genes that localize to 857 

mitochondrial envelope in red. The points represent average values across replicates and the bars 858 

represent ± 1 s.d. values. (D) % of WT-like cells in all mutants showing variable mutation 859 

outcome. It was calculated for all mutants showing significant reduction in mean proliferation 860 

rate and had significant proportion of cells growing as fast as the bulk of the WT proliferation 861 

distribution (Wilcoxon rank-sum test). (E) Functional class enrichment (GOslim) analysis for 862 

different classification groups show significantly enriched functional classes (Exact binomial test, 863 

FDR<0.1). P – Biological Process, F – Molecular Function, C- Cellular Component. Bars 864 

show % of genes in a particular group (colour coded) being present in that particular functional 865 

class. 866 

 867 

Figure 3: Variation in mitochondria state across single cells underlies proliferation 868 

heterogeneity. (A) TMRE stain intensity (log transformed) measured by flow cytometry in WT 869 

and deletion mutants. (B) TMRE intensity in WT and natural isolates of S. cerevisiae strains. (C) 870 

WT cells were sorted by TMRE signal intensity into four bins HI, M1, M2 and LO with gates as 871 
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shown (~5% of the population sorted in each bin) and growth rate distributions were measured 872 

using high throughput microscopy setup. HI bin was enriched for slow growing cells. (D) % of 873 

respiration deficient cells in each bin from WT strain. The columns represent the average values 874 

from 12 independent experiments and the bars show ±1 s.d. values. (E)  Percentage of respiration 875 

deficient cells in WT and mutant strains is positively correlated with the percentage of slow 876 

growing cells. The blue dotted line represents y=x line. The error bars represent ±1 s.d. measured 877 

from at least two biological replicates for each strain. (F) Percentage of respiration deficient cells 878 

in UCC strains [44] is strongly positively correlated with the percentage of slow growing cells.  879 

The blue dotted line represents y=x line. The error bars represent ±1 s.d. measured from at least 880 

two biological replicates for each strain. 881 

 882 

Figure 4: Reduction in mtDNA copy number causes slow growth (A) mitochondrial DNA 883 

(mtDNA) copy number in the sorted bins HI-LO from WT strain measured through quantitative 884 

PCR. Two columns show results from two independent experiments. The column represents 885 

average mtDNA copy number calculated based on five pairs of primers binding mtDNA and five 886 

pairs of primers binding nuDNA and three technical replicates for each of these primers. The 887 

bars show ±1 s.d. values.  (D) Overexpression of Mip1 gene in WT strain led to significant 888 

increase in mtDNA copy number (E) Overexpression of Mip1 gene led to significant reduction in 889 

percentage of respiration deficient cells and in slow growing subpopulation in WT strain and 890 

reduction in percentage of slowly proliferating cells in tim11Δ mutant. Data are from at least 891 

four biological replicates. (F) Overexpression of MIP1 gene in WT strain reduced percentage of 892 

cells with high TMRE signal. (G) Percentage of slow growing sub-population was strongly 893 

correlated with mtDNA copy number in mutant strains. The dotted lines represent values for WT 894 

strain. The error bars represent ±1 s.d. values. (H) Pre-growing WT strain overnight in medium 895 

containing ethanol as sole carbon source (that required respiration) reduced percentage of slow 896 

growing sub-population by ~50% compared to pre-growth in medium containing glucose as the 897 

sole carbon source. Data are from six biological replicates.   898 

 899 

Figure 5: Cell-to-cell variation in mitochondria state predicts single cell drug resistance.  900 

(A) Heatmap of expression of respiration genes in cells sorted by their TMRE signal intensity 901 

(bins HI-LO). (B) Heatmap of expression of DNA damage response and DNA repair genes. (C) 902 
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Heatmap of expression of genes associated with iron deficiency [48]. Data are from four 903 

independent experiments. (D) Sorted bins from WT cells were subjected to a commonly used 904 

antifungal drug fluconazole and were observed under microscope for growth over 7 days. The 905 

images show growth of cells in bins HI, M1, M2 and LO in 50μg/ml of fluconazole after 7 days. 906 

(E) Cells of HI bin showed significantly higher survival compared to other bins in both 50μg/ml 907 

(3 independent experiments) and 60μg/ml fluconazole (4 independent experiments). Cells were 908 

grown in liquid medium supplemented with Fluconazole on microscopy plates and viability was 909 

calculated from microscopic observations over 7 days. Error bars show ±1s.d. values. (F) 910 

Percentage survival of high and low TMRE cells on fluconazole plates. High TMRE cells 911 

showed higher survival than low TMRE cells (Mann-Whitney U test). A substantial fraction of 912 

surviving high TMRE cells were respiration competent. The error bars represent ±1 s.d. values 913 

from 6 technical replicates for each bin. X-axis shows fluconazole concentrations used from 3 914 

independent experiments. (G) From RNA sequencing data, cells from HI bin showed 915 

significantly higher expression of multidrug transporter PDR5 gene and its transcriptional 916 

activator PDR3 compared to cells from bins M1, M2 and LO. Results are from 4 independent 917 

experiments.  918 

 919 

Supplementary figure 1 – Schematic diagram showing calculation of %WT like cells from 920 

mutant proliferation distributions.  921 

 922 

Supplementary figure 2 – (A) To test how reduction in mode growth rate without any change in 923 

growth rate of slow sub-population might influence our capability to detect slow fraction, the 924 

main sub-population of WT strain was computationally moved by reducing mode growth rate in 925 

steps of 0.01 h
-1 

without altering the growth rate of the slow sub-population. This was done for 926 

all independent measurements of growth rate distributions for WT. The brown points show 927 

average value for all such independent computations and the error bars show ± 1 s.d. values from 928 

all computations. The blue points show the %WT-like cells vs. mode growth rate (h
-1

) for 929 

mutants exhibiting incomplete penetrance (IP). A mutant was considered to be incompletely 930 

penetrant if its proliferation distribution had significant overlap with the bulk of the WT 931 

proliferation distribution. (B) Distribution of Noise (Coefficient of variation or CV) (left) and 932 

distribution of percentage slow fraction (right) for knock-out of genes that localize to 933 
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mitochondrial envelope (in red), genes that localize to mitochondria (excluding mitochondrial 934 

envelope) (blue) and rest of the genes (black) in our dataset. P-value in red is from statistical test 935 

between red and black distributions and P-value in blue is from statistical test between blue and 936 

black distributions (Mann-Whitney U test). (C) Mitochondrial content of WT and mutant strains 937 

as measured by Mitotracker green intensity using flow cytometry.  938 

 939 

Supplementary figure 3 – (A) TMRE staining and sorting of BY4743 diploid strain. Bin HI 940 

showed higher percentage of slow cells in high throughput microscopy assay. Bin HI showed 941 

enrichment for respiration deficient cells. The results are from two independent experiments. (B) 942 

Sorting of mutant strains based on TMRE intensity and subsequent growth rate measurements 943 

showed slower growth in high TMRE cells (left). Cells with high TMRE signal were also 944 

enriched for respiration deficient cells in mutants (right). (C) Cells showing high TMRE intensity 945 

in Y12 strain (Mat a derivative) were enriched for slow growing fraction and respiration 946 

deficient cells. (D) Cells showing high TMRE intensity in YJM975 strain (Mat a derivative) 947 

were enriched for slow growing fraction and respiration deficient cells. 948 

 949 

Supplementary figure 4 – (A) Percentage of slowly proliferating sub-population was 950 

significantly correlated with percentage of high TMRE cells across WT, deletion mutants and 951 

UCC strains. (B) Sorting WT cells by Mitotracker green intensity did not enrich for slow growth 952 

or percentage of respiration deficient cells in any sorted bin.  953 

 954 

Supplementary figure 5 - (A) From DNA sequencing, fraction of total reads mapping to 955 

mtDNA sequence in HI-LO bins from WT strain. The results are from three independent 956 

experiments. (B) mitochondrial DNA (mtDNA) copy number in the sorted bins HI-LO from a 957 

natural strain (YJM975 Mat a) and UCC8363 strain measured through quantitative PCR. (C-D) 958 

Knocking out Mip1 gene encoding for a mitochondrial DNA polymerase led to complete loss of 959 

mtDNA  and also made the entire yeast population slow growing [45]. (E) PCA analysis of WT 960 

and mutant strains with % slow fraction, % high TMRE cells, % respiration deficient cells and 961 

mtDNA copy number. 962 

 963 
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Supplementary figure 6 – Measurement of TMRE in cells of sorted bins HI-LO from WT strain 964 

(A) right after sorting (B) after 24 hours and 48 hours growth in SCD medium. (C) Measurement 965 

of mitochondrial content using Mitotracker green in sorted bins HI-LO from WT strain after 24 966 

hours and 48 hours growth in SCD medium. 967 

 968 

Supplementary figure 7 – (A) Percentage of respiration deficient cells in sorted bins HI-LO 969 

from WT strain right after sorting (left), following 24 hours of growth in SCD medium (middle) 970 

and after 48 hours of growth in SCD medium (right). (B) Proliferation distribution measurement 971 

after 48 hours growth of sorted bins HI-LO from WT strain. (C) Cells from HI, M1, M2 and LO 972 

bins were tracked for growth rate switching (Slow to Fast and Fast to Slow). Each data point 973 

represents result from a replicate experiment. (D) mtDNA copy number (using quantitative PCR) 974 

of colonies from sorted bins (HI-LO) from WT strain after 7-day growth on SCD plate. (E) 975 

Growth rate distribution measurement of small (respiration deficient) and big (respiration 976 

competent) colonies from high TMRE bin of WT strain after 48 hours of growth in SCD. 977 

Colonies were picked from SCDG plates after 7 days of growth and each curve represents data 978 

from one clone. 979 

 980 

Supplementary figure 8 – (A) Functional classes showing significant enrichment among genes 981 

over-expressed in cells of bin HI compared to LO (Exact binomial test, p<0.01) and significantly 982 

enriched functional classes among genes showing lower expression in cells of bin HI compared 983 

to bin LO and the corresponding fold-change in expression. (B) Heatmap of expression of genes 984 

involved in cytoplasmic translation. (C) MA plot [86] showing mean expression of genes vs. fold 985 

change in expression for comparison between cells in bin LO and bin M1. Differentially 986 

expressed genes are marked in red (FDR<0.1). (D) Functional classes showing significant 987 

enrichment among genes over-expressed in cells of bin LO compared to M1 (p<0.01) and 988 

significantly enriched functional classes among genes showing lower expression in cells of bin 989 

LO compared to bin M1. 990 

 991 

Supplementary figure 9 - (A) Left - % survival of cells from sorted bins HI-LO from WT strain 992 

after heat shock at 50°C for 2mins, 3mins and 4mins (Mann-Whitney U test). Right - Growth 993 

rate of cells in sorted bins HI, M1, M2 and LO from WT strain in SCD medium without any heat 994 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/346361doi: bioRxiv preprint 

https://doi.org/10.1101/346361
http://creativecommons.org/licenses/by/4.0/


32 
 

shock, after heat shock at 50°C for 2mins, 3mins and 4mins. (B) % survival of cells from HI-LO 995 

bins in 0.6mM, 1mM and 1.2mM hydrogen peroxide (Mann-Whitney U test) (C) Expression of 996 

some key heat shock and stress response genes in bins HI-LO from RNA sequencing (data from 997 

4 independent experiments).  998 

 999 

Supplementary figure 10 – (A) Percentage survival of sorted cells from bins HI, M1, M2, and 1000 

LO from diploid BY4743 strain in 50µg/ml of antifungal drug fluconazole. Cells from bin HI 1001 

exhibited higher drug survival (results from two independent experiments). (B) PDR5-GFP strain 1002 

was stained with TMRE and a sub-population of cells with high TMRE signal (corresponding to 1003 

bin HI) also showed higher expression of PDR5 gene. (C) Deletion of the transcriptional 1004 

activator PDR3 in PDR5-GFP strain wiped out the sub-population of cells showing higher 1005 

expression of PDR5 gene. (D) Heatmap depicting expression of ergosterol biosynthesis genes in 1006 

bins HI-LO sorted from WT cells. 1007 

 1008 

Supplementary figure 11 - (A) Correlation between replicate measurements of mode growth 1009 

rate of all strains and between replicate measurements of percentage slow fraction as well as 1010 

between mode growth rate and percentage slow fraction. The panels below the diagonal show 1011 

plots with the actual data points and the numbers above the diagonal show correlation values 1012 

(generated using R package corrgram). (B) Correlation of mean growth rate for deletion mutants 1013 

from our experiment and published data. The pie charts below the diagonal show magnitude of 1014 

correlation and the numbers above the diagonal show the actual correlation values.  1015 

 1016 

Supplementary figure 12 - (A) Heatmap depicting distance between replicate RNA-seq samples 1017 

of the sorted bins HI-LO of the WT strain. One replicate of LO bin showed high distance from 1018 

all clusters. (B) PCA analysis of expression level of all genes for all replicates of bin HI-LO. 1019 

Again, one replicate of bin LO was an outlier which was discarded before subsequent analyses. 1020 

(C) Growth distributions for mip1Δ strain from the deletion collection and for two remade clones. 1021 

The solid and the dotted lines represent replicate measurements on different days. The data 1022 

clearly shows that the growth rate in the strain from the collection is compensated. (D) Growth 1023 

distributions for mrpl8Δ strain from the deletion collection and for two remade clones.  1024 

 1025 
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Supplementary table 1 -  Mean and Mode growth rate (h
-1

) and % slow fraction for the natural 1026 

yeast strains from SGRP collection.  1027 

 1028 

Supplementary table 2 – Mean, median and mode growth rates (h
-1

), Standard deviation (SD), 1029 

Noise (Coefficient of variation, CV) , % slow fraction, number of replicates showing 1030 

reproducible results and the classification colour code (as in Figure 2A) for all the mutants with 1031 

reproducible results. 1032 

 1033 

Supplementary table 3 – Primer pairs used for quantifying mtDNA copy number using 1034 

quantitative PCR. 1035 

 1036 

Supplementary information 1 – Proliferation distributions of 1520 deletion mutants for which 1037 

reproducible measurements were obtained. Multiple lines in each plot represent reproducible 1038 

replicate measurements. x-axis represents microcolony growth rate (h
-1

) and y-axis represents 1039 

density.  1040 

 1041 

Supplementary information 2 – An example of gating strategy used for cell sorting 1042 

experiments. 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 
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Figure 11054 

 1055 

 1056 

 1057 
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Figure 2 1058 

 1059 
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Figure 3 1060 
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Figure 4 1067 
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