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1 Abstract
The exponential decrease in molecular sequencing cost generates unprecedented
amounts of data. Hence, scalable methods to analyze these data are required.
Phylogenetic (or Evolutionary) Placement methods identify the evolutionary provenance
of anonymous sequences with respect to a given reference phylogeny. This increasingly
popular method is deployed for scrutinizing metagenomic samples from environments
such as water, soil, or the human gut.

Here, we present novel and, more importantly, highly scalable methods for analyzing
phylogenetic placements of metagenomic samples. More specifically, we introduce
methods for (a) visualizing differences between samples and their correlation with
associated meta-data on the reference phylogeny, (b) clustering similar samples using a
variant of the k-means method, and (c) finding phylogenetic factors using an adaptation
of the Phylofactorization method. These methods enable to interpret metagenomic data
in a phylogenetic context, to find patterns in the data, and to identify branches of the
phylogeny that are driving these patterns.

To demonstrate the scalability and utility of our methods, as well as to provide
exemplary interpretations of our methods, we applied them to 3 publicly available
datasets comprising 9782 samples with a total of approximately 168 million sequences.
The results indicate that new biological insights can be attained via our methods.

2 Introduction 1

The availability of high-throughput DNA sequencing technologies has revolutionized 2

biology by transforming it into an ever more data-driven and compute-intense 3

discipline [1]. In particular, Next Generation Sequencing (NGS) [2], as well as later 4

generations [3–6], have given rise to novel methods for studying microbial 5

environments [7–10]. These technologies are often used in metagenomic studies to 6

sequence organisms in water [11–13] or soil [14, 15] samples, in the human 7

microbiome [16–18], and a plethora of other environments. These studies yield a large 8

set of short anonymous DNA sequences, so-called reads, for each sample. Reads that are 9

obtained from specific parts of the genome are called meta-barcoding reads; most often, 10

reads are amplified before sequencing and later de-replicated again, resulting in 11

so-called amplicons. A typical task in metagenomic studies is to identify and classify 12
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these sequences with respect to known reference sequences, either in a taxonomic or a 13

phylogenetic context. 14

Conventional methods like BLAST [19] are based on sequence similarity or identity. 15

Such methods are fast, but only attain satisfying accuracy levels if the query sequences 16

(e.g., the environmental reads or amplicons) are sufficiently similar to the reference 17

sequences. Furthermore, BLAST might yield suboptimal results [20], and the best 18

BLAST hit does often not represent the most closely related species [21]. 19

Alternatively, so-called phylogenetic (or evolutionary) placement methods [22–24] 20

identify query sequences based on a phylogenetic tree of reference sequences. Thereby, 21

they incorporate information about the evolutionary history of the species under study 22

and hence provide a more accurate means for read identification. We outline the 23

method in more detail below, and describe the standard data analysis pipeline in 24

S2 Text. The result of a phylogenetic placement is a mapping of the query sequences to 25

the branches of the reference tree. Such a mapping also elucidates the evolutionary 26

distance between the query and the reference sequences. 27

The information provided by phylogenetic placement represents useful biological 28

knowledge per se, which has already been used for developing several downstream 29

analysis methods. For example, the placement of query sequences on the branches of 30

the reference tree can be understood as a classification of the query sequences with 31

respect to the given phylogeny. This classification can then be summarized by means of 32

sequence abundances [25,26], or be used to obtain taxonomic annotations [27,28]. 33

Phylogenetic placement can also be utilized to compare sets of environmental samples 34

with each other (for example, from different locations or points in time). Note that 35

distinct samples from one study are typically mapped to the same underlying reference 36

tree, thus facilitating such comparisons. For instance, existing analysis methods such as 37

Edge PCA and Squash Clustering [29] exploit the information provided by the reference 38

tree to visualize differences between sets of metagenomic samples, or to cluster samples 39

based on placement similarity. We show examples of Edge PCA and Squash Clustering 40

results later in Fig 8. 41

In this paper, we present novel, scalable methods to analyze and visualize 42

phylogenetic placement data. The remainder of this article is structured as follows. 43

First, we introduce phylogenetic placement and related terminology, and provide an 44

overview over existing post-analysis methods for phylogenetic placements. Then, we 45

describe several novel methods for visualizing differences between the placement data of 46

distinct environmental samples, and for visualizing their correlation with per-sample 47

meta-data. Next, we propose a clustering algorithm for samples that is useful for 48

analyzing extremely large environmental studies. Furthermore, we present an 49

adaptation of the Phylogenetic Isometric Log-Ratio (PhILR) transformation and 50

balances [30] to phylogenetic placement data. Lastly, we introduce an adaptation of 51

Phylofactorization [31] to placements. Phylofactorization is a method that identifies 52

those edges in the phylogeny that characterize patterns in the data related to per-sample 53

meta-data. In order to evaluate our methods, we apply them to three real word datasets, 54

namely, Bacterial Vaginosis (BV) [18], Tara Oceans (TO) [11,32,33], and Human 55

Microbiome Project (HMP) [16,17], which are introduced in more detail later. We 56

provide exemplary interpretations of the results obtained from these datasets, compare 57

the results to existing methods, and analyze the run-time performance of our methods. 58

Our methods are implemented in our gappa tool, which is freely available under 59

GPLv3 at http://github.com/lczech/gappa. We provide an overview of the tool in 60

S2 Text. Furthermore, scripts, data, and other tools used for the tests and generating 61

the figures presented here are available at 62

http://github.com/lczech/placement-methods-paper. 63
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2.1 Phylogenetic placement 64

In brief, phylogenetic placement calculates the most probable insertion branches for each 65

given query sequence (QS) on a reference tree (RT). The QSs are reads or amplicons 66

from environmental samples. The RT and the reference sequences it represents are 67

typically assembled by the user so that they capture the expected species diversity in 68

the samples. Nonetheless, we recently presented an automated approach for selecting 69

and constructing appropriate reference sequences from large sequence databases [34]. 70

Current implementations of phylogenetic placement furthermore expect the RT to be 71

strictly bifurcating. Prior to the placement, the QSs need to be aligned against the 72

reference alignment of the RT by programs such as PaPaRa [35, 36] or hmmalign, 73

which is part of the HMMER suite [37,38]. The placement is then conducted by 74

initially inserting one QS as a new tip into a branch of the tree, then re-optimizing the 75

branch lengths that are most affected by this insertion, and thereafter evaluating the 76

resulting likelihood score of the tree under a given model of nucleotide substitution, 77

such as the Generalized Time-Reversible (GTR) model [39]. The QS is then removed 78

from the current branch and subsequently placed into all other branches of the RT. 79

Thus, for each branch of the tree, the process yields a so-called placement of the QS, 80

that is, an optimized position on the branch, along with a likelihood score for the whole 81

tree. The likelihood scores for a QS are then transformed into probabilities, which 82

quantify the uncertainty of placing the sequence on the respective branch [40,41]. Those 83

probabilities are called likelihood weight ratios (LWRs). The accumulated LWR sum 84

over all branches for a single QS is 1.0. On the one hand, sequences that have one or a 85

few closely related reference sequences in the reference tree thus exhibit high LWRs at 86

the respective branches, while having LWRs close to 0 on most other branches. On the 87

other hand, if suitable references are missing from the tree, or if the chosen genetic 88

region of the sequences has a poor phylogenetic resolution with respect to the query 89

sequences, the LWRs can be distributed across several parts of the tree, indicating a 90

high degree of placement uncertainty. Fig 1 shows an example depicting the placements 91

of one QS, including the respective LWRs. 92

0.7

0.05

0.030.1
0.02

0.01

0.020.01
0.06

Fig 1. Phylogenetic Placement of a single Query Sequence. Each branch of
the reference tree is tested as a potential insertion position, called a “placement” (blue
dots). Note that placements have a specific position on their branch, due to the branch
length optimization process. A probability of how likely it is that the sequence belongs
to a specific branch is computed (numbers next to dots), which is called the likelihood
weight ratio (LWR). The bold number (0.7) denotes the most probable placement of the
sequence.

This process is repeated for every QS. Note that the placement process is conducted 93

independently for each QS, and that the phylogenetic relationships among the QSs are 94

not resolved. That is, for each QS, the algorithm starts calculating placements from 95

scratch on the original RT. 96
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In summary, the result of a phylogenetic placement analysis is a mapping of the QSs 97

in a sample to positions on the branches of the RT. Each such position, along with the 98

corresponding LWR, is called a placement of the QS. 99

2.2 Normalization 100

When placing multiple samples, for instance, from different geographical locations, 101

typically, the same RT is used, to allow for comparing the phylogenetic composition of 102

these samples. Then, each sample results in a set of placements on the RT for all QSs 103

contained in the sample. If one intends to compare different samples based on the 104

placement of their sequences, it is important to consider how to properly normalize the 105

placements per sample. Normalization is required as the sample size (often also called 106

library size), that is, the number of sequences per sample, can vary by several orders of 107

magnitude, due to efficiency variations in the sequencing process or biases introduced by 108

the amplification process. As a consequence, metagenomic sequence data are inherently 109

compositional [42], which can lead to spurious statistical analyses [43–46]. This impedes 110

statistical analyses of the data and hence needs to be considered in all analysis 111

steps [30]. 112

We here briefly outline common types of problems due to normalization that also 113

affect phylogenetic placement data. Selecting an appropriate normalization strategy 114

constitutes a common general problem in metagenomic studies. The appropriateness 115

depends on data characteristics [47], but also on the biological question. For example, 116

estimating indices such as the species richness are often implemented via rarefaction and 117

rarefaction curves [48], which potentially omit a large amount of the available valid 118

data [49]. Furthermore, the specific type of input sequence data has to be taken into 119

account for normalization: Biases induced by the amplification process can potentially 120

be avoided if, instead of amplicons, data based on shotgun sequencing are used, such as 121

mitags [50]. Moreover, the sequences can be clustered prior to a phylogenetic placement 122

analysis, for instance, by constructing operational taxonomic units (OTUs) [51–54]. 123

Analyses using OTUs focus on species diversity instead of simple abundances. OTU 124

clustering substantially reduces the number of sequences, and hence greatly decreases 125

the computational cost for placement analyses. Lastly, one may completely ignore the 126

abundances (which are called the “multiplicities” of placements) of the placed sequences, 127

reads, or OTUs, and only be interested in their presence/absence when comparing 128

samples. 129

All of the above analysis strategies are also applicable to phylogenetic placement, for 130

instance, by placing OTUs on the RT instead of sequences. Which of these strategies is 131

deployed, depends on the specific design of the study and the research question at hand. 132

The common challenge is that the number of sequences per sample differs, which affects 133

most post-analysis methods, and can lead to conflicting interpretations and 134

irreproducible results [45,55]. For example, if inappropriately normalized, the 135

visualization methods presented here might highlight irrelevant branches or clades of the 136

tree. 137

Before introducing our methods, we therefore first explain how the necessary 138

normalizations of sample sizes can be performed. We also describe general techniques 139

for interpreting and working with phylogenetic placement data. These are not methods 140

of their own, but tools necessary for later. Some of these techniques have been used 141

before as building blocks for methods such as Edge PCA and Squash Clustering [29, 56]. 142

2.3 Edge masses 143

Methods that compare samples directly based on their sequences, such as the UniFrac 144

distance [57,58], can benefit from rarefaction [47]. However, in the context of 145
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phylogenetic placement, rarefaction is not necessary. Thus, a larger amount of valid 146

data can be kept. For a thorough comparison of UniFrac to methods based on 147

phylogenetic placement, see [29], which furthermore applies Edge PCA and Squash 148

Clustering on the BV dataset that we later user for evaluation. 149

In order to compare the placements obtained from a set of samples, it is convenient 150

to think of the reference tree as a graph (when exploiting graph properties of the tree, 151

we refer to the branches of the tree as edges). Then, the per-branch LWRs for a single 152

QS can be interpreted as a distribution of mass points over the edges of the RT, 153

including their respective placement positions on the branches, cf. Fig 1. This implies 154

that each QS has a total accumulated mass of 1.0 on the RT. We call this the mass 155

interpretation of the placed QSs, and henceforth use mass and LWR interchangeably. 156

The mass of an edge or edge mass refers to the sum of the LWRs on that edge for all 157

QSs of a sample, as shown in Fig 2(a). The edge masses can serve as a simplification of 158

the data that summarizes a whole sample in a vector with m entries, for an RT with m 159

edges. That is, instead of describing a sample by the placements of all its sequences on 160

the RT, we describe it by the total per-branch mass of all its sequences. A larger 161

example for the full RT is shown in Fig 3(a). The total mass of a sample is then the 162

sum over all edge masses, which is identical to the number of QSs in the sample. 163

The key idea is to use the distribution of placement mass points over the edges of 164

the RT to characterize a sample. This allows for normalizing samples of different size by 165

scaling the total sample mass to unit mass 1.0. This is done by dividing the mass of 166

each placement location by the total sum of all masses in the sample. In other words, 167

absolute abundances are converted into relative abundances. This way, rare species, 168

which might have been removed by rarefaction, can be kept, as they only contribute a 169

negligible mass to the branches into which they have been placed. This approach is 170

analogous to using proportional values for methods based on OTU count tables, that is, 171

scaling each sample/column of the table by its sum of OTU counts [47]. Most of the 172

methods presented here use normalized samples, that is, they use relative abundances. 173

As relative abundances are compositional data, certain caveats occur [43,55,59], which 174

we discuss where appropriate. 175

When working with large numbers of QSs, the mass interpretation allows to further 176

simplify and reduce the data: The masses on each edge of the tree can be quantized into 177

b discrete bins, as shown in Fig 2(b). That is, each edge is divided into b intervals (or 178

bins) of the corresponding branch length, and all mass points on that edge are 179

accumulated into their respective nearest bin. The parameter b controls the resolution 180

and accuracy of this approximation. In the extreme case b := 1, all masses on an edge 181

are grouped into one single bin (which is equivalent to only considering the edge mass as 182

described above instead of individual LWRs). This branch binning process drastically 183

reduces the number of mass points that need to be stored and analyzed in several of the 184

methods we present, while only inducing a negligible decrease in accuracy. As shown in 185

S2 Table, branch binning can yield a speedup of up to 75% for post-analysis run-times 186

without altering the results of the analysis. 187

The interpretation of placements as masses on the edges of the tree further allows to 188

summarize a set of samples by annotating the RT with their (weighted) average 189

per-edge mass distribution, as shown in Fig 2(c). This procedure is called squashing [29]. 190

Because phylogenetic placements represent point masses on the edges of the tree, 191

squashing can be seen as joining the (weighted) set of placements of the samples on 192

corresponding edges of the RT. The resulting masses can then be normalized again to 193

obtain unit mass for the resulting average tree. This tree summarizes the (sub-)set of 194

samples it represents; a larger example of squashing is shown in Fig 5. 195
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(d) Edge imbalance
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0.12
0.08

0.06

Fig 2. Operations on Placement Masses. (a) The edge mass or mass of an edge is
the sum of likelihood weight ratios (LWRs) on that edge for all query sequences (QSs)
in a sample. Here, three placements from three QSs on the branch are summarized. (b)
In order to reduce time and memory of the computations, masses can be binned by
summarizing them across QSs in intervals along the edges. (c) The masses on
corresponding edges of the RT of two or more samples can be squashed to represent the
average mass distribution of the samples. For simplicity, we here use equal weights, and
show edge masses instead of individual LWRs. (d) The edge imbalance of an edge is the
sum of masses on all edges on the root side of the edge (A+B, with the root in subtree
A denoted as a gray dot) minus the sum of the masses on the edges on the non-root side
(C+D), while ignoring the mass on the edge itself.

2.4 Edge imbalances 196

So far, we have only considered the per-edge masses. Often, however, it is also of 197

interest to “summarize” the mass of an entire clade. For example, sequences of the RT 198

that represent species or strains might not provide sufficient phylogenetic signal for 199

properly resolving the phylogenetic placement of short sequences [60]. In these cases, 200

the placement mass of a sequence can be spread across different edges representing the 201

same genus or species, thus blurring analyses based on per-edge masses. 202

Instead, a clade-based summary can yield clearer analysis results. It can be 203

computed by using the tree structure to appropriately transform the edge masses. Each 204

edge splits the tree into two parts, of which only one contains the root (or top-level 205

trifurcation) of the tree. For a given edge, its mass difference is then calculated by 206

summing all masses in the root part of the tree and subtracting all masses in the other 207

part, while ignoring the mass of the edge itself [29], as shown in Fig 2(d). This 208

difference is called the imbalance of the edge [29]. It is usually normalized to represent 209

unit total mass, as the absolute (not normalized) imbalance otherwise propagates the 210

effects of differing sample sizes all across the tree. A larger example for the full RT is 211
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shown in Fig 3(a). 212

The edge imbalance relates the masses on the two sides of an edge to each other. 213

This implicitly captures the RT topology and reveals information about its clades. 214

Furthermore, this transformation can also reveal differences in the placement mass 215

distribution of nearby branches of the tree. This is in contrast to the KR distance [56], 216

which we introduce later, as the KR distance yields low values for masses that are close 217

to each other on the tree. Note that the imbalance of a leaf edge is simply the total 218

mass of the tree minus the mass of the edge. It thus mostly contains irrelevant 219

information and can often be omitted. 220

2.5 Placement data matrices 221

An example that shows all edge masses and edge imbalances of a sample on the 222

reference tree is shown in Fig 3(a). Illustrations of the different use cases for edge mass 223

and edge imbalance metrics are shown in the Results section. These values can be 224

summarized by two matrices, which we use for several downstream edge- and 225

clade-related analyses, respectively. These matrices have dimensions n×m for n 226

samples and m edges of the RT. The edge masses matrix contains the sum of placement 227

masses per edge for all QS in a sample, while the edge imbalance matrix transforms 228

these masses as described before. Note that these matrices can either store absolute or 229

relative abundances, depending on whether the placement mass was normalized. 230

Masses Imbalances

Edges

Sa
m
p
le
s

Metadata

Edges Features

0.19

0.10

0.42

0.11 0.04
0.01

0.06

0.81

0.30

0.58

0.89 0.96
0.99

0.84

0.04
-0.68

0.03
0.97

(a)

(b)

Fig 3. Edge Masses and Imbalances. (a) Reference tree where each edge is
annotated with the normalized mass (first value, blue) and imbalance (second value,
red) of the placements in a sample. The depicted tree is unrooted, hence, its top-level
trifurcation (gray dot) is used as “root” node. (b) The masses and imbalances for the
edges of a sample constitute the rows of the first two matrices. The third matrix
contains the available meta-data features for each sample. These matrices are used to
calculate, for instance, the Edge PCA or correlation coefficients.

Furthermore, many studies provide meta-data for their samples, for instance, the pH 231

value or temperature of the samples’ environment. Such meta-data features can also be 232
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summarized in a per-sample matrix, where each column corresponds to one feature. The 233

three matrices are shown in Fig 3(b). For example, the Edge principal components 234

analysis (Edge PCA) [29] is a method that utilizes the imbalance matrix to detect and 235

visualize edges with a high heterogeneity of mass difference between samples. Edge 236

PCA further allows to annotate its plots with meta-data variables, for instance, by 237

coloring, thus establishing a connection between differences in samples and differences 238

in their meta-data [18]. In the following, we propose several new techniques to analyze 239

placement data and their associated meta-data. 240

3 Methods 241

In this section, we introduce novel methods for analyzing and visualizing the 242

phylogenetic placement data of a set of environmental samples. Each such sample 243

represents a geographical location, a body site, a point in time, etc. In the following, we 244

represent a sample by the placement locations of its metagenomic QSs, including the 245

respective per-branch LWRs. Furthermore, for a specific analysis, we assume the 246

standard use case, that is, all placements were computed on the same fixed reference 247

tree (RT) and reference alignment. We initially describe our novel methods. We then 248

assess their application to real world data and their computational efficiency in Section 249

Results and discussion. 250

3.1 Visualization 251

A first step in analyzing phylogenetic placement data often is to visualize them. For 252

small samples, it is possible to mark individual placement locations on the RT, as 253

offered for example by iTOL [61], or even to create a tree where the most probable 254

placement per QS is attached as a new branch, as implemented in the guppy tool from 255

the pplacer suite [22], RAxML-EPA [23, 62], and our tool gappa. For larger samples, 256

one can alternatively display the per-edge placement mass, either by adjusting the line 257

widths of the edges according to their mass, or by using a color scale, as offered in 258

ggtree [63], guppy, and gappa. Using per-edge line widths or colors corresponds to 259

binning all placements on an edge into one bin. For large datasets, the per-edge masses 260

can vary by several orders of magnitude. In these cases, it is often preferable to use a 261

logarithmic scaling, as shown in [15]. 262

These simple visualizations directly depict the placement masses on the tree. When 263

visualizing the accumulated masses of multiple samples at once, it is important to chose 264

the appropriate normalization strategy for the task at hand. For example, if samples 265

represent different locations, one might prefer to use normalized masses, as comparing 266

relative abundances is common for this type of data. On the other hand, if samples 267

from the same location are combined (e.g., from different points in time, or different size 268

fractions), it might be preferable to use absolute abundances instead, so that the total 269

number of sequences per sample can be visualized. 270

The visualizations provide an overview of the species abundances over the tree. They 271

can be regarded as a more detailed version of classic abundance pie charts. Moreover, 272

these visualizations can be used to assess the quality of the RT. For example, 273

placements into inner branches of the RT may indicate that appropriate reference 274

sequences (i) have not been included or (ii) are simply not yet available. 275

Here, we introduce visualization methods that highlight (i) regions of the tree with a 276

high variance in their placement distribution (called Edge Dispersion), and (ii) regions 277

with a high correlation to meta-data features (called Edge Correlation). 278
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3.1.1 Edge Dispersion 279

The Edge Dispersion is derived from the edge masses or edge imbalances matrix by 280

calculating a measure of dispersion for each of the matrix columns, for example the 281

standard deviation σ. Because each column corresponds to an edge, this information 282

can be mapped back to the tree, and visualized, for instance, via color coding. This 283

allows to examine which edges exhibit a high heterogeneity of placement masses across 284

samples, and indicates which edges discriminate samples. 285

As the abundances of different species, and hence also the edge mass values, can span 286

many orders of magnitude, it might be necessary to scale the variance logarithmically. 287

Often, one is more interested in the branches with high placement mass. In these cases, 288

using the standard deviation or variance is appropriate, as they also indicate the mean 289

mass per edge. On the other hand, by calculating the per-edge Index of Dispersion [64], 290

that is, the variance-mean-ratio σ2/µ, differences on edges with small mass also become 291

visible. As Edge Dispersion relates placement masses from different samples to each 292

other, the choice of the normalization strategy is important. When using normalized 293

masses, the magnitude of dispersion values needs to be cautiously interpreted [59]. 294

Edge Dispersion can also be calculated for edge imbalances. As edge imbalances are 295

typically normalized to [−1.0, 1.0], their dispersion can be visualized directly without 296

any further normalization steps. An example for an Edge Dispersion visualization is 297

shown in Fig 4(a), and discussed in Section Visualization. 298

(b)(a)

≤ 1

10

100

172 1.0

0.0

-1.0

Fig 4. Examples of Edge Dispersion and Edge Correlation. We applied our
novel visualization methods to the Bacterial Vaginosis (BV) dataset to compare them to
the existing examinations of the data. (a) Edge Dispersion, measured as the standard
deviation of the edge masses across samples, logarithmically scaled. (b) Edge
Correlation, in form of Spearman’s Rank Correlation Coefficient between the edge
imbalances and the Nugent score, which is a clinical standard for the diagnosis of
Bacterial Vaginosis. Tip edges are gray, because they do not have a meaningful
imbalance. This example also shows the characteristics of edge masses and edge
imbalances: The former highlights individual edges, the latter paths to clades.

3.1.2 Edge Correlation 299

In addition to the per-edge masses, the Edge Correlation further takes a specific 300

meta-data feature into account, that is, a column of the meta-data matrix. The Edge 301

Correlation is calculated as the correlation between each edge column and the feature 302

column, for example by using the Pearson Correlation Coefficient or Spearman’s Rank 303
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Correlation Coefficient [64]. This yields a per-edge correlation of the placement masses 304

or imbalances with the meta-data feature, and can again be visualized via a color 305

coding of the edges. It is inexpensive to calculate and hence scales well to large datasets. 306

As typical correlation coefficients are within [−1.0, 1.0], there is again no need for 307

further normalization. This yields a tree where edges or clades with either a high linear 308

or monotonic correlation with the selected meta-data feature are highlighted. Fig 4(b) 309

shows an example of this method. 310

In contrast to Edge PCA [29] that can use meta-data features to annotate samples 311

in its scatter plots, our Edge Correlation method directly assesses the influence of a 312

feature on the branches or clades of the tree. It can thus, for example, help to identify 313

and visualize dependencies between species abundances and environmental factors such 314

as temperature or nutrient levels. Again, the choice of the normalization strategy is 315

important to draw meaningful conclusions. However, the correlation is not calculated 316

between samples or sequence abundances. Hence, even when using normalized samples, 317

the pitfalls regarding correlations of compositional data [59] do not apply here. 318

The method further bears some conceptual similarity to Phylofactorization [31], for 319

which we later present an adaptation to phylogenetic placements, called 320

Placement-Factorization. Phylofactorization also takes meta-data features into account 321

and can thereby identify relationships between changes in environmental variables and 322

changes in abundances in clades of the tree. It typically uses linear regression in form of 323

a Generalized Linear Model (GLM) to assess these relationships. Note that the 324

correlation coefficient used in our Edge Correlation can be interpreted as the slope of 325

the regression line of the standardized values, which establishes a connection between 326

Edge Correlation and Phylofactorization. The advantage of using correlations here 327

instead of a GLM lies in its simplicity regarding result interpretation: Here, we are 328

interested in whether changes in a meta-data feature are connected to an increase or 329

decrease of abundances on branches or in clades of the tree, which is readily accessible 330

via correlation coefficients. 331

However, using a GLM instead of correlation constitutes a potentially useful 332

alternative, for example by visualizing the fit of the model with the data. This can be 333

understood as fitting a regression line to the scatter plot of meta-data variables on one 334

axis, and edge masses (i. e., per-branch abundances) on the other axis, and measuring 335

how well this line predicts the data. We later discuss this idea in more detail in the 336

context of the objective function of Placement-Factorization. Using GLMs in that way 337

allows to assess the influence of multiple meta-data features simultaneously. For some 338

types of meta-data, this might be advantageous, but might also hinder a clear 339

interpretation of the relationships between different meta-data features and the 340

abundances. We show some results of this idea as a by-product of 341

Placement-Factorization in Fig 10 and S15 Fig, but leave a full exploration of this as a 342

method of its own as future work. 343

3.2 Clustering 344

Given a set of metagenomic samples, one key question is how much they differ from 345

each other. A common distance metric for microbial communities is the (weighted) 346

UniFrac distance [57,58]. It uses the fraction of unique and shared branch lengths 347

between phylogenetic trees to determine their difference. UniFrac has been generalized 348

and adapted to phylogenetic placements in form of the phylogenetic 349

Kantorovich-Rubinstein (KR) distance [29,56]; see there for a thorough comparison of 350

UniFrac and KR distance. In other contexts, the KR distance is also called Wasserstein 351

distance, Mallows distance, or Earth Mover’s distance [65–68]. The KR distance 352

between two metagenomic samples is a metric that describes by at least how much the 353

normalized mass distribution of one sample has to be moved across the RT to obtain 354
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the distribution of the other sample. The distance is symmetrical, and increases the 355

more mass needs to be moved, and the larger the respective displacement (moving 356

distance) is. As the two samples being compared need to have equal masses, the KR 357

distance operates on normalized samples; that is, it compares relative abundances. 358

Given such a distance measure between samples, a fundamental task consists in 359

clustering samples that are similar to each other. Standard linkage-based clustering 360

methods like UPGMA [69–71] are solely based on the distances between samples, that 361

is, they calculate the distances of clusters as a function of pairwise sample distances. 362

Squash Clustering [18,29] is a method that also takes into account the intrinsic 363

structure of phylogenetic placement data. It uses the KR distance to perform 364

agglomerative hierarchical clustering of samples. Instead of using pairwise sample 365

distances, however, it merges (squashes) clusters of samples by calculating their average 366

per-edge placement mass, as described in the Introduction. A further example of the 367

squashing of two samples is shown in Fig 5. Thus, in each step, Squash Clustering 368

operates on the same type of data, that is, on mass distributions on the RT: In the 369

beginning, each item considered in the clustering is one sample, while later steps of the 370

clustering operate on the merged (squashed) samples, until only one large cluster 371

remains that combines all samples. This results in a hierarchical clustering tree, where 372

tips correspond to samples, and branch lengths correspond to KR distances between 373

clusters. We show examples of this clustering tree later in Fig 8. 374

Weight: 5 Weight: 3

0.20 0.40

0.10

0.14

0.04 0.02 0.03

0.05 0.02
0.23 0.38

0.12

0.11

0.05 0.03 0.02

0.04 0.02

0.21 0.39

0.11

0.13

0.04 0.02 0.03

0.05 0.02

Weight: 8

Fig 5. Squashing of Edge Masses. Two trees are merged (squashed) by calculating
the weighted average of the respective mass distributions on their branches. By
squashing, a cluster of (similar) samples can be summarized and visualized. For
simplicity, we here show the masses per edge and visualize them as branch widths. In
practice however, each placement location of each query sequence is considered
individually. The Figure is based on the similar Figure 3/2 of Matsen et al. [29]; see
there for more details on squashing.

3.2.1 Phylogenetic k-means 375

The number of tips in the resulting clustering tree obtained through Squash Clustering 376

is equal to the number n of samples that are being clustered. Thus, for datasets with 377
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more than a few hundred samples, the clustering result becomes hard to inspect and 378

interpret visually. We propose a variant of k-means clustering [72] to address this 379

problem, which we call Phylogenetic k-means. It uses a similar approach as Squash 380

Clustering, but yields a predefined number of k clusters. It is hence able to work with 381

arbitrarily large datasets. Note that we are clustering samples here, instead of 382

sequences [73]. We discuss the choice of a reasonable value for k later. 383

The underlying idea is to assign each of the n samples to one of k cluster centroids, 384

where each centroid represents the average mass distribution of all samples assigned to 385

it. Note that all samples and centroids are of the same data type, namely, they are mass 386

distributions on a fixed RT. It is thus possible to calculate distances between samples 387

and centroids, and to calculate their average mass distributions, as described earlier. 388

Our implementation follows Lloyd’s algorithm [74], as shown in Algorithm 1. 389

Algorithm 1 Phylogenetic k-means
1: initialize k Centroids
2: while not converged do
3: assign each Sample to nearest Centroid
4: update Centroids as mass averages of their Samples
5: return Assignments and Centroids

By default, we use the k-means++ initialization algorithm [75] to obtain a set of k 390

initial centroids. It works by subsequent random selection of samples to be used as 391

initial centroids, until k centroids have been selected. In each step, the probability of 392

selecting a sample is proportional to its squared distance to the nearest already selected 393

sample. An alternative initialization is to select samples as initial clusters entirely at 394

random. This is however more likely to yield sub-optimal clusterings [76]. 395

Then, each sample is assigned to its nearest centroid, using the KR distance. Lastly, 396

the centroids are updated to represent the average mass distribution of all samples that 397

are currently assigned to them. This iterative process alternates between improving the 398

assignments and improving the centroids. Thus, the main difference to normal k-means 399

is the use of phylogenetic information: Instead of euclidean distances on vectors, we use 400

the KR distance, and instead of averaging vectors to obtain centroids, we use the 401

average mass distribution on the tree. 402

The process is repeated until it converges, that is, the cluster assignments do not 403

change any more, or until a maximum number of iterations have been executed. The 404

second stopping criterion is added to avoid the super-polynomial worst case running 405

time of k-means, which however almost never occurs in practice [77,78]. 406

The result of the algorithm is an assignment of each sample to one of the k clusters. 407

As the algorithm relies on the KR distance, it clusters samples with similar relative 408

abundances. The cluster centroids can be visualized as trees with a mass distribution, 409

analogous to how Squash Clustering visualizes inner nodes of the clustering tree. That 410

is, each centroid can be represented as the average mass distribution of the samples that 411

were assigned to it, as shown in Fig 5. This allows to inspect the centroids and thus to 412

interpret how the samples were clustered. Examples of this are shown in S8 Fig. 413

The key question is how to select an appropriate k that reflects the number of 414

“natural” clusters in the data. There exist various suggestions in the literature [79–84]; 415

we assessed the Elbow method [79] as explained in S10 Fig, which is a straight forward 416

method and yields reasonable results for our test datasets. Additionally, for a 417

quantitative evaluation of the clusterings, we used the k that arose from the number of 418

distinct labels based on the available meta-data for the data. For example, the HMP 419

samples are labeled with 18 distinct body sites, describing where each sample was taken 420
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from, c.f. Fig 9. 421

3.2.2 Algorithmic improvements 422

In each assignment step of the algorithm, distances from all n samples to all k centroids 423

are computed, which has a time complexity of O(n · k). In order to accelerate this step, 424

we can apply branch binning as introduced in Section Edge masses. For the BV dataset, 425

we found that even using just 2 bins per edge does not alter the cluster assignments. 426

Branch binning reduces the number of mass points that have to be accessed in memory 427

during KR distance calculations; however, the costs for tree traversals remain unaltered. 428

Thus, we observed a maximal speedup of 75% when using one bin per branch, see 429

S2 Table for details. 430

Furthermore, during the execution of the algorithm, empty clusters can occur, for 431

example, if k is greater than the number of natural clusters in the data. Although this 432

problem did not occur in our tests, we implemented the following solution: First, find 433

the cluster with the highest variance. Then, choose the sample of that cluster that is 434

furthest from its centroid, and assign it to the empty cluster instead. This process is 435

repeated if multiple empty clusters occur at once in an iteration. 436

3.2.3 Imbalance k-means 437

We further propose Imbalance k-means, which is a variant of k-means that makes use of 438

the edge imbalance transformation. In order to quantify the difference in imbalances 439

between two samples, we use the Euclidean distance between their imbalance vectors 440

(that is, rows of the imbalance matrix). This is a suitable distance measure, as the 441

imbalances implicitly capture the tree topology as well as the placement mass 442

distributions. As a consequence, the expensive tree traversals required for Phylogenetic 443

k-means are not necessary here. The algorithm takes the edge imbalance matrix of 444

normalized samples as input, as shown in Fig 3(b), and performs a standard Euclidean 445

k-means clustering following Lloyd’s algorithm. 446

This variant of k-means tends to find clusters that are consistent with the results of 447

Edge PCA, as both use the same input data (imbalances) as well as the same distance 448

measure (Euclidean). Furthermore, as the method does not need to calculate KR 449

distances, and thus does not involve tree traversals, it is several orders of magnitude 450

faster than Phylogenetic k-means. For example, on the HMP dataset, it runs in a few 451

seconds, instead of several hours needed for Phylogenetic k-means; see Section 452

Performance for details. 453

3.3 Phylogenetic ILR transform and Phylofactorization 454

The concepts and methods presented above resemble two recent approaches for 455

analyzing phylogenetic data: the Phylogenetic Isometric Log-Ratio (PhILR) 456

transformation and balances [30], as well as Phylogenetic Factorization 457

(Phylofactorization) [31]. These methods use a tree inferred from the OTU sequences of 458

the samples (instead of a fixed reference tree), and annotate the abundances of OTUs 459

per sample on the tips of this tree (instead of placement masses on the branches). The 460

methods use these data to draw conclusions about compositional changes in clades of 461

the tree in different samples, as well as relationships of per-clade OTU abundances with 462

environmental meta-data variables. 463

In both of these approaches, a balance between OTU abundances in two subtrees of 464

the underlying tree is computed. This is a measure of contrast that expresses which of 465

the two subtrees comprises more OTUs. In the PhILR transform [30], these balances 466

are computed for the two subtrees below each inner node of a rooted binary tree, while 467
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ignoring abundances in the respective remainder of the tree. In Phylofactorization 468

however, these balances are computed for the two subtrees that are induced by the 469

edges of the tree. This is highly similar to the concept of edge imbalances that we 470

introduced above. Note that despite sharing a similar name and exhibiting conceptual 471

similarities, balances and the previously introduced edge imbalances are distinct 472

approaches that should not be confused. We later discuss respective similarities and 473

differences in more detail. 474

Furthermore, we remark that the Balance Trees method [85] employs analogous 475

concepts by calculating the balance of nodes using the isometric log-ratio of OTU 476

abundances. However, instead of using a phylogenetic tree, it assumes any binary 477

partitioning of the OTUs, e. g., obtained from a UPGMA clustering of the OTUs based 478

on a meta-data feature. These nodes thus correspond to specific meta-data values, again 479

allowing for statements about the changes in OTU abundances that occur with 480

changing environmental variables. As we already have a binary partitioning in form of 481

the reference tree, we do not further consider the Balance Trees approach here. 482

In the following, we present adaptations of the PhILR transform (balances) and of 483

Phylofactorization to phylogenetic placement data. The main adaptation step consists 484

in placing masses on the branches of our (fixed) reference tree, instead of only 485

considering masses (abundances) at the tips of the OTU tree. Here, we focus on 486

balances that contrast the subtrees induced by edges of the tree, as used by 487

Phylofactorization [31], because this is more natural in the context of phylogenetic 488

placement data. The same concepts could however also be employed for subtrees below 489

nodes, as used by the PhILR transform [30]. 490

3.3.1 Phylogenetic ILR transform for phylogenetic placements 491

In the introduction, we briefly explained the inherently compositional nature of 492

metagenomic sequence data [42]. For a thorough discussion of the implications of this, 493

see [30]. One solution is to transform the data into an unconstrained space that is not 494

compositional. This can, for example, be achieved via the Isometric Log-Ratio (ILR) 495

transform [86], which, given a compositional space, creates a new coordinate system 496

with an orthonormal basis [87]. The ILR transform requires a sequential binary 497

partitioning of the underlying original space [88]. As suggested in [30], a bifurcating 498

phylogenetic tree (e.g., our RT) represents such a partitioning, which also provides a 499

meaningful way of interpreting the resulting coordinates. This so-called Phylogenetic 500

ILR (PhILR) transform yields an ILR coordinate system that captures the evolutionary 501

relationships of the phylogeny [30]. The resulting coordinates are called balances [86, 87]. 502

The balances obtained from an ILR transform represent the log-ratio of the geometric 503

means of the data in the two subtrees. Hence, they can be interpreted as a contrast 504

(log-ratio) between two aggregates (geometric means). Furthermore, due to the 505

orthogonality of the ILR basis vectors, the balances can be used by conventional 506

statistical tools without suffering from compositional artifacts. 507

In the following, we present an adaptation of the PhILR transform and balances to 508

placement data, based on the work of [30]. See there for more details on the method 509

and the underlying mathematical concepts, such as the connection between the ILR 510

transform and the centered log-ratio (CLR) transform. We now describe the 511

computation of the Phylogenetic ILR transform, along with the changes needed for 512

phylogenetic placement data. We focus on the computation for a single sample. We 513

assume that a fixed reference tree (RT) (a sequential binary partitioning) along with the 514

per-branch placements of the sequences in the sample are given. The placements are 515

represented by a vector c of size m, containing the absolute (not normalized) edge 516

masses, where m is the number of edges in the tree. In other words, our input is a single 517

row (one sample) of the edge masses matrix, as shown in Fig 3(b). The absolute masses 518
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are transformed into relative abundances as described in Section Edge masses: Each 519

element of c is divided by the sum of all elements, yielding the relative masses vector x 520

for the given sample. In compositional data analysis, this operation is known as the 521

closure of the data [43]. 522

The original PhILR furthermore allows to use per-taxon weights p in order to 523

down-weigh the impact of low abundant taxa/OTUs [30,89]. In our adaptation, this 524

weighting scheme is accordingly changed to weights p per edge of the RT. 525

Unfortunately, the nomenclature of existing publications (namely, [29] and [30]) creates 526

a conflict here: These weights are not to be confused with our terminology of likelihood 527

weights and edge masses. The default case of edge weights p = (1, . . . , 1) represents no 528

weighting, where each edge equally contributes to the balance, while any p 6= (1, . . . , 1) 529

is a generalized form of the ILR transform [30]. We later describe an appropriate choice 530

of weights in Section Edge Weights. These weights are applied to the relative masses x 531

to obtain the shifted composition y = x/p, using element-wise division [89]. 532

In the original PhILR, balances are calculated for the two subtrees below a given 533

node of the tree [30]. In the context of Phylofactorization, this has been generalized to 534

balances between any two disjoint sets R and S of taxa (tips of the tree) [31]. We here 535

build on the latter, but again change R and S to refer to disjoint sets of edges of our 536

reference tree. We use the notation yR and pR to refer to the subsets of masses and 537

weights of the given sample at the edges in R. Then, the balance y∗ between the sets R 538

and S is computed as: 539

y∗(R,S) =
√

νR · νS
νR + νS

· log gm(yR,pR)
gm(yS ,pS) (1)

The first term is a scaling term that, for a given edge, is constant across all samples. 540

It ensures unit length of the ILR basis elements, and uses the sums of weights in p: 541

νR =
∑
r∈R

pr and νS =
∑
s∈S

ps (2)

The second term is the log-ratio of geometric means, where gm(yR,pR) is the 542

weighted geometric mean of the values in yR with weights pR: 543

gm(yR,pR) = exp
(∑

r∈R pr · log yr∑
r∈R pr

)
(3)

Note that if p = (1, . . . , 1), Eq (1) represents the original ILR transform without a 544

weighting scheme [86], Eq (2) equals the number of edges in R and S, respectively, and 545

Eq (3) is the standard (unweighted) geometric mean. 546

Balances as defined here can be computed as a measure of contrast between any 547

disjoint sets R and S of edges. Interchanging S and R flips the sign of the balance; this 548

is irrelevant for the subsequent steps presented here, as long as the interchange is 549

applied consistently. When computing the balance between the edges in the two 550

subtrees induced by some given edge e, the conceptual similarity with the previously 551

described Edge imbalances becomes apparent: Imbalances use the difference of sums for 552

contrasting and aggregating, while balances use the ratio of means for the same purpose. 553

We show an example of this computation in Fig 6. Hence, balances represent a similar 554

transformation of the placement data, that can also be used to conduct analyses, such 555

as the Phylofactorization, as presented in the next section. 556

We however remark that the using (unweighted) balances in our previously presented 557

methods, such as Edge Correlation and k-means clustering, might lead to spurious 558

results, due to the insensitivity of the geometric mean to singular large values. That is, 559

individual branches that accumulate a large fraction of the placement mass (sequence 560

abundances) might only insignificantly change the geometric mean of their clade. 561
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Fig 6. Example computation of the balances between two subtrees. The
figure shows how the balance is computed for the two subtrees induced by the dashed
edge of the tree, for one sample. Numbers next to edges are the accumulated placement
mass of the sequences in the sample. We call the left hand side of the tree R, and the
right hand side S, as seen from the dashed edge. For simplicity, we do not use weighting
here; that is, we assume p = (1, . . . , 1). First, the geometric means for both subtrees are
calculated, then, their balance. The balance is positive, indicating that subtree R
contains more placement mass on (geometric) average.

However, such branches are typically the interesting ones, and hence should exert more 562

influence on the transformation, which is exactly the purpose of the taxon weighting 563

scheme. This further implies that balances are not indifferent to splittings of reference 564

taxa into multiple representatives (pers. comm. with A. Washburne on 2018-11-23). We 565

discuss the implications of this in more detail in the evaluation of the method. 566

3.3.2 Edge Weights 567

The PhILR also allows for incorporating two distinct weighting schemes for the 568

balances, one based on taxon abundances, and one based on the branch lengths of the 569

underlying phylogeny [30]. As mentioned above, we implemented the former, while 570

leaving the latter as future work. 571

We now describe how to adapt the taxon weights of [30] to our placement-based 572

approach, that is, how an appropriate vector p of edge weights can be constructed. 573

Originally, this weighting scheme down-weighs the influence of low abundant taxa [30], 574

which are known to be less reliable and more variable [90]. Here, we accordingly down 575

weigh edges with low placement mass, for the same reasons. We follow the approach 576

of [30], and construct the edge weights by multiplicatively combining two terms: 577

• A measure for the central tendency of the absolute edge masses, for example, their 578

mean across all samples. This is the main component of the weight that yields low 579

values for edges with low mass and vice versa. 580

• A vector norm of the relative edge masses across the samples. This term 581

additionally weighs edges by their specificity. 582
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Our implementation allows to use the median, the arithmetic mean, and the 583

geometric mean, as well as different `p-norms (such as the Manhattan, Euclidean, and 584

maximum norm), and the Aitchison norm [88]. We follow the advice of [30], and by 585

default use the geometric mean (with pseudo-counts added to the masses to avoid skew 586

from edges without any placement mass) and the Euclidean norm. In that case, the 587

weights for edge j are computed as follows: 588

pj = n

√√√√ n∏
i=1

(c̃ji + 1) ·

√√√√ n∑
i=1

x̃2
ji

Here, n is the number of samples, c̃j is the vector of absolute masses at edge j across 589

all samples, and x̃j the vector of relative masses at edge j across all samples, both of 590

length n. That is, these measures use the masses of all n samples; consequently, we use 591

columns instead of rows of the edge masses matrix of Fig 3(b), where each column is 592

used for the weights of the corresponding edge. The resulting edge weights p are then 593

fixed and used across the balance computation of all samples. 594

3.4 Phylogenetic Factorization 595

Phylofactorization is a method to identify edges in a phylogenetic tree that drive 596

patterns in the composition of microbial communities [31]. An edge constitutes a 597

separation or split of groups of taxa into the two subtrees induced by the edge. In an 598

evolutionary context, an edge denotes a difference in (putative) traits that may have 599

arisen along the edge. The goal of Phylofactorization is to identify edges that are related 600

to differences in per-sample meta-data features. To this end, it aggregates and contrasts 601

the abundances in the subtrees (groups of taxa) induced by an edge, and evaluates how 602

changes in environmental variables across samples are reflected in abundance changes. 603

The original method uses a tree inferred from the OTUs that are present in the set 604

of samples, and iteratively identifies edges that split the tree into nested subtrees which 605

exhibit the largest predictable differences between the taxa in these subtrees. Each such 606

edge can be interpreted as a phylogenetic factor (or short, phylofactor) for splitting the 607

tree: Once an edge has been selected in one iteration, its induced subtrees are then 608

considered separately in subsequent iterations. The resulting factors are hence 609

independent of each other, which ensures orthogonality of the factors. In other words, 610

each factor describes a different dimension in which samples differ. Furthermore, by 611

iteratively considering subtrees of decreasing size, nested factors can be found, which 612

correspond to relationships within a subtree that only affect the taxa in the subtree 613

itself. The algorithm stops after a predefined number of iterations/factors, or until a 614

stopping criterion is met. 615

In a typical use case, each environmental sample is represented by its OTU 616

abundances at the tips of the tree. Given a per-sample meta-data feature such as the 617

pH-value, Phylofactorization can be employed to find edges where a change of the 618

pH-value between samples predicts a change in OTU abundances in the two subtrees 619

induced by the edge. For example, an increasing ph-value might indicate a relative 620

increase in the OTU abundances in one subtree compared to another subtree. The 621

resulting factorization can serve as a dimensionality-reduction mechanism, as an 622

ordination and visualization tool, and as an inferential tool that can identify edges 623

corresponding to changes in functional ecological traits [31]. 624

We now present an adaptation of Phylofactorization to phylogenetic placements, 625

which we call Placement-Factorization. We explain our adaptation following the 626

description of the Generalized Phylogenetic Factorization (GPF) [91,92]. The GPF is a 627

recent generalization of Phylofactorization that also allows for other types of input data 628
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than relative OTU abundances, for example, presence/absence data. It is hence suited 629

for a wider range of community ecological data [92]. Conceptually and algorithmically, 630

Phylofactorization, GPF, and our Placement-Factorization, work the same; we here use 631

the mathematical notation of GPF as a scaffold to explain our adaptation. In the 632

following, we briefly introduce the original method, outline the necessary adaptations, 633

and explain how to use the balances obtained from (our adaptation of) the PhILR 634

transform (as explained above) in the context of Placement-Factorization. 635

3.4.1 Placement-Factorization 636

Phylofactorization can be understood as an iterative greedy graph-partitioning 637

algorithm for a tree T [91]. In each iteration, a winning edge e∗ is identified that splits 638

the tree into two disjoint groups R and S of edges. To determine the winning edge, an 639

objective function is maximized that expresses the intensity of the relationship between 640

abundances and meta-data variables. We later discuss this objective function in more 641

detail. 642

The input to the original Phylofactorization is an n×m data matrix X, for 643

j = 1, . . . , n samples, and i = 1, . . . ,m species (corresponding to the OTUs at the tips 644

of the tree). The matrix can represent abundances, presence/absence data, or other 645

data related to the species in the tree [92]. In our adaptation, we use the per-edge 646

masses from the phylogenetic placement of the samples, as shown before in Fig 3(b). 647

That is, instead of m species representing the tips of the tree, we use an n×m data 648

matrix X where the m columns correspond to the edges of our reference tree (for 649

consistency of notation, we re-use and re-purpose the index m here, and transpose X 650

compared to the original notation). Lastly, Phylofactorization uses an n× p meta-data 651

matrix Z for the n samples and p per-sample meta-data variables. 652

In analogy to the Generalized Phylofactorization [91,92], our adapted algorithm 653

requires three functions: 654

1. An aggregation function AR = A(Xj,R, T ), which aggregates (summarizes) a 655

subset R of edges for a sample j. 656

2. A contrast function CR,S = C(AR, AS , T, e), which contrasts (compares) the 657

aggregates of two disjoint subsets R and S of edges on the two sides of an edge e. 658

3. An objective function ω(C, Z) that evaluates a contrast for all samples in the 659

context of the per-sample meta-data, in order to determine the winning edge. 660

We later discuss appropriate choices for these functions. For now, we assume that we 661

are given functions that allow identifying edges whose induced subtrees exhibit 662

predictable differences in the edge masses X driven by changes in the meta-data Z of 663

different samples. The algorithm starts by considering the entire tree T as one large 664

“subtree”. Then, in each iteration, Phylofactorization and Placement-Factorization work 665

as follows: 666

1. For each edge e that separates disjoint groups Re and Se of edges within the 667

subtree that contains e: 668

(a) Compute the aggregates ARe
= A(Xj,Re

, T ) and ASe
= A(Xj,Se

, T ). 669

(b) Compute their contrast Ce = C(ARe , ASe , T, e). 670

(c) Compute the objective value ωe = ω(Ce, Z). 671

The aggregates ARe and ASe , as well as the contrast Ce are computed separately 672

for every sample. The value ωe of the objective function then expresses the 673

relationship of the contrasts of all samples with their respective meta-data values 674

in Z. 675
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2. Select the winning edge e∗ = arg maxe(ωe) that maximizes the value of the 676

objective function. 677

3. Partition the subtree that contains e∗ into two disjoint subtrees, separated by e∗. 678

4. Repeat until a stopping criterion is met. 679

This closely follows the description of the algorithm in [91,92], see there for details. 680

The difference between the algorithms is that the groups R and S in our case consist of 681

reference tree edges, instead of species at the tips of the OTU tree. Because of this, the 682

aggregates of edges that lead to tip nodes are empty, meaning that we do not consider 683

those edges as candidates in the algorithm. This is analogous to “tip edges” not having 684

a meaningful edge imbalance, as described above. An example of the first two iterations 685

of the algorithm is shown in Fig 7. 686

Each iteration further splits a subtree at the respective winning edge, so that after i 687

iterations, i+ 1 subtrees are produced. It is important to note that the winning edges of 688

previous iterations split the tree into disjoint subtrees, and that in later iterations, the 689

aggregates and contrasts induced by an edge are only computed within their respective 690

subtrees. This ensures the previously mentioned orthogonality of the phylogenetic 691

factors (winning edges), meaning that systematic dependencies between the contrasts of 692

any two factors are eliminated, and that instead, nested relationships can be identified. 693

The original publication proposes a stopping criterion using a Kolmogorov-Smirnov 694

(KS) test based on test statistics of the identified phylofactors [31,92]. Although these 695

could be implemented for Placement-Factorization, we leave this as future work; our 696

implementation currently runs for a given number i of iterations, and hence computes i 697

phylofactors. 698

So far, we have assumed to be given the three functions required for 699

Phylofactorization. The choice of these functions depends on the data X, the data Z, 700

and the research question at hand. In order to be consistent and comparable with the 701

original implementation [31], in our evaluation we used the same set of functions, 702

namely the balances of the ILR transformation as explained above for aggregating and 703

contrasting subtrees, and an objective function based on Generalized Linear 704

Models (GLMs), which we explain in the following. 705

3.4.2 Objective Function 706

Phylofactorization requires an objective function ω(Ce, Z) that quantifies the 707

relationship between Ce and Z for a given edge e, where Ce are the contrasts between 708

the two subtrees induced by e for all samples (for example, the balances), and Z are the 709

per-sample meta-data variables. That is, both Ce and Z have size n, the number of 710

samples, with Z potentially containing multiple columns (one for each meta-data 711

feature). In order to identify the winning edge e∗ of an iteration (the phylofactor), the 712

function is evaluated for all edges, and the edge maximizing ω is selected. The choice of 713

the objective function depends on the research question at hand; see [31] and [91] for a 714

thorough discussion. 715

Our implementation is as general as the original Phylofactorization [31], in that it 716

allows for an arbitrary objective function. For simplicity, and in line with the original 717

publication, we here focus on functions that treat the meta-data variables Z as 718

independent variables and the contrasts Ce as dependent variables whose relationship 719

with Z is assessed, for instance, via a predictive model. Then, the selected phylogenetic 720

factors correspond to edges where a change in Z most strongly predicts a change in Ce 721

across the samples, that is, where the effect of the (independent) meta-data variables on 722

the (dependent) underlying data (e.g., per-clade abundances) is most pronounced. 723
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Fig 7. Input data and first two iterations of Placement-Factorization. The
figure resembles Figure 2 of [31]. It shows the adaptation of concepts from
Phylofactorization to phylogenetic placement data. (a) The input data is a set of
samples with placement masses on each edge of the tree. The tree is colorized by the
total mass across all samples, that is, by the row sums of the heat map. The heat map
then shows the detailed mass per edge (rows) and per sample (columns). Note that the
heat map also contains rows for each inner edge of the tree, as phylogenetic placement
also considers these edges. We show an example of this visualization for empirical data
in S1 Fig. (b) In the first iteration, the objective function for all inner edges is evaluated.
Here, e1 is the winning edge that maximizes the objective function, which separates (A,
B, C, D) from the rest of the tree. (c) In the second iteration, only the contrasts within
the two subtrees are calculated, but not across the winning edges of previous iterations
(here, e1). That is, the winning edge e2 maximizes the objective function that contrasts
(F, G) with (E, H, I), but does not consider the edges in the subtree (A, B, C, D). Note
that in our adaption, edges that lead to a tree tip are not considered as potential factors.

A powerful approach is to model the relationship between Ce and Z via linear 724

regression, that is, we assess how well Z can predict Ce. In the simple one-dimensional 725

case, this can be thought of as fitting a line through a scatter plot of the meta-data 726

feature on the x-axis and the contrasts on the y-axis, where each point represents one 727

sample. This concept is generalized via Generalized Linear Model (GLM) [93–95]. 728

In short, GLMs allow to predict a single (response) variable using multiple input 729

(explanatory) variables. Typically, the response variable is assumed to follow any 730

distribution from the exponential family (normal, exponential, Poisson, Binomial, etc), 731

which is given for balances as used here. In contrast to this, the explanatory variables 732

(the meta-data features) are assumed to have a linear relationship with the response. 733

Note that this mathematical restriction of the model does not mean that only 734

meta-data features can be used that behave linearly; transformations and interactions of 735

20/72

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/346353doi: bioRxiv preprint 

https://doi.org/10.1101/346353
http://creativecommons.org/licenses/by-nc-nd/4.0/


the features basically allow for arbitrary types of data. For example, categorical 736

variables such as the body site where a sample was taken from can be transformed into 737

so-called dummy variables that fulfill the requirements. 738

Once the model parameters of the GLM have been estimated, that is, once it has 739

been fit to the data via some optimization algorithm, we need to evaluate the GLM for 740

the purposes of Phylofactorization. We are interested in a value for ω that expresses 741

how well the meta-data variables explain the balances. To this end, Phylofactorization 742

and our adaptation thereof use the difference between the null deviance of the balances 743

and the deviance obtained from the GLM. This difference expresses how much better 744

the model explains the balances than just predicting them from their mean. For details 745

on the usage of GLMs for Phylofactorization, see [31]. 746

Predictive models such as GLMs expect the response variable (that is, the predicted 747

values; here, the contrasts) to have certain statistical properties. In particular, linear 748

models assume the deviation of response from the predicted value to be normally 749

distributed. The ILR transform for compositional data has been proven to behave 750

asymptotically normal [86,96], which allows their application within standard 751

multivariate methods, and within GLMs as presented here. 752

Lastly, we note that depending on the research question, other objective functions 753

can be used, see [31,91] for some examples. For instance, simple test statistics such as 754

the variation in Ce explained by regression on Z can be used. Furthermore, instead of 755

predicting contrasts from meta-data, one could be interested in the opposite, that is, 756

predicting a meta-data variable given the per-sample contrasts. In this case, the 757

maximization of the objective function yields edges that best predict a certain feature of 758

the data; this is suitable for identifying clades that can serve as a bio-indicator. Using 759

GLMs for this allows to model any type of meta-data variable; for example, the binary 760

information encoded in presence/absence data can be predicted using logistic regression. 761

While our implementation supports all those use cases, they have been explored and 762

discussed before [31,92]. For the sake of simplicity, we focus on linear (gaussian) 763

modeling of Ce ∼ Z, that is, predicting balances from meta-data. 764

3.4.3 Phylofactorization for phylogenetic placements 765

In summary, Phylofactorization and our adaptation Placement-Factorization identify 766

edges of the phylogeny that exhibit a predictable relationship between changes in 767

meta-data variables and abundance changes in the subtrees induced by these edges. Our 768

adaptation can be understood as a generalization of the original method [31,92], where 769

masses/counts can be placed along the edges of the tree, instead of just at its tips. 770

While the original method uses abundances of taxa/OTUs per sample on a tree 771

inferred from the OTU sequences, we use the placement masses on a fixed reference 772

tree (RT). For many use cases, this has several advantages: The RT can be inferred 773

from reference sequences that are longer than typical metagenomic reads used for 774

OTU-based analysis, such as the 16S or 18S regions of the genome; hence, phylogenetic 775

inference will be more reliable. Furthermore, the size of the RT can be chosen as 776

needed, for example via our Phylogenetic Automatic (Reference) Tree (PhAT) 777

method [34], instead of having to use the number of OTUs that result from the 778

clustering and preprocessing steps. This also eliminates the need for the (mostly 779

arbitrary) OTU cutoff step that is common to many metagenomic analyses, where 780

OTUs with low abundance or low spread across samples are filtered out in order to keep 781

the number of OTUs manageable. That is, with our approach, all sequences in a dataset 782

can be placed and analyzed. Another advantage of a fixed RT is the availability of 783

taxonomic annotation for the reference sequences. Often, in metabarcoding studies, the 784

environmental sequences are anonymous and might not be closely related to any known 785

species [11,15,32], which can hinder common taxonomic assignment methods [21]. 786

21/72

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/346353doi: bioRxiv preprint 

https://doi.org/10.1101/346353
http://creativecommons.org/licenses/by-nc-nd/4.0/


Placing the sequences onto an RT with known taxonomic labels allows to easily interpret 787

results within a given taxonomic framework. Using a taxonomically constrained RT can 788

further improve interpretability. Lastly, using a fixed reference tree better allows to 789

conduct cross- or meta-studies that compare samples from different sources, or to easily 790

run analyses for samples that were added to the dataset later on. Using a fixed tree 791

means that the context of interpretation remains unaltered. This is not easily possible 792

with trees inferred from OTUs, as those change depending on the input sequences. 793

For further details on Phylofactorization, in particular the mathematical properties 794

of the method, we refer to [92], which also covers different objective functions, elaborates 795

on stopping criteria, and compares the method to other phylogenetic methods for 796

analyzing ecological data. Compared to other tools and methods that use the phylogeny 797

as a guide for analyzing microbial data, both, the original Phylofactorization as well as 798

our adaptation allow for a direct interpretation of the results in terms of the edges of 799

the tree, while avoiding nested dependencies between overlapping subtrees and 800

circumventing issues associated with the compositional nature of the data. 801

3.5 Methods summary 802

We presented several novel methods for analyzing phylogenetic placement data. The 803

methods are complementary, as each of them can identify different aspects and patterns 804

in the underlying metagenomic samples. They are hence best used in combination, 805

thereby enabling a thorough and comprehensive analysis and interpretation of the 806

results. We also presented two transformations of phylogenetic placements (imbalances 807

and balances) that shift the focus of the methods from a per-branch view of the data to 808

a per-clade view. 809

In the following evaluation, we exemplify how the results obtained from the distinct 810

methods can be interpreted in light of each other. Furthermore, we discuss strengths, 811

weaknesses, appropriateness, and limitations of the methods and transformations. 812

4 Results and discussion 813

We used three real world datasets to evaluate our methods: 814

• Bacterial Vaginosis (BV) [18]. This small dataset was already analyzed with 815

phylogenetic placement in the original publication. We used it as an example of 816

an established study to compare our results to. It has 220 samples with a total of 817

15 060 unique sequences. See also [29] for a detailed analysis of this dataset which 818

compares standard methods such as UniFrac [57,58] to methods like Edge PCA 819

and Squash Clustering, which are based on phylogenetic placement. 820

• Tara Oceans (TO) [11,32,33]. This world-wide sequencing effort of the open 821

oceans provides a rich set of meta-data, such as geographic location, temperature, 822

and salinity. Unfortunately, the sample analysis for creating the official data 823

repository is still ongoing. We thus were only able to use 370 samples with 824

27 697 007 unique sequences. 825

• Human Microbiome Project (HMP) [16,17]. This large data repository intends to 826

characterize the human microbiota. It contains 9192 samples from different body 827

sites with a total of 63 221 538 unique sequences. There is additional meta-data 828

such as age and medical history, which is available upon special request. We only 829

used the publicly available meta-data. See S1 Table for an overview of the dataset. 830

Details of the datasets (download links, data statistics, data preprocessing, etc.) are 831

provided in S1 Text. At the time of writing, about one year after we initially 832
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downloaded the data, the TO repository has grown to 1170 samples, while the HMP 833

even published a second phase and now comprises 23 666 samples of the 16S region. 834

This further emphasizes the need for scalable data analysis methods. 835

Our test datasets represent a wide range of environments, number of samples, and 836

sequence lengths. We use them to evaluate our methods and to exemplify which method 837

is applicable to what kind of data. To this end, the sequences of the datasets were 838

placed on appropriate phylogenetic RTs as explained in S1 Text, in order to obtain 839

phylogenetic placements that our methods can be applied to. In the following, we 840

present the respective results, and also compare our methods to other methods where 841

applicable. As the amount and type of available meta-data differs for each dataset, we 842

could not apply all methods to all datasets. Lastly, we also report the run-time 843

performance of our methods on these data. 844

4.1 Visualization 845

4.1.1 BV dataset 846

We re-analyzed the Bacterial Vaginosis (BV) dataset by inferring a tree from the 847

original reference sequence set and conducting phylogenetic placement of the 220 848

samples. Bacterial Vaginosis is a disease of the vagina that manifests itself in form of an 849

abnormal vaginal microbiome [18]. The characteristics of this dataset were already 850

thoroughly explored in [18] and [29]. We use it here to give exemplary interpretations of 851

our Edge Dispersion and Edge Correlation methods, and to evaluate them in 852

comparison to existing methods. An overview of the placement result of this dataset is 853

given in S1 Fig, where we show a tree and a heat map that indicate 854

abundances/placement masses per edge and per sample. 855

Fig 4 shows our novel visualizations of the BV dataset. Edge Dispersion is shown in 856

Fig 4(a), while Fig 4(b) shows Edge Correlation with the so-called Nugent score. The 857

Nugent score [97] is a clinical standard for the diagnosis of Bacterial Vaginosis, ranging 858

from 0 (healthy) to 10 (severe illness). 859

The connection between the Nugent score and the abundance of placements on 860

particular edges was already explored in [29], but only visualized indirectly (i.e., not on 861

the RT itself). For example, Figure 6 of the original study plots the first two Edge PCA 862

components colorized by the Nugent score. We recalculated this figure for comparison 863

in S7(i) Fig. In contrast, our Edge Correlation measure directly reveals the connection 864

between Nugent score and placements on the reference tree: The clade on the left hand 865

side of the tree in Fig 4(b), to which the red and orange branches lead to, are 866

Lactobacillus iners and Lactobacillus crispatus, respectively, which were identified in [18] 867

to be associated with a healthy vaginal microbiome. Thus, their presence in a sample is 868

anti-correlated with the Nugent score, which is lower for healthy subjects. The branches 869

leading to this clade are hence colored in red. On the other hand, there is a multitude of 870

different other clades that exhibit a positive correlation with the Nugent score, that is, 871

were green and blue paths lead to in the figure, again a finding already reported in [18]. 872

Both trees in Fig 4 highlight the same parts of the tree: The dark branches with 873

high deviation in Fig 4(a) represent clades attached to either highly correlated (blue) or 874

anti-correlated (red) paths Fig 4(b). This indicates that edges that have a high 875

dispersion also vary between samples of different Nugent score. 876

We further compared our methods to the visualization of Edge PCA components on 877

the reference tree. To this end, we recalculated Figures 4 and 5 of [29], and visualized 878

them with our color scheme in S5 Fig for ease of comparison. They show the first two 879

components of Edge PCA, mapped back to the RT. The first component reveals that 880

the Lactobacillus clade represents the axis with the highest heterogeneity across samples, 881

while the second component further distinguishes between the two aforementioned 882
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clades within Lactobacillus. Edge Correlation also highlights the Lactobacillus clade as 883

shown in Fig 4(b), but does not distinguish further between its sub-clades. This is 884

because a high Nugent score is associated with a high abundance of placements in either 885

of the two relevant Lactobacillus clades. 886

Further examples of variants of Edge Dispersion and Edge Correlation on this 887

dataset are shown in S2 Fig and S3 Fig. We also conducted Edge Correlation using 888

Amsel’s criteria [98] and the vaginal pH value as shown in S4 Fig, both of which were 889

used in [18] as additional indicators of Bacterial Vaginosis. We again found similar 890

correlations compared to the Nugent score. 891

4.1.2 Tara Oceans dataset 892

We analyzed the Tara Oceans (TO) dataset to provide further exemplary use cases for 893

our visualization methods. To this end, we used the unconstrained Eukaryota RT with 894

2059 taxa as provided by our Phylogenetic Automatic (Reference) Tree (PhAT) 895

method [34]. The meta-data features of this dataset that best lend themselves to our 896

methods are the sensor values for chlorophyll, nitrate, and oxygen concentration, as well 897

as the salinity and temperature of the water samples. Other available meta-data 898

features such as longitude and latitude are available, but would require more involved 899

methods. This is because geographical coordinates yield pairwise distances between 900

samples, whose integration into our correlation analysis methods is challenging. The 901

Edge Correlation of the 370 samples with the nitrate concentration, the salinity, the 902

chlorophyll concentration, and the water temperature are shown in S6 Fig. 903

We selected the diatoms and the animals as two exemplary clades for closer 904

examination of the results. In particular, the diatoms show a high correlation with the 905

nitrate concentration, as well as an anti-correlation with salinity, which represent 906

well-known relationships [99,100]. See S6 Fig for details. These findings indicate that 907

the method is able to identify known relationships. It will therefore also be useful to 908

investigate or discover novel relationships between sequence abundances and 909

environmental parameters. 910

4.1.3 Performance 911

Both methods (Edge Dispersion and Edge Correlation) are computationally inexpensive, 912

and thus applicable to large datasets. The calculation of the above visualizations took 913

about 30 s each, which were mainly required for reading in the data. Furthermore, in 914

order to scale to large datasets, we reimplemented Edge PCA, which was originally 915

implemented as a command in the guppy program [22]. For the BV dataset with 220 916

samples, guppy required 9min and used 2.2GB of memory, while our implementation 917

only required 33 s on a single core, using less than 600MB of main memory. For the 918

HMP dataset, as it is only single-threaded, guppy took 11 days and 75.1GB memory, 919

while our implementation needed 7.5min on 16 cores and used 43.5GB memory. 920

4.2 Clustering 921

We here evaluate our Phylogenetic k-means clustering (which uses edge masses and KR 922

distances) and Imbalance k-means clustering (which uses edge imbalances and euclidean 923

distances) methods in terms of their clustering accuracy. We used the BV as an 924

example of a small dataset to which methods such as Squash Clustering [29] are still 925

applicable, and the HMP dataset to showcase that our methods scale to datasets that 926

are too large for existing methods. 927
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4.2.1 BV dataset 928

We again use the re-analyzed BV dataset to test whether our methods work as expected, 929

by comparing them to the existing analysis of the data in [18] and [29]. To this end, we 930

ran both Phylogenetic k-means and Imbalance k-means on the BV dataset. We chose 931

k := 3, inspired by the findings of [18]. They distinguish between subjects affected by 932

Bacterial Vaginosis and healthy subjects, and further separate the healthy ones into two 933

categories depending on the dominating clade in the vaginal microbiome, which is either 934

Lactobacillus iners or Lactobacillus crispatus. Any choice of k > 3 would simply result 935

in smaller, more fine-grained clusters, but not change the general findings of these 936

experiments. An evaluation of the number of clusters using the Elbow method is shown 937

in S10 Fig. We furthermore conducted Squash Clustering and Edge PCA on the 938

dataset, thereby reproducing previous results, in order to allow for a direct comparison 939

between the methods, see Fig 8. Also, see [29] for a detailed interpretation of the results 940

of Squash Clustering and Edge PCA on this dataset. The figure shows the results of 941

Squash Clustering, Edge PCA, and two alternative dimensionality reduction methods, 942

colorized by the cluster assignments PKM of Phylogenetic k-means (in red, green, and 943

blue) and IKM of the Imbalance k-means (in purple, orange, and gray), respectively. 944

We use two different color sets for the two methods, in order to make them 945

distinguishable at first glance. Note that the mapping of colors to clusters is arbitrary 946

and depends on the random initialization of the algorithm. 947

As can be seen in Fig 8(a), Squash Clustering as well as Phylogenetic k-means can 948

distinguish healthy subjects from those affected by Bacterial Vaginosis. Healthy 949

subjects constitute the lower part of the cluster tree. They have shorter branches 950

between each other, indicating the smaller KR distance between them, which is a result 951

of the dominance of Lactobacillus in healthy subjects. The same clusters are found by 952

Phylogenetic k-means: As it uses the KR distance, it assigns all healthy subjects with 953

short cluster tree branches to one cluster (shown in red). The green and blue clusters 954

are mostly the subjects affected by the disease. 955

The distinguishing features between the green and the blue cluster are not apparent 956

in the Squash cluster tree. This can however be seen in Fig 8(c), which shows a 957

Multidimensional scaling (MDS) plot of the pairwise KR distances between the samples. 958

MDS [64,102,103] is a dimensionality reduction method that can be used for visualizing 959

levels of similarity between data points. Given a pairwise distance matrix, it finds an 960

embedding into lower dimensions (in this case, 2 dimensions) that preserves higher 961

dimensional distances as well as possible. Here, the red cluster forms a dense region, 962

which is in agreement with its short branch lengths in the cluster tree. At the same 963

time, the green and blue cluster are separated in the MDS plot, but form a coherent 964

region of low density, indicating that k := 3 might be too large with Phylogenetic 965

k-means on this dataset. That is, the actual clustering just distinguishes two clusters: 966

healthy and sick patients (S10 Fig). 967

A similar visualization of the pairwise KR distances is shown in Fig 8(d). It is a 968

recalculation of Figure 4 in the preprint [101], which did not appear in the final 969

published version [29]. The figure shows a standard Principal Components 970

Analysis (PCA) [64,103] applied to the distance matrix by interpreting it as a data 971

matrix, and was previously used to motivate Edge PCA. However, although it is 972

mathematically sound, the direct application of PCA to a distance matrix lacks a 973

simple interpretation. Again, the red cluster is clearly separated from the rest, but this 974

time, the distinction between the green and the blue cluster is not as apparent. 975

In Fig 8(b), we compare Squash Clustering to Imbalance k-means. Here, the 976

distinction between the two Lactobacillus clades can be seen by the purple and orange 977

cluster assignments. The cluster tree also separates those clusters into clades. The 978

separate small group of orange samples above the purple clade is an artifact of the tree 979
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Fig 8. Comparison of k-means clustering to Squash Clustering and Edge
PCA. We applied our variants of the k-means clustering method to the Bacterial
Vaginosis (BV) dataset in order to compare them to existing methods. See [18] for
details of the dataset and its interpretation. We chose k := 3, as this best fits the
features of the dataset. For each sample, we obtained two cluster assignments: First, by
using Phylogenetic k-means, we obtained a cluster assignment, which we here
abbreviate as PKM. Second, by using Imbalance k-means, we obtained an assignment
here abbreviated as IKM. In each subfigure, the 220 samples are represented by colored
circles: red, green, and blue show the cluster assignments PKM, while purple, orange,
and gray show the cluster assignments IKM. (a) Hierarchical cluster tree of the samples,
using Squash Clustering. The tree is a recalculation of Figure 1(A) of Srinivasan et
al. [18]. Each leaf represents a sample; branch lengths are Kantorovich-Rubinstein (KR)
distances between the samples. We added color coding for the samples, using PKM. The
lower half of red samples are mostly healthy subjects, while the green and blue upper
half are patients affected by Bacterial Vaginosis. (b) The same tree, but annotated by
IKM. The tree is flipped horizontally for ease of comparison. The healthy subjects are
split into two sub-classes, discriminated by the dominating species in their vaginal
microbiome: orange and purple represent samples were Lactobacillus iners and
Lactobacillus crispatus dominate the microbiome, respectively. The patients mostly
affected by BV are clustered in gray. (c) Multidimensional scaling using the pairwise
KR distance matrix of the samples, and colored by PKM. (d) Principal component
analysis (PCA) applied to the distance matrix by interpreting it as a data matrix. This
is a recalculation of Figure 4 of [101], but colored by PKM. (e) Edge PCA applied to the
samples, which is a recalculation of Figure 3 of Matsen et al. [101], but colored by IKM.

ladderization. The diseased subjects are all assigned to the gray cluster, represented by 980

the upper half of the cluster tree. It is apparent that both methods separate the same 981

samples from each other. 982

26/72

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/346353doi: bioRxiv preprint 

https://doi.org/10.1101/346353
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lastly, Fig 8(e) compares Imbalance k-means to Edge PCA. The plot is a 983

recalculation of Figure 3 of [101], which also appeared in Figure 6 in [29] and Figure 3 984

in [18], but colored using our cluster assignments. Because both methods work on edge 985

imbalances, they group the data in the same way, that is, they clearly separate the two 986

healthy groups and the diseased one from each other. Edge PCA forms a plot with 987

three corners, which are colored by the three Imbalance k-means cluster assignments. 988

In S7 Fig, we report more details of the comparison of our k-means variants to the 989

dimensionality reduction methods used here. Furthermore, exemplary visualizations of 990

the cluster centroids are shown in S8 Fig, which further supports that our methods 991

yield results that are in agreement with existing methods. 992

4.2.2 HMP dataset 993

The HMP dataset is used here as an example to show that our method scales to large 994

datasets. To this end, we used the unconstrained Bacteria RT with 1914 taxa as 995

provided by our Phylogenetic Automatic (Reference) Tree (PhAT) method [34]. The 996

tree represents a broad taxonomic range of Bacteria, that is, the sequences were not 997

explicitly selected for the HMP dataset, in order to test the robustness of our clustering 998

methods. We then placed the 9192 samples of the HMP dataset with a total of 999

118 701 818 sequences on that tree, and calculated Phylogenetic and Imbalance k-means 1000

on the samples. The freely available meta-data for the HMP dataset labels each sample 1001

by the body site were it was taken from. As there are 18 different body site labels, we 1002

used k := 18. The result is shown in Fig 9. Furthermore, in S9 Fig, we show a 1003

clustering of this dataset into k := 8 broader body site regions to exemplify the effects 1004

of using different values of k. This is further explored by using the Elbow method as 1005

shown in S10 Fig. 1006

Ideally, all samples from one body site would be assigned to the same cluster, hence 1007

forming a diagonal on the plot. However, as there are several nearby body sites, which 1008

share a large fraction of their microbiome [16], we do not expect a perfect clustering. 1009

Furthermore, we used a broad reference tree that might not be able to resolve details in 1010

some clades. Nonetheless, the clustering is reasonable, which indicates a robustness 1011

against the exact choice of reference taxa, and can thus by used for distinguishing 1012

among samples. For example, stool and vaginal samples are clearly clustered. 1013

Furthermore, the sites that are on the surface of the body (ear, nose, and arm) also 1014

mostly form two blocks of cluster columns. 1015

4.2.3 Performance 1016

The complexity of Phylogenetic k-means is in O(k · i · n · e), with k clusters, i iterations, 1017

and n samples, and e being the number of tree edges, which corresponds to the number 1018

of dimensions in standard euclidean k-means. As the centroids are randomly initialized, 1019

the number of iterations can vary; in our tests, it was mostly below 100. For the BV 1020

dataset with 220 samples and a reference tree with 1590 edges, using k := 3, our 1021

implementation ran 9 iterations, needing 35 s and 730MB of main memory on a single 1022

core. For the HMP dataset with 9192 samples containing 119 million sequences, and a 1023

reference tree with 3824 edges, we used k := 18, which took 46 iterations and ran in 1024

2.7 h on 16 cores, using 48GB memory. 1025

In contrast to this, Imbalance k-means does not need to conduct any expensive tree 1026

traversals, nor take single placement locations into account, but instead operates on 1027

compact vectors with one entry per edge, using euclidean distances. It is hence several 1028

orders of magnitude faster than Phylogenetic k-means, and only needs a fraction of the 1029

memory. For example, using again k := 18 for the HMP dataset, the algorithm executed 1030

75 iterations in 2 s. It is thus also applicable to extremely large datasets. 1031
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(a) Phylogenetic k-means (b) Imbalance k-means
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Fig 9. k-means cluster assignments of the HMP dataset with k := 18. Here,
we show the cluster assignments as yielded by Phylogenetic k-means (a) and Imbalance
k-means (b) of the Human Microbiome Project (HMP) dataset. We used k := 18, which
is the number of body site labels in the dataset, in order to compare the clusterings to
this “ground truth”. Each row represents a body site; each column one of the 18 clusters
found by the algorithm. The color values indicate how many samples of a body site
were assigned to each cluster. Similar body sites are clearly grouped together in
coherent blocks, indicated by darker colors. For example, the stool samples were split
into two clusters (topmost row), while the three vaginal sites were all put into one
cluster (rightmost column). However, the algorithm cannot always distinguish between
nearby sites, as can be seen from the fuzziness of the clusters of oral samples. This
might be caused by our broad reference tree, and could potentially be resolved by using
a tree more specialized for the data/region (not tested). Lastly, the figure also lists how
the body site labels were aggregated into regions as used in S9 Fig.
Although the plots of the two k-means variants generally exhibit similar characteristics,
there are some differences. For example, the samples from the body surface (ear, nose,
arm) form two relatively dense clusters (columns) in (a), whereas those sites are spread
across four of five clusters in (b). On the other hand, the mouth samples are more
densely clustered in (b).

Furthermore, as the KR distance is used in Phylogenetic k-means as well as other 1032

methods such as Squash Clustering, our implementation is highly optimized and 1033

outperforms the existing implementation in guppy [22] by orders of magnitude (see 1034

below for details). The KR distance between two samples has a linear computational 1035

complexity in both the number of QSs and the tree size. As a test case, we computed 1036

the pairwise distance matrix between sets of samples. Calculating this matrix is 1037

quadratic in the number of samples, and is thus expensive for large datasets. For 1038

example, in order to calculate the matrix for the BV dataset with 220 samples, guppy 1039

can only use a single core and required 86min. Our KR distance implementation in 1040

genesis is faster and also supports multiple cores. It only needed 90 s on a single core; 1041

almost half of this time is used for reading input files. When using 32 cores, the matrix 1042

calculation itself only took 8 s. This allows to process larger datasets: The distance 1043

matrix of the HMP dataset with 9192 samples placed on a tree with 3824 branches for 1044

instance took less than 10 h to calculate using 16 cores in genesis. In contrast, guppy 1045

needed 43 days for this dataset. Lastly, branch binning can be used to achieve 1046

additional speedups, as shown in S2 Table. 1047
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4.3 Phylogenetic ILR Transform and Balances 1048

As a first test of our adaptation of balances to placement data, we apply it to the BV 1049

dataset. Further assessment of balances for placement data, also with the HMP dataset, 1050

is implicitly conducted by the evaluation of Placement-Factorization below, which uses 1051

balances for aggregation and contrasting of subtrees. 1052

As balances are conceptually similar to edge imbalances, we perform analogous 1053

evaluations. To this end, we computed the per-edge balance for all edges of the BV 1054

reference tree, across all 220 samples. That is, for each edge, we computed the balance 1055

between the two subtrees induced by the edge. This yields a matrix that we call balance 1056

matrix, and which corresponds to the imbalance matrix used for Edge PCA, c. f. 1057

Fig 3(b). Hence, a natural first visualization of the balances is to analyze their principal 1058

components, that is, to compute the PCA of the balance matrix. The first two 1059

components are shown in S11 Fig, for both variants of the balance computation (with 1060

and without taxon weighting). The components exhibit a separation of the samples by 1061

Nugent score, showing that they yield results comparable to Edge PCA. 1062

In order to interpret what the axes of these principal components mean, we can 1063

again employ the visualization of PCA eigenvectors on the reference tree as used in 1064

Edge PCA [29], c. f., S5 Fig. We show the results for PCA of the balances in S12 Fig. 1065

As with Edge PCA, the principal components correspond to the Lactobacillus clade, 1066

with the first component mostly separating Lactobacillus from the rest of the tree, and 1067

the second component further distinguishing between Lactobacillus crispatus and 1068

Lactobacillus iners. 1069

Furthermore, as mentioned in the methods description, balances could in principle 1070

be used as input to our previously presented methods, such as Edge Correlation and 1071

k-means clustering (which adequately might be called Balance k-means), in the same 1072

manner that we used imbalances before. We exemplify the correlation of the Nugent 1073

score with balances in S13 Fig. However, artifacts might arise from the underlying 1074

mathematical framework of balances, in particular the usage of the geometric mean 1075

without taxon weighting: The geometric mean is not sensitive to singular large values, 1076

such as the high amount of placement mass on one of the Lactobacillus branches. It 1077

only significantly increases if multiple high values are present, such as the multitude of 1078

bacterial taxa with high abundance in diseased patients of the BV dataset [18]. This 1079

can lead to spurious results, as shown in S13(b) Fig, where the correlation of the 1080

unweighted balances with the Nugent score yields unrealistically high negative 1081

correlations for almost all branches that have little placement mass on them. Moreover, 1082

this property of the geometric mean implies that it is sensitive to taxa splitting 1083

(pers. comm. with A. Washburne on 2018-11-23): For example, it does make a 1084

difference whether masses are focused on a single branch, or distributed across several 1085

representatives of the same species. 1086

Hence, we do not recommend to use (unweighted) balances for computations such as 1087

correlations or k-means clustering. Note that when used with GLMs, such as in 1088

Phylofactorization, these issues do not arise: The winning edge is chosen to maximize 1089

the difference between the null deviance and the deviance of the linear model. That 1090

difference is small for clades with almost no mass (such as the ones affected by the issue 1091

above), so that the value of the objective function for such edges is lower than for edges 1092

with more mass. Hence, the factorization does not incorrectly identify these 1093

low-abundance clades as potential factors. The usage of balances in 1094

Placement-Factorization is further explored in the next section. 1095
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4.4 Placement-Factorization 1096

In the following we present results from Placement-Factorization, and compare them to 1097

the above results from our other methods, as well as to the original Phylofactorization. 1098

For comparability with the original method, we solely use balances for aggregating and 1099

contrasting, and an objective function that maximizes the difference between the null 1100

deviance and the deviance obtained by a Generalized Linear Model (GLM). Other 1101

choices of functions for Phylofactorization have been explored in [31] and [92], see there 1102

for details. The exploration of their effect on Placement-Factorization is left as future 1103

work, although based on the consistency of our results with the original method, we 1104

conjecture that they behave according to the findings of the original publications. 1105

Furthermore, we note that our implementation supports taxon weighting as 1106

introduced in the Phylogenetic ILR transform [30], which is however not (yet) 1107

supported by the original Phylofactorization [31]. We found this weighting scheme to be 1108

a natural and valuable addition in the balances computation that yields results closer to 1109

those obtained with imbalances. We suspect that this is because the weighting scheme 1110

can alleviate the issues of the geometric mean mentioned above. 1111

4.4.1 BV dataset 1112

We analyzed the BV dataset [18] with our Placement-Factorization with and without 1113

taxon weighting, using balances for aggregating and contrasting, and GLMs for the 1114

objective function. As GLMs support multiple predictors at the same time, we used all 1115

three available meta-data features of the dataset simultaneously for the regression, that 1116

is, Nugent score [97], Amsel’s criteria [98], and the pH-value of the samples. We also 1117

tested with only the Nugent score to be consistent with our previous analyses, and to 1118

asses the robustness of the method with respect to the specific choice of meta-data 1119

features. We observe only minor differences in the ordering of the identified factors, that 1120

is, which clades were “winning” in which iteration. Hence, we focus on the results 1121

obtained with all three meta-data features taken into account. 1122

For comparing with the original method, we clustered the dataset into OTUs using 1123

two different OTU clustering methods, vsearch [54] and swarm [52, 53], and inferred 1124

two trees from these OTU clusterings. We used two distinct OTU clustering methods to 1125

asses how they affect factorization; see S1 Text for details on the preprocessing steps. 1126

We then conducted an analysis of both trees with the original Phylofactorization, again 1127

using balances and GLMs. We compare the results of Placement-Factorization to our 1128

previous analyses of the data as well as to the original Phylofactorization on the two 1129

alternative OTU trees. 1130

In S3 Table, we compare the clades found by the two Phylofactorization variants 1131

(with vsearch and with swarm) to the clades found by Placement-Factorization 1132

without taxon weighting. Moreover, in S14 Fig we visualize the clades found by 1133

Placement-Factorization. These outcomes show that our results are consistent with the 1134

existing Phylofactorization, in that similar clades are split from the tree, albeit with 1135

some variation in the order by which clades are selected. The clades being split are also 1136

consistent with previous analyses of the dataset [18], as all taxa found by the first 10 1137

factors of Placement-Factorization were also found to be relevant in the context of 1138

Bacterial Vaginosis in [18]. However, the vsearch-based Phylofactorization is the only 1139

evaluated variant that split the Lactobacillus clade in the first factor and further 1140

Lactobacillus crispatus from Lactobacillus iners in the second factor. The swarm-based 1141

variant and our Placement-Factorization without taxon weighting also identified these 1142

clades, but not in the first two iterations. 1143

When using taxon weighting on the other hand, Placement-Factorization also finds 1144

these two clades in the first two factors, and is hence more consistent with existing 1145
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analyses. However, due to small differences in the value of the objective function, the 1146

first iteration splits a larger clade than expected. We observed a similar behavior with 1147

the vsearch-based Phylofactorization; see the long list of taxa of the first factor in 1148

S3 Table. In order to identify the provenance of this effect and to correctly interpret the 1149

factors, we developed a novel visualization of the results: In Fig 10 and in S15 Fig, we 1150

show the reference tree, where each edge is colored by the value of the objective 1151

function at that edge. This type of visualization helps to assess the uncertainty involved 1152

in identifying the winning edge of a specific iteration. 1153

0
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(a)  Factor 1  (First Iteration) (b)  Factor 2 ( Second Iteration)

Fig 10. Objective values of Placement-Factorization of the BV dataset.
Here, we show the values of the objective function for each inner edge, for the first two
factors found by Placement-Factorization (with taxon weights) of the BV dataset. The
winning edge of each iteration is marked by a black arrow. This novel visualization of
phylogenetic factors helps to understand why a particular edge was chosen in an
iteration:
Here, the objective function of the first iteration in (a) yields high values for the path
towards the Lactobacillus clade, consistent with previous findings. However, due to
small differences, the winning edge of the first iteration is chosen to be relatively basal
in the tree, meaning that a large clade is factored out. This obfuscates the fact that this
factor is mostly concerning the Lactobacillus clade, and not so much the remaining taxa
in that clade. This visualization thus aids interpretation of the found clades, and allows
to identify the parts of a factored clade that are most relevant to the factor. In the
second iteration in (b), the tree clearly shows the distinction between the two relevant
clades of Lactobacillus again, consistent with previous findings. See also S15 Fig for the
version of this visualization without taxon weights.

For example, the visualization in Fig 10(a) reveals that the large clade found by the 1154

first factor (marked with an arrow) does in fact include many branches and taxa with a 1155

low value of the objective function (yellow branches). These are branches with low 1156

placement mass that do not contribute much to this factor. Instead, there is a path of 1157

comparably high values of the objective function that leads down to the Lactobacillus 1158

clade. This indicates that there are several ‘good’ candidate edges for distinguishing 1159

patients by their health status, and that the smaller Lactobacillus clade is the actual 1160

clade of interest in this factor. The winning edge just happened to have a slightly higher 1161

value than other edges on this path. To address this issue, a proper statistical test of 1162

the significance of each winning edge compared to the other edges evaluated in the 1163

iteration could be employed. This is connected to the idea of confidence regions of each 1164
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factor on the tree, as presented in [92], which we discuss later. 1165

To further assess how the samples are split by individual factors, we used the 1166

balances at each iteration/factor as an ordination of the data, as suggested in [31], 1167

which we show in S16 Fig. These plots reveal that the splitting into healthy vs. diseased 1168

patients works both with and without taxon weighting, albeit the differences in the 1169

respective plot shapes are pronounced. As scatter plots of balances can only reasonably 1170

reveal the first two or three factors, S16 Fig serves as a caveat for this type of 1171

visualization: The BV dataset does indeed have two important features concerning the 1172

healthy patients, namely the Lactobacillus clade, and the further distinction into 1173

Lactobacillus crispatus and Lactobacillus iners. However, as discussed above and visible 1174

in S1 Fig, the diseased patients exhibit high abundances in a multitude of other clades, 1175

which cannot be expressed by just two or three factors. We later show a novel way for 1176

visualizing balances in the HMP dataset that can help to understand the balances of all 1177

factors. 1178

In summary, we find that Placement-Factorization without taxon weighting behaves 1179

similar to the original Phylofactorization (which also does not employ a taxon weighting 1180

scheme), while Placement-Factorization with taxon weighting yields results that are 1181

more in line with our previous results based on imbalances. The latter is likely because 1182

taxon weighting has a similar effect of reducing the influence of low mass branches (low 1183

abundance taxa) as the summation-based aggregation step of imbalances. 1184

4.4.2 HMP dataset 1185

The original publication of Phylofactorization used a dataset comprising oral and fecal 1186

samples from the human microbiome as one of their case studies [104], see Figure 4 and 1187

supplementary figures S3–S8 of [31]. For our comparison, we selected a suitable subset 1188

of the HMP dataset [16,17]: In particular, we selected all 600 stool samples of the 1189

dataset, as well as 600 randomly chosen samples from the mouth region, that is, from 1190

the samples labeled “Mouth (back)” and “Mouth (front)” in S1 Table. We again used 1191

the placement of these samples on the unconstrained Bacteria tree of our Phylogenetic 1192

Automatic (Reference) Tree (PhAT) method [34], containing 1914 taxa, to conduct 1193

Placement-Factorization. We henceforth assume that the oral/fecal dataset of [104] and 1194

our oral/fecal subset of the HMP dataset exhibit comparable sequence compositions. 1195

Furthermore, as the tree used for Phylofactorization in [31] is based on the OTUs of the 1196

sequences, it only contains taxa that are sufficiently abundant in the input. It thus 1197

differs from the more general reference tree used for our evaluation here. Therefore, we 1198

had to map the taxa found by Phylofactorization to the underlying Silva 1199

taxonomy [105,106] that was used for constructing our tree. 1200

Despite these differences, Placement-Factorization yielded factors that are similar to 1201

the ones found by Phylofactorization. We compare the taxa identified by the first 10 1202

factors of each variant. For simplicity, we only compare the clades on the non-root side 1203

of the (arbitrarily rooted) reference tree; the paraphyletic “remainder” clade is not 1204

taken into account. Furthermore, we do not consider the order of the factors here. 1205

Similar to the findings of the BV dataset above, Placement-Factorization with taxon 1206

weighting yielded larger clades than without taxon weighting, which again yielded larger 1207

clades than the OTU-based Phylofactorization. The latter is a consequence of the OTU 1208

tree containing fewer taxa than our broad Bacteria tree. We found that 84% of the taxa 1209

identified by Phylofactorization were also part of the factors of our variants, with the 1210

major difference being a set of Proteobacteria that were part of the split in the first 1211

factor of Phylofactorization [31], but not by our variants. This is most likely an artifact 1212

of the differing trees being used in the factorization. Furthermore, 95% of the taxa 1213

found by Placement-Factorization without taxon weighting were also part of the clades 1214

with taxon weighting. We visualized the clades found by all three variants in S17 Fig, 1215
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which also provides further details on the comparison. Most of the factors found by the 1216

three variants agree with each other, with their disagreement mostly concerning the 1217

clade sizes. The actual differences in taxa (such as the Proteobacteria not found by our 1218

variants) serve as a caveat for the importance of the underlying reference tree: 1219

Differences in topology will inevitably be reflected in different factors, which might in 1220

turn suggest a different interpretation of results. In an ideal world with a known 1221

phylogeny of all of life, alternative OTU clusterings and alternative trees would simply 1222

collapse nodes at different depths (pers. comm. with A. Washburne on 2019-03-01). 1223

Unfortunately, real world data, and particularly different OTU clustering methods and 1224

tree inference methods, will yield discordant trees. The influence of uncertainty in the 1225

phylogeny is further discussed in [92]. 1226

Next, we investigated how well the factors found by Placement-Factorization 1227

separate oral from fecal samples. To this end, we again employed the balances of the 1228

winning edge of each factor for an ordination visualization [31], which we show in 1229

S18(a) Fig and S18(b) Fig. The ordination clearly separates the samples, both with and 1230

without taxon weighting. Again, ordination scatter plots can only reveal up to three 1231

dimensions/factors. In order to evaluate the separation of samples at later factors, we 1232

use a visualization of the factor balances, which we call balance swarm plots, and which 1233

are similar to the per-factor ordination plots used in [92]. These plots can show the 1234

ordination of arbitrarily many factors at the same time, as shown in Fig 11(a), as well 1235

as S18(c) Fig and S18(d) Fig. 1236

As shown in Fig 11(a) and S18(c) Fig, eight out of the first ten factors found by 1237

Placement-Factorization with taxon weighting clearly separate the oral from the fecal 1238

samples. The remaining two factors (PF7 and PF9) separate most of the samples, but 1239

also have an interval of balances that contains samples from both body sites. 1240

Placement-Factorization without taxon weighting also separates samples based on their 1241

body site, as shown in S18(d) Fig, but with a less clear distinction. This is also obvious 1242

from the ordination scatter plots shown in S18(b) Fig. 1243

Finally, we conducted Placement-Factorization on the whole HMP dataset with all 1244

9192 samples, instead of just the oral/fecal subset, in order to evaluate how the method 1245

performs on large datasets with more than two categories (body sites) to distinguish. 1246

See S1 Table for an overview of the samples, as well as a list of the eight body site 1247

labels that we used for classifying the samples. We do not discuss the taxa that were 1248

split by each factor, as such an in-depth biological discussion is beyond the scope of this 1249

manuscript. Instead, we evaluate how well different body sites were separated by the 1250

factors. In S19 Fig, we show ordination plots of the first two and three factors. These 1251

plots already reveal that Placement-Factorization indeed separates samples from each 1252

other based on their body site. However, given the eight body site labels that we used, 1253

these plots are overloaded. Hence, we extended on the idea of balance swarm plots (as 1254

introduced above) by separating them into individual plots per factor, each showing the 1255

balance distribution of groups of samples. An example for the first factor is shown in 1256

Fig 11(b); we furthermore show the first four factors in S20 Fig. These visualizations 1257

indicate that Placement-Factorization separates samples mainly based on the distinction 1258

oral vs. remaining body sites, with a further separation of plaque samples in the oral 1259

region. This can, for example, be seen in Fig 11(b), where the first three groups “Mouth 1260

(back)”, “Mouth (front)”, and “Saliva” exhibit balances above 0, while all other groups 1261

have balances below 0. Further factors then separate vaginal samples and skin and 1262

airways samples from the rest of the samples, as shown in S20 Fig. Overall, 1263

Placement-Factorization can distinguish these samples by body site, at least to the 1264

extent that can expected from abundance differences in the samples. For example, it 1265

would be unrealistic to expect the algorithm to perfectly separate samples from the back 1266

and front of the mouth from each other. 1267
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Fig 11. Ordination of Placement-Factorization of the HMP dataset. In this
visualization of phylogenetic factors, we show the balances of the winning edge at
different factors for all samples.
Subfigure (a) shows the first 10 factors found by Placement-Factorization with taxon
weighting on the oral/fecal subset of the HMP dataset. We call this a balance swarm
plot. It can be understood as multi-dimensional scatter plot, where each dimension is
shown separately: Each column corresponds to a factor (PF1–PF10), with the vertical
axis being the balances, and horizontal space within each column used to spread
samples at nearby positions, revealing their distribution density. The balances were
scaled to the [−1.0, 1.0] interval for better comparability across factors, while keeping
the centering at 0.
Subfigure (b) shows the first factor of Placement-Factorization with taxon weighting on
the full HMP dataset. The violin plots in (b) extend on the idea of balance swarm plots
by separating different groups of samples, based on their body site. This allows to
clearly see the distribution of balances at the factor for all groups of samples.
The exhaustive versions of these plots, with and without taxon weighting, and for more
factors, are shown in the context of the typical two- and three-dimensional scatter plots
in S18 Fig, S19 Fig, and S20 Fig. See there for more details.

In conclusion, Placement-Factorization yields factors of the oral/fecal data that are 1268

mostly consistent with the findings of Phylofactorization [31], and is also able to 1269

reasonably separate the samples of larger datasets with several categorical labels. 1270

4.4.3 Performance 1271

The run time of Placement-Factorization depends on (a) the number of input samples, 1272

(b) the number of branches of the reference tree, and (c) the number of iterations to run. 1273

As the computations are conducted on the mass matrix instead of single placements, the 1274

performance and memory requirements of Placement-Factorization are independent 1275

from the total number of sequences/placements in the dataset. In each iteration, and for 1276

each edge of the tree (except the ones that won previous factors), the balances of all 1277

samples are computed, and the objective function is evaluated. In case of using a GLM 1278

to express the relationship of balances with meta-data, this involves fitting a model 1279

across all samples. In our implementation, all these computations are parallelized. 1280

Our relatively small BV test dataset ran on a standard laptop with 4 cores, taking 1281

30 s per iteration. The full HMP dataset with 9192 samples and our reference tree with 1282

3825 branches required 13.0GB of memory in our non-optimized prototype 1283

implementation, as took less than 90 s per iteration using 20 cores. Also, note that later 1284
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iterations tend to become faster, as the splitting of the tree into subtrees reduces the 1285

number of edges that need to be taken into account in each balance computation. Hence, 1286

we conclude that Placement-Factorization is well suited even for very large datasets. 1287

4.4.4 Future directions 1288

Phylofactorization is a very recent method whose full potential has just begun being 1289

explored [92]. We contributed novel ideas by (a) adapting the concept to phylogenetic 1290

placement, which can be thought of as placing abundances along branches of the tree 1291

instead of just at its tips; and (b) suggesting a novel visualization for objective function 1292

value at each edge of the reference tree, which helps in the interpretation of the factors 1293

being split in each iteration. 1294

As discussed above, we found that both, the original Phylofactorization, as well as 1295

our Placement-Factorization, can split clades that are larger than one would expect 1296

from other types of analyses of the data. Considering the distribution of objective 1297

function values, as shown in Fig 10, it is likely that such large clades are the result of 1298

random variability along a path of branches that are equally relevant for the factor. 1299

Further research is needed to confirm this. 1300

These findings suggest that it might be beneficial to introduce a significance value 1301

for each factor, which assesses how relevant the particular winning edge is compared to 1302

other edges that yielded a high objective value in an iteration. This idea is intrinsically 1303

connected (pers. comm. with A. Washburne on 2019-03-01) to the stopping function of 1304

the original Phylofactorization [31], which uses a Kolmogorov-Smirnov (KS) test to 1305

conservatively estimate when a sufficient number of factors have been identified. 1306

Another strongly connected idea is that of confidence regions of the phylogeny, defined 1307

by regions of the tree in which the “true” winning edge falls with a certain 1308

confidence [92]. Such a significance value for the winning edge might also enable a form 1309

of soft factorization, that does not greedily pick one winning edge per iteration. 1310

Furthermore, the paths of high objective values as seen in Fig 10 indicate that there 1311

is a gradient of the objective function along the branches of the tree. This could be 1312

exploited in a gradient-ascending graph-walking algorithm to identify the phylogenetic 1313

factors of extremely large datasets without having to exhaustively evaluate the objective 1314

function at every edge (pers. comm. with A. Washburne on 2019-03-01). 1315

5 Conclusion 1316

We presented novel, scalable methods to analyze and visualize phylogenetic placements 1317

of metagenomic samples. Phylogenetic placement of the sequences on a fixed reference 1318

tree allows for an interpretation of the data in a phylogenetic context. The methods are 1319

computationally inexpensive, and are thus, as we have demonstrated, applicable to large 1320

datasets. They are built on top of a common set of concepts, and hence gear well into 1321

each other. 1322

• Edge Dispersion highlights branches of the phylogenetic tree that exhibit 1323

variations in the number of placements, and thus allows to identify regions of the 1324

tree with a high placement heterogeneity. Edge Correlation additionally takes 1325

meta-data features into account, and identifies branches of the tree that correlate 1326

with quantitative features, such as the temperature or the pH value of the 1327

environmental samples. These methods complement existing methods such as 1328

Edge PCA [29], and represent data exploration tools that can help unravel new 1329

patterns in phylogenetic placement data, and hence, in metagenomic samples. 1330
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• We presented adapted variants of the k-means method, called Phylogenetic 1331

k-means and Imbalance k-means, which exploit the structure of phylogenetic 1332

placement data to identify clusters of environmental samples. The methods build 1333

upon ideas such as Squash Clustering [29] and can be applied to substantially 1334

larger datasets, as they use a pre-defined number of clusters. For future 1335

exploration, other forms of cluster analyses could be adapted to phylogenetic 1336

placement data, for example, soft k-means clustering [107,108] or density-based 1337

methods [109]. The main challenge when adopting such methods consists in 1338

making them phylogeny-aware, that is, to use mass distributions on trees instead 1339

of the typical Rn vectors. 1340

• We introduced an adaptation of the Phylogenetic ILR transform and balances [30] 1341

to phylogenetic placements. As balances are a transformation that yields 1342

orthogonal components (one for each node or branch of the tree), issues pertaining 1343

to the normalization of compositional data do not arise. With samples being 1344

represented as a vector of balances, numerous standard tools for data visualization, 1345

ordination, and clustering in the euclidean space can be readily applied to 1346

phylogenetic placement data. Applying these methods to placements instead of 1347

OTUs allows for more detailed analyses, as the entire original sequence data can 1348

be used. Furthermore, using a fixed reference tree instead of one inferred from the 1349

OTUs present in a set of samples enables comparative studies across datasets. 1350

• Lastly, we presented an adaption of Phylofactorization [31,92], which we call 1351

Placement-Factorization. Placement-Factorization identifies branches of the 1352

reference tree, called phylogenetic factors, that exhibit a relationship with 1353

environmental meta-data features, that is, branches along which putative 1354

functional traits might have arisen in conjunction with changes in environmental 1355

variables. This factorization of the tree can be used as an ordination tool to 1356

visualize how samples are separated by changes along the factors, and as a 1357

dimensionality-reduction tool [31]. It thus complements Edge Correlation, but 1358

further allows to identify nested dependencies within sub-clades of the reference 1359

tree. We leave the adaptation of some of the original concepts of 1360

Phylofactorization to phylogenetic placements as future work, such as binned 1361

phylogenetic units (BPUs), stopping criteria for the iterations, as well as further 1362

experimentation with different objective functions and aggregation and contrast 1363

functions [31,91]. Based on our findings and experiments, we conjecture that 1364

these concepts should be readily applicable to our Placement-Factorization. 1365

The presented methods take either the edge masses as input, that is, the abundances 1366

of metagenomic sequences on each branch of the reference tree, or a transformation of 1367

theses masses, such as edge imbalances or balances, and can hence analyze different 1368

aspects of the placements and the environmental samples. While edge masses reveal 1369

information about single branches, edge imbalances and balances take entire reference 1370

tree clades into account. Depending on the task at hand, either of them might be 1371

preferable and better suited for identifying patterns. We also elaborated on the 1372

limitations and caveats of these transformations. Furthermore, we again emphasize the 1373

importance of appropriately normalizing the samples as required, in order to cope with 1374

the compositional nature of metagenomic data. That is, depending on the type of 1375

sequence data, using either absolute or relative abundances is critical to allow for 1376

meaningful interpretation of the results. 1377

We evaluated our novel methods on three real-world datasets (see S1 Text for details 1378

on the datasets and their preprocessing), and gave exemplary interpretations of the 1379

results. We further showed that these results are consistent with existing methods as 1380

well as empirical biological knowledge. Hence, our methods will also be useful to unravel 1381
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new, unexplored relationships in metagenomic data. Each of them has their strengths 1382

and weaknesses, and focuses on different aspects of the data. The methods and their 1383

variants are hence best used in combination with each other, in order to obtain a 1384

thorough and comprehensive analysis. 1385

The methods are implemented in our tool gappa, which is freely available under 1386

GPLv3 at http://github.com/lczech/gappa. Furthermore, gappa has recently been 1387

bundled into a bioconda package, which is available at 1388

https://anaconda.org/bioconda/gappa; note that this package is not maintained by 1389

ourselves. In S2 Text, we briefly describe the software and its commands, and also 1390

describe a typical phylogenetic placement analysis pipeline. The methods and 1391

transformations presented here constitute a toolbox of different techniques that can be 1392

combined with each other, and allow for further extension and experimentation. The 1393

implementation in gappa is mainly based on our library genesis, which is also freely 1394

available under GPLv3 at http://github.com/lczech/genesis. Furthermore, scripts, 1395

data and other tools used for the tests and figures presented here are available at 1396

http://github.com/lczech/placement-methods-paper. 1397
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Supporting information 1408

S1 Text. Empirical datasets 1409

The analyses and figures presented in the manuscript were conducted on distinct 1410

reference alignments and trees, suited for each dataset. Firstly, for the BV dataset, we 1411

used the set of reference sequences from the original study [18], and re-inferred a tree on 1412

them. Secondly, for the TO and HMP datasets, we used our Phylogenetic Automatic 1413

(Reference) Tree (PhAT) method [34] to construct sets of suitable reference sequences 1414

from the Silva database [105,106]. We used the 90% threshold consensus sequences; 1415

see [34] for details. 1416

For all analyses, we used the following software setup: Unconstrained maximum 1417

likelihood trees were inferred using RAxML v8.2.8 [62]. For aligning reads against 1418

reference alignments and reference trees, we used a custom MPI wrapper for PaPaRa 1419

2.0 [35, 36], which is available at [110]. We then applied the chunkify procedure as 1420

explained in [34] to split the sequences into chunks of unique sequences prior to 1421

conducting the phylogenetic placement, in order to minimize processing time. 1422

Phylogenetic placement was conducted using EPA-ng [24, 111], which is a faster and 1423

more scalable phylogenetic placement implementation than RAxML-EPA [23] and 1424

pplacer [22]. Lastly, given the per-chunk placement files produced by EPA-ng, we 1425

executed the unchunkify procedure of [34] to obtain per-sample placement files. These 1426

subsequently served as the input data for the methods presented here. 1427

We made the scripts, data and other tools used for the tests and figures presented 1428

here available at http://github.com/lczech/placement-methods-paper. See there 1429

for further details. 1430

Bacterial Vaginosis 1431

We used the Bacterial Vaginosis dataset [18] in order to compare our novel methods to 1432

existing ones such as Edge PCA and Squash Clustering [29,56]. The dataset contains 1433

metabarcoding sequences of the vaginal microbiome of 220 women, and was kindly 1434

provided by Sujatha Srinivasan. This small dataset with a total of 426 612 query 1435

sequences, thereof 15 060 unique, was already analyzed with phylogenetic placement 1436

methods in the original publication [18] and in [29]. We re-inferred the reference tree of 1437

the original publication using the original alignment, which contains 797 reference 1438

sequences specifically selected to represent the vaginal microbiome. As the query 1439

sequences were already prepared, no further preprocessing was applied prior to 1440

phylogenetic placement. The available per-sample quantitative meta-data for this 1441

dataset comprises the Nugent score [97], the value of Amsel’s criteria [98], and the 1442

vaginal pH value. We used all three meta-data types in our analyses. 1443

For our comparison of Placement-Factorization to the original 1444

Phylofactorization [31], we furthermore conducted OTU clustering of the sequences, 1445

using two different methods: We used vsearch v2.9.1 [54] as well as swarm 1446

v2.2.2 [52,53] to obtain two sets of OTU clusters. We filtered the OTU table to remove 1447

low abundance OTUs, by only keeping those that appear in more than 10% of the 1448

samples. In order to assign each OTU to a fitting taxonomic path, we used the assign 1449

command of our toll gappa. To this end, we placed the OTUs on the BV reference tree 1450

mentioned above, in order to obtain taxonomic assignments for the OTUs that are in 1451

line with the taxonomic labels used in our other analyses of the dataset. Each set of 1452

OTUs was subsequently aligned with MAFFT v7.310 [112,113], using the L-INS-i 1453

strategy [114]. Finally, we inferred an OTU tree for each set, using the recent 1454

RAxML-NG v0.7.0 [115]. These two OTU trees were then used with the meta-data 1455
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for conducting an analysis with Phylofactor, based on the excellent tutorials at 1456

https://github.com/reptalex/phylofactor. The results for the first ten factors for 1457

each of these two trees is for example shown in S3 Table of the supplement. 1458

Tara Oceans 1459

The Tara Oceans (TO) dataset [11,32,33] that we used here contains amplicon sequences 1460

of protists, and is available at https://www.ebi.ac.uk/ena/data/view/PRJEB6610. 1461

At the time of download, there were 370 samples available with a total of 49 023 231 1462

sequences. As the available data are raw fastq files, we followed [116] to generate 1463

cleaned per-sample fasta files. For this, we used our tool PEAR [117] to merge the 1464

paired-end reads; cutadapt [118] for trimming tags as well as forward and reverse 1465

primers; and vsearch [54] for filtering erroneous sequences and generating per-sample 1466

fasta files. We filtered out sequences below 95bps and above 150bps, to remove 1467

potentially erroneous sequences. No further preprocessing (such as chimera detection) 1468

was applied. This resulted in a total of 48 036 019 sequences, thereof 27 697 007 unique. 1469

The sequences were then used for phylogenetic placement as explained above. We 1470

placed the sequences on the unconstrained Eukaryota reference tree obtained via our 1471

Phylogenetic Automatic (Reference) Trees (PhAT) method [34], which comprises 2059 1472

taxa, thereof 1795 eukaryotic sequences. The remaining 264 taxa are Archaea and 1473

Bacteria, and were included as a broad outgroup. The TO dataset has a rich variety of 1474

per-sample meta-data features; in the context of this paper, we mainly focus on 1475

quantitative features such as temperature, salinity, as well as oxygen, nitrate and 1476

chlorophyll content of the water. Furthermore, each sample has meta-data features 1477

indicating the date, longitude and latitude, depth, etc. of the sampling location. This 1478

data might be interesting for further correlation analyses based on geographical 1479

information. We did not use them here, as for example longitude and latitude would 1480

require a more involved method that also accounts for, e.g., ocean currents. 1481

Furthermore, geographical coordinates yield pairwise distances between samples, which 1482

are not readily usable with our correlation analysis. Lastly, in order to use features such 1483

as the date, that is, in order to analyze samples over time, the same sampling locations 1484

would need to be visited at different times during the year, which is not the case for the 1485

Tara Oceans expedition. 1486

Human Microbiome Project 1487

We used the Human Microbiome Project (HMP) dataset [16,17] for testing the 1488

scalability of our methods. In particular, we used the “HM16STR” data of the initial 1489

phase “HMP1”, which are available from http://www.hmpdacc.org/hmp/. The dataset 1490

consists of trimmed 16S rRNA sequences of the V1V3, V3V5, and V6V9 regions. The data 1491

are further divided into a “by_sample” set and a “healthy” set, which we merged in 1492

order to obtain one large dataset, with a total of 9811 samples. We then removed 10 1493

samples that were larger than 70MB as well as 605 samples that had fewer than 1500 1494

sequences, because we considered them as defective or unreliable outliers. Finally, we 1495

also removed 2 samples that did not have a valid body site label assigned to them. This 1496

resulted in a set of 9192 samples containing a total of 118 702 967 sequences with an 1497

average length of 413bps. From these samples, sequences with a length of less than 1498

150bps as well as sequences longer than 540bps were removed, as we considered them 1499

potentially erroneous. No further preprocessing (such as chimera detection) was applied. 1500

This resulted in a total of 116 520 289 sequences, of which 63 221 538 were unique. We 1501

then used the unconstrained Bacteria tree of our Phylogenetic Automatic (Reference) 1502

Trees (PhAT) method [34] for phylogenetic placement. The tree comprises 1914 taxa, 1503

thereof 1797 bacterial sequences. The remaining 117 taxa are Archaea and Eukaryota, 1504
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and were included as a broad outgroup. Each sample is labeled with one of 18 human 1505

body site locations where it was sampled. This is the only publicly available meta-data 1506

feature. 1507

For our re-analysis of the oral/fecal dataset of the original Phylofactorization [31], 1508

we used the test data provided at https://github.com/reptalex/phylofactor. We 1509

modified the scripts to produce 10 factors instead of the default of using their stopping 1510

criterion, in order to be comparable to our implementation and results. For the 1511

comparison with our Placement-Factorization, we selected a suitable oral/fecal subset of 1512

the HMP dataset as described in the main text. 1513

S2 Text. Pipeline and implementation 1514

Phylogenetic Placement Pipeline 1515

Phylogenetic placement (also called evolutionary placement) has been developed for 1516

conducting phylogenetic analyses of metagenomic sequence data [41]. It is implemented 1517

in tools such as pplacer [22], RAxML-EPA [23], and EPA-ng [24, 111]. Instead of 1518

resolving the phylogeny of a set of metagenomic sequences, phylogenetic placement 1519

treats each sequence, called a query sequence (QS), separately. It evaluates how these 1520

QSs relate to an existing reference tree (RT) based on known reference sequences. For 1521

each QS, it computes the probabilities of placing the sequence on all branches of the 1522

RT, thereby classifying them into a phylogenetic context of related sequences, without 1523

the need to resolve relationships between the QSs. 1524

In the most common use case, the QSs are reads or amplicons from environmental 1525

samples. Most often barcoding regions or marker genes such as 16S or 18S are used, but 1526

there also exist studies that use different, or even a set of, marker genes [9]. 1527

Furthermore, other types of sequences such as mitags [50] can be used. 1528

The RT and the reference sequences it represents are typically assembled by the user 1529

so that they capture the expected species diversity in the samples. To expedite this 1530

process, we recently proposed an automated approach for assembling suitable sets of 1531

reference sequences [34]. Distinct samples from one study are typically placed on the 1532

same underlying RT in order to facilitate comparisons between the samples. 1533

We here assume to be given a set of suitable reference sequences, their alignment, 1534

and an RT inferred from them. In current implementations of phylogenetic placement, 1535

the RT has to be strictly bifurcating. Prior to the placement, the QSs need to be 1536

aligned against the reference alignment of the RT by programs such as PaPaRa [35, 36] 1537

or hmmalign [37, 38]. The input to phylogenetic placement are (i) the reference 1538

tree (RT), (ii) its underlying alignment, and (iii) the aligned query sequences (QSs). 1539

The placement pipeline is shown in Fig 1. 1540

Query
Sequences

Reference 
Tree

Reference 
Alignment

Phylo-
genetic
Placements

Placement
Algorithm

Phylogenetic placement pipeline. The input to phylogenetic placement are three
files: the reference tree (RT), the corresponding reference alignment, and the aligned
query sequences (QSs). The placement algorithm then computes the probabilities of
placing the QSs on the branches of the RT, which are stored in an output file.
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The output of phylogenetic placement are the probabilities of placing the QSs on the 1541

branches of the RT. The output data is usually stored in so-called jplace files [119]. It 1542

stores the RT in Newick format, including tip names and branch lengths. Its main part 1543

is the list of placements for each QS, which store the LWRs and placement positions 1544

along the branches of the RT. 1545

Method Implementation 1546

The methods described in the manuscript are implemented in our tool gappa, which is 1547

freely available under GPLv3 at http://github.com/lczech/gappa. gappa internally 1548

uses our C++11 library genesis, which offers functionality for working with phylogenies 1549

and phylogenetic placement data, and also contains methods to work with taxonomies, 1550

sequences and many other data types. genesis is also freely available under GPLv3 at 1551

http://github.com/lczech/genesis. This software design of using a library 1552

(genesis) for the core functions, and a separate program (gappa) for the user-facing 1553

command line interface, has the advantage of enabling experimentation and extension 1554

for future research. 1555

gappa offers a command line interface for conducting typical tasks when working 1556

with phylogenetic placements. The methods that we described here are implemented via 1557

the following sub-commands: 1558

• dispersion: The command takes a set of jplace files (the samples), and 1559

calculates and visualizes the Edge Dispersion per edge of the reference tree. 1560

• correlation: The command takes a set of jplace samples, as well as a table 1561

containing metadata features for each sample. It then calculates and visualizes the 1562

Edge Correlation with the metadata features per edge of the reference tree. 1563

• phylogenetic-kmeans and imbalance-kmeans: Performs k-means clustering of a 1564

set of jplace files according to our methods. 1565

• placement-factorization: Performs our adaptation of Phylofactorization [31] 1566

to phylogenetic placement data, and outputs all relevant analysis results. 1567

• squash and edgepca: Reimplementations of the two existing methods [29,56]. 1568

These are the gappa commands that are relevant for this paper. The tool also offers 1569

additional commands that are useful for phylogenetic placement data, such as 1570

visualization or filtering. At the time of writing this manuscript, gappa is under active 1571

development, with more functions planned in the near future. Furthermore, gappa has 1572

recently been bundled into a bioconda package, which is available at 1573

https://anaconda.org/bioconda/gappa; note that this package is not maintained by 1574

ourselves. Lastly, we provide prototype implementations, scripts, data, and other tools 1575

used for the tests and figures in this paper at 1576

http://github.com/lczech/placement-methods-paper. 1577

41/72

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/346353doi: bioRxiv preprint 

http://github.com/lczech/gappa
http://github.com/lczech/genesis
https://anaconda.org/bioconda/gappa
http://github.com/lczech/placement-methods-paper
https://doi.org/10.1101/346353
http://creativecommons.org/licenses/by-nc-nd/4.0/


S1 Table. HMP Dataset Overview. The table lists the 19 body site labels used by
the Human Microbiome Project (HMP) [16,17]. We used this dataset to evaluate the
applicability of our methods for phylogenetic placement. In order to simplify the
visualization in several figures, we summarized some of the labels into eight location
regions, as shown in the second column. The last column lists how many samples from
each body site were used in our evaluation.

Body Site Region Samples
Tongue Dorsum Mouth (back) 610
Palatine Tonsils Mouth (back) 599
Throat Mouth (back) 638
Attached Keratinized Gingiva Mouth (front) 600
Hard Palate Mouth (front) 566
Buccal Mucosa Mouth (front) 597
Saliva Saliva 529
Supragingival Plaque Plaque 608
Subgingival Plaque Plaque 595
Anterior Nares Airways 541
Left Retroauricular Crease Skin 596
Right Retroauricular Crease Skin 604
Left Antecubital Fossa Skin 290
Right Antecubital Fossa Skin 328
Stool Stool 600
Vaginal Introitus Vagina 292
Mid Vagina Vagina 298
Posterior Fornix Vagina 301
Sum 9192
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S2 Table. Effect of Branch Binning on the KR Distance of the HMP
Dataset. Here we show the effect of per-branch placement binning on the run-time and
on the resulting relative error when calculating the pairwise KR distance matrix
between samples, by example of the Human Microbiome Project (HMP) [16, 17] dataset.
Because of the size of the dataset (9192 samples) and reference tree (1914 taxa), we
executed this evaluation in parallel on 16 cores. The first row shows the baseline
performance, that is, without binning. When using fewer bins per branch, the run-time
decreases, at the cost of slightly increasing the average relative error. Still, even when
compressing the placement masses into only one bin per branch (that is, just using
per-branch masses), the average relative error of the KR distances is around 1%, which
is acceptable for most applications. However, considering that the run-time savings are
not substantially better for a low number of bins, we recommend using a relatively large
number of bins, e.g., 32 or more. This is because run-times of KR distance calculations
also depend on other effects such as the necessary repeated tree traversals. We also
conducted these tests on the BV dataset, were the relative error is even smaller.

Bins Time (h:mm) Speedup Relative∆
- 9:46 1.00 0.000000

256 6:58 1.40 0.000008
128 6:39 1.47 0.000015
64 6:30 1.50 0.000035
32 6:25 1.52 0.000124
16 6:13 1.57 0.000272
8 6:08 1.59 0.000669
4 6:07 1.60 0.002747
2 6:04 1.61 0.004284
1 5:35 1.75 0.011585
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S3 Table. First ten factors of the BV dataset found by Phylofactorization.
We analyzed the BV dataset with the original Phylofactorization, using two different
methods for the OTU clustering of the data, namely vsearch [54] and swarm [52, 53];
see S1 Text for details on the preprocessing. Here, we compare our
Placement-Factorization of the dataset to these results. As the original implementation
does not support taxon weighting, we also do not use it here. The table shows the
clades split by the first 10 factors found by each variant. See also S14 Fig for a
visualization of the clades found by our adaptation.
As shown in S1 Fig and in the original study of the dataset [18], there are multiple
different taxa that are associated with Bacterial Vaginosis. That is, there are several
clades or branches of our reference tree where the placement mass differs between
healthy and sick patients. It is thus expected that a phylo-factorization of these data
exhibits some variation in the exact clade found, depending on the preprocessing and
exact settings being used. Still, the table shows that—apart from ordering—the
factored clades are mostly consistent across variants, and consistent with previous
findings. All of the taxa found by the swarm-based Phylofactorization and by our
Placement-Factorization, as well as all taxa except some of the Streptococcus found as
part of the first factor of the vsearch-based Phylofactorization, were already shown to
play important roles for this dataset [18]. The inclusion of Streptococcus in the vsearch
variant is due to an inner edge that has a slightly higher value of the objective function
than the actually more relevant edges leading to the Lactobacillus clade. We observed a
similar behavior of large clades being split with our implementation when using taxon
weights, as shown in Fig 10. Lastly, the normalized mutual information [120] between
the three variants ranges between 71% and 81%, further showing that they mostly find
the same clades.

Original (vsearch) Original (swarm) Placement-Factorization
1 Lactobacillus crispatus, Sneathia sanguinegens, Lactobacillus crispatus,

Lactobacillus jensenii, Leptotrichia amnionii Lactobacillus jensenii,
Lactobacillus iners, Lactobacillus kalixensis
Lactobacillus coleohominis,
Lactobacillus gasseri,
Lactobacillus vaginalis,
Streptococcus agalactiae,
Streptococcus anginosus,
Streptococcus gallolyticus,
Streptococcus oralis,
Aerococcus christensenii

2 Lactobacillus crispatus Lactobacillus crispatus Sneathia sanguinegens,
Leptotrichia amnionii

3 Gardnerella vaginalis Gardnerella vaginalis Gardnerella vaginalis
4 Leptotrichia amnionii Atopobium vaginae Megasphaera
5 Megasphaera Megasphaera Lactobacillus crispatus
6 Atopobium vaginae Eggerthella Eggerthella
7 Eggerthella Prevotella bivia, Prevotella timonensis,

Prevotella amnii Prevotella buccalis
8 Sneathia sanguinegens Prevotella timonensis Prevotella bivia,

Prevotella amnii
9 Prevotella timonensis BVAB2 Atopobium vaginae
10 Lactobacillus jensenii Lactobacillus jensenii Lactobacillus iners
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S1 Fig. Visualization of per-edge and per-sample masses of the BV dataset.
The figure provides an overview of the placement of the BV dataset [18]: The left hand
side shows a condensed version of the original reference tree of [18], colored by log-scaled
placement mass of all samples accumulated. For clarity and simplicity, in this figure we
used a reference tree built from the consensus sequences of each original reference taxon,
so that each species is represented by exactly one tip here. The Lactobacillus clade is
highlighted in the tree, which is an important clade for this dataset. Note the two
particularly dark branches, Lactobacillus iners and Lactobacillus crispatus, which are
the major species associated with a healthy vaginal microbiome [18].
The right hand side shows a heat map that further resolves the placement masses per
sample: Each row corresponds to a branch of the tree on the left (note that dashed lines
also start from inner branches), and each column represents one sample. The values are
log-centered in order to be consistent with typical OTU abundance heat map
representations, for example as in [31]. The samples/columns are sorted by their Nugent
score, from 0 at the left for the healthy patients to 10 at the right for the sick ones. The
Nugent score of each sample is also shown at the top as a blue to red bar. Here again
the high abundance of Lactobacillus in healthy patients is visible in the lower part of the
matrix, while the diseased patients exhibit high placement masses at several other
taxa [18].
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S2 Fig. Examples of variants of Edge Dispersion. We re-analyzed the BV
dataset to show variants of our Edge Dispersion method. All subfigures highlight the
same branches and clades as found by other methods such as Edge PCA. The method is
useful as a first exploratory tool to detect placement heterogeneity across samples. In
contrast to Edge Correlation, it can however not explain the reasons of heterogeneity.
Subfigure (a) shows the standard deviation of the absolute edge masses, without any
further processing. It is striking that one outlier, marked with an arrow, is dominating,
thus hiding the values on less variable edges. This outlier occurs at the species
Prevotella bivia in one of the 220 samples, where 2781 out of 2782 sequences in the
sample have placement mass on that branch. Upon close examination, this outlier can
also be seen in Figure 1D of [18], but is less apparent there. Subfigure (b) is identical to
Fig 4(a) of the main text and shows the standard deviation again, but this time using
logarithmic scaling, thus revealing more details on the edges with lower placement mass
variance. Furthermore, when comparing it to S3(c) Fig, we see that the same clades
that exhibit a high correlation or anti-correlation with meta-data there are also
highlighted here. Subfigure (c) shows the Index of Dispersion of the edge masses, that
is, the variance normalized by the mean. Hence, edges with a higher number of
placements are also allowed to have a higher variance. We again use a logarithmic scale
because of the outlier. The figure reveals more details on the edges with lower variance,
highlighted in medium green colors. Subfigure (d) shows the standard deviation of edge
imbalances. Because we used imbalances of unit mass samples, the values are already
normalized. The path to the Lactobacillus clade is again clearly visible, indicating that
the placement mass in this clade has a high variance across samples. Note that
imbalances can be negative; thus, the Index of Dispersion is not applicable to them.
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S3 Fig. Examples of variants of Edge Correlation. We again use the BV
dataset, and show the correlation of edge masses and imbalances with the Nugent score.
The Nugent score measures the severeness of Bacterial Vaginosis, and ranges from 0 for
healthy subjects to 10 for heavily affected patients. Subfigures (a) and (b) use the
Pearson Correlation Coefficient, that is, they show the linear correlation with the
meta-data feature, while subfigures (c) and (d) use Spearman’s Rank Correlation
Coefficient and thus show monotonic correlations. Subfigure (d) is identical to Fig 4(b)
of the main text. All subfigures show red edges or red paths at the Lactobacillus clade.
This indicates that presence of placements in this clade is anti-correlated with the
Nugent score, which is consistent with the findings of [18] and [29]. In other words,
presence of Lactobacillus correlates with a healthy vaginal microbiome. On the other
hand, blue and green edges, which indicate positive correlation, are indicative of edges
that correlate to Bacterial Vaginosis. The extent of correlation is larger for Spearman’s
Coefficient, indicating that the correlation is monotonic, but not strictly linear.
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S4 Fig. Edge Correlation with more meta-data features. Here, we use
additional meta-data features of the BV dataset to show that Edge Correlation yields
consistent results with existing methods. In particular, we caltucated Spearman’s
Coefficient with Amsel’s criteria [98] in subfigures (a) and (b), as well as with the
vaginal pH value in subfigures (c) and (d). Both features were also used in [18] as
indicators of Bacterial Vaginosis. The figures are almost identical to the ones shown in
S3 Fig; that is, they yield results that are consistent with the previously used Nugent
score, as well as consistent with existing methods.
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S5 Fig. Recalculation of the Edge PCA tree visualization. Subfigures (a) and
(b) are recalculations of Figures 4 and 5 of [29], respectively. However, we show them
here in our coloring scheme in order to facilitate comparison with other figures. The
original publication instead uses two colors for a positive and a negative sign of the
principal components, and branch width to show their magnitude. Note that the actual
sign is arbitrary, as it is derived from principal components.
The figure shows the first two Edge PCA components, visualized on the reference tree.
This form of visualization is useful to interpret results such as the Edge PCA projection
plot as shown in Fig 8(e) of the main text. It reveals which edges are mainly responsible
for separating the samples into the PCA dimensions. Here, the first principal
component in (a) indicates that the main PCA axis separates samples based on the
presence of placements in the Lactobacillus clade, which is what the blue and green path
leads to. The second component in (b) then further distinguishes between two species in
this clade, namely Lactobacillus iners and Lactobacillus crispatus.
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S6 Fig. Examples of Edge Correlation using Tara Oceans samples. The
figure shows the correlation of Tara Oceans sequence placements with (a) the nitrate,
(b) the salinity, (c) the chlorophyll, and (d) the temperature sensor data of each sample.
The sensor values range from −2.2 to 33.1 µmol/l (nitrate), from 33.2 to 40.2 psu (salt),
from −0.02 to 1.55mg/m3 (chlorophyll), and from −0.8 to 30.5 ◦C (temperature),
respectively. The negative nitrate and chlorophyll concentrations are values below the
detection limit of the measurement method (pers. comm. with L. Guidi), and hence
simply denote low concentrations. We used Spearman’s Rank Correlation Coefficient,
and examine two exemplary clades, namely the Animals and the Diatoms.
Diatoms are mainly photosynthetic, and thus depend on nitrates as key nutrients, which
is clearly visible by the high correlation of the clade in (a). Furthermore, the diatoms
exhibit positive correlation with the chlorophyll concentration (c), which again is
indicative of their photosynthetic behavior. On the other hand, they show a high
anti-correlation with the salt content (b). Salinity is a strong environmental factor
which heavily affects community structures and species abundances [99], particularly
diatoms [100].
The correlations of the animal clade are less pronounced. They exhibit a negative
correlation with nitrate (a), as well as an increase in absolute abundance with higher
temperatures (d). While these findings are not surprising, they show that the method is
able to find meaningful relationships in the data.
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S7 Fig. Comparison of k-means clustering to MDS, PCA, and Edge PCA.
Here, we show and compare the dimensionality reduction methods MDS, PCA, and
Edge PCA (one per row). MDS and PCA were calculated on the pairwise KR distance
matrix of the BV dataset, Edge PCA was calculated using the placements on the
re-inferred RT of the original publication [18]. The plots are colored by the cluster
assignments as found by our k-means variants (first two columns), and by the Nugent
score of the samples (last column). The Nugent score is included to allow comparison of
the health status of patients with the clustering results. (a), (d) and (h) are identical to
Figs 8(c), (d) and (e) of the main text, respectively. (f) and (i) are recalculations of
Figures 4 and 3 of [101], respectively. This figure reveals additional details about how
the k-means method works, that is, which samples are assigned to the same cluster. For
example, the purple cluster found by Imbalance k-means forms a dense cluster of
close-by samples on the left in (b) and (e), which is in accordance with the short branch
lengths of this cluster as shown in Fig 8(b) of the main text.
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S8 Fig. Example of k-means cluster centroids visualization. Here we show the
cluster centroids as found by our k-means variants using the BV dataset, visualized on
the reference tree via color coding. The cluster assignments are the same as in Fig 8 of
the main text; the first row show the three clusters found by Phylogenetic k-means, the
second row the clusters found by Imbalance k-means. Each tree represents one centroid
around which the samples were clustered, that is, it shows the combined masses of the
samples that were assigned to that cluster. The edges are colored relative to each other,
using a linear scaling of light blue (no mass), purple (half of the maximal mass) and
black (maximal mass).
As explained in the main text, the samples can be split into three groups: The diseased
subjects, which have placement mass in various parts of the tree, as well as two groups
of healthy subjects, with placement mass in one of two Lactobacillus clades (marked
with black arcs on the left of the trees). This grouping is also clearly visible in these
trees. The red cluster for example represents all healthy subjects, and thus most of its
mass is located in the two Lactobacillus clades. The purple and orange clusters on the
other hand show a difference in placement mass between those clades. Furthermore, the
placement mass of the gray cluster is mostly a combination of the masses of the green
and blue cluster, all of which represent diseased subjects. These observations are in
accordance with previous findings as explained in the main text.
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S9 Fig. Clustering using Phylogenetic k-means on the HMP dataset. k is set
to 8, instead of k := 18 as in the main text, based on a coarse aggregation of the
original body site labels as shown in S1 Table. See Fig 8 for the cluster assignment
where k is set to the original number of labels; there, we also list how the labels were
aggregated. Each row represents a body site; each column one of the 8 clusters. The
color values indicate how many samples of a body site were assigned to each cluster.
Some of the body sites can be clearly separated, while particularly the samples from the
oral region are distributed over different clusters. This might be due to homogeneity of
the oral samples.
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S10 Fig. Variances of k-means clusters in our test datasets. The figures show
the cluster variance, that is, the average squared distance of the samples to their
assigned cluster centroids, for different values of k. The first row are clusterings of the
BV dataset, the second row of the HMP dataset. They were clustered using
Phylogenetic k-means (first column), and Imbalance k-means (second column),
respectively. Accordingly, (a) and (c) use the KR distance, while (b) and (d) use the
euclidean distance to measure the variance. These plots can be used for the Elbow
method in order to find the appropriate number of clusters in a dataset [79]. Low values
of k induce a high variance, because many samples exhibit a large distance from their
assigned centroid. On the other hand, at a given point, higher values of k only yield a
marginal gain by further splitting clusters. Thus, if the data has a natural number of
clusters, the corresponding k produces an angle in the plot, called the “elbow”.
For example, (a) and (b) exhibit the elbow at k := 2 and 3, respectively, which are
marked with orange circles. These values are consistent with previous findings, for
instance, Fig 8: There, Phylogenetic k-means splits the samples into a distinct red
cluster and the nearby green and blue clusters, while Imbalance k-means yields three
separate clusters in purple, orange, and gray.
For the HMP dataset, the elbow is less pronounced. We suspect that this is due to the
broad reference tree not being able to adequately resolve fine-grained differences between
samples, see S1 Text for details. Likely candidates for k are 4− 6 for (c) and around 7
for (d). These values are consistent with the number of coherent “blocks” of clusters,
which can be observed in Fig 9. Clearer results for this dataset might be obtained with
other methods for finding “good” values for k, although we did not test them here.
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S11 Fig. Projection of PCA on the edge balances of the BV dataset. The
plots show the first two principal components of a PCA on the per-edge balances,
calculated on placements of the data on reference tree of the BV dataset. That is, for
each edge of the tree, we calculated the balance (log-ratio of geometric means) of the
placement masses of the BV samples between the two sides of the tree induced by the
edge. (a) shows the result when using taxon weighting [30] in the balances calculation,
while (b) shows the result without taxon weighting. Each item represents a sample,
colored by its Nugent score (0 means healthy, 10 means severe illness); the Nugent score
had no influence on the PCA calculations.
Both plots separate the healthy from the sick patients. In contrast to Edge PCA, the
first component of (a) does not fully distinguish between the healthy (blue) and
diseased (red) samples. For some reason, the component only takes Lactobacillus iners
into account, while mostly ignoring Lactobacillus crispatus. This can be seen in
S12(a) Fig, which shows the eigenvectors of this component visualized on the reference
tree. There, the path leading to the Lactobacillus clade does not include the branches of
Lactobacillus crispatus, which is marked with a black arc. Including the second
component however, which distinguishes between the two types of Lactobacillus, as
shown in S12(b) Fig, yields a clear separation of the samples.
Subfigure (b) exhibits closer similarities to the Edge PCA plot shown in S7(i) Fig, in
that the first component separates healthy from sick, and the second component further
splits the healthy individuals apart. The edges that are responsible for these splits can
be seen in more detail in S12 Fig, where we visualize the first two principal components
of the balances without taxon weighting on the tree.
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S12 Fig. Eigenvectors of PCA on the edge balances of the BV dataset. The
figure shows the eigenvectors of the first two principal components of PCA on the
per-edge balances with and without taxon weighting, visualized on the reference tree of
the BV dataset. See S11 Fig for details on the balances calculation. The visualization of
the components on the reference tree is analogous to the Edge PCA tree visualization as
for example shown in S5 Fig. As the data that is considered in the PCA corresponds to
the edges of the tree, the resulting eigenvectors can be mapped back onto the tree,
which is shown here. Each edge is colored according to the corresponding value of the
first principal component in (a) and (c), and the second principal component in (b) and
(d), respectively.
The figure hence indicates how the axes in S11 Fig can be interpreted: The first
component leads to the Lactobacillus clade, while the second one splits this clade into
Lactobacillus iners and Lactobacillus crispatus. Hence, the results obtained from this
analysis are consistent with our previous findings, c. f., S5 Fig and [18]. In (a) and (c),
we marked the Lactobacillus crispatus clade with a black arc at the left of the tree.
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S13 Fig. Correlation of the edge balances of the BV dataset with Nugent
score. The Edge Correlation method as presented in the main text, and for example
shown in S3 Fig, can also be conducted using balances (instead of masses or
imbalances). We here show Edge Correlation using Spearman’s Rank Correlation
Coefficient, calculated on the per-edge balances and the Nugent score, based on the
placement of the BV dataset. That is, for each edge of the tree, we calculated the
balance (log-ratio of geometric means) of the placement masses of the BV samples
between the two sides of the tree induced by the edge. Then, we calculated the
correlation with the Nugent score of each sample, and visualized it on the tree. (a)
shows the result when using taxon weighting [30] in the balances calculation, while (b)
shows the result without taxon weighting.
With taxon weighting in (a), the result is similar to the correlation with imbalances
shown in S3(d) Fig: An anti-correlation with the Lactobacillus clade is again visible (less
placement mass in this clade means higher Nugent score, that is, indicates a more severe
illness), while several other clades exhibit a positive correlation with Nugent score.
The most striking difference to the previous Edge Correlation trees in S3 Fig is the
majority of spuriously anti-correlated (red) edges in the tree without taxon weighting in
(b). As mentioned in the main text, this is due to the insensitivity of the geometric
mean to the presence of singular large values: If most values are small, so will be their
geometric mean, even if a few very large values are also present. As can be seen in
S1 Fig and S2 Fig, the clades that exhibit a high anti-correlation here (red) have low
placement mass with a low variance. Hence, the geometric mean of the masses in these
clades is consistently low across samples, which means that the numerator of the
log-ratio in the balances computation has little effect on the correlation. This implies
that the denominator, which represents the rest of the tree, drives the anti-correlations
seen here. Women affected by BV show a presence of several different bacterial clades,
while healthy women without BV almost exclusively have high presence of one of two
types of Lactobacillus [18]. Hence, in samples with BV (high Nugent score), there are
several distinct edges that have an elevated mass, which is enough to change the
geometric mean, while in samples without BV (low Nugent score), most of the mass is
concentrated on a single edge of the Lactobacillus clade, which is not enough to
significantly change the geometric mean. In consequence, the denominator of the
balance at the spurious edges is consistently larger for samples with BV compared to
those without BV. Thus, the balance is smaller for samples with a high Nugent score,
which finally explains the observed anti-correlations. Note that despite this, there are
still edges that exhibit positive correlation (blue and green), which is where the actual
patterns in the data outweigh the insensitivity of the geometric mean.
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Lactobacillus kalixensis,
Lactobacillus crispatus

Factor 2:
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Factor 3:
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Lactobacillus crispatus
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S14 Fig. Visualization of the first ten factors of the BV dataset. Here, we
show the first ten factors found by Placement-Factorization without taxon weighting on
the BV dataset. The black edges are the winning edges of each iteration, which split the
tree into several subtrees. For simplicity, we only colored the clades leading away from
the (arbitrarily placed) root, while leaving the paraphyletic “remainder” clade in gray.
Note that factor 5 is nested in factor 1, that is, it further splits the branches within the
first factor, thus separating Lactobacillus crispatus from Lactobacillus jensenii and
Lactobacillus kalixensis. See S3 Table for a comparison of the clades separated by each
factor to the factors found by the original Phylofactorization. Furthermore, see
S16(b) Fig for an ordination of the first two factors, showing how these factors separate
the samples in the dataset.
The clades found here are consistent with the findings of the original study of the
dataset [18]: Healthy women without BV exhibit high abundances of Lactobacillus,
while women affected by BV have a more diverse vaginal microbiome, containing
multiple different bacterial taxa. Hence, the first factor represents the most prominent
split of the data into healthy vs. diseased, based on the presence of Lactobacillus.
Differences within the healthy samples are then further distinguished in factors five and
ten, which further split parts of the Lactobacillus clade. The remaining factors split
away clades that further separate the diseased samples from each other, based on
several bacterial taxa. All clades that are found by these factors where shown in the
original study to be associated with BV [18], meaning that Placement-Factorization on
this dataset yields results that are consistent with previous analyses.
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(a) Factor 1 (b) Factor 2 (c) Factor 3

(d) Factor 4 (e) Factor 5 (f) Factor 6

S15 Fig. Objective function values for the first six factors of the BV
dataset. In each iteration of Phylofactorization and Placement-Factorization, the
objective function is evaluated for each edge of the tree (except for edges that were
winning previous iterations). The figure visualizes the value of the objective function for
the first six iterations of Placement-Factorization of the BV dataset, without taxon
weighting. Darker edges represent higher values; the highest value of each iteration (the
winning edge) is marked with a black arrow.
Gray arrows further mark the winning edge of the respective previous iteration, which
allows to examine the effect of “factoring out” an edge: Due to the nature of comparing
the two sides induced by an edge, high values of the objective function usually
propagate across several connected edges, e. g., the region of dark branches around the
marked edge in (a). Once a factor has been split from the tree, the values for the whole
path drop, which can be seen by comparing (a) and (b), where the region around the
gray arrow has much lower values of the objective function. This behavior can
consistently be observed in the other subfigures as well.
The clades of the winning edges shown here can also be seen in S14 Fig, and are listed
in S3 Table. See also Fig 10 for the according visualization with taxon weights.
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S16 Fig. Ordination of the first two factors of the BV dataset. The figure
shows ordination-visualization plots of the ILR coordinates of the first two factors found
by Placement-Factorization of the BV dataset, (a) with and (b) without taxon
weighting. That is, the axes correspond to the splits induced by the first two factors,
while values along the axes are the balances of each sample calculated on the sets of
edges of each split. Samples are again colored by their Nugent score, with 0 being the
healthy patients, and 10 being the patients with severe BV. See Fig 10 for the (winning)
edges that correspond to the axes in (a) (with taxon weighting), and see S14 Fig and
S3 Table for the edges corresponding to the axes in (b) (without taxon weighting).
This type of plot was suggested in [31] as an additional way of depicting how the factors
separate samples according to meta-data features, see their Figure 5(a). Note that such
visualizations can only reasonably visualize the first two or three factors, which is why
they are now discontinued in the original Phylofactorization (pers. comm. with
A. Washburne on 2019-01-16). For the BV dataset however, this suffices to show the
major features. We also developed a way of visualizing further factors, as for example
shown in S18 Fig, which alleviates this issue.
On the one hand, Placement-Factorization with taxon weighting in (a) is highly similar
to PCA on the balances as shown in S11(a) Fig, despite the fact that PCA does not take
the meta-data into account. We suspect that is is due to the nature of the dataset, were
the abundances in the Lactobacillus clade almost solely dictate the health status of each
individual, and roughly half the samples belong to either the healthy or the sick group
of patients. Hence, the Lactobacillus clade naturally is a major driver of differences
between samples, and is thus identified by PCA as the most important component/axis.
On the other hand, Placement-Factorization without taxon weighting in (b) yields an
ordination that separates healthy from sick patients in the first factor, and further splits
the sick patients in the second factor. The reason for this can be seen in the clades that
each factor splits away from the tree, as shown in S14 Fig: The first factor separates
part of the Lactobacillus clades, which explains why it distinguishes samples based on
heath status. The second factor separates a clade containing Sneathia sanguinegens and
Leptotrichia amnioni, which is an important clade among several clades that are
associated with BV [18]. This can also be seen in S1 Fig, where the healthy patients
with low Nugent score almost exclusively exhibit high abundances of Lactobacillus,
while the diseased patients with high Nugent score show abundances in several clades all
over the tree.
This serves as a caveat for Phylofactorization, and as an example of the limitations of
the type of plot shown here: It is crucial to compute all significant factors—otherwise,
important aspects of the data get lost and results are incomplete. In the case of the BV
dataset, two axes/factors are sufficient to separate the samples by Nugent score, but
they do not explain the multitude of clades that are associated with BV.
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S17 Fig. Comparison of factors found in the oral/fecal subset of the HMP
dataset. Here, we compare the first 10 factors found by Placement-Factorization with
and without taxon weighting on an oral/fecal subset of the HMP dataset to the first 10
factors found by Phylofactorization on their oral/fecal test dataset [31,104]. To this end,
we mapped the taxa of the latter to the Silva taxonomy [105,106] that was used for
constructing the reference tree shown here [34].
The clades of the tree are colored so that green, blue, and red mark branches that only
appear in one of the variants, cyan, yellow, and purple for branches that occurred in two
variants, and dark gray for branches that were found by all three variants. For
simplicity, we here neglect the order and nesting of factors. That is, if a branch is part
of the non-root side of one of the first ten factors, it is colorized here.
It is striking that the variant with taxon weights (green) finds larger clades than the
other two. We already observed a similar behavior with the BV dataset. However, the
values of the objective function indicate that the focus of the factor is in fact much
smaller and more in agreement with the other two variants shown here. Again, this
behavior is similar to the BV data with taxon weighting; see Fig 10 for details.
Furthermore, the several small clades and single branches found by Phylofactorization
(red) that are part of the Actinobacteria as well as the Alpha-, Beta-, Gamma-, and
Deltaproteobacteria are actually all part of the first factor. They are marked with
asterisks (*) here. Due to their OTU tree only having few Proteobacteria, these were
monophyletic in their tree. They are polyphyletic here, as our tree has more reference
taxa from that group. Most of the remaining factors found by Phylofactorization are
part of the gray branches of the two large clades in the figure, which are the clades that
were found by all three variants. Similarly, our variants found many nested factors
(factors that further split a factor of a previous iteration): The two large clades are in
fact split into seven nested clades by both variants, with the remaining three factors
spread across the rest of the tree (e. g., the green and blue branches). In particular the
Prevotellaceae and parts of the Firmicutes were described in [31] as important clades for
the distinction between oral and fecal samples, all of which were found by all three
variants here.
In total, despite the mismatching trees, most of the found clades agree in all three
variants, however with differences in the size of the clades. More importantly, despite
their differences, all variants produce factors that are well suited for separating oral
from fecal samples, as shown in S18 Fig.
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S18 Fig. Ordination of an oral/fecal subset of the HMP dataset. The figure
shows the ordination-visualization of factors found by Placement-Factorization on our
oral/fecal subset of the HMP dataset. In (a) and (b), we show the balances at the
winning edges of the first two factors, colorized by the body site of each sample, with
and without taxon weighting. In particular, (a) exhibits a clear separation of the two
body sites, similar to Figure S3 of [31].
Moreover, in order to examine how well further factors of later iterations split the data,
we here employ a visualization of phylofactors, which we call balance swarm plots, by
plotting the balances of each factor individually. This type of per-factor visualization is
similar to, e. g., Figure 4 of [92]. Subfigures (c) and (d) show the first ten factors
(PF1–PF10), again with and without taxon weighting, respectively. These can be
understood as multi-dimensional scatter plots, where each dimension is shown
separately: Each column corresponds to a factor, with the vertical axis being the
balances, and horizontal space within each column used to spread samples at nearby
positions, revealing their distribution density. That is, the first two columns of (c) and
(d) correspond to the scatter plots of (a) and (b), respectively. The balances were scaled
to bring them into the [−1.0, 1.0] interval for better comparability across factors, while
keeping the centering at 0. Subfigure (c) is identical to Fig 11(a) of the main text, and
shows that almost all factors individually suffice to separate the data by body site; in
(d), the separation is still present, but not as distinguished.
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S19 Fig. Ordination of Placement-Factorization of the full HMP dataset.
In S18 Fig, we use an oral/fecal subset of the HMP dataset [16,17] to compare
Placement-Factorization to a case study of the original Phylofactorization. Here, we
instead used the whole HMP dataset, labeled by 8 body site regions as listed in
S1 Table, to asses how well Placement-Factorization with a GLM objective function can
separate samples based on their body site label.
Again, we show the balances of the winning edges of the first two and three factors,
respectively, with and without taxon weighting. As in S16 Fig and S18 Fig before, the
plots with taxon weighting form “clouds”, whereas the plots without form an “L”-shape.
In all cases, a separation of the oral samples from the other regions is clearly visible.
Noticeably, in (a), a part of the stool and mouth samples form a horizontal line, which
indicates that the second factor does not distinguish between samples from those
regions. It is striking that the samples from the vaginal region in (a) and (c) are not
separated from the other samples until the third factor, which is visible as a pink cloud
above the rest of the samples in (c). This again serves as a caveat that one needs to
consider enough factors in order to get a complete understanding of the results. To this
end, we furthermore show a more detailed version of these scatter plots for multiple
factors/dimensions in S20 Fig.
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S20 Fig. Ordination of the first four factors of the HMP dataset. The
balance swarm plots as shown in S18(c) Fig and S18(d) Fig allow for a more detailed
understanding of how each factor separates the samples. They can be colored by either
continuous meta-data variables, similar to Figure 5(a) of [31], or a categorical variable
with a limited number of categories, as shown in S18 Fig. However, for the eight body
regions that we use for the HMP data, this type of visualization becomes hard to
inspect visually. Hence, we here extend on the idea of balance swarm plots, and show
the distribution of balances for each factor and for each body sites separately. That is,
each subfigure here shows the balances of the winning edge of a factor, grouped by the
categorical meta-data variable body site. In other words, each subfigure here represents
a disentangled column of a balance swarm plot, where each body site is displayed by its
own violin.
The data shown here is again the result of Placement-Factorization with taxon
weighting on the full HMP dataset, as shown and explained in S19 Fig. See there for the
scatter plots that correspond to the first two and three factors shown here. Subfigure
(a) is identical to Fig 11(b) of the main text, and included here for comparability.
In all subfigures, the oral regions are separated from the other regions: For example, in
(a), mouth and saliva samples exhibit balances above 0, in contrast to all other samples.
In (b), (c), and (d), the plaque samples join the other oral samples in terms of their
balance values. In (b), the stool samples have a distinct bulge near 0, which corresponds
to the horizontal line (factor 2) in S19(a) Fig. Furthermore, the third factor in (c) again
clearly separates the vaginal samples from the rest, as shown before in S19(c) Fig.
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