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Abstract 11 

Living organisms are error-prone. Every second a single human cell produces over 100 12 

transcripts with a substitution, frameshift or splicing error. Multiple mRNA quality control 13 

pathways exist to degrade these transcripts. Many of these pathways involve co-translational 14 

regulation of mRNA stability, such as nonsense mediated decay (NMD) and reduced stability 15 

of transcripts with suboptimal codon usage. Recent work has shown the existence of a genetic 16 

link between NMD and codon-usage mediated mRNA decay. Here we present new 17 

computational evidence that, because the codons following most frameshift errors are 18 

suboptimal, removal of mRNAs with such errors may be mediated by degradation of mRNAs 19 

with sub-optimal codons. Thus, most transcripts that contain frameshifts are subject to two 20 

modes of degradation.  21 

 22 

Author summary 23 

Frameshifting errors are common and mRNA quality control pathways, such as nonsense-24 

mediated decay (NMD), exist to degrade these aberrant transcripts. Recent work has shown 25 
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the existence of a genetic link between NMD and codon-usage mediated mRNA decay. Here 26 

we present computational evidence that these pathways are synergic for removing 27 

frameshifts. 28 

 29 

Introduction 30 

 31 

Frameshifting errors in gene expression 32 

 33 

All biochemical pathways are intrinsically stochastic processes. Transcription, splicing, and 34 

translation are especially error prone, with error rates 4-6 orders of magnitude higher than 35 

that of DNA polymerase (1–6). Such errors can result in single-amino acid substitutions, as 36 

well as truncation of the protein due to nonsense mutations or frameshifting errors. The latter 37 

can occur due to insertion and deletion events during transcription, splicing errors, and 38 

ribosomal slippage during translation (Figure 1). 39 

 40 

Frameshifts in protein coding genes are likely to be among the most damaging events, as they 41 

result in truncated proteins which may be misfolded or form dominant negative alleles (7,8) 42 

(Figure 1). This justifies an evolutionary pressure for cells to contain mRNA surveillance 43 

pathways that remove transcripts bearing frameshifts. Suppression of frameshift errors is 44 

thought to be one of the major roles of the mRNA quality control machinery (9).  45 

 46 

Nonsense-mediated decay for removing frameshifting errors 47 

In eukaryotes, nonsense-mediated decay (NMD) is a conserved mRNA surveillance pathway 48 

that is often assumed to fulfill a frameshift-removing role (10). This follows from the 49 

observation that frameshifts generate premature termination codons (PTCs), recognition of 50 
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which targets the transcript for NMD. However, the quantitative effects of NMD, when 51 

measured, are often small (11,12). In addition, a large fraction native transcripts (between 52 

5%-30% depending on the genome) are targeted by NMD (13). In the context of mRNA 53 

quality control, these are poor evidence for NMD being an effective quality control pathway.  54 

 55 

The mechanism of NMD may be species-specific (10,12) and has even been proposed 56 

to be a passive result of the degradation of unprotected transcripts (14). In yeast, NMD is 57 

thought to act on long 3’UTRs (15,16), so that transcripts bearing 3’UTRs longer than 250 58 

nucleotides are targeted by NMD (Figure 1). Recent work has shown that this is mostly true 59 

and, importantly, the strength of NMD depends linearly on 3’UTR length (11) (Figure 3B). 60 

However, native 3’UTR lengths are highly variable, ranging from 0 to 1461 nucleotides (17). 61 

Frameshifts in native transcripts with short 3’UTRs are unlikely to result in efficient NMD. 62 

  63 

These data suggest that NMD is both inaccurate and inefficient discretizing “correct” vs 64 

“incorrect” transcripts. We propose that an efficient quality control pathway should be better 65 

able to distinguish and degrade incorrect transcripts. 66 

 67 

Results 68 

Codon bias and mRNA quality control 69 

 70 

Recent work (11) provides an unexpected clue towards understanding mRNA quality 71 

control. Two mechanisms of co-translational regulation, NMD and codon bias-dependent 72 

mRNA expression (18,19) (Figure 2A) are genetically linked; both pathways are regulated 73 

by the DEAD-box RNA helicase Dbp2 and by promoter architecture. A quantitative analysis 74 

of the impact of these pathways on mRNA levels gives rise to the hypothesis that they may 75 
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act in a synergistic manner to remove transcripts with frameshifts. In addition to generating a 76 

PTC, frameshifts generate a second signal of “wrong transcript”: a run of normally out-of-77 

frame codons between the frameshift and the PTC that are now translated (Figure 1). Below 78 

we provide computational support of this hypothesis. 79 

 80 

The meaning and role of codon bias 81 

 82 

All transcriptomes exhibit imbalances in the synonymous codons used for each amino acid. 83 

Not all synonymous codons are equally abundant, a phenomena called “codon bias”(20,21). 84 

Highly expressed genes use codons translated by abundant tRNAs (22) and are coded by 85 

optimized codons (Figure 2), leading to efficient protein synthesis. Highly expressed genes 86 

with efficient translation initiation but with suboptimal codon usage are deleterious and affect 87 

the expression of the rest of the proteome (23).  88 

 89 

It was previously noted that use of optimal codons increased not only protein levels, but also 90 

mRNA levels (24–26), suggesting that ribosome speed might regulate mRNA stability. 91 

Recently, a pathway that involves the DEAD-box RNA helicase Dhh1 was found to target 92 

transcripts with suboptimal codon usage for decay in a translation-dependent manner (18,27). 93 

Even short stretches of twelve suboptimal codons reduce mRNA levels (19), likely due to 94 

slower translation (28). 95 

 96 

While most genes do not have highly optimized codon usage, the majority of the yeast 97 

transcriptome is populated by highly optimized mRNAs (Figure 2B). The top 10% of 98 

expressed genes have highly optimized codon usage. In yeast these genes account for 77% of 99 

the transcripts in a cell. Translational selection (29) will result in the optimized codon usage 100 
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of constitutively highly expressed genes but will act less efficiently on genes with lower 101 

expression, genes that are rarely expressed, and of course on out-of-frame codons.  102 

 103 

Codon optimality for removing frameshifting errors 104 

 105 

In addition to producing PTCs, frameshifts are likely to introduce a stretch of non-optimized 106 

codons at the 3’end of the ORF (Figure 1). In genes with optimized codons, this will result in 107 

a sudden changes in translation efficiency after the frameshift, which will reduce protein 108 

synthesis and target the transcript for decay (Figure 3A). This reasoning follows the 109 

observation that the impact of low codon optimality on translation efficiency and mRNA 110 

decay is local and can act over as few as twelve codons (19,28). The magnitude of the 111 

decrease in codon optimality will be highest for transcripts with high codon optimization 112 

(most of the mRNAs in the cell (Figure 2B)), which correspond to highly expressed genes 113 

that likely bear most of the frameshifts (assuming a uniform distribution of errors across 114 

transcripts (1)). Our hypothesis is that frameshift-removing mechanisms are especially 115 

relevant for such highly-expressed genes. Furthermore, the impact of low codon optimality 116 

close to the 3’ end of the mRNA is higher (Mishima and Tomari 2016). In the case of a 117 

frameshift, the enrichment of non-optimal codons should be towards the end of the ORF, 118 

which predicts that the destabilizing effect will be even stronger.  119 

 120 

To compare the role of NMD and codon bias in mRNA quality control we ran a frameshift-121 

introducing simulation on yeast transcripts. We generated random single-base deletions in 122 

native transcripts and calculated codon optimality (tRNA adaptation index, tAI (30)) and 123 

3’UTR length with and without the frameshift. Because errors occur on a per transcript basis, 124 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 19, 2018. ; https://doi.org/10.1101/345595doi: bioRxiv preprint 

https://doi.org/10.1101/345595


each gene received a number of errors proportional to its mRNA expression level (Figure 125 

3C). 126 

  127 

We found that almost all frameshifts produce a large decrease in tAI after the mutation 128 

(Figure 3D). The change in tAI range due to frameshifts decreases mRNA levels (11) 129 

(Figure 3A). In contrast, ~50% of errors produce 3’UTRs in the range of native 3’UTR 130 

lengths (Figure 3D), likely unaffected by NMD (11) (Figure 3B). These findings indicate 131 

that selection for codon-optimality (which acts on highly expressed genes) can be a robust 132 

way to define “correct transcripts” and thus remove transcripts that contain frameshifts 133 

 134 

Discussion 135 

 136 

Cells needs to remove transcripts with errors; mutants with increased error rates or that are 137 

unable to remove transcripts with errors grow slowly (1,31). Frameshift errors are likely to be 138 

deleterious, both by generating deleterious protein isoforms, and because suboptimal codons 139 

titrate away both tRNAs and ribosomes (23,32). However, both the sequence features that 140 

cells recognize and the mechanisms by which they do so remain poorly understood. Many 141 

open questions remain.  142 

 143 

NMD is weak (11,12) and affects 5-20% of the native transcriptome (13), so it may be both 144 

inefficient and unspecific for removing errors. Removing transcripts with low codon 145 

optimality may be more accurate and efficient. This is consistent with the fact that NMD 146 

strength follows a linear relationship with 3’UTR length, while codon optimality has a 147 

sigmoidal impact on expression (Figure 3). Small changes in codon optimality can lead to a 148 

large decrease in expression. 149 
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 150 

We observe that ~50% of frameshifts generate 3’UTRs within the range of native transcripts, 151 

likely unaffected by NMD. This exemplifies how a model based on a qualitative basis 152 

(“NMD removes frameshifts because these have longer 3’UTRs”) can fail to predict of the 153 

quantitative behavior of a system. 154 

 155 

Our recent work suggests a genetic link between codon bias and NMD (11). Here we report a 156 

possible explanation of this interaction, but it remains to be seen which is the impact on 157 

measured expression levels of both processes. The mechanism of this link also remains to be 158 

established. 159 

 160 

In frameshifted mRNAs, the quantitative impact of the low-tAI stretches of ORF in 161 

expression remains elusive. It will be interesting to see if they can explain more or less 162 

quality control than NMD. In addition, the effect of codon bias on expression is expected to 163 

impact protein levels (20,23), not only mRNA . This predicts that the impact of codon bias on 164 

expression is higher than reported here (Figure 3A), which is not true for NMD. This could 165 

explain why we observe a lot of splice isoforms that have PTCs in humans, which may arise 166 

from frameshifting splicing errors. NMD does not remove them (as we can detect them), but 167 

it is likely that they have lower codon adaptation and reduced protein levels. 168 

 169 

Finally, this work raises a possible explanation for an adaptive benefit of imbalanced tRNA 170 

repertoires (22), which would confer the ability to degrade transcripts that are not supposed to 171 

be highly expressed. It is almost certain that cells avoid selecting the expression of ORFs 172 

with a random composition of codons. Frameshifts generate such random stretches, that are 173 

likely targeted for decay. Thus, there may be an evolutionary pressure for imbalanced tRNA 174 
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repertoires to ensure proper mechanisms of mRNA quality control. It will be interesting to 175 

determine if this process has driven the evolution of codon bias and codon-usage associated 176 

mRNA stability, or it is a passive result due to the fact that almost any frameshift will reduce 177 

the optimality of the already very optimal genes. 178 

 179 

Methods 180 

Codon bias measurements 181 

Codon bias was approximated by calculating the tRNA adaptation index (tAI) (dos Reis et al. 182 

2003) for each open reading frame (ORF, either native of the yeast transcriptome or 183 

simulated). In order to generate random ORFs we simulated random transcription start sites 184 

(TSS) across the whole genome of Saccharomyces cerevisiae (Cherry et al. 2012) and 185 

generated the ORF starting at the first ATG from the TSS. tAI was calculated on each of 186 

them in order to measure the codon bias of random coding sequences. 187 

 188 

mRNA expression weighting 189 

In order to approximate per-transcript distributions (of tAI and 3’UTR length) we weighted 190 

each gene by the sum of the TPM expression obtained from multiple RNA-seq experiments 191 

(generated in (Carey 2015)). This means that each gene has a weight in the distribution which 192 

is proportional to it’s mRNA expression. 193 

Relationship between ORF features and expression 194 

We obtained data about the relationship between several ORF features (3’UTR length and 195 

tAI) and mRNA expression from an existing dataset (Espinar et al. 2018). It includes the 196 

expression measurements for a library of ~10,000 ORFs randomly generated from the yeast 197 

genome. In order to determine the impact of 3’UTR length on NMD we generated generated 198 

the same library on a UPF1 deletion strain, as described before (Espinar et al. 2018). 199 
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 200 

Simulating frameshifts. 201 

As an example of frameshift, we simulated 105 random single-base deletions on yeast native 202 

transcripts. Each gene includes a number of mutations proportional to its expression level (as 203 

explained in mRNA expression weighting). For each error (and corresponding native 204 

transcript) we calculated tAI between the frameshift and the PTC (local tAI) and the resulting 205 

3’UTR length. 206 

 207 

Data availability: 208 

All code and data are at https://github.com/MikiSchikora/CodonBias_QualityControl 209 
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Figure legends 221 
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 222 

Figure 1: The impact of frameshifting errors in gene expression. Gene expression can 223 

result in frameshifting errors (indicated as *) due to transcriptional insertion/deletion 224 

epimutations, errors in splicing or ribosomal slippage during translation (top). These 225 

processes potentially generate deleterious proteins, which justifies the need of mRNA quality 226 

control mechanisms in cells (bottom). In the absence of errors, mRNAs are translated leading 227 

to physiological protein levels. The current model indicates that frameshifting errors generate 228 

Premature Termination Codons (PTC) that trigger Nonsense-Mediated Decay (NMD) on 229 

them, mainly because of the generated long 3’UTR (in yeast). Our hypothesis is that NMD is 230 

often nonspecific for errors, so that other quality control mechanisms must exists. We note 231 

that another signal of “incorrectness” may appear in transcripts with frameshifts: a stretch of 232 

poorly-optimized codons (in blue, indicating worse tRNA adaptation) between the error and 233 

the PTC. This should lead to reduced translation efficiency, mRNA decay and lower protein 234 

concentrations of the frameshifted transcript. 235 
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 236 

Figure 2: The meaning of codon bias in the transcriptome. (A) Highly expressed genes 237 

are often selected to have optimized codons in agreement with the cellular tRNA pool, 238 

allowing efficient translation of them (purple). This is known as “translational selection” (20–239 
23). On the other hand, genes with a poor codon optimization are inefficiently translated and 240 

targeted for mRNA decay (blue) (18). (B) Top: in yeast, most native genes (purple) exhibit a 241 

tRNA Adaptation Index (tAI, as a measure of codon optimality) in the range of ORFs 242 
predicted from random transcription throughout the genome (blue). Such random ORFs 243 

simulate the absence of codon bias in terms of tRNA adaptation. A small fraction of genes 244 

have non-random tAI, which corresponds to genes “selected for translation”. Bottom: most 245 

native transcripts (purple) have high tAI, as compared to random ORFs (blue). This 246 

histogram was generated weighting each gene by mRNA expression level (which is 247 

exponentially distributed), which indicates the per-transcript distribution of tAI.  248 
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 249 

Figure 3: Codon bias can implement quality control of mRNAs with frameshifts. (A) tAI 250 

follows a negative sigmoidal relationship with mRNA expression levels. Expression was 251 

calculated as the log2-ratio between mRNA and DNA abundance of a synthetic ORF library 252 
of random fragments from the yeast genome, expressed in a plasmid (11). The dashed line 253 

represent a threshold in which decreasing tAI reduces expression. (B) NMD strength follows 254 

a positive linear relationship with 3’UTR length. NMD was measured as the expression 255 
(calculated as in A) log2-ratio between identical ORF libraries built in a Δupf1 or a wt strain 256 

(11). This ratio indicates the impact of NMD for each sequence in the library (which has 257 

variable 3’UTR lengths), as UPF1 is responsible for NMD (10). The dashed line represent a 258 
threshold in which increasing 3’UTR generates NMD (positive values in the Y axis). (C) A 259 

pipeline for predicting the impact of NMD and codon on frameshift quality control. As an 260 

example of frameshift, we simulated 105 random single-base deletions on native transcripts. 261 

Each gene includes a number of mutations proportional to its expression level. For each error 262 
(and corresponding native transcript) we calculated tAI between the frameshift and the PTC 263 

(local tAI) and the resulting 3’UTR length. We used these as measures of the impact of error 264 

on translation efficiency and/or NMD targeting. (D) Transcripts with frameshifts (blue) have 265 
lower tAI (top) and longer 3’UTRs (bottom), when compared to native mRNAs (purple). The 266 

dashed lines represent the thresholds described in A,B. 267 
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