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Abstract 10 

Solving the RNA inverse folding problem, also known as the RNA design problem, is critical to 11 

advance several scientific fields like bioengineering, yet existing approaches have had limited 12 

success. The problem has several features that resist traditional computational techniques, such 13 

as its exponential complexity and the chaotic behavior of its cost function. Although some state-14 

of-the-art AI approaches have reported promising results, all existing computational methods 15 

substantially underperform expert human designers. I combine a different technique, Nested 16 

Monte Carlo Search (NMCS), with domain-specific knowledge to create an algorithm that 17 

outperforms all prior published methods by wide margins and solves 95 of the 100 puzzles listed 18 

in a recently proposed RNA solving difficulty benchmark. 19 

 20 
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 23 

Introduction 24 

The RNA inverse folding problem is crucial in numerous scientific fields such as pharmaceutical 25 

research, synthetic biology and RNA nanostructures. Even though the question of the 26 

computational complexity of the RNA design problem is not categorically settled, recent 27 

evidence suggests it is NP-complete (Bonnet, Rzążewski & Sikora, 2017). Moreover, target-28 

specific structural features like symmetries and short helices can heavily compound the difficulty 29 

of solving a particular RNA design problem (Anderson-Lee et al., 2016). 30 

  31 
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It is therefore unsurprising that existing RNA design software packages explore search spaces by 32 

way of trial and error. Examples of classic cost function minimization approaches include 33 

packages like: RNAinverse (Hofacker, 2003), performing adaptive random walk; RNA-SSD 34 

(Andronescu et al., 2004), using hierarchical structure decomposition; INFO-RNA (Busch & 35 

Backofen, 2006), probabilistic sampling of sequences; NUPACK (Zadeh et al., 2011), ensemble 36 

defect minimization; and MODENA (Taneda, 2015), a genetic algorithm. However, none of 37 

these packages come close to matching the performance of talented human RNA designers in the 38 

Eterna100 benchmark (Anderson-Lee et al., 2016): 54/100 for the best machine to 100/100 for 39 

the most talented human experts. Recent efforts using more sophisticated AI techniques include 40 

software packages like SentRNA (Shi, Das & Pande, 2018) (Eterna100 score 80/100) applying 41 

Deep Learning techniques incorporating a prior of human design strategies, and MCTS-RNA 42 

(Yang et al., 2017) (Eterna100 score 72/100) implementing a Monte Carlo Tree Search (MCTS) 43 

process largely inspired by computational treatments of the game of Go (Gelly & Silver, 2008) 44 

that were fashionable until the advent of DeepMind’s alphaGo (Silver et al., 2017). 45 

 46 

The particular form of MCTS implemented in MCTS-RNA, called Upper Confidence Bounds 47 

applied to Trees (UCT) (Kocsis & Szepesvári, 2006), is known to be well suited for finding near-48 

optimal solutions in huge solution spaces, themselves embedded in typically gigantic search 49 

spaces. Challenging RNA design problems often lack substantially large solution spaces though, 50 

especially when considered in relation to the sizes of their respective search spaces. The rarity of 51 

solutions within large subtrees effectively creates trap states (Ramanujan, Sabharwal & Selman, 52 

2011) and causes the UCT search to ignore these subtrees for long periods of time (Mehat & 53 

Cazenave, 2010), making UCT an ineffective approach in such contexts. However, the field of 54 
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General Game Playing (GGP) has produced more than one Monte Carlo algorithm. In particular, 55 

the simpler and well-studied Nested Monte Carlo Search (Cazenave, 2009) algorithm has been 56 

shown to be superior to UCT in many single player games (Mehat & Cazenave, 2010) and has 57 

never been tried in the context of RNA inverse folding. 58 

 59 

Meanwhile, even though SentRNA still underperforms human solvers in the Eterna100 60 

benchmark, its incorporation of human design strategies—in the form of a dataset of experts’ 61 

solutions to numerous RNA puzzles—shows potential. However, the solution to a given puzzle 62 

says nothing about how a human expert walked the tortuous path to the successful outcome. One 63 

could conjecture that the process itself, not just the final product, probably holds consequential 64 

and valuable information. 65 

 66 

In addition, a quick survey of the newly collected move histories data on the Eterna game 67 

platform (Lee et al., 2014) had convinced me that several behavioral patterns in players’ solving 68 

styles could be encoded as algorithms. Combining all these observations, I hypothesized that 69 

implementing a Nested Monte Carlo Search (NMCS) based RNA inverse folding agent enhanced 70 

by heuristics in both the sampling and the explorative phases could lead to a best-of-class ability 71 

to solve RNA design problems that are intractable to current computational methods. 72 

 73 

Methods 74 

The NEsted MOnte Carlo RNA puzzle solver (NEMO) is implemented as a short single C++ 75 

file. The linked RNA folding engine is the ViennaRNA package (Lorenz et al., 2011) in its 76 
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version 2.1.9. A general overview of NMCS is presented in Fig. 1. NEMO’s simple global 77 

algorithmic layout is depicted in Fig. 2.  78 

 79 

Sampling phase heuristics 80 

The heuristics and strategies in the sampling phase—the playout policy in General Game Playing 81 

theoretic parlance—are coded using domain knowledge acquired by personal experience. 82 

Parameters affecting probabilities and distributions were chosen ad hoc, without performing 83 

computational optimizations, whether gradient descent or otherwise. Its initial step consists in 84 

filling up base pairs first, and only then the unpaired positions in the target structure. Following 85 

this order allows NEMO to properly handle specific sub-goals like preventing unwanted base 86 

pairings in 0-N bulges—a technique known as “blocking” among Eterna players—and using 87 

thermodynamically favorable mismatches—also known as “boosting”—in multi-way junction 88 

loops. (Note: In this paper, the term “mismatch” is meant to include all form of potential non-89 

canonical interactions at the end of helices, e.g. both terminal mismatches and dangling ends) 90 

 91 

Roughly following the proportions found in known naturally occurring RNA structures 92 

(Lemieux & Major, 2002), NEMO fills base pairs with a 60% GC, 33% AU and 7% GU 93 

probability distribution, with a few exceptions for closing pairs of adjacent helices in junctions 94 

and the closing/enclosing pairs of triloops. Unpaired bases are divided into two categories 95 

depending on whether they participate in mismatch interactions or not. Since non-mismatched 96 

bases are thermodynamically neutral in the Turner model (Turner & Mathews, 2010), their 97 

nature should not be a concern, but in practice common puzzle-solving wisdom suggests to make 98 

these domains A-rich; for these bases, NEMO uses a 93% A, 1% U, 5% G and 1% C probability 99 
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distribution. Mismatched bases however do affect the Gibbs free energy contributions of loops 100 

and are therefore highly relevant for finding solutions. In such cases, NEMO uses heuristics 101 

(described in Fig. 3) derived from Eterna game playing experience. 102 

 103 

Cost function 104 

The scoring of the samples is a composite function of: 105 

 the base pair distance (BPD) between the Minimum Free Energy (MFE) structure of the 106 

sample sequence as calculated by the folding engine and the target structure, expressed as 107 

1 −
(base pair distance)

2(num target pairs)
 

 and the ΔΔG between the MFE of the sample sequence, and its predicted Gibbs free 108 

energy in the target conformation, expressed as 109 

1

1 + (free energy difference)
 

 110 

NMCS variants 111 

Two slightly different versions of the NMCS algorithm were implemented: the standard version 112 

as found in the GGP literature, and a modified one—that I labeled NMCS-B, standing for 113 

“Nested Monte Carlo Search with Best playout policy”—where I introduced an internal 114 

maximization mechanism that retains the best scoring playouts throughout the recursion (the 115 

difference between them is shown in Fig. 4). Both were executed at the standard level 1 of 116 

recursion. Using NMCS recursion at levels 2 or higher would significantly increase 117 

computational cost (by up to 30-fold) and was not tested.  118 

 119 
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Selection heuristics for iterations 120 

After the evaluation of a candidate sequence, and provided it was a failure, NEMO identifies the 121 

subset of the sequence for which mutations should be considered in preparation for the next 122 

iteration by first collecting the indices of all the bases that didn’t fold as expected, and then 123 

expanding this set with other potentially relevant indices: first adding all mismatch partners of 124 

the already collected misfolded positions (as pictured in Fig. 5) and then including closing pairs 125 

neighboring pairs that are misfolding by “opening up” (as described in Fig. 6). 126 

 127 

Testing 128 

In order to test the algorithm and measure its fitness, I repeatedly ran the NEMO tool against the 129 

Eterna100 benchmark (Anderson-Lee et al., 2016). Performance and success rates of various 130 

builds were measured over 30 single-shot batch runs executed on Stanford University’s BioX
3
 131 

and Sherlock clusters. Each process had a default limit of 2500 iterations, corresponding to a 132 

maximum of approximately 90 minutes on a single Intel® Core™ i7 3.1 GHz processor for a 133 

400 nucleotides long design problem. Separately, MCTS-RNA and NEMO were both tested in 134 

the precise conditions used in (Anderson-Lee et al., 2016): up to 5 attempts spanning a maximum 135 

of 24 hours. 136 

 137 

Results 138 

Self comparisons 139 

Average iteration counts and success rates for the comparison between standard NMCS, NMCS-140 

B and weakened versions of NMCS-B are presented in Fig. 7. The raw data are provided in the 141 

Supporting Documents. 142 
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 143 

NMCS-B demonstrates a clear superiority over the standard version of NMCS, both by solving 144 

about 15 more puzzles on average (92.1/100 to 76.7/100), and by converging to solutions more 145 

than twice as fast. As expected, removing algorithmic elements from NEMO causes the 146 

performance to worsen: decreasing by about 3 to 6 points in puzzle-solving power, and 147 

significantly slowing down convergence by between 15% and 50%. The average success rate of 148 

the first NMCS-B pass alone (e.g. solution found with no iterations) is only 43.8/100 though. 149 

 150 

Comparisons with other engines 151 

When coupled with the standard form of NMCS, the performance of NEMO (77/100) compares 152 

to that of the best solving engines previously tested on the same benchmark, the top contender so 153 

far being SentRNA with 80/100. But when using the NMCS-B variant, NEMO surpasses them 154 

all by a comfortable margin, solving 95 puzzles out of 100 (Fig. 8), and clearly outclasses the 155 

other bandit-based method (UCT) implemented in MCTS-RNA which scored 72/100. 156 

 157 

Discussion 158 

Unexpected effectiveness 159 

The results point to an overall excellent fitness of the NMCS algorithm when applied to the RNA 160 

inverse folding problem. However, the reasons for NEMO’s strong performance against the 161 

Eterna100 benchmark are not entirely clear. 162 

 163 

The argument that it would be exclusively linked to the quality of the domain knowledge 164 

integrated into the tool is at odds with the fact that NEMO only has a limited set of helpful 165 
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heuristics, lacking for instance special code for dealing with many other known RNA structural 166 

complexities like “zigzags” (example depicted in Fig. 2f of (Anderson-Lee et al., 2016)). 167 

Furthermore, a direct test by depriving NEMO of heuristics reduces its performance only 168 

slightly. 169 

 170 

Also, even though the scoring function in NEMO appears to be novel (Gibbs free energies have 171 

been used as selection criterion (Hampson, Sav & Tsang, 2016) but in absolute rather than 172 

relative terms) compared with those implemented in other RNA design software packages, its 173 

output smoothness over the search spaces remains insufficient to possibly explain any substantial 174 

sensitivity improvement in the exploration process, which is supported by the data showing a 175 

definite but only modest improvement from using ΔΔG.  176 

 177 

Finally, the effectiveness of NMCS versus UCT is indeed known in the General Game Playing 178 

field to be game-dependent (Mehat & Cazenave, 2010). Though the poor score of NEMO’s first 179 

NMCS phase taken alone in the Eterna100 benchmark test also contradicts the hypothesis that 180 

the RNA inverse folding game could simply be an excellent fit for the NMCS algorithm. 181 

 182 

Imitating human RNA designers 183 

One possible explanation for NEMO's performance is that it partially imitates the solving style of 184 

some of the successful human players on the Eterna game platform. In broad terms, the two main 185 

classes of puzzle-solving styles delineate a global-local dichotomy perceptible in recorded move 186 

histories. Thanks to the fact that the ΔΔG can only be measured when the target structure is 187 

entirely filled with valid base pairs, the paths lengths in Fig. S1B allow deriving behavioral 188 
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information. For instance, the Eterna players who produced the solutions 2, 5, 7 and 9 had filled 189 

their canvas early with valid pairs everywhere, while those who generated solution 1, 3 and 4 190 

didn’t solve the puzzle any faster than the others, but rather favored an incremental method by 191 

dividing the problem into smaller ones and by stabilizing first each subdomain before tackling 192 

the next one. For that reason, their ΔΔG ”tracks” are much shorter than others. Since NEMO 193 

uses the ΔΔG in its scoring function, it needs to mimic the “globalist” approach. As for mutating 194 

bases or reorienting pairs within or near the misfolded domains, this behavior is common to all 195 

Eterna players, and NEMO roughly imitates it in the subset-defining and random-picking phases 196 

done in preparation of the next iteration 197 

 198 

As the data show, the NMCS procedure alone is often insufficient to provide an immediate 199 

solution to RNA puzzles, which parallels the fact that even expert Eterna players are unlikely to 200 

solve a hard puzzle in a single shot. For instance, only 45 players out of the 250,000 registered 201 

on Eterna (as of 2018) have solved the “Snowflake 4” puzzle in the Eterna100 benchmark. The 202 

fastest solver on record still required 11 minutes and 345 mutations to complete the challenge, 203 

almost 200 more operations than is needed to produce a minimally valid sequence for this 204 

puzzle. However, the purpose of the NMCS phase in NEMO is not to solve hard puzzles 205 

instantaneously, but to provide reasonable candidate sequences for the overlying explorative 206 

process. Qualitatively superior samples tend to benefit any Monte Carlo approach, provided their 207 

computational costs stay reasonable and on the condition that the introduced biases leave the 208 

relative weights of the visited nodes and subtrees mostly unaffected (James, Konidaris & 209 

Rosman, 2017). I encoded into NEMO parts of the domain knowledge (Fig. 3) I acquired by 210 
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practice and by reading numerous guides authored by fellow Eterna players, and as evidenced by 211 

the data presented here, it enhances its NMCS playout policy. 212 

 213 

The decision to combine base pair distances and ΔΔG in the scoring function was both a 214 

reflection of my personal puzzle-solving style and the result of analyses on player-submitted 215 

solutions and their move histories. Figure S1 conveys that the base pair distance measurement, 216 

which is the measurement of choice for the vast majority of RNA inverse folding packages, is a 217 

turbulent variable that stays chaotic arbitrarily close to the end goal (an example of which is 218 

depicted in Fig. 5). In contrast, no matter the players’ puzzle-solving style, global or incremental, 219 

the ΔΔG measurement seems much more reliable as an indicator for approaching a solution. The 220 

lower performance of the ΔΔG scoring alone (without base pair distance) was predictable: RNA 221 

strands can reach multiple conformations, and without a solid structural indicator, an RNA 222 

solving engine can waste iterations chasing after a flawed construct that keeps tending to fold 223 

into alternate conformations. NEMO currently has no routines to perform local free energy 224 

optimizations, but incorporating the ΔΔG in the global scoring function as a cofactor of the base 225 

pair distance presumably helps guide the search in the right direction, and the data support its 226 

appreciably positive effect. 227 

 228 

During adaptive random walks or tree explorations in RNA puzzle-solving, simple common 229 

sense prescribes to keep the parts that fold correctly and only mutate the bases and pairs 230 

belonging to domains that do not. RNA inverse folding engines follow this guideline when their 231 

main measuring stick is the base pair distance, just as human experts generally do: for instance in 232 

the move histories of solutions to the Eterna100 benchmark puzzle titled “Methaqualone 233 
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C16H14N2O Structural Representation”, expert players mutated misfolded bases 82.8% of the 234 

time on average (data provided in Supporting Documents). In that particular phase of the solving 235 

process, NEMO’s locality-based heuristics represent a crude but effective approximation of this 236 

human behavior. 237 

 238 

However, the current implementation of NEMO lacks a mechanism for imitating a prominent 239 

behavior of successful RNA puzzle solvers: backtracking. Data collected on the same previously 240 

mentioned Eterna100 puzzle also indicate an average backtracking rate of 22.3%. Presumably, 241 

Eterna game players would oftentimes find themselves at a stage of the puzzle-solving process 242 

that they regard as “close to solving”. They would then carefully explore various branches of 243 

possible mutations, and undo their unsuccessful changes to come back to the previously found 244 

satisfactory state if the test was inconclusive. A similar behavior could be implemented in 245 

NEMO by replacing the iterated random walk by a judiciously crafted form of tree search. 246 

 247 

Generality of approach 248 

Concrete applications of the RNA design problem usually require additional constraints like a 249 

specified GC content ratio, typically to precisely control melting temperatures for experiments 250 

using amplification by polymerase chain reactions (PCR) (Saiki et al., 1988). I intentionally 251 

ignored this specific goal in this work so as to better focus on the primary one: solve challenging 252 

RNA puzzles. The GC content control goal is trivial to achieve in a post-processing phase. 253 

Examples of such algorithms, which explore the neighborhood of a given solution and gradually 254 

change its GC/AU/GU pairs ratio, already exist in EternaScripts written by Eterna players 255 

(“Jnicol`s - Remove the GCs v2” by mat747). 256 
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 257 

In contrast, designing riboswitches is oftentimes a dissimilar endeavor. Structural constraints 258 

usually apply only to small domains within the design space, like binding sites for ligands or 259 

oligonucleotides, signaling domains, and gene expression initiation sequences. Structural 260 

freedom is granted for the rest of the construct. Should the need arise for a riboswitch with two 261 

(or more) precise target conformations, for instance for a nanostructural application, NEMO 262 

would have to be modified to properly handle “chain reactions”, i.e. the causal cascade of 263 

purines and pyrimidines pairing with different partners over multiple target structures. I already 264 

implemented such an algorithm in a previous work, a puzzle-solving bot (Eterna profile of 265 

ViennaUCT) competing on the Eterna game platform. 266 

 267 

Conclusion 268 

Until recently, the potential of Monte Carlo techniques applied to the RNA design problem had 269 

remained mostly unexplored. The first implementation of the UCT algorithm in this context 270 

achieves a good performance against a collection of unyielding RNA puzzles that even human 271 

solvers struggle to complete. Though, the Nested Monte Carlo Search algorithm, enhanced by 272 

heuristics, outperforms both UCT and all other in silico RNA design approaches. Given the 273 

presented encouraging results, the Nested Monte Carlo Search, combined with a novel cost 274 

function formula and with a large extent of the accumulated knowledge of Eterna’s expert RNA 275 

designers, appears to be a promising technique worthy of deeper investigation by RNA design 276 

package creators. 277 

 278 
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Data and materials availability 279 

The source code of NEMO is available at https://simtk.org/projects/nemo. Raw tests results and 280 

moveset analysis are available at https://doi.org/10.6084/m9.figshare.6358625.  281 
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Figures 341 

 342 

 343 

Figure 1. NMCS levels and playout policies. (A) Level-1 NMCS procedure: in an hypothetical 344 

game, state 1 has two legal moves, leading to states 2 and 3. The game is played out randomly 345 

with both options, the best scoring random game (here with state 2) is selected, and state 2 346 

becomes the new root state. (B) The same procedure is applied until the game is finished. (C) 347 

The level-2 NMCS procedure is similar and tests all grand-children nodes rather than the direct 348 

children ones. States 4 to 8 are all played out randomly. Here, state 3 becomes the root state for 349 

the next iteration. (D) Playout policies are applied to choices in the selection of a move in a 350 

Monte Carlo playout. Equiprobability is the simplest form of probability distribution. (E) The 351 

quality of the sampling can be strongly influenced by “heavy” playouts: using heuristics (which 352 

cost CPU resources), the software makes an educated guess as to which option is more valuable. 353 

The best playout policies are those that guess the correct order of preference in the available 354 
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moves.  In this example, the “heavy” playout policy makes a decent guess, even though it 355 

produces A>G>C>U when A>G>U>C would have been preferable. 356 

  357 
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 358 

Figure 2. Schematic of NEMO’s algorithm, with an example of the evolution of the internal 359 

state over the first iteration. 360 

  361 
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 362 

Figure 3. Playout policy heuristics for unpaired mismatched bases. (A) “blocking” trick 363 

occasionally required or simply helpful in some triloops, the inset demonstrates the “sliding” that 364 

happens with the U9A mutation (B) standard G/A mismatch in apical loops (C) “blocking” 365 

applied to a bulge, the inset demonstrates the unwanted pairing occurring with the U47A 366 

mutation (D) standard G/G mismatch in symmetric 1-1 internal loops (E) standard UG/UG 367 

combo-mismatch in symmetric 2-2 internal loops (F) some typical favorable mismatches 368 

(“boosts”) in internal loops, here A/G and U/U (G) favorable mismatches for external loops and 369 

junctions, C/A for GC closing pairs, A/G for CG closing pairs. 370 

  371 
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 372 

Figure 4. Algorithmic difference between standard NMCS and NMCS-B. Top row, the target 373 

structure in dot-bracket notation. In both cases, the algorithm processes positions in order: cyan, 374 

orange, green, etc. (A) “vanilla” Nested Monte Carlo Search (NMCS) considers all possible 375 

choices at each position by doing one Monte Carlo sampling, and always picks the best of these 376 

outcomes. (B) NMCS-B differs in that it retains the best playout so far and compares it to the 377 

samples generated at each recursion step. Here NMCS-B ignores the option C at the orange 378 

position, because a better cyan sample playout is known. At the green step, the sample playout 379 

sporting the CG pair becomes the best sample known so far and might influence the next steps. 380 

 381 
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 382 

Figure 5. Mutation candidates subset selection. This program phase begins with including all 383 

misfolded bases (purple marks). Additionally, their mismatch partners (cyan marks) are included 384 

as well. Note: in this example (which has a base pair distance of 24 w.r.t. the target structure), 385 

the A84G and A210C mutations both stabilize the puzzle completely. In other words two 386 

solutions exist only 1 one-point mutation away from this particular sequence. 387 

  388 
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 389 

Figure 6. Heuristic rule of including closing pairs around pairs misfolding by “opening 390 

up”. (A) An AU pair closing a triloop cannot hold if the enclosing pair is GC/CG. Mutating the 391 

closing pair to CG/GC would likely solve the issue, but at this stage, the goal is to collect all 392 

mutations that could. Changing the enclosing pair to UA could solve the local problem as well, 393 

therefore the cyan marked pair should be included in the subset. (B) A slightly more complex 394 

case with a short stem linking two loops. (C) The pairs closing the large junction in the 395 

misfolded structure, and their associated mismatches (cyan marks) should all be added to the 396 

mutation candidates list. (D) In this particular case, it turns out that no mutations of the purple-397 
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marked pairs and no alternate boosting of the surrounding loops can help the short helix to hold 398 

in place. The only mutation that works here, is to change the bottom-left closing pair to AU/UA.  399 

  400 
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 401 

Figure 7. NEMO performance tests. Average scores and iteration counts over 30 single 402 

attempts runs against the Eterna100 benchmark. 403 

  404 
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 405 

Figure 8. Comparative Eterna100 benchmark results. Black squares are failures, green ones 406 

are successes. RNAinverse, INFO-RNA, RNA-SSD, NuPACK, DSS-Opt, MODENA et Eterna 407 

players results data were taken from Anderson-Lee et al. 2016, SentRNA data taken from Shi et 408 

al. 2018. MCTS-RNA was configured to ignore GC content requirements. NEMO was run with 409 

NMCS-B active. 410 
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Supplementary Figures 411 

 412 

Figure S1. Base pair distances and free energy differences as functions of distance in 413 

mutation steps in human solving. Both graphs relate to solutions provided by human experts 414 

for the “Snowflake 4” puzzle of the Eterna100 benchmark. Evolution over time (in mutation 415 

steps) of (A) base pair distances, and of (B) Gibbs free energy differences (ΔΔG) until a solution 416 

is found. 417 

 418 
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