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Abstract 

Marine viruses impact global biogeochemical cycles via their influence on host community 

structure and function, yet our understanding of viral ecology is constrained by limitations in 

culturing of important hosts and the lack of a ‘universal’ gene to facilitate community surveys. 

Short-read viral metagenomic studies have provided clues to viral function and first estimates of 

global viral gene abundance and distribution. However, short-read assemblies are confounded by 

populations with high levels of strain evenness and nucleotide diversity (microdiversity), limiting 

assembly of some of the most abundant viruses on Earth. Assembly across genomic islands which 

likely contain niche-defining genes that drive ecological speciation is also challenging. While such 

populations and features are successfully captured by single-virus genomics and fosmid-based 

approaches, both techniques require considerable cost and technical expertise. Here we 

established a low-cost, low-input, high throughput alternative method for improving assembly of 

viral metagenomics using long read technology. Named ‘VirION’ (Viral, long-read metagenomics 

via MinION sequencing), our sequencing approach and complementary bioinformatics pipeline (i) 

increased number and completeness of assembled viral genomes compared to short-read 

sequencing methods; (ii) captured populations of abundant viruses with high microdiversity missed 

by short-read methods and (iii) captured more and longer genomic islands than short-read 

methods. Thus, VirION provides a high throughput and cost-effective alternative to fosmid and 

single-virus genomic approaches to more comprehensively explore viral communities in nature. 

 

Introduction 

The marine bacterial communities that regulate global carbon biogeochemical cycles are 

themselves structured by selective, phage-mediated lysis (Weinbauer, 2004; Suttle, 2007). 

Bacteria co-evolve with their phages and exchange genetic information, and phages even 

‘reprogram’ hosts during infection so as to channel host metabolism towards phage replication 

(Forterre, 2013; Hurwitz, Hallam & Sullivan, 2013; Hurwitz & U’Ren, 2016). Over the last decade, 

the convergence of high throughput sequencing and the use of universal taxonomic marker genes 

for bacteria have revolutionised our understanding of microbial ecology. However, there is no 

equivalent for viruses and studies of viral ecology using PCR-amplified marker genes are limited to 

a narrow subset of the viral community (Brum et al., 2015a; Sullivan, 2015). Short-read viral 

metagenomics studies to date have provided clues to viral function (e.g. virally encoded, host-

derived central metabolism genes (known as Auxiliary Metabolic Genes: AMGs) (Breitbart, 2012; 

Hurwitz, Hallam & Sullivan, 2013), and first estimates of global viral gene abundance and 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2018. ; https://doi.org/10.1101/345041doi: bioRxiv preprint 

mailto:b.temperton@exeter.ac.uk
https://paperpile.com/c/ssJt3i/gjkn+Gr7h
https://paperpile.com/c/ssJt3i/JZ1P+aUZV+POmJ
https://paperpile.com/c/ssJt3i/igwd+ULJP
https://paperpile.com/c/ssJt3i/p9Eg+POmJ
https://paperpile.com/c/ssJt3i/p9Eg+POmJ
https://doi.org/10.1101/345041
http://creativecommons.org/licenses/by-nd/4.0/


distribution (Brum et al., 2015b; Roux et al., 2016a). Yet, short-read assemblies are composites of 

populations ‘features’ (Mizuno, Ghai & Rodriguez-Valera, 2014), with successful assembly a 

function of coverage and branch resolution in assembly graphs (Temperton & Giovannoni, 2012; 

Olson et al., 2017). Genomic regions of high diversity, such as genomic islands (GIs), have been 

shown to contain vital niche defining genes that drive ecological speciation (Coleman et al., 2006), 

but low coverage and/or bounding repeat regions (Mizuno, Ghai & Rodriguez-Valera, 2014; Ashton 

et al., 2015) impede assembly of these regions with current De Bruijn Graph methods. These 

limitations limit our understanding of the impact of viral predation on important taxa in global 

carbon biogeochemistry. For example, the globally dominant members of the chemoheterotrophic 

order Pelagibacterales comprise up to 25% of all bacterioplankton and are major contributors to 

carbon remineralisation (Giovannoni, 2017). Their associated viruses dominate global oceans 

(Zhao et al., 2013; Martinez-Hernandez et al., 2018) and are likely to contribute significantly to 

carbon turnover in surface water by release of labile intracellular carbon during lysis (Suttle, 2005, 

2007). However, the genomes of viruses associated with Pelagibacterales contain numerous GIs 

and/or high microdiversity (Zhao et al., 2013; Martinez-Hernandez et al., 2018). Such features 

cause genome fragmentation in short-read assembly methods, resulting in reduced representation 

in the datasets following size-selection of contigs for downstream analyses (Martinez-Hernandez et 

al., 2017; Roux et al., 2017). Single-virus genomics (Martinez-Hernandez et al., 2017) and fosmid 

based approaches (Mizuno et al., 2013, 2016) can overcome such issues by either targeted 

sequencing of single virus particles, or producing long DNA fragments that span genomic islands 

and collect single nucleotide polymorphisms within populations. However, these methods are 

technically challenging and costly to implement. 

 

Recent advances in long-read sequencing technology from PacBio and Oxford Nanopore 

Technologies offer several advantages over fosmid or single-virus genomics approaches for viral 

metagenomics. Algorithms used to reconstruct genomes from short reads are challenged by global 

and local repeat regions, which tangle the De Bruijn Graph and fragment the assembly (Koren & 

Phillippy, 2015). Reconstruction of genomes from community DNA (i.e. metagenomes) are further 

challenged by variable sequencing depth and low coverage of community members outside the 

most abundant members.  Long read sequences can span repeat regions and regions of low 

coverage to improve overall assembly of genomes from both cultured isolates (Wick et al., 2017) 

and metagenomics (Frank et al., 2016; Driscoll et al., 2017). We also hypothesised that the 

assembly of long reads using overlap-layout-consensus would be less prone to microdiversity-

associated fragmentation of genomes observed in De Bruijn Graph approaches (Martinez-

Hernandez et al., 2017; Roux et al., 2017).   The MinION (Oxford Nanopore Technologies) is a 

portable, single-molecule genome sequencing instrument which directly senses native, individual 

DNA fragments by translating disruptions in the current across a membrane as single-stranded 

DNA passes through a nanopore. Importantly, MinION read lengths are a function of input DNA 

strand length and thus very long reads (>800 kbp) are obtainable (Jain et al., 2015, 2018; Loman, 

Quick & Simpson, 2015). Double stranded DNA genomes of bacteriophages (‘phages’) range from 

10 kbp to 617.5 kbp (Mahmoudabadi & Phillips, 2018), therefore, in theory at least,  MinION reads 

are capable of capturing whole dsDNA viral genomes on single reads, negating the need for 

assembly entirely. However, a significant obstacle in adopting long-read technology for marine 

metagenomics lies in obtaining the amount of DNA required: Viral DNA extraction from 20 L of 

seawater often yields an order of magnitude less DNA than the micrograms recommended for 

efficient long-read sequencing (Jain et al., 2018). Furthermore, both PacBio subreads and Oxford 

Nanopore reads have high error rates, with the former enriched in insertion errors and the latter 

enriched in insertion-deletion errors (Weirather et al., 2017). Indel errors shift the reading frame of 

the DNA sequence and confound gene-calling algorithms, artificially inflating the number of 

identified stop codons and producing shorter gene calls (Watson, 2018). This is a particular 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2018. ; https://doi.org/10.1101/345041doi: bioRxiv preprint 

https://paperpile.com/c/ssJt3i/yQIu+97zA
https://paperpile.com/c/ssJt3i/jg6m
https://paperpile.com/c/ssJt3i/OAmF+kncH
https://paperpile.com/c/ssJt3i/OAmF+kncH
https://paperpile.com/c/ssJt3i/yCR6
https://paperpile.com/c/ssJt3i/jg6m+EXrj
https://paperpile.com/c/ssJt3i/jg6m+EXrj
https://paperpile.com/c/ssJt3i/I4br
https://paperpile.com/c/ssJt3i/Qkwg+6C5X
https://paperpile.com/c/ssJt3i/e9hA+Gr7h
https://paperpile.com/c/ssJt3i/e9hA+Gr7h
https://paperpile.com/c/ssJt3i/Qkwg+6C5X
https://paperpile.com/c/ssJt3i/1Ay3+cBUX
https://paperpile.com/c/ssJt3i/1Ay3+cBUX
https://paperpile.com/c/ssJt3i/1Ay3
https://paperpile.com/c/ssJt3i/fIum+0Sa6
https://paperpile.com/c/ssJt3i/Tbrz
https://paperpile.com/c/ssJt3i/Tbrz
https://paperpile.com/c/ssJt3i/5HVg
https://paperpile.com/c/ssJt3i/6i7o+oPHW
https://paperpile.com/c/ssJt3i/1Ay3+cBUX
https://paperpile.com/c/ssJt3i/1Ay3+cBUX
https://paperpile.com/c/ssJt3i/8jjK+VGwl+8zLk
https://paperpile.com/c/ssJt3i/8jjK+VGwl+8zLk
https://paperpile.com/c/ssJt3i/Fz9O
https://paperpile.com/c/ssJt3i/8zLk
https://paperpile.com/c/ssJt3i/uXK0
https://paperpile.com/c/ssJt3i/o4xW
https://doi.org/10.1101/345041
http://creativecommons.org/licenses/by-nd/4.0/


problem for viral metagenomics as the median length of genes in dsDNA phages is approximately 

half that of their bacterial hosts (408 bp vs 801 bp, respectively) (Brocchieri & Karlin, 2005; 

Mahmoudabadi & Phillips, 2018), and the vast majority of viral genes in both dsDNA viral isolates 

and viral metagenomes (>50% and up to 93%, respectively)  have no known function (Hurwitz & 

Sullivan, 2013; Mahmoudabadi & Phillips, 2018), making it difficult to evaluate the quality of gene 

calls. 

 

To overcome these limitations, we developed a Long-Read Linker-Amplified Shotgun Library 

approach for long-read viral metagenomics to achieve the necessary DNA requirements for 

sequencing nanograms of viral community dsDNA on the MinION sequencer (named VirION; 

Figure 1). Long reads were combined with complementary short-read sequencing data using a 

novel bioinformatics pipeline (Figure 2) designed to maximise the advantages and minimise the 

weaknesses of both sequencing technologies. Briefly, long reads were used to scaffold short read 

De Bruijn Graph assemblies. Short reads were used to error correct long read overlap layout 

consensus assemblies to reduce sequencing error and frameshift errors. Assemblies from both 

approaches were then combined for downstream analyses. Following validation on mock viral 

communities (Supplementary Table 1), we applied our new approach to a marine viral 

metagenome from the Western English Channel. Here, we present the first use of long-read 

sequencing technology for viral metagenomics and show that this novel approach provides 

significant benefits when combined with short-read metagenomics. Our described bioinformatics 

pipeline overcame the high sequencing error associated with long-read technology and the 

addition of long reads enabled capture of complete viral genomes which were globally ubiquitous, 

and not represented by short-read only assemblies. Long-read assemblies also significantly 

improved the capture of viral genomic islands, demonstrating that this advance will be of benefit to 

better understanding niche-differentiation and ecological speciation of viruses in environmental 

samples. 

 

Materials & Methods 

 

Construction of the mock viral community: A mock viral community comprised of six isolated 

and sequenced marine Caudovirales with genome sizes ranging from 38.5-129.4 kbp was 

produced as described previously (Roux et al., 2016b). Briefly, viruses were cultivated from host 

Pseudoalteromonas or Cellulophaga via plaque assay, collected into MSM buffer (0.45 M NaCl, 

0.05 M Mg, 0.05 M Tris base, pH 7.6) and purified by 0.2 µm filtration followed by treatment with 

DNase I (100 U/mL for 2 hr at RT; terminated by the addition of 0.1 M EGTA and 0.1 M EDTA). 

Viral capsids were enumerated via epifluorescence microscopy (SYBR Gold; wet mount method) 

(Noble, 2001; Cunningham et al., 2015). 1.4 ⨉ 109 virus particles from each culture were pooled, 

and DNA extracted via the Wizard® DNA Clean-up System (Promega A7280). DNA was quantified 

via Qubit fluorometer (Life Technologies). 

 

Construction of the Western English Channel viral metagenome: 20 L of seawater was 

collected in rosette-mounted Niskin bottles at a depth of 5m from the Western Channel 

Observatory (WCO; http://www.westernchannelobservatory.org.uk/) coastal station ‘L4’ (50°15.0'N; 

4°13.0'W) on the 28th September 2016. Seawater was transferred immediately to a clean 

collection bottle, and processed to remove the cellular fraction (within 4 hours of collection) via 

sequential filtration through glass fibre (GF/D: pore size 2.7 μm) and polyethersulfone (pore size 

0.22 μm) filters in a 142 mm polycarbonate rig, with peristaltic pump. Precipitation of viruses from 

filtrate (denoted as the viral fraction) and primary concentration of virus particles was conducted by 

iron chloride flocculation and collection on 1.0 µm polycarbonate filters (John et al., 2011) and 

stored in the dark at 4°C. Viruses were resuspended in ascorbate-EDTA buffer (0.1 M EDTA, 0.2 
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M MgCl2, 0.2 M ascorbic acid, pH 6.1), and transferred to Amicon Ultra 100 kDa centrifugal filter 

units (Millipore UFC910024) (Hurwitz et al., 2013) that had been pre-treated with 1 % bovine 

serum albumin buffer to minimise capsid-filter adhesion (Deng et al., 2014) and flushed with SM 

buffer (0.1 M NaCl; 0.05 M Tris-HCl; 0.008 M MgCl2). Following concentration to 500-600 µL, virus 

particles were washed with SM buffer (39) and purified with DNase I (100 U/mL; 2 hr at RT) to 

remove unprotected DNA (i.e. encapsulated DNA); DNase I activity was terminated by the addition 

of 0.1 M EGTA and 0.1 M EDTA (Hurwitz et al., 2013). Viral DNA was extracted from concentrated 

and purified viral particles using the Wizard® DNA Clean-up System (Promega A7280), removing 

PCR inhibitors (e.g. EDTA) (John et al., 2011). 

 

Library preparation, amplification and sequencing:  For short-read sequencing, Illumina 

libraries were generated from 1 ng of mock viral community DNA, and 1 ng of environmental viral-

fraction DNA, using Nextera XT v2 kits (Illumina) and the manufacturer's protocol. After 12 cycles 

of amplification, the concentration and distribution in fragment sizes of the Illumina libraries were 

determined via Qubit and Bioanalyzer (Agilent), respectively. DNA was sequenced as 2 ⨉ 300 bp 

paired-end sequence reads, on a HiSeq 2500 (Illumina Inc.) in rapid mode, by the Exeter 

Sequencing Service (University of Exeter, UK); 60 million paired-end reads were produced. We 

developed a protocol to produce long-read viral sequences (VirION reads) from metagenomic DNA 

as follows (Figure 1). For VirION sequencing, 20 ng (mock viral community) or 100 ng (WEC viral-

fraction) of DNA was sheared to fragments averaging  8 kbp length via g-TUBE (Covaris 520079) 

as required to optimise MinION flow cell sequencing efficiency/yield (Oxford Nanopore 

Technologies: ONT). End-repair of DNA fragments, amplification of DNA with PCR-adapter ligation 

(i.e. Linker Amplified Shotgun Library: LASL preparation), and preparation of MinION-compatible 

libraries was performed following the manufacturer’s protocols for “2D Low input genomic DNA 

with PCR” using the ‘Ligation Sequencing kit 2D’ (ONT SQK-LSK208). PCR reaction conditions 

were modified with reference to NEBNext manufacturer’s instructions in order to maximise DNA 

yield, whilst minimising production of chimeric sequences, as follows: 3 mins at 95°C (initial 

denaturation), 15 cycles of: 15 secs at 95°C (denaturation), 15 secs at 62°C (annealing), 5 min at 

72°C (extension); finally 5 min at 72°C (final extension)) followed by 0.4 ⨉ AMPure bead clean-up). 

~1.5 µg of end-repaired, amplified DNA was carried forward for sequencing adapter ligation 

followed by purification of adapted DNA using MyOne C1 Streptavidin beads (Thermo Fisher 

Scientific Inc. 65001). The prepared long read library was sequenced on a single MinION Mk 1B 

flow cell with R9.4 pore chemistry (Note - to remain up to date with changing ONT chemistry, a 1D 

ligation version of this protocol has also been tested and is available on protocols.io 

(https://www.protocols.io/view/virion-long-read-low-input-viral-metagenomic-sequ-p8fdrtn)). 

 

Generation of short-read and hybrid assemblies: Following the removal of adapters and quality 

filtering with Trimmomatic (Bolger, Lohse & Usadel, 2014), high quality short-read sequences were 

normalised to ~100-fold coverage and error-corrected with bbnorm 

(https://github.com/BioInfoTools/BBMap) before assembly with metaSPAdes v. 3.11 (Nurk et al., 

2017) with error-correction disabled. 

 

Long-read FAST5 files were base-called with Albacore and processed first with Porechop 

(https://github.com/rrwick/Porechop) to remove adapters, followed by NanoFilt 

(https://github.com/wdecoster/nanofilt) to keep sequences with a q-score >= 10. The first 50 bases 

were removed to increase sequence quality, and reads < 1kbp in length were removed. Overlap-

layout consensus assembly of VirION reads was performed using Canu (Koren et al., 2017) with 

the following parameters: “genomeSize=180m minReadLength=1000 contigFilter="2 1000 1.0 1.0 

2" corOutCoverage=999 correctedErrorRate=0.040 -nanopore-raw”. genomeSize parameter 

selection was optimised by testing values from 9-180 Mbp on mock viral community data and 
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evaluated using metaQUAST (Mikheenko, Saveliev & Gurevich, 2016). Above a value of 45 Mbp, 

all assemblies were nearly identical, so the largest value was chosen for subsequent assembly. 

 

Maximizing the benefits of long read and short read assemblies: We developed a 

bioinformatic pipeline to maximise the benefits of VirION reads for viral metagenomics (Figure 2). 

Briefly, Canu assemblies of VirION reads were ‘polished’ using Pilon (Walker et al., 2014) v1.22 

with short-read sequences from either the mock viral community or the Western English Channel 

where appropriate to remove sequencing error via consensus base-calling. Comparisons of 

assembly methods of mock viral communities, including presence of indels were evaluated using 

metaQUAST (Mikheenko, Saveliev & Gurevich, 2016). In order to capture the longest assemblies 

available from the short read data, De Bruijn Graph assemblies of short reads were performed with 

and without scaffolding with long read sequencing, followed by dereplication of scaffolds using a 

cut-off of 95% average nucleotide identity over 80% of the length (via MUMmer v3.23 (Delcher, 

Salzberg & Phillippy, 2003) to cluster highly similar contigs from hybrid and short-read only 

assemblies into viral populations (Roux et al., 2016a). The longest representatives of each 

population were carried forward for analysis. Population representatives > 10 kbp were pooled with 

polished long-read assembly contigs > 10kbp and evaluated with VirSorter (Roux et al., 2015) (in 

virome decontamination mode) to identify putative viral contigs. Reads classified as either category 

3 (deemed unusual, but not necessarily viral (Roux et al., 2015)) were excluded from downstream 

analyses. Circular contigs (i.e. where the contig has matching ends) were identified by VirSorter 

and used as a proxy for successful assembly of a complete genome. 

 

Relative abundance of VirION sequences on mock viral community and effect of 

sequencing depth on genome recovery in hybrid assemblies: Relative abundance of mock 

viral community members in short-read and VirION datasets was evaluated by mapping high 

quality short reads and long reads against the genomes of mock viral community members using 

bowtie2 (Langmead & Salzberg, 2012) and minimap2 (https://github.com/lh3/minimap2), 

respectively. Quantification of error rates in short and long read sequences were calculated with 

samtools (Li et al., 2009). Chimeric raw reads were identified as those that had two alignments > 

100 bp that did not represent alignments to both the start and end of the genome (to avoid 

counting reads that mapped across an in-silico breakage of a circular genome into a linear 

representation). Mock community assemblies were evaluated for chimeric assemblies using 

MUMmer (Delcher, Salzberg & Phillippy, 2003) against member genomes and identifying those 

that aligned to more than one member. To direct future sampling efforts, we then evaluated the 

short-read sequencing depth at which hybrid assemblies with long read data offered no advantage. 

High-quality short read sequences were randomly subsampled in triplicate to seven discrete 

depths representing 10% and 70% of the full dataset using seqtk (https://github.com/lh3/seqtk). 

Subsampled reads were then assembled with metaSPAdes (Nurk et al., 2017) with and without 

support from VirION reads. Scaffolds >10 kbp in replicated assemblies were classified as viral 

using VirSorter (Roux et al., 2015) in virome decontamination mode. The number of scaffolds 

classified as viral were calculated for each replicated assembly. Statistical significance of the 

number of viral or circular viral contigs between hybrid and short-read assemblies was calculated 

by a two-sided Student t-test between triplicate replicates for each sequencing depth. 

 

Validation of error correction of long reads using Pilon in viral metagenomic data. We 

evaluated whether it was possible to use short-read data to correct base-calling errors in long-read 

environmental metagenomic data in a similar way to that used for genomes of bacteria and 

eukaryotes from axenic samples (Walker et al., 2014). VirION reads were assembled using Canu 

(Koren et al., 2017) and triplicate subsamples of short-read sequence data from Western English 

Channel at different sequencing depths were mapped against the contigs. The resulting BAM files 
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were used as inputs for error-correction with Pilon (Walker et al., 2014) and the resulting log file 

was parsed to calculate median coverage and to count the median coverage, total number of fixed 

deletions and fixed insertions at each coverage depth. We then evaluated whether error-correction 

could be used to reduce the impact of frameshift errors on predicted gene length. We used 

MetaGeneAnnotator (Noguchi, Taniguchi & Itoh, 2008) to calculate the lengths of predicted coding 

sequences on the following: (1) uncorrected VirION reads; (2) long-read assemblies of VirION 

reads; (3) long-read assemblies of VirION reads polished with the full short-read dataset; (4) 

contigs from scaffolded short-read assemblies; (5) contigs from the hybrid assembly. Distributions 

of the lengths of predicted coding sequences were compared against those in the genomes of 

Caudovirales from the NCBI RefSeq database (v.8.4), predicted proteins from the GOV (Roux et 

al., 2016a) and the single-amplified viruses in (Martinez-Hernandez et al., 2017). Effect size of 

different assembly types on genomic island length and density and associated 95% confidence 

intervals (CI) were calculated from bootstrapped medians (Cumming, 2014). For each bootstrap, 

1000 predicted proteins were randomly subsampled from each dataset and their median length 

was calculated. 

 

Evaluating the nucleotide diversity of long-read assemblies of WEC viral contigs: High 

quality short reads from the Western English Channel were mapped back to viral contigs using 

bowtie2 (Langmead & Salzberg, 2012) and nucleotide diversity was calculated as follows: short 

reads were mapped back against dereplicated viral populations from short-read only and hybrid 

assemblies, as well as polished contigs from long-read assembly of VirION reads. Reads mapping 

at <95% identity to any viral contig were removed, as were contigs with <10-fold coverage across 

70% of their whole genome. Single nucleotide polymorphisms (SNPs) were identified using 

mpileup and BCFtools (https://samtools.github.io/bcftools/bcftools.html) and those with a quality 

score >=30, represented by at least 4 reads and comprising >1% of the base pair coverage for that 

position were considered true SNPs. SNP frequencies across all genomes were rarefied by 

subsampling to 10⨉ coverage proportionate to the frequency of different SNPs per site while 

maintaining SNPs linkages. Observed nucleotide diversity (𝜋) (Nei & Li, 1979) was estimated both 

per contig (median across the length of the contig) and at a per-base level. 

 

Measuring the impact of VirION reads on recovery genomic islands: We identified genomic 

islands in viral contigs from short-read only assembly, hybrid assembly and polished long-read 

assembly of VirION reads, as described previously (Mizuno, Ghai & Rodriguez-Valera, 2014). 

Briefly, short read data from the Western English Channel was mapped back against the viral 

contigs > 10kb using bowtie2 (Langmead & Salzberg, 2012) and samtools (Li et al., 2009). BAM 

files were filtered using BamM (http://github.com/ecogenomics/BamM) to remove reads mapping at 

nucleotide identities ranging from 92-98%, to assess any impact of increased sequencing error in 

long-read assemblies. Contigs with a median per-base coverage of < 5 or those with a Reads per 

kb of genome per Gbp of reads mapped (RPKG) of < 1 were identified with BamM and removed 

from analysis. Genomic islands were defined as regions where the median coverage of a 500 bp 

sliding window was < 20% of the median coverage of the contig (Mizuno, Ghai & Rodriguez-

Valera, 2014). We excluded such regions if they were within 500 bp of the end of a contig. If two 

genomic islands were found within 500 bp of each other, they were combined into a single 

genomic island. Lengths of genomic islands and density of genomic islands per contig were 

calculated for each assembly type. Effect size of different assembly types on genomic island length 

and density and associated 95% confidence intervals (CI) were calculated from bootstrapped 

medians (Cumming, 2014). 

 

Analysis of Tig404 - a contig closely related to Pelagiphage HTVC010P: Phage contigs closely 
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related to Pelagiphage HTVC010P were identified using vContact2 to cluster contigs at the ICTV-

accepted level of genera by shared gene content (Bolduc et al., 2017). Within this viral cluster, 

contig tig404, from polished long-read assembly of VirION reads, was identified as a circular viral 

contig by VirSorter (Roux et al., 2015). Whole genome alignment was performed with MUmmer 

(Delcher, Salzberg & Phillippy, 2003) to calculate average nucleotide identity to HTVC010P. 

Contigs from short-read only and hybrid assemblies that shared 95% nucleotide identity over 80% 

of their length to tig404 were identified and mapped back to their respective loci with MUmmer 

(Delcher, Salzberg & Phillippy, 2003). Genomic islands and nucleotide diversity of tig404 were 

calculated as described previously. To evaluate the contents of a 5.3kb genomic island, unpolished 

VirION reads were mapped back against the tig404 genome and those which mapped to at least 

100 bp on the borders of the genomic island were extracted. Mapped reads extending at least 1 kb 

into the genomic island were used as a query in a tBLASTx best-BLAST (Camacho et al., 2009) 

search against the NCBI NR database to annotate the reads whilst minimising the adverse impact 

of sequencing error within the uncorrected reads. 

 

Estimating relative abundance and viral clusters of WEC viruses in viral metagenomes: 

FastViromeExplorer (Tithi et al., 2018) v.1.1 was used to quantify the relative abundances of WEC 

viral contigs. FastViromeExplorer is built upon the Kallisto (Bray et al., 2016) framework and 

competitively recruits reads against contigs, allowing for accurate recruitment to contigs that may 

share a degree of sequence similarity. Briefly, high quality short read datasets from the Global 

Ocean Virome (Roux et al., 2016a)and from our Western English Channel sample were 

subsampled to 10 million reads using seqtk (https://github.com/lh3/seqtk), and recruited against a 

Kallisto index comprising 1) The viral genomes >10 kbp identified in this study; 2) A selection of 

phage genomes >10 kbp from key metagenomic studies (Roux et al., 2016a; Martinez-Hernandez 

et al., 2017; Luo et al., 2017); 3) Cultured viruses from the NCBI RefSeq viral database (v8.4) 

(Supplementary Table 2). For inclusion in downstream abundance analyses, contigs with less than 

40% coverage as calculated by FastViromeExplorer were classified as having zero abundance. 

The top 100 most abundant contigs from each sample were also selected for downstream 

analyses. All phage genomes > 10kbp (including those from RefSeq) were processed using  

VirSorter (v.1.03) on the CyVerse cyberinfrastructure (Merchant et al., 2016) to standardise gene-

calling prior to clustering of viruses into ICTV-recognised genera by shared gene content using 

vContact2 (Bolduc et al., 2017). In the final stage of clustering, vContact2 uses ClusterONE 

(Nepusz, Yu & Paccanaro, 2012) and assigns a p-value to a cluster depending on whether the in-

cluster edge weights are significantly higher than the out-cluster edge weights. Q-values were 

calculated from cluster p-values using the qvalue R package (Dabney, Storey & Warnes, 2010) to 

account for multiple testing and a q-value cutoff of <0.05 was used to identify statistically significant 

clusters. 

 

Results & Discussion 

 

Assembly of VirION reads successfully captured mock viral community genomes and retained 

relative abundance information: VirION reads were first evaluated using a mock viral community 

comprising six known marine phages from Caudovirales (Roux et al., 2016b) (Supplementary 

Table 1). In total, 359,338 high quality (Q>10) long reads (median length: 4,099 bp; max length 

18,644 bp) were generated from a single MinION flowcell over a 48-hour runtime. 95% of the reads 

(341,718) mapped back to the genomes of the mock viral community. Considering viral DNA was 

sheared to 6-8 kbp fragments, the length of amplicons following LASL were shorter than expected, 

presumably due to preferential PCR amplification of shorter fragments (Shagin et al., 1999) 

(Supplementary Figure 1a) and preferential diffusion (and thus sequencing) of shorter reads within 
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the flowcell microfluidics (Supplementary Figure 1b).  Only 0.95% of LASL amplified reads were 

classified as chimeric (mapping to more than one location of the same or different genomes of the 

mock viral community), suggesting 15 rounds of PCR was sufficiently low to minimise production of 

chimeric artefacts, supporting previous findings (Laver et al., 2016).  Several methods have been 

developed for sequencing dsDNA viral metagenomes without skewing relative abundance 

information important for comparative ecology, including an LASL approach optimised for 454 

sequencing (Duhaime et al., 2012; Hurwitz et al., 2013) and Nextera sequencing (Roux et al., 

2016b). Median per-genome coverages of VirION reads and short-read Nextera datasets (5.6 M 

2x300 bp paired-end) from the mock viral community were strongly correlated (R2=0.975, p<0.001, 

Figure 2a), indicating that the LASL approach used here for multi-kilobasepair fragments retained 

relative abundance information observed in previous LASL approaches. 

 

Long-read and short-read assemblies of the mock viral community captured >99.7% of the six 

mock viral community genomes (Supplementary Table 1). Neither the short-read only, hybrid 

assembly nor long-read assemblies were able to capture all six genomes in six complete contigs. 

Long-read methods gave the most contiguous assemblies, capturing the six genomes across 14 

contigs. In comparison, short-read only assemblies recovered the genomes across 26 contigs, 

whereas scaffolding short-read assemblies using long reads reduced the number of contigs to 21. 

As expected, we identified >250 times more indels errors in long-read only assemblies than in the 

short-read assemblies scaffolded with long reads (average of 474 vs <2 indels per 100kbp, 

respectively). Polishing of long-read only assemblies with short read data reduced the indel error 

rate to 22.78 per 100 kbp, indicating this was a successful (but not perfect) strategy for error 

correction of long-read assemblies in metagenomic samples. There was no evidence of chimerism 

in any of the assemblies, indicating that Canu’s built-in in silico correction of chimeras (Koren et al., 

2017) successfully removes the low number of chimeric sequences observed in the VirION reads 

during assembly. 

 

Combining VirION reads with short read data improves viral metagenomic assembly in an 

environmental virome: We then sequenced 100 ng of natural viral community DNA collected from 

the Western English Channel using a combination of VirION reads, with complementary deep 

sequencing using short Nextera reads (30.8 Gbp comprising 58M 2x300 bp reads) to evaluate (1) 

whether the improved assemblies and error-correction strategies trialled successfully in the mock 

viral community translated to environmental viral metagenomic samples; (2) how much short-read 

sequencing data was needed to complement VirION reads. A single MinION flowcell produced 

108,718 high quality VirION reads (median length: 3,625 bp; max length: 17,019 bp, total yield of 

0.39 Gbp). It is worth noting that recent developments of MinION technology have improved 

flowcell yields to >10Gbp (pers comms). Therefore, our analyses here represent low coverage of 

the viral community with long read data compared to currently available (and fast-improving) 

technology. Assembly of VirION reads using our combined strategy (Figure 2) generated 2,645 

putative viral contigs >10kbp from the Western English Channel. Of these, 2,279 were from the de-

replicated De Bruijn Graph assemblies (with and without scaffolding) and 366 from polished long-

read assemblies. 

 

We evaluated the inclusion of long read sequences for scaffolding short-read assemblies across a 

range of short-read sequencing depths in order to determine whether long-reads provided a benefit 

at high levels of community coverage. Scaffolding short-read assemblies using VirION reads 

captured significantly more (between 1.1 to 1.5-fold increase, Student t-test, p<0.05) putative viral 

genomes than short-read only assemblies up to a short-read sequencing depth of ~12Gbp (Figure 

3b).  Above this depth, there was no significant difference between short-read assemblies with and 

without scaffolding, suggesting assembly of short-read data was capturing most of the viral 
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community above this sequencing depth. For comparison, the median sequencing depth of 137 

Illumina sequenced viral metagenomes from the Global Ocean Virome survey (study PRJEB4419 

in the European Nucleotide Archive) was 8.67 Gbp (IQR=5.22 Gbp), with 110 out of 137 samples 

sequenced to a depth of <12Gbp. Inclusion of VirION reads in hybrid assemblies significantly 

increased the number of ‘complete’ (i.e. circular contigs) viral genomes recovered once short-read 

sequencing depth increased above 12 Gbp (1.5 to 2.0-fold, Student t-test, p<0.05)(Figure 3b). 

Details of differences in means and p-values at each depth are available in Supplementary Tables 

3 and 4. When the full (30.8 Gbp) short-read dataset was used, the inclusion of long reads for 

scaffolding De Bruijn Graph assemblies increased the median length of recovered viral genomes 

by an average of 1.8 kbp compared to short-read only assemblies (Mann-Whitney U test, n1=1400, 

n2=879, p-value<0.001). With an estimated mean gene density of 1.4 genes per kb in phage 

dsDNA genomes (Mahmoudabadi & Phillips, 2018), this increased length represents an extra 2.5 

genes per contig. 

 

Polishing of long-read assemblies of VirION reads using complementary short-read data removed 

a maximum of 172,854 insertion errors and 12,674 deletion errors (Supplementary Figure 2). Error 

correction reached an asymptote at ~9 Gbp of short-read sequencing data, with a median 

coverage of long-read assemblies of ~70). Thus, error-correction of long reads using short-reads 

for polishing is likely to have fixed as many errors as possible in this study. As expected, the errors 

associated with long-read sequencing adversely affected the lengths of protein predictions 

(Supplementary Figure 3). Proteins predicted from uncorrected VirION reads (median length of 72 

aa, 70-74 aa 95%CI) were shorter (median difference = 61 aa, 69-53 aa 95%CI) than those from 

RefSeq Caudovirales genomes (median length of 133 aa, 126-141aa 95%CI), and much shorter 

(median difference = 88 aa, 83-95 95%CI) than those from the GOV dataset (median length of 160 

aa, 149-173 95%CI). Assembly of long reads with Canu includes a consensus-based error-

correction step (Koren et al., 2017), which increased median predicted protein lengths to 87 aa 

(median difference of 15 aa, 14-15 95%CI) compared to raw VirION reads. Polishing of long-read 

assemblies of VirION reads with short read data was highly effective in restoring the length of 

predicted proteins (median length 127 aa, 120-135 aa 95%CI) to lengths similar to those observed 

in RefSeq Caudovirales (median length = 133 aa, 126-141 aa 95%CI). Proteins from polished 

reads had a median difference of -6 aa (-18-6 95%CI) compared to RefSeq Caudovirales proteins. 

This suggests that not all frameshift errors were corrected in the long-read assemblies, 

corroborated by evidence of increased indel errors observed in long-read assemblies of mock viral 

community data compared to short-read assemblies. 

 

Interestingly, predicted protein lengths from the GOV dataset (Roux et al., 2016a) (median length = 

160 aa), short-read only assembly of WEC virome (median length = 157 aa); hybrid assembly of 

WEC virome (median length = 160 aa) and data from single-amplified viral genomes (Martinez-

Hernandez et al., 2017) (median length = 152 aa) were all of similar length and 19 to 27 aa longer 

compared to those from RefSeq Caudovirales genomes,  and 25 to 33 aa longer than those from 

WEC polished long-read assemblies. In comparison, median predicted protein length in 899 

dsDNA phages was previously estimated at 136 aa (Mahmoudabadi & Phillips, 2018) - similar to 

those found in our polished long-read assemblies from VirION reads. Thus, either the RefSeq 

Caudovirales dataset and that of Mahmoudabadi and Phillips are under-representing longer viral 

predicted proteins found in marine viral metagenomes, and predicted protein lengths in viral 

genomes from metagenomic data are longer than those observed in cultured representatives. 

Whether this difference is biological or an artefact of metagenomic assembly and gene calling is an 

interesting area for further investigation. 

 

Long read assembly of VirION reads captures more information about potential niche-defining 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2018. ; https://doi.org/10.1101/345041doi: bioRxiv preprint 

https://paperpile.com/c/ssJt3i/Fz9O
https://paperpile.com/c/ssJt3i/QHp1
https://paperpile.com/c/ssJt3i/97zA
https://paperpile.com/c/ssJt3i/1Ay3
https://paperpile.com/c/ssJt3i/1Ay3
https://paperpile.com/c/ssJt3i/Fz9O
https://doi.org/10.1101/345041
http://creativecommons.org/licenses/by-nd/4.0/


genomic islands than short-read only or hybrid assemblies: In marine bacteria, genomic islands 

have been identified as playing an important role in niche specialisation that drives ecological 

speciation (Coleman et al., 2006). Genomic islands have also been found to be a common feature 

of viral genomes and are typically enriched in functions associated host recognition (Mizuno, Ghai 

& Rodriguez-Valera, 2014). At all nucleotide identity cut-offs tested, genomic islands captured on 

long-read assemblies were between 145 bp (112-184 bp 95%CI) and 225 bp (189-259 bp, 95% CI) 

longer than those captured on short-read only or hybrid assemblies. (Figure 4A, Supplementary 

Figure 4A). There were no significant differences between the lengths of genomic islands captured 

on short-read only or hybrid assemblies. The largest genomic islands in each assembly type were 

2.47 kbp, 5.75 kbp and 5.65 kbp in short-read only assemblies, hybrid assemblies and long-read 

assemblies, respectively. In comparison, the largest genomic islands identified in fosmid-based 

viral metagenomes were ~4.6 kbp (Mizuno, Ghai & Rodriguez-Valera, 2014), suggesting that both 

hybrid and long-read approaches capture similar length genomic islands as previous fosmid-based 

methods. Similarly, the density of GIs was significantly greater (between 40 bp (20-60 bp, 95%CI) 

and 100 bp (80-110 bp, 95%CI) of GI per kbp of genome in long-read assemblies compared to 

short-read or hybrid assemblies (Figure 4B, Supplementary Figure 4B). Again, there was no 

significant difference between short-read only and hybrid assemblies. At a nucleotide identity cut-

off of 98% for read mapping, the length of GIs in long-read assemblies were 59 bp (18-106 bp, 

95%CI) and 61 bp (13-105 bp, 95%CI) longer than those at 92% and 95%, respectively, indicating 

that residual error in the polished reads may be contributing to a slight increase in predicted GI 

length and density at high nucleotide identity. However, these effect sizes are much smaller than 

those observed between long-read assemblies and short and hybrid assemblies across all identity 

cut-offs, suggesting that long reads do indeed improve the capture of genomic islands. 

 

Assembly of VirION reads capture important, microdiverse populations previously missed by short-

read data: It has been hypothesised that genomes assembled from short-read metagenomes may 

be biased away from microdiverse populations (Martinez-Hernandez et al., 2017; Roux et al., 

2017). We reasoned that overlap layout consensus assembly of long reads, followed by error 

correction might better capture genomes with high levels of microdiversity by avoiding the 

unresolvable branches of De Bruijn Graph assemblies. We evaluated genome-level nucleotide 

diversity (Nei & Li, 1979) (π) of both short-read assemblies and polished long-read assemblies 

from the Western English Channel virome. Median levels of π were significantly (3-fold) higher in 

polished long-read contigs than those derived from De Bruijn Graph assemblies (two-sided Mann-

Whitney U test: W=105,830, n1= 758, n2=206, p = 4.81 ⨉ 10-15; Supplementary Figure 5), 

consistent with the hypothesis that assembly of VirION reads enabled capture of genomes 

previously lost due to failure to resolve assembly graphs as a consequence of microdiversity. 

 

Tig404 - an example of how VirION reads improve viral metagenomics: An excellent example of 

the benefit using VirION reads for viral metagenomics was found in a polished contig from long-

read assemblies that showed high nucleotide similarity and shared gene content to the globally 

abundant pelagiphage HTVC010P (Zhao et al., 2013). This ecologically important virus and its 

closely associated phages contain numerous genomic islands that comprise ~10% of their genome 

and a shared 5.3 kbp genomic island containing a putative ribonuclease, bounded by tail fibre 

proteins (Mizuno, Ghai & Rodriguez-Valera, 2014). It has also been predicted to possess high 

microdiversity that challenges assembly from short-read data, leading to fragmentation and thus 

under-representation in short-read viral metagenomes, but is successfully captured using fosmid 

approaches and single-virus genomics  (Mizuno et al., 2013; Martinez-Hernandez et al., 2017). 

Clustering of viral contigs from the WEC by shared-gene content using vContact2 (Bolduc et al., 

2017) identified a virus, called ‘tig404’ from long-read assembly of VirION reads that was 89% 

identical at the nucleotide level to HTVC010P. We mapped contigs from short-read only and hybrid 
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assemblies against this genome at 95% nucleotide identity over 80% of the length to evaluate the 

success of short-read and hybrid assembly methods at capturing this genome, and identified its 

genomic islands as described above (Figure 5). Both short-read only and hybrid assemblies were 

highly fragmented across the genome. Analysis of median nucleotide diversity of tig404 was 

extremely high (Supplementary Figure 7) and provided supporting evidence that fragmentation 

may be a result of high microdiversity in this phage. In contrast, VirION reads successfully 

overlapped across the genome and enabled recovery of the genome through long-read assembly. 

Comparison of the genome of tig404 with that of HTVC010P identified a shared genomic island 

containing a putative ribonuclease protein and bounded by a tail fibre protein (Figure 5), similar to 

those observed in closely related taxa from fosmid libraries (Mizuno, Ghai & Rodriguez-Valera, 

2014). 

 

In addition, we were able to exploit an additional benefit of long reads and use unpolished VirION 

reads to explore the contents of the shared genomic island across the tig404 population within the 

WEC virome. As each read is derived from a single DNA strand (excluding the low abundance of 

chimeric reads), variance in the content of the genomic island within a population would be 

captured on reads that align to the ends, or across, the genomic island. In total, 31 VirION reads 

extended from the boundaries into the genomic island (Figure 5). Of these, 17 had sufficient 

overlap to use for identifying functional genes. Those at the 5’ end of the genomic island all 

contained a putative ribonuclease, whilst those at the 3’ end all contained an internal virion protein 

thought to be associated with puncturing the cell membrane in T7-like phages (Mizuno, Ghai & 

Rodriguez-Valera, 2014). Thus, it would appear that, for this shared genomic island at the 

population level, diversity occurs at the nucleotide level, rather than gene content level. The fact 

that a similar gene content has now been found in the Western English Channel (this study), the 

Sargasso Sea (Zhao et al., 2013) and the Mediterranean (Mizuno, Ghai & Rodriguez-Valera, 2014) 

may indicate this is a conserved feature across the HTVC010P-like phages. The encoding of a 

ribonuclease within a genomic island offers an interesting glimpse into the host-virus interactions 

that occur during infection and suggests that degradation of RNA is an important feature of the 

arms-race in HTVC010P-like phages with their Pelagibacter hosts. Whether this is to shut down 

host metabolism, or to hijack host metabolism through manipulation of regulatory machinery 

enriched in riboswitches (Meyer et al., 2009) requires further investigation. 

 

Our dataset represents the first virome sequenced from the WEC and so we evaluated the global 

abundance of viral populations from the WEC by competitive mapping of 10 million subsampled 

short reads from both the WEC and the GOV dataset (Roux et al., 2016a). Representatives of viral 

populations from the WEC were then pooled with those >10kb from the GOV dataset and other 

marine virome datasets (Supplementary Table 2) to make a total dataset of 20,545 viral contigs. 

Following competitive read recruitment with FastViromeExplorer (Tithi et al., 2018), the top 50 most 

abundant viral genomes were identified in each of the WEC and GOV surface samples. Out of 

1,598 contigs, 81 of the most abundant viral contigs were from long read assemblies of VirION 

reads from the WEC, representing a significant enrichment (hypergeometric test for enrichment, 

p=6.6 x 10-19). WEC contigs from short-read only (42 contigs) and hybrid assemblies (77 contigs) 

were not significantly enriched in the most abundant viral contigs. Thus, it is likely that long-read 

assembly of VirION reads from the WEC captured important and globally abundant viral taxa 

previously missed in the GOV datasets. Examination of relative abundance of WEC contigs in 

surface water samples from the GOV showed that contigs from long-read assemblies of VirION 

reads recruited a large proportion of the recruited reads from global samples, particularly in the 

Southern Atlantic Ocean and waters off the Western coasts of Southern Africa and South America 

(Figure 6). In total, clustering VirION-derived contigs from the Western English Channel with 

contigs from previous studies (Supplementary Table 2) by shared protein content produced 668 
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statistically supported viral clusters. Of these, 202 contained contigs derived from long-read 

assembly of VirION reads, but just 3 of these were comprised solely of these contigs. Thus, we are 

confident that previous findings suggesting viral diversity at the genera level in surface oceans has 

been largely documented (Roux et al., 2016a) are robust. Instead, we propose that long read 

assembly of VirION reads provides greater phylogenetic resolution of viral clusters by capturing 

members previously missed due to limitations in short-read assembly. 

 

The most globally abundant and ubiquitous (identified in at least 10% of samples) viral genome 

was a contig from a hybrid assembly, denoted H_NODE_1248 (Figure 7). This contig was 22.4 kbp 

in length and occupied a viral cluster (based on shared protein content) with 57 other members, 

including vSAG-37-F6 (9th most abundant ubiquitous virus and 13th most abundant across all 

samples), previously identified the most globally abundant virus (Martinez-Hernandez et al., 2017, 

2018). The viral cluster also contained 10 other contigs from long-read assembly of VirION reads, 

ranging in size from 10 kbp to 27 kbp. Interestingly, pelagiphage HTVC010P, once thought to be 

the most abundant virus on Earth (Zhao et al., 2013) was ranked 128th in global abundance and 

did not meet the criteria of being both ubiquitous (identified in at least 10% of the samples) and 

abundant (in the top 100 most abundant viral taxa for each sample). Upon its discovery as the 

most abundant global virus we previously urged a cautious interpretation as any representative of 

a new viral clade will recruit reads from all similar viruses in the environment (Zhao et al., 2013). As 

new representatives of these clades are captured in metagenomic data it is likely that competitive 

recruitment of reads splits reads between all clade members, reducing the estimated abundance of 

any one single member. 

 

60% of the top 50 most abundant populations in the WEC were represented by a WEC contig 

derived from long-read assemblies of VirION reads (Supplementary Figure 7). The viral community 

in the WEC sample was dominated by a 39,972 bp circular genome from a hybrid assembly. 

Denoted H_NODE_525, this contig recruited 3.28 times more reads than the next most abundant 

contig (Supplementary Figure 7), but was not identified as globally abundant and ubiquitous 

(Figure 7). This virus shared a viral cluster with the siphovirus Pseudoalteromonas phage 

vB_PspS-H6/1 but we were not able to determine its putative host despite using a variety of tools 

(Ahlgren et al., 2016; Galiez et al., 2017) (https://github.com/dutilh/CAT). A viral contig from hybrid 

assembly, denoted H_NODE_6 was the longest complete viral genome identified in this study, with 

a 316 kbp genome. In the short read-only assembly, this genome was broken into two contiguous 

contigs of 204 kbp and 112 kbp, respectively (Supplementary Figure 8). H_NODE_6 shared a viral 

cluster with the myoviruses Cronobacter sakasakii phage GAP32 and Enterobacter phage 

vB_KleM-RaK2. At 359 kb and 346 kb respectively (Šimoliūnas et al., 2012; Abbasifar et al., 2014), 

these are some of the largest phage genomes ever isolated. Recovery of this complete genome 

demonstrates the capacity for hybrid assembly with VirION reads to capture complete genomes of 

very large phages from complex communities on single contigs, which were fragmented using 

short-read only assemblies. 

 

 

Conclusions 

In summary, this investigation represents the first use of long-read sequencing for viral 

metagenomics. We have shown that using long-reads to scaffold short read De Bruijn Graph 

assemblies improves recovery of complete viral genomes. Furthermore, overlap-layout consensus 

assembly of VirION reads, followed by error correction with short reads captures abundant and 

ubiquitous viral populations that are missed (possibly as a result of genome fragmentation) by 

current short-read metagenomic methods. By combining these two approaches, our proposed 

bioinformatics pipeline maximises the capture of viral diversity whilst minimising the impact of high 
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error rates associated with long-read sequencing and represents a major addition to the viral 

metagenomics toolset. Improved capture of viral genomic islands will enable better understanding 

of mechanisms underpinning host-virus interactions, as demonstrated in our capture of a shared 

genomic island on the newly observed HTVC010P-like pelagiphage tig404. Importantly, long-read 

sequencing on the MinION platform is undergoing rapid improvements in terms of yield, with 

current technology providing at least an order of magnitude more sequencing data than that 

produced in this study, at a cost of < $1000 per flowcell. Thus, our approach represents a 

significant advantage in terms of cost, yield and efficiency over fosmid and single-amplified 

genome approaches to capturing marine viruses that are otherwise challenging to assemble. 

Furthermore, there is no technical reason to prevent our VirION approach being used in 

conjunction with PacBio sequencing to further reduce error rates using circular consensus 

sequencing. Such an approach would have the added advantage of avoiding the remaining indel 

errors that remained following polishing of our long-read assemblies with short-read data. As error 

rates continue to fall with single-molecule sequencing technology, we envisage less and less 

complementary short-read data being required for polishing. Reductions in DNA input requirements 

and/or improvements in DNA polymerases for increasing VirION amplicon lengths will further 

increase its utility in recovering viral genomes from metagenomic samples. In conjunction with the 

protocols outlined here, coupling long and short read sequencing of viral metagenomes offers the 

potential to significantly improve our understanding of viral ecology in global oceans, human 

microbiomes and agriculture. 
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Figure 1: Basic workflow for preparation of free-viral fraction DNA for MinION sequencing. 

The long-read viral metagenomic method developed includes FeCl3 flocculation and resuspension 

(FFR), shearing of extracted viral DNA (to 8-9 kbp), random linker amplification (Linker Amplified 

Shotgun Library: LASL), MinION library preparation, and nanopore (Oxford Nanopore 

Technologies; ONT) sequencing. 

 

 

 
Figure 2 - The VirION bioinformatic pipeline to combine for short-read (Illumina) and long-read 

(MinION) sequencing to maximise the advantages of both sequencing platforms. Viral 

metagenomic short-read data and VirION reads from the Western English Channel were 

processed for identification of putative viral genomes as follows: (1) Short-read contigs and contigs 

scaffolded with VirION reads were generated via De Bruijn Graph Assembly using metaSPAdes 

(Nurk et al., 2017)), and (2) de-replicated via average nucleotide identity of 90% similarity across 
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80% length. Separately, (3) long, error-prone VirION reads were assembled via overlap layout 

consensus Assembly using Canu (Koren et al., 2017) and (4) error-corrected via alignment  of 

Illumina reads and consensus base calling with Pilon (Walker et al., 2014). (5) Putative viral 

genomes were identified using VirSorter (Roux et al., 2015). (6) Relative and global abundances of 

the Western English Channel viral contigs were calculated via competitive recruitment of short read 

data with FastVirome Explorer (Tithi et al., 2018), and lastly, (7) viral clusters based on shared 

proteins were produced from Western English Channel viral contigs clustered with contigs from the 

Global Ocean Virome (Roux et al., 2016a) and NCBI’s RefSeq database (v.8.4 among others - see 

Supplementary Table 2) using  vConTACT2 (Bolduc et al., 2017). 

 

 

   

 
Figure 3: Comparative performances of short-read and long-read data for the identification 

of marine viral genomes. (A) Relative abundances of genome-mapped VirION reads and short-

reads from a mock viral community composed of 6 different tailed bacteriophages. CBA: 

Cellulophaga phage; PSA: Pseudoalteromonas phage. The relative abundances of mock viral 

community members were strongly correlated using both approaches, showing amplification of 

sheared viral DNA for VirION sequencing was as quantitative as short read approaches for 

estimating relative viral abundance. (B) Efficiency of short-read only and hybrid sequencing 

approaches for detection of viral genomes at various depths/coverages of Illumina data using 

triplicate random subsamples of short read data from the Western English Channel viral 

metagenome: At all coverage depths tested, hybrid assemblies generated more circular (i.e. 

putatively complete) viral genomes than short-read assemblies; Below 10 Gbp of short-read data, 

hybrid assemblies captured more viral genomes (> 10 kbp) than short-read assemblies. 

Comparisons within grey boxes were found to be statistically significant (Student t-test). 
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Figure 4 - Comparison of the (A) length of genomic islands (GI) and (B) normalised length of 

GI per kb of genome per contig captured on long read assemblies of VirION reads 

compared to short-read only and hybrid assemblies of viral contigs from the Western 

English Channel. Genomic islands were identified by mapping reads back against contig across a 

range of nucleotide percentage identities (92, 95, 98%) to account for residual error remaining in 

polished long-read assemblies. Matrices under each plot represent pairwise significance calculated 

using a Wilcoxon Rank Sum Test, with p-values adjusted (Benjamini-Hochberg) for multiple 

testing. Effect sizes and 95% confidence intervals can be found in Supplementary Figure 4. 
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Figure 5: Long-read sequencing resolves microdiversity and assembly issues across 

genomic islands in ecologically important viral taxa. A, De Bruijn Graph (DBG) assembly of 

short reads, even with VirION reads for scaffolding failed to assemble the genome of tig404, a 

virus closely related to the globally abundant pelagiphage HTVC010P. Only long-read assembly of 

VirION reads, followed by error correction with short read data was able to capture the complete 

genome on a single 29.2 kbp contig. Subsequent analysis of the assembly revealed six genomic 

islands (GIs) and high levels of nucleotide diversity (𝜋) across the genome that limited De Bruijn 

Graph assembly (both calculated using sliding window analysis of median and maximum values 

within a 200 bp window, respectively). B, Conversely, long VirION reads were capable of spanning 
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these regions across the whole genome and thus enabling assembly. One genomic island on 

tig404 was conserved with that of HTVC010P (inset). Thus, we were able to identify the genomic 

content of this island at the population level by mapping VirION reads to HTVC010P and identifying 

those that spanned the genomic island. Encoded function was then predicted using tBLASTx to 

overcome high sequencing error in uncorrected VirION reads. 

 

 

 

 
Figure 6: Global relative abundances of Western English Channel (WEC) VirION-derived 

viruses. Relative abundances were calculated via competitive recruitment of 10 million sub-

sampled reads from each of 42 samples from the Global Ocean Virome (Roux et al., 2016a). Short 

reads were recruited against a database comprising VirION-derived viral genomes (both scaffolded 

and un-scaffolded De Bruijn Graph (DBG) assemblies and those from error-corrected overlap-

layout consensus (OLC) assembly of VirION long reads) and viral genomes obtained from other 

key viral metagenomic studies (including those which have employed short-read sequencing 

(‘GOV’ (Roux et al., 2016a); ‘Luo 2017’ (Luo et al., 2017)), and long-sequence recovery via Single-

virus genomics (‘vSAG’ (Martinez-Hernandez et al., 2017)), and fosmid libraries (‘fosmid’ (Mizuno 

et al., 2013, 2016))), and viruses (from the NCBI RefSeq database v. 8.4) (all detailed in 

Supplementary Table 2). The Western English Channel sample is indicated with a ‘*’. 
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Figure 7: Ubiquity of long-read derived Western English Channel viruses in Global Ocean 

surface waters. Heatmap shows the top 50 most abundant and ubiquitous (appear in >10% of 

samples) viral contigs in the surface samples of the Global Ocean Virome (Roux et al., 2016a). 

Abundance was calculated via competitive recruitment of 10 million subsampled short reads using 

FastViromeExplorer (Tithi et al., 2018) against: 1) Viral contigs from the Western English Channel; 

2) viral genomes derived from other key viral metagenomic studies (Supplementary Table 2); 3) 

Viruses from the NCBI RefSeq database. Matrix columns are ordered by total abundance across 

all samples. The most abundant contig was H_NODE_1248, which is related at the genus level to 

the ubiquitous pelagiphage vSAG-37-F6. The Western English Channel sample is highlighted in a 

pink box, showing globally ubiquitous and abundant viruses from oceanic provinces were not 

particularly abundant in this coastal sample. 

 

Supplementary Information 

 

Supplementary Table 1. Mock viral community member characteristics 

Phage Taxonomy GC (%) Genome Size (kbp) 

Pseudoalteromonas 
phage HM1 

Myoviridae 35.7 129.4 

Cellulophaga phage 
38:1 

Podoviridae 38.1 72.5 
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Cellulophaga phage 
38:2 

Myoviridae 33.5 54.0 

Pseudoalteromonas 
phage HP1 

Podoviridae 44.7 45.0 

Cellulophaga phage 
18:1 

Siphoviridae 36.5 39.2 

Pseudoalteromonas 
phage HS2 

Siphoviridae 40.2 38.2 

 

 

Supplementary Table 2. The numbers of phage genomes from identified in this study using 

short, hybrid and error-corrected long read assembly of VirION reads, as identified by 

VirSorter (Roux et al., 2015). For comparison important viral metagenomic studies (see 

references) and viruses from ‘RefSeq’ 

VirSorter 
Category 

WEC 
short 

WEC 
hybrid 

WEC long GOV 
(Roux et 
al., 
2016a) 

Luo 2017 
(Luo et 
al., 2017) 

vSAG 
(Martinez-
Hernande
z et al., 
2017) 

RefSeq 

1 158 213 56 2024 112 3 473 

2 715 1173 305 11871 214 34 466 

4 0 1 0 3 0 0 0 

5 6 13 5 37 0 0 9 

Total 879 1400 366 13935 326 37 948 

Prior to quantification of global relative abundances and (shared-protein) clustering, phage genomes were re-analysed 

using VirSorter to ensure uniformity of gene-calling, resulting in above classifications. Note: VirSorter Categories as 

follows: 1 and 4: “most confident” predictions (viral and lysogen, respectively); 2 and 5: “likely” predictions (viral and 

lysogen, respectively). 

 

Supplementary Table 3: Student t-test results to identify significant differences between the 

number of circular viral contigs (as identified by VirSorter (Roux et al., 2015)) from short 

read only vs. hybrid assemblies with VirION reads using metaSPAdes assemblies from 

triplicate random subsamples of short reads across different  levels of sequencing depth. 

Significant differences are highlighted in bold. 

 

Sequencing 
depth (Gbp) 

p-value Mean count of 
circular viral 

contigs (short-
read only) 

Mean count of 
circular viral 

contigs (hybrid) 

Fold-difference 

 3.08 0.26 8.00 13.7 1.71 

 6.17 0.08 11.7 22.7 1.94 

 9.25 0.05 18.3 31.00 1.70 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2018. ; https://doi.org/10.1101/345041doi: bioRxiv preprint 

https://paperpile.com/c/ssJt3i/qxHI
https://paperpile.com/c/ssJt3i/97zA
https://paperpile.com/c/ssJt3i/97zA
https://paperpile.com/c/ssJt3i/97zA
https://paperpile.com/c/ssJt3i/7TZi
https://paperpile.com/c/ssJt3i/7TZi
https://paperpile.com/c/ssJt3i/1Ay3
https://paperpile.com/c/ssJt3i/1Ay3
https://paperpile.com/c/ssJt3i/1Ay3
https://paperpile.com/c/ssJt3i/1Ay3
https://paperpile.com/c/ssJt3i/qxHI
https://doi.org/10.1101/345041
http://creativecommons.org/licenses/by-nd/4.0/


 12.34 0.00 20.7 33.3 1.61 

 15.42 0.04 18.7 36.7 1.96 

 18.50 0.01 23.3 36.0 1.54 

 21.59 0.01 25.3 39.7 1.56 

 

Supplementary Table 4: Student t-test results to identify significant differences between the 

number of viral contigs (as identified by VirSorter (Roux et al., 2015)) from short read only 

vs. hybrid assemblies with VirION reads using metaSPAdes assemblies from triplicate 

random subsamples of short reads across different  levels of sequencing coverage. 

Significant differences are highlighted in bold. 

Sequencing 
depth (Gbp) 

p-value Mean count of 
viral contigs 

(short-read 
only) 

Mean count of 
viral contigs 

(hybrid) 

Fold-difference 

 3.08 0.00 373.0 552.3 1.48 

 6.17 0.00 752.0 889.7 1.18 

 9.25 0.02 1038.3 1100.0 1.06 

 12.34 0.17 1300.0 1330.3 1.02 

 15.42 0.32 1497.0 1507.3 1.01 

 18.50 0.33 1651.0 1672.7 1.01 

 21.59 0.96 1810.67 1811.67 1 
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Supplementary Figure 1 - (A) Bioanalyzer (Agilent) electropherogram showing the fragment 

length distribution of linker-amplified mock viral community DNA produced from 20 ng template 

DNA sheared to ~8kbp. Amplicon length peaked at ~5.4 Kbp, demonstrating PCR preference for 

amplification of shorter DNA fragments; (B) Read length distribution of VirION mock viral 

community amplicons (as shown in ‘A’; red dashed lines indicate approximate length of sheared 

template DNA); mean average read length was ~4 kbp, likely due to preferential sequencing of 

shorter DNA fragments. 
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Supplementary Figure 2: Impact of using short read sequencing to error correct overlap layout 

consensus-derived contigs with Pilon shows that approximate limits of the number of insertions 

and deletions that can be fixed is reached at ~9 Gbp of data (median coverage of ~70). Analysis 

was performed against the full contig set from Overlap layout consensus assembly (n=1500). 
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Supplementary Figure 3: Difference and 95% CI of median predicted protein length of 

different assembly types to evaluate the impact of sequencing error and error correction of 

VirION reads with short-read data. Median predicted protein length of 1000 randomly selected 

proteins was calculated and compared to a similar treatment of proteins from a RefSeq v.8.4 

Caudovirales database to measure effect size (Cumming, 2014). This process was bootstrapped 

1,000 times to provide 95% confidence intervals. The distributions on the graph represent 

distributions of differences in medians. The median effect size (bold number) and the 95% CI 

boundaries (black line under each distribution, and numbers in brackets) are shown. 
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Supplementary Figure 4 - Effect size and bootstrapped median 95% CI intervals for impact of 

different assembly types on (A) genomic island length and (B) genomic island density (kbp of 

genomic island per kbp of genome). Values in boxes represent the median difference between 

1000 bootstrapped medians (95% CI). Green boxes represent significant (p<0.05) differences 

calculated with a Wilcoxon Rank Sum test. 
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Supplementary Figure 5: Evaluation of genome-wide nucleotide diversity (𝜋) in WEC viral 

contigs derived from dereplicated short- and hybrid- De Bruijn Graph Assembly  compared 

to those from long-read assembly of VirION reads polished with short read data. The 

datapoint for long-read assembled contig tig404 (described in the main text) is highlighted; this 

virus belongs in the same viral cluster as pelagiphage HTVC010P, an abundant phage that fails to 

assemble in metagenomic datasets, potentially due to high microdiversity. 

 

 

 

 
Supplementary Figure 6: Alignment of the genome of HTVC010P with tig404 assembled 

using the VirION pipeline. Genomes were 89% identical at nucleotide in shared regions and both 

shared a conserved genomic island (green) bounded by structural proteins. Genome alignments 

were produced by Mauve (Darling et al., 2004) within the Geneious software (Kearse et al., 2012). 
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Supplementary Figure 7: Top 50 most abundant viral contigs in a Western English Channel 

virome. Estimated relative abundances of the Western English Channel viral contigs were 

calculated by competitive recruitment of short reads back to viral contigs derived from the VirION 

bioinformatics pipeline using FastViromeExplorer (Tithi et al., 2018). 60% of the top 50 most 

abundant viruses are detected only in the error-corrected overlap layout consensus assemblies. 

 

 
Supplementary Figure 8 - The longest complete viral genome from our study was 

H_NODE_6 at 316 kbp in length, captured by scaffolding of a De Bruijn Graph assembly using 

VirION reads (red). Alignment of short read only contigs (blue) against the complete genome show 

the full length is only captured by the scaffolding approach, whereas the short-read approach 

results in a breakage at ~205 kbp (grey box). Coverage and Shannon Entropy are both shown as 

median values of a 200 bp sliding window, with 100 bp overlap. 
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