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Abstract

Data management and publication are core components of the research process. An emerging
challenge that has received limited attention in biology is managing, working with, and providing
access to data under continual active collection. “Living data” present unique challenges in
quality assurance and control, data publication, archiving, and reproducibility. We developed a
living data workflow for a long-term ecological study that addresses many of the challenges
associated with managing this type of data. We do this by leveraging existing tools to: 1)
perform quality assurance and control; 2) import, restructure, version, and archive data; 3)
rapidly publish new data in ways that ensure appropriate credit to all contributors; and 4)
automate most steps in the data pipeline to reduce the time and effort required by researchers.
The workflow uses two tools from software development, version control and continuous
integration, to create a modern data management system that automates the pipeline.

Introduction

Over the past few decades, biology has transitioned from a field where data are collected in
hand-written notes by lone scientists, to an endeavor that increasingly involves large research
teams coordinating data collection activities across multiple locations and data types. While
there has been much discussion about the impact of this transition on the amount of data being
collected (Hampton et al., 2013; Marx, 2013), there has also been a revolution in the frequency
with which we collect those data. Instead of one-time data collection, biologists are increasingly
asking questions and collecting data that require continually updating databases with new
information. Long-term observational studies, experiments with repeated sampling, use of
automatic sensors (e.g., temperature probes and satellite collars), and ongoing literature mining
to build data compilations all produce continually-updating data. These data are being used to
ask questions and design experiments that take advantage of regularly updating data streams:
e.g., adaptive monitoring and management (Lindenmayer & Likens, 2009), iterative near-term
forecasting (Dietze et al., 2018), detecting and preventing ecological transitions (Carpenter et
al., 2011), and real-time cancer metabolism (Misun, Rothe, Schmid, Hierlemann, & Frey, 2016).
Thus, whether studying changes in gene expression over time or the long-term population
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dynamics of organisms, living data--data that are being analyzed while they are still undergoing
data collection--is becoming a pervasive aspect of biology.

Because living data are frequently updated, even during analysis, they present unique
challenges for effective data management. These challenges have received little attention,
especially regarding data that are collected by individual labs or small teams. All data must
undergo quality assurance and quality control (QA/QC) protocols before being analyzed to find,
correct, or flag inaccuracies due to data entry errors or instrument malfunctions. If data
collection is finite, or if analysis will not be conducted until data collection is completed, these
activities can be conducted on all of the data at once. Living data, however, are continually
being collected, and new data require QA/QC before being added to the core database. This
continual QA/QC demand places an extra burden on data managers and increases the potential
for delays between when data are collected and when they are available to researchers to
analyze. Thus, to be maximally useful, living datasets require protocols that promote rapid,
ongoing data entry (either from field or lab notes or downloads from instrument data) while
simultaneously detecting, flagging, and correcting data issues.

The need to analyze data still undergoing collection also presents challenges for managing data
availability, both within research groups and while sharing with other research groups. By
definition, continually-updating data regularly creates new versions of the data, resulting in
different versions of the same dataset undergoing analysis at different times and by different
researchers. Understanding differences in analyses over time or across researchers becomes
more difficult if it is unclear which version of the data is being analyzed. This is particularly
important for making research in biology more reproducible (Hampton et al., 2013; Errington et
al., 2014). Efforts to share data with outside groups will encounter many of the same issues as
sharing within a group. These challenges are magnified by the fact that the archiving solutions
available to individual researchers (e.g. data papers, archiving of data as part of publications)
treat data as largely static, which creates challenges for updating these data products. This
static view of data publication also makes providing credit to data contributors challenging as
new contributors become involved in collecting data for an existing data stream. Properly
crediting data collectors is viewed as an essential component of encouraging the collection and
open provision of valuable datasets (Reichman, Jones, & Schildhauer, 2011; Molloy, 2011).
However, the most common approaches to citing and tracking data typically fail to properly
acknowledge contributors to living datasets who join the project after the initial data paper or
scientific paper is published, even when a more recent version is being analyzed.

Strategies for managing large amounts of continually-updated data exist in biology, but these
are generally part of large, institutionalized data collection efforts with dedicated informatics
groups, such as the U.S. National Ecological Observatory Network (NEON,
https://www.neonscience.org), the National Center for Biotechnology Information (NCBI,
https://www.ncbi.nlm.nih.gov), and the Australian Terrestrial Ecosystem Research Network
(TERN, http://www.tern.org.au). As the frequency with which new data are added increases, it
becomes more and more difficult for humans to manually provide data preparation and quality
control (i.e., manual data checks, importing into spreadsheets for summarizing), making
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automated approaches increasingly important. Institutionalized data collection efforts include
data management workflows to automate many aspects of the data management pipeline.

75 These procedures include software that automates quality checks, flags data entry or
measurement errors, integrates data from sensors, and adds quality-checked data into
centralized database management systems. Developing systems like these typically requires
dedicated informatics professionals, a level of technical support not generally available to
individual researchers or small research groups that lack the funding and infrastructure to

80  develop and maintain complex data management systems.

As a small group of researchers managing an ongoing, long-term research project, we have
grappled with the challenges of managing living data and making them publicly available. Our
research involves automated and manual data collection efforts, at daily through annual
frequencies, conducted over forty years by a regularly changing group of personnel who all

85 deserve credit for their contributions to the project. Thus, our experience covers much of the
range of living data challenges that biologists are struggling to manage. We designed a modern
workflow system to expedite the management of data streams ranging from weather data
collected hourly by automated weather stations to plant and animal data recorded on
datasheets in the field. We use a variety of tools that range from those commonly used in

90  biology (e.g., MS Excel and programming in high-level languages like R or Python) to tools that
biology is just beginning to incorporate (e.g., version control, continuous integration). Here, we
describe the steps in our processes and the tools we use to allow others to implement similar
living data systems.

Implementing a modern data workflow

Setting up a data management system for automated management of continually-collected data
95 may initially seem beyond the skill set of most empirically-focused lab groups. The approach we

have designed, and describe below, does require some level of familiarity and comfort with
computational tools such as a programming language (e.g., Python or R) and a version control
system (e.g., git). However, data management and programming are increasingly becoming
core skills in biology (Hampton et al., 2017), even for empirically-focused lab groups, and

100 training in the tools we used to build a living data management system is available at many
universities or through workshops at conferences. In designing and building the infrastructure for
our study, our group consisted primarily of field ecologists, who received their training in this
manner, and assistance from a computational ecologist for help figuring out overall design and
implementation of some of the more advanced aspects. We have aimed this paper, and our

105 associated tutorial, at empirical groups with little background in the tools or approaches we
implemented. Our goal is to provide an introduction to the concepts and tools, general
information on how such a system can be constructed, and assistance--through our tutorial--for
building basic living data management systems. Readers interested in the specific details of our
implementation are encouraged to peruse our active living data repository

110 (www.github.com/weecology/PortalData).
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The model system

Our living data are generated by the Portal Project, a long-term study in ecology that is currently
run by our research group (Ernest et al., 2018). The project was established in 1977 in the
southwestern United States to study competition among rodents and ants, and the impact of
these species on desert plants (Brown, 1998). This study produces several long-term living

115 data sets. We collect these data at different frequencies (hourly, monthly, biannually, and
annually), and each dataset presents its own challenges. Data on the rodents at the site are
collected monthly on uniquely-tagged individuals. These data are the most time-intensive to
manage because of how they are recorded (on paper datasheets), the frequency with which
they are collected (every month), and the extra quality control efforts required to maintain

120 accurate individual-level data. Data on plant abundances are collected twice a year on paper
datasheets. These data are less intensive to manage because data entry and quality control
activities are more concentrated in time and more limited in effort. We also collect weather data,
generated hourly, which we download weekly from an automated weather station at the field
site. Because we do not transcribe these data, there are no human-introduced errors. We

125 perform weekly quality control efforts for these data, to check for issues with the sensors,
including checking for abnormal values and comparing output to regional stations to identify
extreme deviations from regional conditions. Given the variety of data that we collect, we require
a generally flexible approach for managing the data coming from our study site. The diversity of
living data that we manage makes it likely that our data workflow will address many of the data

130 management situations that biologists collecting living data regularly encounter.

Data Management Tools

To explain the workflow, we break it into steps focused on the challenges and solutions for each
part of the overall data workflow (Figure 1). In the steps described below, we also discuss a
series of tools we use which may not be broadly familiar across all fields of biology. We use R
(R Development Core Team, 2018), an open-source programming language commonly used in

135 ecology, to write code for acquiring and managing data and comparing files. We chose R
because it is widely used in ecology and is a language our team was already familiar with. To
provide a central place for storing and managing our data, we use GitHub (Box 1;
https://github.com), an online service used in software development for managing version
control. Version control systems are used in software development to provide a centralized way

140 for multiple people to work on code and keep track of all the changes being made (Wilson et al.,
2014). To help automate running our data workflow (so that it runs regularly without a person
needing to manually run all the different pieces of code required for quality control, updating
tables and other tasks), we expand on the idea of continuous analysis proposed by
Beaulieu-Jones and Greene (2017) by using a continuous integration service to automate data

145 management (see Box 2). In a continuous integration workflow, the user designates a set of
commands (in our case, this includes R code to error-check new data and update tables), which
the continuous integration service runs automatically when data or code is updated or at
user-specified times. We use a continuous integration service called Travis
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(https://travis-ci.com/), but there are several other options available including other services

150 (e.g., AppVeyor https://www.appveyor.com/) and systems that can be run locally (e.g., Jenkins;
https://jenkins.io/). Other tools are used for only small, distinct tasks in the pipeline and are
described as needed. All of the code we use in our data management process can be found in
our GitHub repository (https://github.com/weecology/PortalData) and is archived on Zenodo
(https://zenodo.org/record/1219752).

# Travis Cl
& Git/Github
(T I
PR . m m
Automated
Data Entr Manual QC
y S QA/QC
Rodent data - monthly Compare Run checks for valid Weather data Github-Zenodo
Plant data - biannually double-entered data values (species, integration
measurements, plot Census information
Restricted fields in assignments) Archived when a new
Excel templates Unit tests version is released

Submit pull request
Entered separately by
two individuals Unit tests

155 Figure 1: Our data workflow

QA in data entry

For data collected onto datasheets in the field, the initial processing requires human interaction
to enter the data and check that data entry for errors. Upon returning from the field, new data
are manually entered into Excel spreadsheets by two different people. We use the “data
validation” feature in Excel to restrict possible entries as an initial method of quality control. This
160 feature is used to restrict accepted species codes to those on a pre-specified list and restrict the
numeric values to allowable ranges. The two separately-entered versions are compared to each
other using an R script to find errors from data entry. The R script detects any discrepancies
between the two versions and returns a list of row numbers in the spreadsheet where these
discrepancies occur, which the researcher then uses to compare to the original data sheets and
165 fix the errors.

Adding data to databases on GitHub

To add data (or correct errors) to our master copy of the database, we use a system designed
for managing and tracking changes to files called version control. Version control was originally
designed for tracking changes to software code, but can also be used to track changes to any
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digital file, including datafiles. We use a specific version control system, git and the associated

170 GitHub website, for managing version control (see Box 1 for details; https://www.github.com).
We store the master version of the Portal data files on GitHub’s website
(https://github.com/weecology/PortalData). The data, along with the code for data management,
are stored in the version control equivalent of a folder, called a repository. Through this online
repository, everyone in the project has access to the most up-to-date, or “master”, version of

175 both the data and the data management code. To add or change data in this central repository
we edit a copy of the repository on a user’s local computer, save the changes along with a
message describing their purpose, and then send a request through GitHub to have these
changes integrated into the central repository (Box 1). This version control based process
retains records of every change made to the data along with an explanation of that change. It

180 also makes it possible to identify changes between different stages and go back to any previous
state of the data. As such, it protects data from accidental changes and makes it easier to
understand the provenance of the data.

Automated QA/QC and human review

Another advantage of this version control based system is that it makes it relatively easy to
automate QA/QC checks of the data and facilitates human review of data updates. Once the

185  researcher has updated their local copy of the database they create a “pull request” (i.e. a
request for someone to pull the user’s changes into the master copy). This request
automatically triggers the continuous integration system to run a predetermined set of QA/QC
checks. These QA/QC checks check for validity and consistency both within the new data (e.g.,
checking that all plot numbers are valid and that every quadrat in each plot has data recorded)

190 and between the old and new data (e.g., ensuring that species identification is consistent for
recaptured rodents with the same identifying tag). This QA/QC system is essentially a series of
unit tests on the data. Unit testing is a software testing approach that checks to make sure that
pieces of code work in the expected way (Wilson et al., 2014). We use tests, written using the
“testthat™ package (Wickham, 2011), to ensure that all data contain consistent, valid values. If

195 these checks identify issues with the data they are automatically flagged in the pull request
indicating that they need to be fixed before the data are added to the main repository. The
researcher then identifies the proper fix for the issue, fixes it in their local copy, and updates the
pull request, which is then retested to ensure that the data pass QA/QC before it is merged into
the main repository.

200 In addition to automated QA/QC, we also perform a human review of any field entered data
being added to the repository. At least one other researcher--specifically not the researcher who
initiated the pull request--reviews the proposed changes to identify any potential issues that are
difficult to identify programmatically. This is facilitated by the pull request functionality on GitHub,
which shows this reviewer only the lines of data that have have been changed. Once the

205 changes have passed both the automated tests and human review, a user confirms the merge
and the changes are incorporated into the master version of the database. Records of pull
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requests that have been merged with the main dataset are retained in git and on GitHub, and it
is possible to revert to previous states of the data at any time.

Automated updating of supplemental tables

Once data from the field is merged into the main repository, there are several supplemental data

210 tables that need to be updated. These supplemental tables often contain information about each
data collection event (e.g., sampling intensity, timing) that cannot be efficiently stored in the
main data file. For example, as a supplemental table to our plant quadrat data, we have a
separate table containing information on whether or not each of the 384 permanent quadrats
was sampled during each sampling period. This table allows us to distinguish “true zeros” from

215 missing data. Since this information can be derived from the entered data, we have automated
the process of updating this table (and others like it) in order to reduce the time and effort
required to incorporate new sampling events into the database. For each table that needs to be
updated, we wrote a function to: i) confirm that the supplemental table needs to be updated, ii)
extract the relevant information from the new data in the main data table, and iii) append the

220 new information to the supplemental table. The update process is triggered by the addition of
new data into one of the main data tables, at which point the continuous integration service
executes these functions (see Box 2). As with the main data, automated unit tests ensure that
all data values are valid and that the new data are being appended correctly. Automating
curation of these supplemental tables reduces the potential for data entry errors and allows

225  researchers to allocate their time and effort to tasks that require intellectual input.

Automatically integrating data from sensors

We collect weather data at the site from an on-site weather station that transmits data over a
cellular connection. We also download data from multiple weather stations in the region whose
data is streamed online. We use these data for ecological forecasting (White et al., 2018) which
requires the data to be updated in the main database in near real-time. While data collected by
230 automated sensors do not require steps to correct human-entry errors, they still require QA/QC
for sensor errors and the raw data need to be processed into the most appropriate form for our
database. To automate this process, we developed R scripts to download the data, transform
them into the appropriate format, and automatically update the weather table in the main
repository. This process is very similar to that used to automatically update supplemental tables
235  for the human-generated data. The main difference is that, instead of humans adding new data
through pull requests, we have scheduled the continuous integration system to download and
add new weather data weekly. Since weather stations can produce erroneous data due to
sensor issues (our station is occasionally struck by lightning resulting in invalid values), we also
run basic QA/QC checks on the downloaded data to make sure the weather station is producing
240 reasonable values before the data are added. Errors identified by these checks will cause our
continuous integration system to register an error indicating that they need to be fixed before the
data will be added to the main repository (similar to the QA/QC process described above). This
process yields fully automated collection of weather data in near real-time. Automation of this
process has the added benefit of allowing us to monitor conditions in the field and the weather
245 station itself. We know what conditions are like at the site in advance of trips to the field and if
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there are issues with the weather station we can come prepared to fix them rather than
discovering the problem unexpectedly when we arrive at our remote field site.

Versioning

A common issue with living datasets is that the data available at one point in time are not the
same as the data at some point in the future. The evolving nature of living data can cause

250 difficulties for precisely reproducing prior analyses. This issue is rarely addressed at all, and
when it is the typical approach is only noting the date on which the data were accessed. Noting
the date acknowledges the continually changing state of the data but does not address
reproducibility issues unless copies of the data for every possible access date are available. To
address this issue, we automatically make a “release” every time new data is added to the

255  database using the GitHub API. This is modeled on the concept of releases in software
development, where each “release” points to a specific version of the software that can be
accessed and used in the future even as the software continues to change. By giving each
change to the data a unique release code (known as a “version”), the specific version of the
data used for an analysis can be referenced directly, and this exact form of the data can be

260 downloaded to allow fully reproducible analyses even as the dataset is continually updated. This
solves a commonly experienced reproducibility issue, that occurs both within and between labs,
where it is unclear whether differences in results are due to differences in the data or the
implementation of the analysis. We name the versions following the newly developed
Frictionless Data data-versioning guidelines, where data versions are composed of three

265 numbers: a major version, a minor version, and a “patch” version
(https://frictionlessdata.io/specs/patterns/). For example, the current version of the datasets is
1.34.0, indicating that the major version is 1, the minor version is 34, and the patch version is 0.
The major version is updated if the structure of the data is changed in a way that would break
existing analysis code. The minor version is updated when new data are added, and the patch

270 version is updated for fixes to existing data.

Archiving

Through GitHub, researchers can make their data publicly available by making the repository
public, or they can restrict access by making the repository private and giving permissions to
select users. While repository settings allow data to be made available within or across research
groups, GitHub does not guarantee the long-term availability of the data. GitHub repositories

275 can be deleted at any time by the repository owners, resulting in data suddenly becoming
unavailable (Bergman, 2012; White, 2015). To ensure that data are available in the long-term
(and satisfy journal and funding agency archiving requirements), data also need to be archived
in a location that ensures data availability is maintained over long periods of time (Bergman,
2012; White, 2015). While there are a variety of archiving platforms available (e.g., Dryad,

280 FigShare), we chose to permanently archive our data on Zenodo, a widely used general
purpose repository that is actively supported by the European Commission. We chose Zenodo
because there is already a GitHub-Zenodo integration that automatically archives the data every
time it is updated as a release in our repository. Zenodo incorporates the versioning described
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above so that version information is available in the permanently archived form of the data.

285 Each version receives a unique DOI (Digital Object Identifier) to provide a stable web address to
access that version and a top-level DOI is assigned to the entire archive, which can be used to
collectively reference all versions of the dataset. This allows someone publishing a paper using
the Portal Project data to cite the exact version of the data used in their analyses to allow for
fully reproducible analyses and to cite the dataset as a whole to allow accurate tracking of the

290 usage of the dataset.

Citation and authorship

Providing academic credit for collecting and sharing data is essential for a healthy ecosystem
supporting data collection and reuse (Reichman, Jones, & Schildhauer, 2011; Molloy, 2011). The
traditional solution has been to publish “data papers” that allow a dataset to be treated like a
publication for both reporting as academic output and tracking impact and usage through

295  citation. This is how the Portal Project has been making its data openly available for the past
decade, with data papers published in 2009 and 2016 (Ernest et al., 2009; Ernest et al., 2016).
Because data papers are modelled after scientific papers they are static in nature and therefore
have two major limitations for use with living data. First, the current publication structure does
not lend itself to data that are regularly updated. Data papers are typically time-consuming to put

300 together, and there is no established system for updating them. The few long-term studies that
publish data papers have addressed this issue by publishing new papers with updated data
roughly once every five years (e.g., Ernest et al. 2009 and 2016, Clark and Clark, 2000 and
2006). This does not reflect that the dataset is a single growing entity and leads to very slow
releases of data. Second, there is no mechanism for updating authorship on a data paper as

305 new contributors become involved in the project. In our case, a new research assistant joins the
project every one to two years and begins making active contributions to the dataset. Crediting
these new data collectors requires updating the author list while retaining the ability of citation
tracking systems like Google Scholar to track citation. An ideal solution would be a data paper
that can be updated to include new authors, mention new techniques, and link directly to

310 continually-updating data in a research repository. This would allow the content and authorship
to remain up to date while recognizing that the dataset is a single living entity. We have
addressed this problem by writing a data paper (Ernest et al., 2018) that currently resides on
bioRxiv, a pre-print server widely used in the biological sciences. BioRxiv allows us to update
the data paper with new versions as needed, providing the flexibility to add information on

315 existing data, add new data that we have made available, and add new authors. Like the
Zenodo archive, BioRxiv supports versioning of preprints, which provides a record of how and
when changes were made to the data paper and authors are added. Google Scholar tracks
citations of preprints on bioRxiv, providing the documentation of use that is key to tracking the
impact of the dataset and justifying its continued collection to funders.

Open licenses

320 Open licenses can be assigned to public repositories on GitHub, providing clarity on how the
data and code in the repository can be used (Wilson et al., 2014). We chose a CCO license that
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releases our data and code into the public domain, but there are a variety of license options that
users can assign to their repository specifying an array of different restrictions and conditions for
use. This same license is also applied to the Zenodo archive.

Discussion

325  Data management and sharing are receiving increasing attention in science, resulting in new
requirements from journals and funding agencies. Discussions about modern data management
focus primarily on two main challenges: making data used in scientific papers available in useful
formats to increase transparency and reproducibility (Reichman, Jones, & Schildhauer, 2011;
Molloy, 2011) and the difficulties of working with exceptionally large data (Marx, 2013). An

330 emerging data management challenge that has received significantly less attention in biology is
managing, working with, and providing access to data that are undergoing continual active
collection. These data present unique challenges in quality assurance and control, data
publication, archiving, and reproducibility. The workflow we developed for our long-term study,
the Portal Project (Ernest et al., 2018), solves many of the challenges of managing this “living

335  data”. We employ a combination of existing tools to reduce data errors, import and restructure
data, archive and version the data, and automate most steps in the data pipeline to reduce the
time and effort required by researchers. This workflow expands the idea of continuous analysis
(sensu Beaulieu-Jones and Greene, 2017) to create a modern data management system that
uses tools from software development to automate the data collection, processing, and

340 publication pipeline.

We use our living data management system to manage data collected both in the field by hand
and automatically by machines, but our system is applicable to other types of data collection as
well. For example, teams of scientists are increasingly interested in consolidating information
scattered across publications and other sources into centralized databases: e.g., plant traits

345  (Kattge et al., 2011), tropical diseases (Hurlimann et al., 2011), biodiversity time series
(Dornelas & Willis, 2017), vertebrate endocrine levels (Vitousek et al., 2018), and microRNA
target interactions (Chou et al., 2016). Because new data are always being generated and
published, literature compilations also have the potential to produce living data like field and lab
research. Whether part of a large, international team such as the above efforts or single

350  researchers interested in conducting meta-analyses, phylogenetic analyses, or compiling DNA
reference libraries for barcodes, our approach is flexible enough to apply to most types of data
collection activities where data need to be ready for analysis before the endpoint is reached.

The main limitation on the infrastructure we have designed is that it cannot handle truly large

data. Online services like GitHub and Travis typically limit the amount of storage and compute
355 time that can be used by a single project. GitHub limits repository size to 1 GB and file size to

100 MB. As a result, remote sensing images, genomes, and other data types requiring large

amounts of storage will not be suitable for the GitHub-centered approach outlined here. Travis

limits the amount of time that code can run on its infrastructure for free to one hour. Most

research data and data processing will fit comfortably within these limits (the largest file in the
360  Portal database is currently <20 MB and it takes <15 minutes for all data checking and
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processing code to run), so we think this type of system will work for the majority of research
projects. However, in cases where larger data files or longer run times are necessary, it is
possible to adapt our general approach by using equivalent tools that can be run on local
computing resources (e.g, GitLab for managing git repositories and Jenkins for continuous

365  integration) and using tools that are designed for versioning large data (e.g., Ogden, McKelvey,
& Madsen, 2017).

One advantage of our approach to these challenges is that it can be accomplished by a small
team composed of primarily empirical researchers. However, while it does not require dedicated
IT staff, it does require some level of familiarity with tools that are not commonly used in biology.
370 To implement this approach, many research groups will need computational training or
assistance. The use of programming languages for data manipulation, whether in R, Python, or
another language, is increasingly common, and many universities offer courses that teach the
fundamentals of data science and data management (e.qg.,
http://www.datacarpentry.org/semester-biology/). Training activities can also be found at many
375 scientific society meetings and through workshops run by groups like The Carpentries, a
non-profit group focused on teaching data management and software skills--including git and
GitHub--to scientists (https://carpentries.org/). A set of resources for learning the core skills and
tools discussed in this paper is provided in Box 3. The most difficult to learn tool is continuous
integration, both because it is a more advanced computational skill not covered in most biology
380 training courses, and because existing documentation is primarily aimed at people with high
levels of technical training (e.g., software developers). To help researchers implement this
aspect of the workflow, including the automated releasing and archiving of data, we have
created a starter repository including reusable code and a tutorial to help researchers set up
continuous integration and automated archiving using Travis for their own repository
385  (http://github.com/weecology/livedat). The value of the tools used here emphasizes the need for
more computational training for scientists at all career stages, a widely recognized need in
biology (Barone, Williams, & Micklos, 2017; Hampton et al., 2017). Given the importance of
rapidly available living data for forecasting and other research, training, supporting, and
retaining scientists with advanced computational skills to assist with setting up and managing
390 living data workflows will be an increasing need for the field.

Living data is a relatively new data type for biology and one that comes with a unique set of
computational challenges. While our data management approach provides a prototype for how
research groups without dedicated IT support can construct their own pipelines for managing
this type of data, continued investment in this area is needed. Our hope is that our approach

395 serves as a catalyst for tool development that makes implementing living data management
protocols increasingly accessible. Investments in this area could include improvements in tools
implementing continuous integration, performing automated data checking and cleaning, and
managing living data. Additional training in automation and continuous analysis for biologists will
also be important for helping the scientific community advance this new area of data

400 management. These investments will help decrease the current management burden of living
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data, which will allow researchers to make data available more quickly and effectively and let
them spend more time collecting and analyzing data than managing it.
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Boxes

Box 1: Version controlling data using git and Github

Version control systems are a set of tools for continually tracking and archiving changes made
to a set of files. These systems were originally designed to facilitate collaborative work on
software that was being continuously updated but can also be used when working with
moderately sized data files. Version control tracks information about changes to files using
500 “commits,” which record the precise changes made to a file or group of files along with a
message describing why those changes were made. We use one of the most popular version
control systems, git, along with an online system for managing shared git repositories, GitHub.

Repository
weecology/PortalData/
master

Vo A
I,.f'f/ ¢\§:\_._ Pull request:
4 \|  request to add
o | changed files to
d ‘.""3‘*' | ) the online
ownloada | | repository
local copy of |\
the repository A\ A
N user1/PortalData/ /I
v master o s

n N Commit:

k‘ / document
4 changes to

files

Version controlled projects are stored in “repositories,” (akin to a folder) and there is typically a
central copy of the repository online to allow collaboration. In our case, this is our main GitHub

505 repository that is considered to be the official version of the data
(https://github.com/weecology/PortalData). Users can edit this central repository directly, but
usually users create their own copies of the main repository called “forks” or “clones”. Changes
made to these copies do not automatically change the main copy of the repository. This allows
users to have one or more copies of the master version where they can make and check

510 changes (e.g., adding data, changing data-cleaning code) before they are added to the main
repository. As the user makes changes to their copy of the repository, they document their work
by “committing” their changes. The version control system maintains a record of each commit,
and it is possible to revert to past states of the data at any time. Once a set of changes is
complete, they can be “merged” into the main repository through a process called a “pull
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915 request”’. A pull request is a request by a user for someone to merge their changes into the main
repository holding the primary copy of the data or code (a request that your changes be “pulled”
into the main repository). As part of the pull request process, Github highlights all of the changes
from the master version (additions or deletions), making it easy to see what changes are being
proposed and determine whether they are good changes to make. Pull requests can also be

520 automatically tested to make sure that the proposed changes do not alter the core functionality
of the code or the core requirements of the data. Once the pull request is accepted, those
changes become part of the main repository, but can be undone at any time if needed.
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Box 2: Travis

Continuous integration is a practice used in software engineering to automate testing and
integrate new code into the main code base of a project. While designed as a software

525  development tool, continuous integration has features which are useful for automating the
management of living data: it detects changes in files, automates running code, and tests output
for consistency. Because these tasks are also useful in a research context, this lead to the
suggestion that continuous analysis could be used to drive research pipelines (Beaulieu-Jones
and Greene, 2017). We expand on this concept by applying continuous integration to the

530 management of living data.

The continuous integration service that we use to manage our living data is Travis (travis-ci.org),
which integrates easily with Github. We tell Travis which tasks to perform by including a
fravis.yml file (example below) in the GitHub repository containing our data, which is then
executed whenever Travis is triggered.

535 Below is the Portal Data .travis.yml file and how it specifies the tasks Travis is to perform. First,
Travis runs an R script that will install all R packages listed in the script (the “install:” step). It
then executes a series of R scripts that update tables and run QA/QC tests in the Portal Data
repository (the “script:” step):

Update the regional weather tables [line 10]
Run the tests (using the testthat package) [line 11]
Update the weather tables from our weather station [line 12]
Update the rodent trapping table (if new rodent data have been added, this table will
grow, otherwise it will stay the same) [line 13]
e Update the plots table (if new rodent data have been added, this table will grow,
545 otherwise it will stay the same) [line 14]
e Update the new moons table (if new rodent data have been added, this table will grow,
otherwise it will stay the same) [line 15]
e Update the plant census table (if new plant data have been added, this table will grow,
otherwise it will stay the same) [line 16]

540

550 If any of the above scripts fail, the build will stop and return an error that will help users
determine what is causing the failure.

Once all the above steps have successfully completed, Travis will perform a final series of tasks
(the “after_success:” step):

1. Make sure Travis’ session is on the master branch of the repo
555 2. Run an R script to update the version of the data (see the versioning section for more
details)
3. Run a script that contains git commands to commit new changes to the master branch of
the repository.
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travis.yml:

language: r

cache: packages

sudo: false
warnings_are_errors: false

install:
- Rscript install-packages.R

script:
- R -e 'setwd("DataCleaningScripts"); source("get_regional_weather.R"); append_regional_weather()"'
- Rscript testthat.R
- R -e 'setwd("DataCleaningScripts"); source("new_weather_data.R"); append_weather()'
- R -e 'setwd("DataCleaningScripts"); source("update_portal_rodent_trapping.r"); writetrappingtable()"’

- R -e 'setwd("DataCleaningScripts"); source("new_moon_numbers.r"); writenewmoons()'

(
- R -e 'setwd("DataCleaningScripts"); source("update_portal_plots.R"); writeportalplots()"
(
- R -e 'setwd(

'DataCleaningScripts"); source("update_portal_plant_censuses.R"); writecensustable()'

after_success:
- git checkout master
- Rscript update_version.R
- bash update_repo.sh

560 Travis not only runs on the main repository, but also runs its tests on pull requests before they
are merged. This automates the QA/QC and allows detecting data issues before changes are
made to the main datasets or code. If the pull request causes no errors when Travis runs it, it is
ready for human review and merging with the repository. After merging, Travis runs again in the
master branch, committing any changes to the data to the main database. Travis runs whenever

565 pull requests are made or changes detected in the repository, but can also be scheduled to run
automatically at time intervals specified by the user, a feature we use to download data from our
automated weather station.

18


https://doi.org/10.1101/344804
http://creativecommons.org/licenses/by/4.0/

570

575

580

585

bioRxiv preprint doi: https://doi.org/10.1101/344804; this version posted June 12, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Box 3: Resources

Get Started
Living Data Starter Repository: http://github.com/weecology/livedat

Open Source Licenses: https://choosealicense.com/
Unit Testing with the testthat package: http://r-pkgs.had.co.nz/tests.html

Data Validation in Excel:
https://support.microsoft.com/en-us/help/211485/description-and-examples-of-data-validation-in-
excel

Stack Overflow: https://stackoverflow.com/

Git/Git Hosts
Resources to learn git: https://try.github.io/

GitHub Learning Lab: https://lab.github.com/
Learn Git with Bitbucket: https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud
Get Started with GitLab: https://docs.gitlab.com/ee/intro/

GitHub-Zenodo Integration: https://guides.github.com/activities/citable-code/

Continuous Integration

Version Control for Beginners: https://www.atlassian.com/git/tutorials

Travis Core Concepts for Beginners: https://docs.travis-ci.com/user/for-beginners/
Getting Started with Travis: https://docs.travis-ci.com/user/getting-started/

Getting Started with Jenkins: https://jenkins.io/doc/pipeline/tour/getting-started/

Jenkins learning resources: https://dzone.com/articles/the-ultimate-jenkins-ci-resources-guide

Training

The Carpentries: https://carpentries.org/
Data Carpentry: http://www.datacarpentry.org/

Software Carpentry: https://software-carpentry.org/
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Glossary

Cl/continuous integration: (also see Box 2) the continuous application of quality control. A
practice used in software engineering to continuously implement processes for automated
590  testing and integration of new code into a project.

Git: (also see Box 1) Git is an open source program for tracking changes in text files (version
control), and is the core technology that GitHub, the social and user interface, is built on top of.

GitHub: (also see Box 1) a web-based hosting service for version control using git.

Github-Travis integration: connects the Travis continuous integration service to build and test
595 projects hosted at GitHub. Once set up, a GitHub project will automatically deploy Cl and test
pull requests through Travis.

Github-Zenodo integration: connects a Github project to a Zenodo archive. Zenodo takes an
archive of your GitHub repository each time you create a new release.

Living data: data that continue to be updated and added to, while simultaneously being made
600  available for analyses. For example: long-term observational studies, experiments with repeated
sampling, data derived from automated sensors (e.g., weather stations or GPS collars).

Pull request: A set of proposed changes to the files in a GitHub repository made by one
collaborator, to be reviewed by other collaborators before being accepted or rejected.

QA/QC: Quality Assurance/Quality Control. The process of ensuring the data in our repository
605  meet a certain quality standard.

Repository: a location (folder) containing all the files for a particular project. Files could include
code, data files, or documentation. Each file’s revision history is also stored in the repository.

testthat: an R package that facilitates formal, automated testing

Travis CI: (also see Box 2) a hosted continuous integration service that is used to test and build
610  GitHub projects. Open source projects are tested at no charge.

unit test: a software testing approach that checks to make sure that pieces of code work in the
expected way

Version control: A system for managing changes made to a file or set of files over time that
allows the user to a) see what changes were made when and b) revert back to a previous state
615  if desired

Zenodo: a general, open-access, research data repository
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