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Abstract

Motivation: Multicellular entities, such as mammalian tissues or microbial biofilms, typically ex-
hibit complex spatial arrangements that are adapted to their specific functions or environments.
These structures result from intercellular signaling as well as from the interaction with the envi-
ronment that allow cells of the same genotype to differentiate into well-organized communities of
diversified cells. Despite its importance, our understanding on how cell–cell and metabolic coupling
produce functionally optimized structures is still limited.
Results: Here, we present a data-driven spatial framework to computationally investigate the de-
velopment of one multicellular structure, yeast colonies. Using experimental growth data from ho-
mogeneous liquid media conditions, we develop and parameterize a dynamic cell state and growth
model. We then use the resulting model in a coarse-grained spatial model, which we calibrate using
experimental time-course data of colony growth. Throughout the model development process, we
use state-of-the-art statistical techniques to handle the uncertainty of model structure and param-
eterization. Further, we validate the model predictions against independent experimental data and
illustrate how metabolic coupling plays a central role in colony formation.
Availability: Experimental data and a computational implementation to reproduce the results are
available at http://research.cs.aalto.fi/csb/software/multiscale/code.zip.
Contact: jukka.intosalmi@aalto.fi, alexander.skupin@uni.lu

1 Introduction

Multicellular organisms and colonies of unicellular microbes are able to form characteristic structures.
While it is generally accepted that the structure and functions of tissue and organs are genetically
encoded, more recently it has been demonstrated that the morphologies of biofilms like Saccharomyces
cerevisiae yeast colonies have a strong genetic component (Stovivcek et al., 2010; Granek et al., 2013;
Taylor and Ehrenreich, 2014). Together with the frequently observed growth medium dependency of yeast
cultures this underpins the importance of genome–environment interactions for phenotype development
(Zahn and Purnell, 2016). To understand the underlying mechanisms, it is key to investigate how
metabolic coupling is influencing individual cell states and instructing structure formation.

Yeast colonies represent an efficient experimental model system to investigate how metabolic dynamics
and spatial coupling determine morphogenesis because yeast exhibits cell state transition in dependence
on the environment, fast growth, and can be easily genetically modified (Fig. 1A). Although yeast is a
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unicellular organism, it can form rather complex colony structures in a strain specific manner (Vachova
et al., 2009, 2011). Recently, we have shown that predominant changes in morphology from smooth
to wrinkled ”fluffy” structures can be induced by aneuploidy as a multicellular phenotype switch (Tan
et al., 2013). Despite the systematic genetical characterization of this switch, the question how the gain
or loss of a chromosome copy leads to a significant change in morphology is not understood.

Mathematical modeling can provide essential insights into the underlying processes as it allows quanti-
tative investigation of the coupling between metabolic and spatial growth dynamics. A general challenge
is thereby to cover and parameterize the relevant scales ranging from intra- and intercellular interac-
tions to population and environment dynamics. Existing multiscale modeling approaches for complex
multicellular systems typically rely on large sets of physiological parameters that are often not easily
accessible in experiments (Kang et al., 2014; Doloman et al., 2017). Other spatiotemporal modelling
approaches are based on homogeneity assumption and simulate partial differential equations neglecting
the discrete properties of cells. While being useful in building a general understanding of different mech-
anisms across the scales, most of these approaches do not allow experimentally-based model construction
and validation. Experimentally-based model construction approaches have been successfully applied in
the context of mechanistic modeling of molecular mechanisms (Schulz et al., 2009; Intosalmi et al., 2015;
Chan et al., 2016) and extending these approaches to more complex multiscale models will be essential
for methodological advancement in systems biology (Skupin et al., 2010).

Here, we develop a new multiscale modeling framework for yeast colony formation. In contrast to
previous approaches that simulate individual cells (Walther et al., 2004), our framework is based on
an approximation that discretizes the spatial domain into elementary cubes and allows us to model
the microenvironment dynamics under the homogeneity assumption. Further, the elementary cube ap-
proximation enables us to model the information flows (like nutrient transport or the flow of signaling
molecules) and mass transfer (movement of the growing cell mass) by means of computationally efficient
flux mechanisms.

To construct a growth and cell state model for homogeneous microenvironment dynamics, we combine
ordinary differential equation (ODE) modeling with experimental data using advanced statistical tech-
niques and, by means of this objective approach, learn the metabolic switching mechanisms as well as the
corresponding model parameterization directly from the data. The calibrated microenvironment model
is then embedded into the spatial framework and, once the spatial model is calibrated using colony mor-
phology data, we are capable of predicting the cell mass, cell state, nutrient, and metabolic distributions
throughout the colony formation process.

Our model construction process utilizes measurements from two different yeast strains. First, we calibrate
the model using time-course data from wild-type yeast cells (YAD145) and subsequently the calibrated
model is validated against independent measurements from a respiratory deficient (petite) yeast strain
(YAD479). These genotypically different training and validation strains are known to result in distinct
colony morphologies and therefore the validation approves that our multiscale model captures essential
mechanisms across the scales spanning from microenvironment dynamics to the spatiotemporal colony
formation dynamics.

2 Methods

2.1 Growth curve data

The experimental procedures are detailed elsewhere (Tan et al., 2013). In brief, growth curves in sus-
pension of the FY4 (YAD145) strain and its petite version YAD479 (that is unable to metabolise non-
fermentable carbon sources like ethanol) were measured on a TECAN Sunrise (Tecan). Initially, 200 µL
were seeded from running cultures at 5×105 cells/mL and cell number was monitored by optical density
(OD) every 15 min for 88 hours in YPD medium containing 2% glucose at 30◦C. The growth data are
provided in a machine readable format as a part of the computational implementation and details about
preprocessing can be found in Supporting Information (Fig. S1).
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2.2 Colony footprint area data

Colony formation was measured by our custom built colony imaging system (Scott and Dudley, unpub-
lished results). Colonies from single cells were grown on YPD-agar plates with 5% glucose for 7.5 days
in an incubator at 30 ◦C, and photographed every 20 minutes. Colony areas were extracted from each
image by a script for NIH ImageJ (Schneider et al., 2012) (See Supplementary Information for details
on image capture and analysis).

2.3 Bayesian techniques for ODE model calibration

The parameters and structure of ODE models are calibrated within the Bayesian framework (see e.g.
Girolami, 2008). In brief, we link the model output with time-course data D via the likelihood function
π(D|θHi , Hi) where θHi is the parameter vector under the hypothesis Hi about the model structure
(i = 1, . . . , n). A Bayesian statistical model can be constructed by combining the likelihood function with
a prior distribution over the parameters, π(θHi |Hi) (Robert, 2007). Bayes’ theorem yields the parameter
posterior distribution π(θHi |D,Hi) = π(D|θHi , Hi)π(θHi |Hi)/π(D|Hi), where π(D|Hi) is the marginal
likelihood. The marginal likelihoods π(D|Hi) can be used to compute the posterior distribution over the
hypotheses, i.e. π(Hi|D) = π(D|Hi)π(Hi)/

∑n
i π(D|Hi)π(Hi), where π(Mi) is the prior distribution over

the alternative models. In this study, the prior distribution over the alternative hypotheses is assumed
to be uniform.

2.4 Population-based Markov chain Monte Carlo sampling

Neither the posterior distributions nor the marginal likelihoods can be analytically solved for our models
and, consequently, the posterior analysis needs to be carried out using numerical techniques. For this
purpose, we use the population-based Markov chain Monte Carlo (MCMC) sampling and thermodynamic
integration (Jasra et al., 2007; Calderhead and Girolami, 2009).

To implement a population-based Markov chain Monte Carlo sampler, we consider a product form of the
target density

π∗(θβ1 , θβ2 , . . . , θβNβ |D,H) =

Nβ∏
i=1

πβi(θβi |D,H), (1)

where πβi(θ|D,H) ∝ π(D|θH)βiπ(θ|H) is the power posterior for fixed temperatures 0 = β1 < · · · <
βNβ = 1 (Jasra et al., 2007; Calderhead and Girolami, 2009). The distributions πβi , including the
posterior distribution π(D|θ,H)π(θ|H), are marginal distributions of the product form of the target
density. By means of population-based MCMC sampling, we draw samples from the individual marginal
distributions as well as allow global moves between neighboring temperatures (for details, see Jasra et al.
(2007); Calderhead and Girolami (2009)).

In this study, we select the temperatures according to the formula

βi =

(
i− 1

Nβ − 1

)5

, i = 1, . . . , Nβ , (2)

and use altogether 30 temperatures (Nβ = 30). Before running the sampler, we use local gradient-
based deterministic multistart optimization to determine the highest peak in each temperature and the
corresponding points are then used as an initial state for the sampler. For the multistart optimization,
we use our own optimization routine which is implemented in Matlab according to the guidelines given
in references Raue et al. (2013, 2015). The actual sampling is run in two parts. First, 105 samples are
drawn so that the normal proposal distributions are adaptively tuned based on the estimated covariance
of the previous 7500 samples. After this burn-in and adaption period, the proposal distributions are
fixed and every 1000th sample is collected until 2500 samples are obtained. We run four independent
samplers under each alternative hypothesis and the convergence of the chains is monitored by means of
the potential scale reduction factors (Gelman et al., 2013) and visual inspection over all temperatures.
After checking the convergence, the samples from four independent runs are combined and the posterior
analysis is carried out using all 104 samples.
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2.5 Bayesian optimization

The parameters of the spatial model are optimized by using the Bayesian optimization technique which
is tailored for global optimization of cost functions (Jones et al., 1998; Ghahramani, 2015).

To calibrate the spatial model, we need to minimize a target function y(x) : Rd → R with respect to the
parameters x (we note here that this notation applies only to this subsection). The evaluation of the
target function is computationally costly and, to be able to find the minimum using as few as possible
function evaluations, we approximate y(x) by means of a Gaussian process f(x). Formally, we can write

f(x) ∼ GP(0, k(x,x′,θ)), (3)

where

k(x,x′,θ) = θd+1 exp

(
−

d∑
k=1

(xk − x′k)2

2θ2
k

)
(4)

is the squared exponential kernel function and θ ∈ Rd+1 is a parameter vector (for details about Gaussian
processes, see e.g. Rasmussen and Williams (2006)). We assume that the approximation error is normally
distributed i.e.

y(x) = f(x) + ε, ε ∼ N (0, σ2
error). (5)

Based on the above definitions, the prior distribution for the approximated function values fn =
f(xn), n = 1, . . . , N is the zero-mean multivariate normal distribution, i.e.

f |X ∼ N (0,ΣX,X), (6)

where f = [f(x1), f(x2), . . . , f(xN )]′, X = [x1,x2, . . . ,xn], and {ΣX,X}ij = k(xi,xj ,θ), i, j = 1, . . . , N .
It follows also that

y|X ∼ N (0,ΣX,X + σ2
errorI), (7)

where we have used the above notation, y = [y(x1), y(x2), . . . , y(xN )]′, and I is the identity matrix.
The marginal likelihood is p(y|X,θ, σ2

error) where we have explicitly added the kernel parameters θ and
error variance σ2

error to emphasize that the distribution and the marginal likelihood depend on this
parameterization.

Given a set of evaluated function values at certain points (i.e. y = [y(x1), y(x2), . . . , y(xN )]′), we can
generate a probabilistic prediction on the function value y(x∗) at an arbitrary point x∗ in the domain.
The prediction about the function value y(x∗) can be generated in a form of a random variable y∗ which
follows the joint distribution in Eq. 7. By conditioning y∗ on the evaluated values, we obtain

y∗|X,y,x∗ ∼ N (Σx∗,X(ΣX,X + σ2
errorI)

−1y, (8)

(Σx∗,x∗ + σ2
error)− Σx∗,X(ΣX,X + σ2

errorI)
−1ΣX,x∗),

where Σx∗,X = [k(x∗,x1,θ), k(x∗,x2,θ), . . . , k(x∗,xN ,θ)], ΣX,x∗ = Σ′x∗,X, and Σx∗,x∗ = k(x∗,x∗,θ).
The probabilistic nature of the prediction makes it also possible to predict the next point at which it
is most beneficial to evaluate the function value in the context of minimization problem (Jones et al.,
1998). The optimal evaluation point can be chosen by finding the point x∗ which maximizes the expected
improvement function

E [I(x∗)] = E [max(ymin − Y, 0)] (9)

where ymin is the minimum of the evaluated function values so far and Y = y∗|X,y,x∗ (for details and
illustrative examples, see e.g. Jones et al. (1998)). The expected improvement (Eq. 9) can be expressed
in the closed form

E [I(x∗)] = (ymin − ŷ)Φ

(
ymin − ŷ

s

)
+ sφ

(
ymin − ŷ

s

)
, (10)

where φ and Φ are the standard normal density and distribution function, respectively, and ŷ and s are
the mean and standard deviation of the normal distribution in Eq. 8, respectively (Jones et al., 1998).

The actual optimization routine consists of two steps: (1) fitting the response surface by maximizing
p(y|X) (Eq. 7) with respect to the hyperparameters (θ, σ2

error) and (2) finding the optimal point for
next function evaluation by maximizing the expected improvement (Eq. 9). The steps are carried out
sequentially and the response surface is always fitted using a set of evaluated function values which are
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standardized to have a zero mean and standard deviation of one. In our implementation, the hyper-
parameters of the Gaussian process model and the next evaluation point with respect to the expected
improvement are optimized using fminunc and fmincon optimization routines in Matlab, respectively.
The hyperparameter optimization is initialized using parameter values θ1 = θ2 = θ3 = 1, σerror = 0.1
which correspond to a smooth Gaussian process response surface. In the context of expected improve-
ment optimization, we utilize a multistart optimization strategy for which the initial points are obtained
by means of Latin hypercube sampling (lhsdesign function in Matlab). The sequential procedure is re-
peated until the expected improvement goes under a threshold (10−46 in this study) or the maximum
number of iterations of steps (1) and (2) is reached.

2.6 Formal definition of the spatial framework

We discretize the space by dividing it into finite size elementary cubes each having a constant volume
(for illustration, see Fig. 2). The cubes are indexed by their location in a 3D array i.e. mass in different
metabolic states at different spatial locations can be expressed by writing

m
{n}
i,j,k, i = 1, . . . , Ni, j = 1, . . . , Nj , k = 1, . . . , Nk,

where {n} ∈ {g,e,q} denotes the metabolic state. The total mass at each location can be computed by
summing the cell masses in distinct metabolic states, i.e.

mi,j,k = mg
i,j,k +me

i,j,k +mq
i,j,k.

The cubes interact through their fill levels and the cell mass is flowing from a high concentration to a
low concentration once a certain threshold is exceeded. The amount of mass exceeding the threshold
can be interpreted as pressure that pushes the cell mass onwards. This pressure is computed based on
a thresholded total mass distribution over the space. The thresholded total mass at a certain spatial
location is defined to be

mth
i,j,k = max(mi,j,k − th, 0),

where th is the threshold parameter.

2.6.1 Mass movement

In context of mass movement modeling, it needs to be taken into account that the moving cell mass
carries along fractions of cells in different metabolic states. The fractions carried along can be taken to
be proportional to the cell state fractions in the source cubes (the cubes from which the mass is moved).
Consequently, it is natural to model the mass movement by means of the equation

dm
{n}
i,j,k

dt
= λm

[
F (mi,j,k,mi−1,j,k,m

{n}
i−1,j,k,m

{n}
i,j,k)

+F (mi,j,k,mi+1,j,k,m
{n}
i+1,j,k,m

{n}
i,j,k)

+F (mi,j,k,mi,j−1,k,m
{n}
i,j−1,k,m

{n}
i,j,k)

+F (mi,j,k,mi,j+1,k,m
{n}
i,j+1,k,m

{n}
i,j,k)

+F (mi,j,k,mi,j,k−1,m
{n}
i,j,k−1,m

{n}
i,j,k)

+F (mi,j,k,mi,j,k+1,m
{n}
i,j,k+1,m

{n}
i,j,k)

]
, (11)

where λm is the mass movement rate parameter,

F (m,m′,m{n},m′{n}) =
0, g(m) = g(m′)

(g(m′)− g(m))m
{n}

m , g(m) > g(m′)

(g(m′)− g(m))m
′{n}

m′ , g(m) < g(m′)

(12)

and g(m) = max(m− th, 0) is a function which takes care of the thresholding with the parameter th. At
the agar-cell mass interface, the mass movement into the agar is prevented by mapping the corresponding
values of the function F to zero.
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To show that the mass is conserved through the movement, we can consider mass movement between
two elementary cubes m to m′. Based on our model structure, we have

m = mg +me +mq (13)

m′ = m′g +m′e +m′q (14)

and the thresholded total cell masses in these two cubes are

mth = max(m− th, 0) (15)

m′th = max(m′ − th, 0). (16)

Without losing any generality, we can assume mth > m′th. Now

dm{n}

dt
= λmF (m,m′,m{n},m′{n}) = λm

m{n}

m
(m′th −mth). (17)

and
dm′{n}

dt
= λmF (m′,m,m′{n},m{n}) = λm

m{n}

m
(mth −m′th). (18)

From Eqs. 17 and 18, we can deduce

dm{n}

dt
= −dm

′{n}

dt
(19)

which shows that the mass is conserved through the movement. Because the net mass movement defined
in Eq. 11 is a sum of six pairwise movements, the mass is conserved also through the net movement.

2.6.2 Nutrient transfer

The nutrient transfer can be described in a similar manner as the mass movement but, in this context,
we do not need to threshold the distribution because the nutrient diffusion can be seen to occur freely in
the media. Further, nutrient transfer can be simply defined using fluxes between the neighboring cubes
(in the context of mass movement, we needed to take the fractions of different cell types into account).
If we consider the nutrient concentrations ni,j,k, i = 1, . . . , Ni, j = 1, . . . , Nj , k = 1, . . . , Nk, the
nutrient transfer can be described using the equation

dni,j,k
dt

= f(ni,j,k, ni−1,j,k, λagar, λcol)I(mi−1,j,k)

+f(ni,j,k, ni+1,j,k, λagar, λcol)I(mi+1,j,k)

+f(ni,j,k, ni,j−1,k, λagar, λcol)I(mi,j−1,k)

+f(ni,j,k, ni,j+1,k, λagar, λcol)I(mi,j+1,k)

+f(ni,j,k, ni,j,k−1, λagar, λcol)I(mi,j,k−1)

+f(ni,j,k, ni,j,k+1, λagar, λcol)I(mi,j,k+1). (20)

Here,

f(ni,j,k, n
′
i′,j′,k′ , λagar, λcol) ={

λcol(n
′ − n), if k > h+ 1 or k = h+ 1; k′ = k + 1,

λagar(n
′ − n), otherwise

(21)

where λcol and λagar are the nutrient transfer rate parameters within the colony and agar, respectively,
and h is the height of the agar given as the number of elementary cube layers. Further, the domain in
which the nutrient transfer takes place is determined by the indicator function

I(m) =

{
1, if m > 0
0, otherwise.

(22)

In other words, the mass distribution dependent domain for the nutrient transfer consists of the cubes
which have a positive cell mass concentration.
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Figure 1: Illustration of real colony growth and summary of microenvironment model inference. (A)
A real colony growing on a nutrient rich agar. (B) Schematic illustration of the microenvironment
model. (C) Illustration of the alternative metabolic switching routes (hypotheses H1, H2, and H3) and
summary of microenvironment model inference. The hypothesis H1 contains both possible transitions
from the glucose state to the quiescent state and the hypotheses H2 and H3 can be obtained by removing
one of the routes (these hypotheses correspond to setting the switching rate parameters β2 and β3 in
the model to zero, respectively). Each hypothesis is accompanied with the posterior probability and
the estimated logarithmic marginal likelihood (shown in parentheses after hypothesis). The estimated
marginal posterior predictive distributions are illustrated using 99% quantiles (light blue region) as well
as mean (black line) and median (blue line). The experimental data (total cell mass) is illustrated using
red color.

2.7 Computational implementation

Mathematical models, population-based MCMC sampler, and Bayesian optimization were implemented
in Matlab (The MathWorks Inc., Natick, MA, USA). ODE systems were solved using the ode15s solver
and the full multiscale model was simulated using the Euler method with a time-step of 0.0025 h.

3 Results

3.1 Dynamic model for cell growth and metabolic switching in homogeneous
medium

Depending on external conditions and intracellular state, yeast cells can either metabolize glucose or
ethanol for growth or remain in the so-called quiescent state. The diauxic shift between the different
metabolic states is determined by nutrient sensing pathways and if the extracallular glucose level becomes
low, cells change their metabolic wiring towards a state that allows growth on ethanol produced during
growth on glucose (DeRisi et al., 1997; Galdieri et al., 2010). Cells can also switch to a quiescent state
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in which they act as passive by-standers that do not grow nor produce any aromatic alcohols. The
metabolically distinct glucose, ethanol, and quiescent cell states are the starting point in our model
construction and a schematic illustration of the dynamic interactions between these states is shown
in Fig. 1B.

The dynamics of the different cellular metabolic states cannot be easily observed directly but it is rather
straightforward to monitor cell growth by optic growth curve measurements (see Methods). With the
help of mathematical modeling, we are able to infer the switching behavior between the metabolic
states and the related nutrient dynamics from time-course data. This is done by constructing alternative
quantitative growth models with different metabolic switching mechanisms between the states and testing
these hypothetical models against time-course data by means of statistical techniques. In the following,
we construct a mathematical model that describes yeast cell growth on glucose and ethanol and couples
the growth dynamics with transient switching between three distinct metabolic states: (i) glucose, (ii)
ethanol, and (iii) quiescent state (Fig. 1B).

We model the cell growth and switching between different metabolic states by ODEs. We start by
considering the glucose state in which the cells grow on glucose. We denote the cell mass in this state
by mg. Given that the glucose intake is sufficiently fast, the cell mass dynamics in the glucose state can
be modeled as

dmg

dt
= µ1m

gg − β1
1

g +K
mg − β2m

g, (23)

where g denotes the level of available glucose and the first term, µ1m
gg, describes the actual growth

kinetics with the rate parameter µ1. If the glucose signal drops to a low level, the cells start to switch
gradually to the ethanol state. This switching is modeled using the second term in Eq. 23 and the rate
of switching is determined by β1 and K. In a similar manner, the third term in Eq. 23 describes the
possible switching to the quiescent state with the rate parameter β2. In a typical experimental setting,
a fixed amount of glucose is provided to cells in the beginning and the glucose level decreases when it is
used for growth. Subsequently, the glucose concentration is governed by

dg

dt
= −µ1

γ1
mgg, (24)

where γ1 is a parameter that determines the yield of glucose to the produced biomass. Growth in the
ethanol state occurs in an analogous manner as in the glucose state. We denote the cell mass in the
ethanol state by me and the cell mass dynamics in this state is modeled as

dme

dt
= µ2m

ee+ β1
1

g +K
mg − β3m

e. (25)

Here, the first term describes the actual growth kinetics with the rate parameter µ2, the second term
corresponds to the cell mass entering the ethanol state from the glucose state, and the third term describes
the possible switching from the ethanol state to the quiescent state with the rate parameter β3. Ethanol
is typically not added to a cell culture, but it is produced as a by-product of growth on glucose. Thus,
ethanol dynamics is given by

de

dt
=
µ1

γ2
mgg − µ2

γ3
mee, (26)

where the first term represents ethanol production during the growth on glucose and the second term
considers the decrease due to biomass production. The parameters γ2 and γ3 determine the production
and decrease, respectively. The above expressions for mg and me dynamics include switching to a
quiescent state. We denote the cell mass in the quiescent state by mq and describe the cell mass
dynamics in this state by

dmq

dt
= β2m

g + β3m
e, (27)

with the terms introduced in Eqs. 23 and 25. Given the three distinct metabolic states, the total cell
mass reflecting directly the experimental time-course measurements is given by m = mg + me + mq.
In experiments, cells are initially put in glucose rich medium and we therefore assume that all cells
are initially in the glucose state and the initial glucose level is high. Consequently, we assume that
only the model variables mg and g have non-vanishing initial values. These properties are also used in
the reparameterization of the mathematical model which is presented in detail in the Supplementary
Information. The model output, i.e. the total cell mass as a function of time, is denoted by m(t, θ)
where θ is a parameter vector containing the parameters that result from the reparameterization.
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3.2 Statistical inference for model parameters and metabolic transitions in
homogeneous medium

The mechanisms that are included in the mathematical model are illustrated in Fig. 1B. The full model
contains the essential transition from the glucose state to the ethanol state and allows the cells also to
switch to the quiescent state directly from the glucose and ethanol states. However, detailed information
about the switching mechanisms to the quiescent state is not available and, consequently, there remains
notable uncertainty about the routes that cells may use to enter the quiescent state. To treat this un-
certainty accurately, we consider three alternative hypotheses (H1, H2, and H3) regarding the switching
routes between the metabolic states (schematic illustrations of corresponding switching models are shown
in Fig. 1C) and investigate the feasibility of these hypotheses by quantitative statistical testing. In the
following, we outline the experimental data used for model calibration and explain how we infer the
structure and parameterization of the microenvironment model.

We carried out growth curve measurements for wild-type and petite yeast strains in order to obtain
dynamic data on total cell mass that can be used in microenvironment model inference (see Methods).
The petite yeast strain differs genetically from the wild-type strain and is not capable to grow on ethanol
(DeRisi et al., 1997; Ferea et al., 1999). In the context of our microenvironment model, this means
that the growth rate parameter µ2 should tend to zero when the petite strain is considered but all
other parameters can be expected to be shared between these two strains. Given this straightforward
connection between the wild-type and petite strains, we can carry out the statistical inference using the
wild-type data and subsequently test the predictive performance of our models against the petite strain
which is not involved in the model calibration.

We collect the wild-type growth curve data into the data vector Dk. The elements of this data vector
contain the average total cell mass at time points tk, k = 1, . . . , N . The average cell mass as well as
the corresponding sample variances vk are computed over 6 replicates (see Supplementary Information
for details about data pre-processing). From previous studies (Alvarez-Vasquez et al., 2007; Galdieri
et al., 2010; Taylor and Ehrenreich, 2014) the relative fractions of cells in ethanol and quiescent states
at steady state (reached in our setting at tN = 80 hours) can be taken to be approximately 29 ± 6%
and 62 ± 6%, respectively. We denote these relative fractions by αe = 0.29 and αq = 0.62 and the
corresponding standard deviations representing uncertainty about the exact values by σαe = 0.02 and
σαq = 0.02. These wild-type data, which are used in model calibration and hypothesis testing, can be
combined with the model output under alternative metabolic switching hypothesis H1, H2, and H3 by
assuming independent normally distributed measurement errors and defining the likelihood function

π(D|θHi , Hi) =
N∏
k=1

N (Dk|mHi(tk, θHi), vk) (28)

× N
(
αe
∣∣∣me

Hi
(tN , θHi)

mHi(tN , θHi)
, σ2
αe

)
(29)

× N
(
αq
∣∣∣mq

Hi
(tN , θHi)

mHi(tN , θHi)
, σ2
αq

)
(30)

where D = {Dk, vk, α
e, σαe , αqσαq} is the data, θHi is the parameter vector under the hypothesis Hi, and

N (·|µ, σ2) is the normal probability density function with the mean µ and variance σ2. We construct
a Bayesian statistical model by combining the likelihood function with uninformative but proper prior
distributions where we do not assume any prior dependencies between the parameters and use standard
normal prior distributions in logarithmic parameter space. The selected prior distribution introduces a
soft lower bound for the parameters. Thus, if a certain rate parameter is present in the model, its value
cannot be infinitely close to zero.

3.3 Quantitative hypothesis testing reveals the most likely metabolic switch-
ing mechanisms

The posterior analysis is first carried out independently for each alternative metabolic switching mech-
anism (hypotheses H1, H2, and H3). The resulting approximations for the parameter posterior distri-
butions show that the models are identifiable under all three metabolic wiring scenarios (Supplementary
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Information, Figs. S2-S4, a summary about convergence diagnostics can be found in Figs. S5). In gen-
eral, the predictions in all three scenarios are in a good agreement with the experimental wild-type data
(see predicted total cell mass in Fig. 1C, wild type). The posterior predictive distributions (PPDs) are
very similar under the hypotheses H1 and H2 and the only notable difference is that under H1 there
is more variability in dynamics (Fig. 1C, wild type). This finding is natural because the models are
nested and the additional switching route under hypothesis H1 increases the model flexibility. The PPD
under hypothesis H3 shows less variability and, further, the dynamic behavior of me is different when
compared with the other two scenarios. Further, Fig. 1C shows the PPDs also for the petite strain
and we can conclude that under all three hypotheses we are capable of predicting the total cell mass
dynamics of the petite strain even though the dynamics of the non-observed model components may
differ significantly. Consequently, we can conclude that the predictive performance of our model is good
for both the training and the validation data sets. However, based on visual inspection, it is impossible
to judge which hypothesis is most likely and, therefore, we carry out statistically rigorous quantitative
hypothesis testing over the hypotheses H1, H2, and H3.

Despite the non-distinguishable model predictions in the data space, the posterior analysis over different
metabolic switching hypotheses shows significantly more evidence for H2 (Fig. 1C). The posterior proba-
bility of H2 is very close to one (the posterior probabilities as well as the estimated logarithmic marginal
likelihoods are shown in parentheses after the hypothesis name in Fig. 1C). Strong statistical evidence
for H2 suggests that the metabolic switching to the quiescent state in wild-type yeast cells occurs always
via the ethanol state in agreement with biological data interpretations (DeRisi et al., 1997; Aragon et al.,
2008; Galdieri et al., 2010).

3.4 Spatial modeling framework to study colony formation

In our experimental setup, yeast cells grow on a glucose rich agar plate and, in the following, we con-
struct a spatial modeling framework which allows us to predict three dimensional cell state and nutrient
distributions during the colony formation process. In addition to cell mass and nutrient dynamics within
the colony, we also model the nutrient dynamics within the agar.

To setup the spatial model, we discretize the space into elementary cubes (Fig. 2A). Given that the size of
the elementary cubes is chosen appropriately, the growth dynamics within each cube (microenvironment)
can be modeled under the homogeneity assumption. In other words, each elementary cube consists of a
homogeneous mixture of nutrients and cells in distinct metabolic states (Fig. 2A) and the time-evolution
of these local components can be described using the microenvironment model that we constructed above.
The spatial colony formation is subsequently determined by the dynamics of interacting neighboring
cubes with information coupling between neighboring cubes occurring by the flow of nutrient signals and
movement of growing cell mass.

The cell mass movement is modeled by considering fluxes between neighboring cubes. The fluxes are
determined by thresholded fill levels of the neighboring cubes and the cell mass is moving from a high
concentration to low concentration (for illustration, see Fig. 2B and parameters are given in Tab. 1). The
thresholding is essential because the size of elementary cubes is fixed and it is reasonable to assume that
the mass movement does not take place until a certain amount of cell mass has accumulated locally and
until the pressure starts to push cells forward. In our implementation, the fluxes are computed between
six neighboring cubes in each spatial direction and the time-evolution of the full mass distribution is
modeled using an ODE system which is determined by the net impact of the individual fluxes. The
fluxes are always computed based on the thresholded total mass distribution and the proportions of
metabolic states moving along the cell mass are proportional to the proportions of cell states in the
cube from which the cell mass is moving. On top of the agar, cell mass can move only to five directions
because mass movement into the agar is excluded.

The nutrient transfer is modeled using the same flux-based model as the cell mass movement. However,
the thresholding is not needed for the nutrient transfer because it can be assumed that nutrients can
diffuse freely over the domain. The domain for glucose diffusion is the union of the agar domain and the
elementary cubes with positive cell mass. In addition, it is assumed that the ethanol which is produced as
a by-product during growth on glucose can diffuse freely over the positive cell mass. A formal derivation
of the mass movement and nutrient transfer models can be found in Methods Section.
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Figure 2: Illustration of the spatial modeling framework. Simulated colonies consist of interacting
elementary cubes (for illustrative purposes, the cubes are here notably larger than in practise). (A)
Illustration of the elementary cube approximation of a yeast colony. The upper part of the colony (gray
elementary cubes) represents the cell mass domain. In these elementary cubes, each microenvironment
consists of a mixture of nutrients and cells in different metabolic states. Further, the lower part of the
colony (green elementary cubes) represents the nutrient rich agar domain. In the agar domain, each
microenvironment can consist of a mixture of nutrients and no cell mass is present. (B) Mass movement
is modeled by considering the fill levels of the elementary cubes. The cell mass is growing in the cubes
and once a the fill level threshold is reached, cell mass starts to be move into the neighboring cubes.
During the cell mass movement, relative fractions of cells in different metabolic states are moved along.

Parameter Value Bounds
mass movement threshold th 1 –
mass movement rate λmass 20 h−1 –
nutrient transfer rate within agar λagar 25.42 h−1 [5, 75]
nutrient transfer rate within colony λcol 0.05 h−1 [0.005, 1]
elementary cube edge length h 0.1 mm –
initial glucose conc. in the agar gagar

0 1 –

Table 1: Parameters of the spatial framework. Bounds are given for parameters that are estimated.

3.5 Data-driven calibration of the spatial model

As explained in detail above, the spatial model consists of interacting elementary cubes and within each
cube we have approximately homogeneous mixture of cells in different metabolic states and nutrients.
Local dynamics in each elementary cube are modeled using the microenvironment model whose structure
and parameterization is calibrated using growth curve data and population composition information at
time 80 hours. More specifically, we use the microenvironment model under metabolic switching hypoth-
esis H2 which has clearly the highest evidence in statistical testing. The parameterization of the model
is fixed to the maximum a posteriori values that were obtained as a by-product of the posterior analysis.
Once the microenvironment model is parameterized, we are left with several unknown parameters that
are needed for the spatial framework. These parameters are the mass movement rate, the nutrient trans-
fer rates in the agar and within the cell mass, and the initial glucose level in the agar (Table 1). Because
practically no pressure is accumulating inside the colony, we set a high value for the mass movement
rate (20 h−1). This means that the cell mass is distributed at the same rate as the cells are growing and
local crowding does not occur. Further, we assume that the glucose reserve in the agar can be modeled
by means of a disc with thickness of 0.2 mm and a diameter of 1 cm. Then the local initial glucose level
in the elementary cubes in the agar domain can be normalized to equal one and, consequently, we are
left with two free parameters: the nutrient transfer rate in the agar and the nutrient transfer rate within
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Figure 3: The calibration of the spatial framework and predictions on the colony morphology and colony
composition. The colony composition is illustrated for a quarter colony which contains full information
of the symmetric colony. (A) Simulated colony footprint areas for wild type and petite strain are plotted
using black and red dashed lines, respectively. Experimental data from wild type and petite strains
(three replicates from both strains) are plotted using black and red solid lines, respectively. The black
arrow indicates the wild type replicate which was used to calibrate the model. The data from the petite
strain is used only for validation purposes. (B) Isosurface illustration of the simulated colony shape and
cell state composition at time 121 hours. (C) Simulated cell state and nutrient distributions for wild
type and petite strains at time 121 hours illustrated using heatmaps. The shown vertical slice is located
in the middle of the colony. (D) Simulated time-evolution of all model component all total cell mass at
different spatial locations. The exact coornitates (in mm) for illustrated point are (1, 1, 1), (0.1, 0.1, 1.0),
(0.1, 1.5, 0.2), and (0.1, 0.1, 0.1) (starting from the upper row).
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the cell mass.

To estimate the free parameters of the spatial framework, we measure the area under the growing (wild
type) colony over time (for details, see Methods) and optimize the free parameters so that the area under
the simulated colony agrees with these data. In other words, we minimize the cost function

ξ(λagar, λcol) = log

(
n∑
i=1

(
Asim
ti (λagar, λcol)−Ameas

ti

)2)
, (31)

where λagar and λcol are the transfer rates within agar and colony, respectively, and Asim
ti (λagar, λcol)

and Ameas
ti are the simulated and measured areas at time ti, respectively. Because objective initialization

of the cell state and nutrient distribution above the agar is practically impossible, we initialize one
elementary cube with cell mass in the glucose state up to the cell mass movement threshold and set the
initial glucose level in this cube to one. The simulation is started using this initial state and we assume
that a realistic initial state which corresponds the real initial population composition is reached after 5
hours of simulation (this point in time corresponds to the time 0 in the experimental data).

We minimize the cost function using Bayesian optimization (Jones et al., 1998). The optimization is
initialized by evaluating the cost function at 20 points which are sampled within the bounds (Table 1)
using Latin hypercube sampling. After initialization, the optimal parameter values (Table 1) are obtained
after 9 iterations of the algorithm. Fig. 3A shows the fitted footprint area against the experimental data.
The model fit is in a good agreement with the data even though at the late time points the model shows
saturating behavior that is not present in the real data. This slight disagreement suggests that there is
some fraction of cells in a metabolic state which is not included in the model. However, the calibrated
model does not only fit well to the wild type data but is also in an excellent agreement with two replicates
of our petite strain validation data (see red curves in Fig. 3A). The third replicate can clearly be seen as
an outlier and, based on these good fits, we conclude here that our model successfully captures essential
dynamics also with respect to the colony size over time.

3.6 Predicting nutrient and metabolic state distributions

The calibrated model provides us with rich information about the spatial organization within the colony
as well as the colony morphology over time. Fig. 3B illustrates the colony shape and cell state compo-
sition at time 121 hours. Interestingly, we see three distinct regions in which different cell states are
concentrated. The cells in glucose state are present mainly close to the agar, the cells growing on ethanol
are located in the middle of the colony, and, in the upper part the colony, we see a high concentration
of cells in quiescent state.

A more detailed view on the spatial organization within the colony is given in Fig. 3C which shows the
simulated cell state and nutrient distributions for wild type and petite strains in the middle of the colony
at time 121 hours. The nutrient distributions show that glucose is mainly present close to the agar
and this indicates that most of the glucose growth and consumption occur in this region. Further, the
ethanol distributions show that ethanol level is much higher in the case of the petite strain. This is natural
because petite cells produce ethanol but cannot use it for growth and thus there is no consumption. The
snapshot distributions for wild type and petite strains look quite similar but essential differences become
visible when we observe the time-evolution of model components at different spatial locations (Fig. 3D).
Besides the differing ethanol dynamics for wild type and petite strains, also the cell state dynamics differ
notably at many spatial locations. The driver for these differences is the growth in the ethanol state
which on its behalf affect the switching between the different metabolic states.

4 Discussion and conclusions

We introduce a novel coarse-grained multiscale model for yeast colony formation, show how it can be
calibrated in a data-driven manner, and validate the calibrated model using independent experimental
data. In addition, we illustrate how we are able to predict the spatial organization within the colony as
well as the colony morphology over time and discuss the related biological findings.

Even though our computational framework is presented in the context of yeast colony modeling, our
approach is fully general and can be applied to model any multicellular system. For instance, an inter-
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esting future application for our method could be to study the role of metabolic coupling during human
glioblastoma tumor growth. Further, the modeling framework can also be easily extended to study for
example the effect of channels that might transport nutrient to different spatial locations within cell
mass.

The simulation of our multiscale model is computationally costly and, thus, the calibration of the spatial
parameters is a non-trivial task. We formulate the calibration task as an optimization problem in which
we minimize the distance between the observed and predicted colony footprint area. In principle, the
optimal parameter values could also be found by means of exhaustive parameters sweeps but a notable
amount of computational resources can be saved by using Bayesian optimization. The role of this efficient
optimization technique becomes even more important when rich data across the scales becomes available
and a larger fraction of model parameters can be calibrated together with the spatial parameters.

Our ultimate goal is to develop a spatial framework that would allow simultaneous calibration of local
and global parameters. Careful formulation of the related statistical inference problem would also enable
at least semi-automatic experimental design planning. In other words, the model calibration could be
carried out iteratively so that every iteration would not only provide information about the parameters
but also probabilistic predictions on the most beneficial future measurements (e.g. what to measure,
when, and at which time point).
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