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Many biological assays are employed in virology to quantify parameters of interest. Two such classes of

assays, virus quantification assays (VQA) and infectivity assays (IA), aim to estimate the number of viruses

present in a solution, and the ability of a viral strain to successfully infect a host cell, respectively. VQAs

operate at extremely dilute concentrations and results can be subject to stochastic variability in virus-cell in-

teractions. At the other extreme, high viral particle concentrations are used in IAs, resulting in large numbers

of viruses infecting each cell, enough for measurable change in total transcription activity. Furthermore, host

cells can be infected at any concentration regime by multiple particles, resulting in a statistical multiplicity of

infection (SMOI) and yielding potentially significant variability in the assay signal and parameter estimates. We

develop probabilistic models for SMOI at low and high viral particle concentration limits and apply them to the

plaque (VQA), endpoint dilution (VQA), and luciferase reporter (IA) assays. A web-based tool implementing

our models and analysis is also developed and presented. We test our proposed new methods for inferring ex-

perimental parameters from data using numerical simulations and show improvement on existing procedures in

all limits.

I. INTRODUCTION

Understanding viral dynamics is an important task in

medicine, epidemiology, public health, and, in particular, for

the development of antiviral therapies and vaccines. Drugs

that hinder viral infection include blockers of viral entry into

the host cell [1–6] and inhibitors of genetic activity and pro-

tein assembly inside the cytoplasm and nucleus [7–9]. Mech-

anistic models of drug action have recently emerged as useful

tools in helping design ad-hoc experiments to study drug effi-

cacy and in interpreting results [10–13]. Mathematical models

typically assume prior knowledge of given physical quantities

pertaining to the virus, host cell, or the biological assay be-

ing studied. Once these parameters are assigned, viral and

cell population dynamics and their statistical properties can

be predicted. Among the different experimental assays, one

often seeks to evaluate the number of virus particles in a stock

solution or the number of viruses that have successfully in-

fected host cells [6, 14? –18].

In the case of virus quantification assays (VQA), perform-

ing repeated controlled experiments on viral dynamics or

comparing results across multiple studies requires knowing

how many viruses are present in the initial stock solution of

each experiment [4, 5]. Furthermore, antigens that induce

immune responses against viral infections may be engineered

from viral components such as capsid proteins, viral enzymes,

and genetic vectors [19], and may be used in the development

of vaccines. Being able to determine the exact number of

virus-derived antigens helps control the efficacy of vaccines

and optimize yield [20–22].

Given the central role of VQAs, several assays have been

designed to estimate viral particle counts. These include

plaque [23] and endpoint dilution [22, 24] assays, which will

be discussed in more detail in the remainder of this work. For

now, we note that these assays involve repeatedly diluting an

initial solution of virus particles in the presence of a layer of

plated cells, until viral concentrations are low enough that the

dynamics of an individual virus can be extrapolated. At these

low particle counts, however, the discrete nature of the infec-

tion process cannot be neglected and can cause substantial

discrepancies when replicating experiments. Average quan-

tities are not necessarily representative, and a more in-depth

approach in quantifying virus-cell interactions is necessary.

Infectivity assays (IA), on the other hand, aim to quan-

tify the number of viruses that have successfully infected host

cells under varying antiviral drug environments [14–16]. IAs

may measure the total transcription activity across all cells,

such as the luciferase reporter assay [15, 25], or may count

the number of host cells that were successfully infected, such

as the enzyme-linked immunosorbent assay (ELISA) and the

immunofluorence assay with fluorescence activated cell sort-

ing (FACS) [4, 14, 15, 26]. These assays are performed using

undiluted solutions with large numbers of viral particles, re-

ducing stochastic variability. The average number of viruses

that infect a cell is estimated as the ratio of the number of

viruses in solution to the number of plated cells, a quantity

known as the multiplicity of infection (MOI) [18]. However,

each cell may be infected by different numbers of viruses dis-

tributed around the average given by the MOI. In these cases,

one may be interested in the complete probability distribution

for the number of virus infections in each plated cell and in

the related statistical variance.

In this paper, we derive a probability model for the distribu-

tion of viral infections per host cell, which we call the statis-

tical multiplicity of infection (SMOI). The SMOI can be used

as a starting point to help estimate the number of viral par-

ticles in solution in VQAs, and to determine a viral strain’s

ability to successfully infect host cells in IAs. In Section II A,

we present the mathematical foundations for the SMOI in the

two experimentally relevant parameter regimes of small and

large viral particle counts and derive a probability model for

the total number of infected cells under any dilution level. In

Section III A, we apply our models to the plaque assay and

formulate a new method of analyzing plaque count data. In

Section III B we employ a special case of the derived prob-
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System Parameters

N0 Number of viruses

N Number of infections

M Number of host cells

M∗ Number of infected cells

Mr Number of cells infected

by exactly r viruses

Q Particle to PFU ratio

D Dilution factor

FIG. 1: A typical assay includes a plate of M host cells inoculated

with a solution of N0 viruses. Each viral particle has some probabil-

ity of infection and the total number N of infections are distributed

to the M∗ infected cells. The probability of infection is roughly es-

timated with the reciprocal of the a priori measured particle to PFU

ratio Q.

ability distribution to the endpoint dilution assays and com-

pare our results to those arising from traditional titration tech-

niques such as the Reed and Muench [27] and Spearman-

Karber methods [28]. In Section III C, we use the large parti-

cle limit of our model to describe the luciferase reporter assay.

Lastly, a discussion of our results, a side-by-side comparison

with existing methods, and a link to web-based data analy-

sis tools are provided in Section IV. Mathematical appen-

dices and further discussion of experimental attributes such as

cell size variability, coinfection, viral interference, and opti-

mal experimental design using parameter sensitivity analysis

are presented in the Supplemental Information (SI).

II. METHODS

A. Probabilistic Models of Statistical Multiplicity of Infection

(SMOI)

A typical viral assay is initiated by laying a monolayer of

M cells on the bottom of a microtiter well, as illustrated in

Fig. 1 [17, 23, 24]. Although variability exists among experi-

ments, M is often set within the range of 104–105 [14, 25] and

is assumed to be a known experimental parameter. A super-

natant containing N0 virus particles in the range of 105–107

[23–25], is then added to the microtiter well. While, theo-

retically, all N0 particles are capable of infection, not all will

successfully infect a cell. Since infection of a host cell re-

quires a complex sequence of biochemical processes that may

include receptor binding, membrane fusion, reverse transcrip-

tion, nuclear pore transport, and DNA integration [10, 18],

virus particles that fail at one or several of these sequential

steps lead to abortive infections. To differentiate, the parti-

cles that do succeed are called infectious units (IU) or plaque

forming units (PFU). We will denote the number of IUs as

N ≤ N0. Depending on the strain of virus, the particular ex-

perimental protocol used, and specific conditions of the assay,

the random quantity N is distributed according to N0 and the

overall effective probability that an arbitrary viral particle suc-

cessfully infects a host cell. A proxy that is typically used in

place of this effective probability is the “particle to PFU ratio”

Q, an experimentally determined parameter that quantifies, on

average, the minimum number of particles required to ensure

at least one infected cell [29, 30]. Q is often treated as an a

priori measured quantity, primarily associated with the par-

ticular strain of virus being studied. Low values of Q, such

as with poliovirus (Q = 30) [30], have a high likelihood of

successful infection compared to viruses with large Q, such

as HIV-1 (Q = 107) [31]. Thus, the reciprocal Q−1 can be

interpreted as the probability for a single virus to infect a host

cell. Assuming an initial stock of N0 particles, the discrete

probability density function of N is

Pr (N = n|N0, Q) =

(

N0

n

)

(

Q−1
)n (

1−Q−1
)N0−n

,

(1)

which defines a binomial distribution with parameters N0 and

Q−1. Although we assume Q to be a priori known, in actu-

ality, the probability of a virus successfully infecting a host

is highly dependent on the methods used to harvest the virus

stock, the experimental parameters of the assay, the host re-

ceptor concentrations and binding rates, and the dynamics of

the physiological processes leading to infection [29, 32]. A

thorough investigation into these processes would be neces-

sary to mechanistically model Q and is outside of the scope of

this paper. However, we will discuss in Section IV how, with

direct measurements of certain other parameters, especially

N0, our derived methods may also be used to infer Q.

We assume each viral particle in solution acts indepen-

dently of others and that host cell infection attempts are ran-

dom events. At high ratios N0/M of particles to cells, a quan-

tity referred to as the “multiplicity of infection” (MOI), it be-

comes increasingly probable for more than one IU to infect

the same host cell. We define M0 as the count of cells not in-

fected by any IU, M1 as the count of cells infected by exactly

one IU, up to MN , the number of cells infected by all N IUs.

The statistical multiplicity of infection (SMOI) is defined as

the ensemble of cell counts {M0,M1, · · · ,MN}. Note that

two constraints must hold:
∑N

r=0 Mr = M to account for

all infected and un-infected cells, and
∑N

r=0 rMr = N for

conservation of the total number of IUs. If we assume all M
cells are of identical size and volume, they carry equal prob-

ability of being infected by a particular virus. Thus, evaluat-

ing the probability distribution that Mr takes on the value mr

reduces to the well-known occupancy problem of randomly

placing balls into identical urns [33] and we derive
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Pr(Mr = mr|M,N) =

M
∑

j=mr

(

j

mr

)(

M

j

)(

N

r, · · · , r, (N − rj)

)

(−1)j−mr (M − j)
N−rj

MN
, (2)

where the r term is repeated j times in the lower argument of

the multinomial coefficient. The derivation of Eq. 2 is detailed

in Appendix A in the SI and an investigation into the effects

of inhomogeneous cell sizes is presented in Appendix B. Fur-

thermore, in Appendix A, we derive the expected value and

variance of Mr as

E [Mr] = M

(

N

r

)(

1

M

)r (

1−
1

M

)N−r

, (3)

and

Var [Mr] = M

(

N

r

)(

1

M

)r (

1−
1

M

)N−r

+
M(M − 1)N !(M − 2)N−2r

(r!)2(N − 2r)!MN

−
M2(N !)2(M − 1)2N−2r

(r!)2 [(N − r)!]
2
M2N

. (4)

Note that the variance is equal to the expected value with

two additional correction terms that cancel each other as N
and M increase, indicating the probability distribution of Mr

is Poisson-like for large N and M . A plot of a representa-

tive probability distribution and a test of agreement between

our analytical result and numerical simulation is provided in

Fig. 2.

We also derive the joint probability Pr(M0 =
m0, · · · ,MN = mN |M,N) that the SMOI

{M0,M1, · · · ,MN} takes on the set of values

{m0,m1, · · · ,mN} as

Pr(M0 = m0, · · · ,MN = mN |M,N) =
1

MN

(

M

m0,m1, · · · ,mN

)(

N

0, · · · , 0, 1, · · · , 1, · · · , N, · · · , N

)

=
M !N !

MN

N
∏

r=0

1

mr! (r!)
mr

. (5)

The first and second multinomial expressions enumerate the

degeneracy of how the M identical cells are distributed across

the configuration {m0, · · · ,mN} and how the N identical

IUs are chosen for those cells respectively. Although the

second expression in Eq. 5 is more succinct, it must be ex-

plicitly conditioned on the constraints
∑N

r=0 mr = M and
∑N

r=0 rmr = N .

The expressions in Eqs. 2 and 5 provide an exact discrete

description of the stochasticity of the MOI, but are computa-

tionally expensive to evaluate for large values of N and M .

In a typical virology experiment, the number of viral particles

N0 and host cells M are large enough for certain asymptotic

methods to be applicable. Furthermore, for intermediate val-

ues of Q, and based on Eq. 1, the expected number of IUs N
would be similarly large. We can thus take the mathematical

limit N,M → ∞ while keeping the ratio µ = N
M

fixed and

approximate Eq. 2 as:

Pr(Mr = mr|M,N) ≈
1

mr!

[

Mµre−µ

r!

]mr

exp

[

−
Mµre−µ

r!

]

.

(6)

Eq. 6 implies that Mr is Poisson-distributed with mean and

variance

E[Mr] = Var[Mr] ≈
Mµre−µ

r!
. (7)

A mathematical justification of Eq. 6 is given in Appendix A

and comparisons of Eq. 6 and the analytical result in Eq. 2 to

simulations are shown in Fig. 3. Under the same large M,N
limit and using Eq. 6, we show in Appendix A

Pr(M0 = m0, · · · ,MN = mN |M,N)

≈
∏N

r=0Pr(Mr = mr|M,N),

(8)

which implies that as M,N → ∞, the random variables

M0,· · · , MN are independently distributed. In the next sec-
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FIG. 2: (a) A collection of curves of the probability of finding mr

cells that have been infected by exactly r IUs given a total number of

IUs N = 100 and a total number of cells M = 10 using Eq. 2. With

N/M = 10, we expect very few cells to be uninfected, resulting

in the probability distribution concentrated close to 0 for low values

of r. Similarly, we expect few cells to be infected by a very large

number of IUs, accumulating the probability distribution close to 0
for large r. Only at intermediate values of r ≈ N/M = 10 we ob-

serve a Poisson-like distribution. (b) We perform a numerical study

to show empirically that our analytical result in Eq. 2 matches the sta-

tistical frequency of virus-cell counts from a simulation of N = 100
IUs being randomly assigned to M = 10 cells. The square sum error

between the simulated proportions and the analytical result was cal-

culated with increasing numbers of iterations of the simulation. For

iterations around 106, our square sum error is on the order of 10−6,

indicating strong agreement between our model and simulation.

tion, we will apply results of our probability model of SMOI

to the case of a repeatedly diluted solution of virus particles,

a procedure used in many VQAs.

B. Serial Dilution

Low viral particle concentrations in assays are typically ob-

tained via serial dilution processes in order to increase the sen-

sitivity to individual viral infections [4, 23, 24]. The initial

viral stock containing N0 particles is diluted by a fixed factor

of D and the process is repeated dmax times. At each dilu-

tion number d, an assay can be performed to determine if the

concentration of virus particles in the diluted solution is suf-

ficient to generate a qualitative signal of infection, known as

a “cytopathic effect” (CE). For example, the diluted stock can

be administered in vivo to a model organism such as a mouse.

The mouse’s death would indicate that at least one lethal unit

of the virus was present at that dilution level. Alternatively, an

in vitro assay can be carried out to measure a signal that, for

example, quantifies the exact number of plated cells that were

successfully infected. To model these assays, we first define

M∗ as the number of host cells infected by at least one IU and

that are capable of producing new viruses. In Appendix A

we derive the discrete probability density function for finding

M∗ = m infected cells at a given dilution number d and find

Pr (M∗ = m) =
(

M
m

)

[

1− exp
(

− N0

QMDd

)]m

× exp
(

− N0

QMDd

)M−m

.

(9)

Eq. 9 shows that the number of infected cells M∗ is binomi-

ally distributed with expected value

E[M∗] = M

[

1− exp

(

−
N0

QMDd

)]

, (10)

and variance

Var[M∗] = M

[

1− exp

(

−
N0

QMDd

)]

exp

(

−
N0

QMDd

)

.

(11)

We can define the probability of observing a CE at dilution

number d as the probability of finding one or more infected

cells:

Pr(“Cytopathic effect”) ≡

M
∑

m=1

Pr(M∗ = m)

= 1− exp

(

−
N0

QDd

)

. (12)

The definition we use in Eq. 12 assumes an in vitro assay that

can exhibit a cytopathic signal after a single cell infection or

more. For in vivo assays, the probability that m infected cells

are sufficient for a CE will depend on many complex phys-

iological factors such as immune pressure, in-host viral evo-

lution, and virion burst size [34]. A plot of how the initial

particle count N0 and dilution factor D effect the characteris-

tic functional form of Eq. 12 are shown in Fig. 4. Although

both Eqs. 9 and 12 assume each IU contains all viral genes re-

quired for in-host replication, an extended probability model

that factors in genetic mutation and degradation is provided in

Appendix C. Furthermore, for the case of retroviruses, infec-

tious processes inside the host cytoplasm may be suppressed

by previous infections, known as viral interference, and is ex-

plored in Appendix D. In Section III A, we will use Eq. 9 to

analyze the plaque assay. Eq. 12 will be used for “binary” as-

says that are only concerned with the presence or absence of a

CE such as the endpoint dilution assay, which we will explore

in Section III B.

III. RESULTS AND DISCUSSION

A. Plaque Assay

The plaque assay is an example of a virus quantification

assay (VQA) where the objective is to infer the total number of

viruses N0 present in a solution assuming the PFU to particle

ratio Q has been independently measured and estimated [23,

24, 35]. After d serial dilutions, the viral stock is added to

a monolayer of M cells and a layer of agar gel is added to

the well to inhibit the diffusion of virus particles in the plate.

If a virus successfully infects a host cell, the agar will limit

the range of new infections to the most adjacent cells. Viral

infection thus spreads out radially from the initial nucleation

infection and forms a visible discoloration in the plate called

a “plaque.” For high particle concentrations, the number of

plaques formed may be large enough to cover the entire plate
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FIG. 3: Heat maps of the probability distribution Pr (Mr = mr|M,N) of finding mr cells that have been infected by exactly r IUs given

a total number of viruses N = 100 and M = 10 cells. (a) The statistical frequency of virus-cell counts after simulating IUs randomly

distributing to the M cells, averaged over 1000 iterations. (b) The analytical result obtained from Eq. 2. (c) The asymptotic approximation

with M = 10 and µ = N
M

= 10, using the expression in Eq. 6. There is close agreement between the simulated and analytical results. The

relatively low values of M and N makes the asymptotic formula in Eq. 6 inappropriate for this parameter regime, explaining the discrepancy

between the asymptotic result and the exact analytical result. However, it is noteworthy how qualitatively small that deviation is, which will

continue to vanish as M and N increase in value.

FIG. 4: The probability of observing a cytopathic effect (CE) given

in Eq. 12 as a function of the dilution number d and with Q = 1.

(a) For D = 10, as the initial particle count N0 increases, the crit-

ical dilution moves toward higher d. (b) Common dilution factors

include logarithmic dilution (D = 10), half-logarithmic dilution

(D = 101/2), and quarter-logarithmic dilution (D = 101/4). Log-

arithmic dilution requires a lower number of dilutions to cause the

characteristic decrease in probability, requiring less individual assays

to perform. Quarter-logarithmic dilution, though requiring more di-

lutions, has a slower transition from high to low probability across d,

making the assay less sensitive to experimental error or noise. The

plot above can be used to quantify the tradeoffs between the choices

of D.

surface. After a sufficient critical dilution number dc however,

the number of plaques formed are low enough to be visibly

distinct and countable. For each dilution number d, the assay

can be performed for T number of trials. The ‘signal’ data

arising from the plaque assay Pd,t is defined as the number

of visible plaques counted, where t = 1, · · · , T is the trial

number. The standard method of obtaining an estimate N̂0 of

the true particle count N0 is to apply the sample mean of the

data Pdc,t at the critical dilution level dc to the formula

N̂0 = Ddc

(

1

T

T
∑

t=1

Pdc,t

)

, (13)

which posits that the average number of plaques is directly

proportional to the particle count N0. Eq. 13 assumes that

each infected cell corresponds to one IU, which is not neces-

sarily true in the context of SMOI. Furthermore, although data

corresponding to dilution numbers d < dc are unusable, data

for d > dc corresponding to countable plaques are not used at

all in Eq. 13.

In order to improve on Eq. 13 by using the entire set of

plaque counts Pd,t for our estimate of N0, we propose a max-

imum likelihood estimation (MLE) scheme. Using the math-

ematical models derived above, we can construct an expres-

sion L(Pd,t|N0) of the probability that the observed data Pd,t

can be generated assuming a particular value for N0, known

as a likelihood function. A value for N0 that maximizes

L(Pd,t|N0) corresponds to the most probable estimate N̂0 that

could have generated the data. As each nucleation of a plaque

corresponds to a distinct infected cell (and assuming that over-

lapping lesions of necrotic cells are still discernible as distinct

plaques), we can equate Pd,t to the total number of success-

fully infected cells M∗. We will ignore the dynamics of coin-

fection and viral interference. Using Eq. 9, we propose the

following likelihood function of the data given N0:

L(Pd,t|N0) =

dmax
∏

d=dc

T
∏

t=1

(

M

Pd,t

)[

1− exp

(

−
N0

QMDd

)]Pd,t

exp

(

−
N0

QMDd

)M−Pd,t

. (14)

To obtain the MLE N̂0, we take the derivative of the natural log of Eq. 14 with respect to N0 and set the result to zero to

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2018. ; https://doi.org/10.1101/343723doi: bioRxiv preprint 

https://doi.org/10.1101/343723
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

Plaque Count Data from Sloutskin et al [35].

Trial 10−2 10−3 10−4 10−5 10−6 10−7

1 – – 111 24 1 0

2 – – 126 24 1 0

3 – – 121 13 0 0

FIG. 5: An example of raw plaque count data taken from Sloutskin

et al. [35]. A viral solution was assayed in a plate of M = 3 × 105

cells at dilution numbers d = 2, 3, 4, 5, 6, and 7 at a dilution factor

of D = 10. The particle to PFU ratio is assumed to be Q = 1.

For T = 3 separate trials, the number of plaques were counted at

each dilution level. The bottom row of plates used as a control is

ignored. For dilution numbers d = 2 and 3, the entire plate of cells

show cytotoxicity so that the numbers of plaques were undiscernable

and, thus, the countable data starts at dc = 4. For the old method

featured in Eq. 13, the estimate for N0 is N̂0 = 1.19 × 106 and

for the MLE derived from Eq. 15, N̂0 = 1.26 × 106. This results

in a relative difference of 5.5%. Furthermore, when applying these

parameters and N̂0 estimate to Eq. 17, we observe a 10.7% decrease

in the estimate variation using the MLE technique.

obtain

0 =

dmax
∑

d=dc

T
∑

t=1

M exp
(

− N̂0

QMDd

)

−M + Pd,t

QMDd

[

1− exp
(

− N̂0

QMDd

)] . (15)

We can solve Eq. 15 for N̂0 using numerical methods such

as Newton-Raphson [36], an iterative scheme that approaches

the solution of an equation asymptotically starting from an

initial guess N̂ init
0 . To increase the stability of convergence

to the solution, we choose N̂ init
0 by equating the sample av-

erage of plaque counts 1
T

∑

Pdc,t with the expected number

of infected cells E[M∗] in Eq. 10 at the critical dilution dc to

derive

N̂ init
0 = −QMDdc ln

[

1−
1

M

(

1

T

T
∑

t=1

Pdc,t

)]

. (16)

An example of raw plaque count data and the resulting esti-

mates for N0 are given in Fig. 5. In order to quantify the rela-

tive improvement of the MLE of N0 over the standard method

in Eq. 13, we simulate plaque assay data assuming a fixed,

known N0 value. In our simulation, we use the models es-

tablished in Section II A to sample the N0 particles according

to Eq. (S9) in Appendix A to account for serial dilution and

FIG. 6: Results of plaque assay simulation for parameters N0 = 106,

M = 105, Q = 1, D = 10, dmax = 10, and T = 10. (a) The

scatter plot of simulated data Pd,t (circles) and the expected value

of plaque counts as given by Eq. 10 show close agreement. (b) The

likelihood function L(Pd,t|N0) with respect to N0 using the same

simulated data. The MLE obtained by iteratively solving Eq. 15 is

N̂0 = 9.97×105 and is relatively closer to the true value of N0 than

the estimate calculated from the standard method in Eq. 13 N̂0 =
1.02× 106.

sample again the resulting particles according to Eq. 1 to ob-

tain the number of IUs N . The IUs are distributed randomly

to the M cells with equal probability and the resulting number

of infected cells M∗ is recorded. Since plates of cells with too

many infections render the number of plaques uncountable, a

“countable plaque threshold” renders the data unusable when

the number of infected cells exceed the threshold. Thus, the

resulting plaque data Pd,t for a given dilution d and trial t
is assigned the number of simulated infected cells if the lat-

ter is less than the given threshold. A scatter plot of the data

Pd,t of one such simulation is shown in Fig. 6a and the corre-

sponding likelihood function from Eq. 14 is plotted in Fig. 6b.

Because the MLE method utilizes a full probabilistic model

of the plaque count distribution instead of relying only on the

expected value at the single critical dilution dc, it produces an

estimate consistently closer to the original N0 that generated

the data. To better quantify this property, in Appendix E we

derive an asymptotic approximation of the variance of N̂0 as

Var
[

N̂0

]

≈





dmax
∑

d=dc

T exp
(

− N0

QMDd

)

Q2MD2d

[

1− exp
(

− N0

QMDd

)]





−1

.

(17)

The variance is an explicit function of Q, which is assumed

to be a priori known. If there is uncertainty in the value of

Q, Eq. 17 can quantify how sensitive the distribution of N̂0

is to variation in Q, as shown in Fig. 7a. We can see that

for small assumed Q, such as in poliovirus [30], error in this

measurement can cause a large relative change in the accuracy

of N̂0. This type of sensitivity analysis on estimation vari-

ance can be done with any experimental parameter included

in the likelihood function in Eq. 14. Furthermore, for directly

controllable parameters, such as the serial dilution factor D,

Eq. 17 can provide insight into optimizing the assay proto-

col, as shown in Fig. 7b. Although it is evident that small

D would increase the accuracy of the N̂0 estimate, doing so

requires more serial dilutions which increases the time and ex-

pense of the assay. Thus, our sensitivity analysis provides a
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FIG. 7: Approximations of the standard deviation σN̂0
=

Var[N̂0]
1/2 of maximum likelihood estimates for the plaque assay

using Eq. 17 and parameters N̂0 = 105, 106, and 107, M = 3×105,

dc = 4, dmax = 7, and T = 3, corresponding to the assay displayed

in Figure 5. (a) For D = 10, the standard deviation increases pro-

portional to the square root of Q. (b) For Q = 1, we can see a low

dilution factor D will increase the accuracy of the estimate N̂0.

quantitative method for making experimental design choices

between minimizing uncertainty versus the cost of an assay

protocol. Lastly, if we compute the variance of the standard

method in Eq. 13 due to the known variance in the data Pd,t,

and compare with Eq. 17, we find, when using realistic pa-

rameter values from Fig. 5, the standard method results in a

10.7% higher variance than that of our method. Although the

significance of the relative increase in precision of estimating

N0 found using our method is highly dependent on the context

of the experimental study for which the assay was performed,

similar sensitivity analysis can be used to determine such tol-

erances.

B. Endpoint Dilution Assay

Another widely used assay for quantifying the initial viral

particle count N0 is the endpoint dilution or endpoint titration

assay [22, 24, 37]. It is often used in place of the plaque assay

as it can be more rapidly performed and is useful for viral

strains that are unable to form plaques. Here, serial dilutions

at a factor of D are employed and at every dilution number

d, an assay is performed T times to test for a successful CE.

The number Ed of observed CEs among the T trials at a given

dilution number d is recorded as the signal. For low dilution,

we expect many cells to be infected and the probability of

observing a CE, as shown in Eq. 12, is close to 1. If every trial

of the assay is likely to display a CE, then Ed is expected to be

close to T . However, at high dilution, the probability in Eq. 12

rapidly decreases to 0, as shown in Fig. 4, and Ed will be

similarly small. For a large initial stock of viral particles N0,

a larger dilution number d is needed to ensure the dramatic

change in probability in Eq. 12. Thus, the critical dilution

at which Ed most rapidly decreases from T can be used to

estimate the particle count N0. This occurs at the point of

inflection when d = logD(N0Q
−1) and corresponds to when

the expected number of successful trials E[Ed] = T (1−e−1),
as shown in Fig. 8.

One commonly used way to estimate N0 is the Reed and

Muench (RM) method that utilizes the two dilution numbers

that capture the greatest change in the data Ed [27]. We first

define a critical dilution number d50% to be the largest dilution

such that at least 50% of the trials exhibit a CE. The estimate

N̂0 for the particle count N0 is given by

log10(N̂0) = d50% +
Ed50%

− 0.5T

Ed50%
− Ed50%+1

. (18)

The RM method effectively attempts to approximate the

steepest descent of the CE probability given in Eq. 12 with

a line connecting the assay data at dilutions d50% and d50%+1,

as displayed in Fig. 8a. Unfortunately, this line always rests

above the actual expectation curve of Ed, so any estimate

N̂0 obtained from this method will overestimate the true N0.

Another commonly used estimation scheme is the Spearman-

Karber (SK) method which uses the critical dilution number

d100%, the largest dilution such that 100% of trials exhibit a

cytopathic effect [28, 37]. The SK estimate N̂0 is given by

log10(N̂0) = d100% −
1

2
log10(D) + log10(D)

dmax
∑

d=d100%

Ed

T
.

(19)

In this method, the downward slope for the expectation of Ed

is assumed to follow a decaying exponential starting at di-

lution d100%, as shown in Fig. 8b. The intention is to find

the dilution at which Te−1 CEs are expected by calculating

the area under the exponential curve, given by the summa-

tion term in Eq. 19. However, the actual values of Ed will

follow the expected curve from our model, leading to an over-

estimate of the area and, by extension, a larger value for N̂0.

Both standard methods were derived from the heuristic obser-

vation that Ed exhibits sigmoidal behavior as a function of the

dilution number d, but an underlying probabilistic model was

missing, resulting in consistent overestimation of the true N0.

Furthermore, neither method uses the “particle to PFU ratio”

Q, accounts for the stochasticity of serial diluting viral sam-

ples, considers the dynamics of SMOI, or employs the entire

set of data Ed.

We present an alternative way to infer N0 using Eq. 12 to

establish a maximum likelihood estimation scheme. We re-

strict ourselves to in vitro assays in which a single infected

cell is sufficient to display a CE. Then each cytopathic count is

binomially distributed with parameters T and the probability

given in Eq. 12. Thus, for a set of data {E1, E2, · · · , Edmax
},

we propose the likelihood function

L(Ed|N0) =

dmax
∏

d=1

(

T

Ed

)[

e
N0

QDd − 1

]Ed

e
−

TN0

QDd . (20)

Eq. 20 is an expression of the probability of the data

{E1, · · · , Edmax
} given the current assumed value of N0. To

obtain the best estimate N̂0 of N0, we maximize the likeli-

hood function by taking the log and derivative of L(Ed|N0)
with respect to N0 and set it equal to zero to obtain

0 =

dmax
∑

d=1

Ed − T + T exp
(

− N̂0

QDd

)

QDd

(

1− exp
(

− N̂0

QDd

)) . (21)
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FIG. 8: An illustration of the consistent overestimation of the Reed

and Muench (RM) and Spearman-Karber (SK) methods using the ex-

pected curve E[Ed] of CEs given T trials as a function of the dilution

number d derived from Eq. 12. (a) The RM method approximates

the steepest decent of the expectation curve with a line connecting

the two data points Ed50% ≤ 0.5T < Ed50%+1. Because of the

relative convexity of the expected curve, the linear approximation

consistently rests above the curve and results in an overestimate of

log10(N̂0). (b) From the last dilution d100% such that all trials ex-

hibit a CE, the SK method assumes an exponential decay of the ex-

pectation. Obtaining the characteristic decay rate of the exponential

involves calculating the area under the curve, which is done numeri-

cally using the data Ed. However, according to our model, many of

the expected values of Ed exist above the exponential, causing the

numerical integration to overestimate the area and, thus, decay too

slowly. This gradual decrease in the exponential curve results in a

larger estimate of log10(N̂0).

As with Eq. 15, solving Eq. 21 for N̂0 requires a numerical

method such as Newton-Raphson. As an appropriate initial

estimate for N̂0, the formula

N̂ init
0 = −0.5QDdc

[

ln

(

1−
Edc

T

)

+D ln

(

1−
Edc+1

T

)]

,

(22)

can be used, where dc is the largest dilution number such that

at least half of the trials exhibit a cytopathic effect. Eq. 22 is

the average of the N0 estimates at dilutions dc and dc+1 when

setting the CE probability in Eq. 12 to 1/2. For a comparison

of our MLE method with the RM and SK methods, we sim-

ulate data similar to that described in Section III A. Here we

take the number of trials such that the simulated count of in-

fected cells is greater than zero as the values of Ed for a given

dilution number d. We plot the likelihood from Eq. 20 and

compare the MLE of N0 with those derived by the RM and

SK methods in Fig. 9a. While both RM and SK estimate very

similar values of N̂0, they both consistently over-estimate the

a priori set N0 relative to the MLE method. This demonstrates

the advantage of a probabilistic model for parameter inference

over heuristically determined formulas.

The expressions we derived in Eqs. 14 and 20 applied to

simulated data can also help quantify tradeoffs in experimen-

tal design. As discussed above, there exist viruses that can-

not form plaques, restricting the options of VQAs to end-

point dilution. However, for many cases, the choice between

using one assay over the other can be one of convenience.

More specifically, endpoint dilution assays can often be per-

formed more rapidly than plaque assays. Using the same

simulated data for both assays, we plot Eqs. 14 and 20 to-

FIG. 9: (a) The likelihood function L(Ed|N0) in Eq. 20 for the

endpoint dilution assay and the corresponding maximum likelihood,

Reed and Muench, and Spearman-Karber estimates given simulated

data generated with N0 = 106, Q = 1, D = 10, and dmax = 10.

The estimates for maximum likelihood (N̂0 = 1.33 × 106), RM

(N̂0 = 2.51 × 106), and SK (N̂0 = 2.51 × 106) all overestimate

N0, but the smaller relative error of the MLE is an improvement on

the errors of the existing two methods. (b) The likelihood functions

L(Pd,t|N0) and L(Ed|N0) for the plaque and endpoint dilution as-

says respectively given simulated data. The data was generated with

parameters N0 = 106, M = 105, Q = 1, D = 101/4, dmax = 30,

and a “countable plaque threshold” of 150. The plaque assay like-

lihood is concentrated close to the true N0 value while the endpoint

dilution likelihood is far more spread out and overestimates N0. This

direct quantitative comparison can inform an experimentalist when

choosing between the two methods.

gether in Fig. 9b. The plots clearly show the superiority of the

plaque assay for estimating the viral stock number N0 in re-

spect to both how close the MLE infers the true N0 value and

the amount of variance in that estimate. While the amount of

variability and error that is tolerable for an experiment may be

context-dependent, the plots in Fig. 9b provide a quantitative

way to differentiate between the two methods.

C. Luciferase Reporter Assay

The luciferase reporter assay is commonly used to measure

the infectivity of a viral strain. Here the ratio µ = N/M of

total infections over the number of plated cells is estimated by

measuring the transcription activity of viral proteins [14–16].

The reporter employs an oxidative enzyme luciferase that fa-

cilitates a reaction when introduced to the substrate luciferin,

resulting in bioluminescence. The protocol begins with at-

taching the luciferase gene to the viral genome. The altered

viral strain is cloned to a total particle count N0 which, in

this case, is assumed to be fixed and known. The solution

of viruses is added to a plated monolayer of M host cells.

An incubation time is allowed for transcription of viral pro-

teins and, incidentally, the luciferase enzyme. Subsequently

all cells are lysed to release all cytoplasmic contents into the

solution upon which luciferin is added. The oxidation of lu-

ciferin is facilitated by the luciferase enzyme and the resulting

bioluminescence yields a measurable signal [38]. The light in-

tensity is thus a measure of total transcription activity of the

viral genome in all infected cells and can be used as a proxy

for the total number of viruses N that successfully infected

host cells.
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Although there is stochasticity in transcription factor bind-

ing and, in the case of retroviruses, the number of integra-

tion sites on the host DNA, we will assume that each success-

ful virus infection contributes one viral genome to be tran-

scribed and each transcription occurs at a constant rate pro-

portional to the total number of integrated viral genomes.

Note that the limited number of transcription factors, ribo-

somes, and other cell machinery necessary to produce viral

proteins and the luciferase reporter causes the production rate

to saturate as the number of infecting viruses r per cell in-

creases. Thus, transcription activity saturates with increasing

number of infections r. We can model this effect by defin-

ing a monotonically increasing function f(r) representing the

number of transcribed viral proteins when a cell is infected by

r viruses over the course of the assay. Thus, for a given SMOI

{M0, · · · ,MN}, we will model the intensity signal L of the

total luciferase reporter luminescence with

L =

N
∑

r=0

L0f(r)Mr , (23)

where L0 is the fluorescence intensity arising from a single

luciferase reporter present in the solution. Although f(r) may

take on many functional forms, a commonly used model for

transcription factor kinetics is the Hill function [39] given by

f(r) =
fmaxr

h

K + rh
, (24)

where fmax is the maximum transcription activity of lu-

ciferase, h is the Hill coefficient that effectively describes co-

operative binding of multiple transcription factors at a pro-

moter region, and K is an effective dissociation constant re-

lating the binding and unbinding rates of transcription factor.

The functional form of Eq. 24 accounts for the limited tran-

scription machinery available for the multiple copies of vi-

ral genome present in the cell. In Fig. 10a we calculate the

discrete probability distribution Pr(L = ℓ) by considering

the cumulative weight of every allowable configuration of N
viruses infecting M cells through Eq. 23.

Since luciferase reporter assays typically involve large val-

ues of initial virus count N0 and cell count M , we can use

the asymptotic approximations in Eqs. 6 and 7 along with

the Central Limit Theorem [40] to assume L is normally dis-

tributed with expected value

E[L] = L0fmaxMe−µ

N
∑

r=0

rhµr

(K + rh)r!
, (25)

and variance

Var[L] = L2
0f

2
maxMe−µ

N
∑

r=0

r2hµr

(K + rh)2r!
. (26)

A visualization of the normal approximation of the proba-

bility distribution of L is shown in Fig. 10b. Furthermore,

with Eqs. 25 and 26, we can derive the likelihood function

FIG. 10: Probability distributions of the luciferase assay fluorescence

intensity L from Eq. 23. (a) A toy example of a discrete probability

distribution of allowable fluorescence intensities for N = 30 viruses

infecting M = 20 cells. Due to the MN finite number of allowable

configurations of the SMOI, there are a corresponding finite num-

ber of intensities with specific probabilities determined by Eq. 5 and

represented by a unique circle. The parameters used for the reporter

kinetics are fmax = 2, h = 1, K = 1 and L0 = 1. The mean in-

tensity of the fluorescence signal is E[L] = 19.5, represented by the

vertical dotted line, and variance Var[L] = 1.49, represented by the

shaded region. (b) The normally distributed approximation of fluo-

rescence intensity using M = 105, fmax = 2, h = 1, K = 1 and

L0 = 1. The distributions are plotted for µ = 1.4, 1.5, and 1.6 by

computing the expected values E[L] = 9.23× 104, 9.64× 104, and

105 and the variances Var[L] = 1.7×105 , 1.24×105 , and 1.3×105

respectively.

L(Ldata
t |µ) of the data Ldata

t , given µ

L(Ldata
t |µ) =

T
∏

t=0

1
√

2πVar[L]
exp

[

−

(

Ldata
t − E[L]

)2

2Var[L]

]

,

(27)

where 1 ≤ t ≤ T is the trial number. Due to the complicated

functional form of the mean and variance of L, creating a

maximum likelihood scheme to estimate µ from experimental

data is intractable, so we use Eq. 25 by replacing the expected

value with the experimental average of measurements Ldata
t .

If we assume no cooperative transcription binding (h = 1),

we solve for the estimate µ̂ by applying the Newton-Raphson

iterative method to the equation

0 =
1

T

T
∑

t=0

Ldata
t − L0fmaxMe−µ̂

N0
∑

r=0

rµ̂r

(K + r)r!
. (28)

The typical method, under the assumption that luminescent

intensity is proportional to the number of IUs N , is to use

the sample mean via the formula µ̂init = 1
L0MT

∑T

t=0 L
data
t .

This standard approach fails to account for the effects of

SMOI, but can be used to generate an initial guess for solv-

ing Eq. 28 iteratively. In order to compare the two estimates,

we simulate data similar the descriptions in the previous two

sections. Here, we do not dilute the initial particle count and,

after distributing the N IUs to the M cells with equal proba-

bility, we compile the SMOI configuration and calculate Ldata
t

using Eq. 23. The results are shown in Fig. 11. The iterative

method produces an estimate µ̂ far closer to the true value of

µ than the former method. A similar approach can be used to

compare methods for alternative functional forms of the viral
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FIG. 11: The likelihood function L(Ldata
t |µ) using Eq. 27 and sim-

ulated data. We set µ = 1.5 and assign other parameters with

M = 105, fmax = 2, h = 1, K = 1 and L0 = 1. The esti-

mate derived from solving Eq. 28 is µ̂ = 1.502 while the standard

method based on the sample mean yields µ̂ = 0.97, far lower than

what is displayed in the plot.

protein transcription dynamics described in Eq. 24.

IV. CONCLUSION

In this work, we derived probability models that quantify

the viral infectivity of host cells in an in vitro environment.

By factoring in the stochastic nature of virus-host engage-

ment, defective and/or abortive events, and the possibility of

multiple infections of a single host, we defined the statistical

multiplicity of infection (SMOI) and determined related prob-

abilistic models. We analyzed two limiting regimes: small

numbers of infecting viruses N and large N . For the low N
regime, Eqs. 2 and 5 model how the limited number of infec-

tious units are distributed amongst the M host cells. Alterna-

tively, for large N , we showed the cell counts of the SMOI

become statistically independent, as displayed in Eq. 8, and

that they display a Poisson distribution (Eq. 6). Lastly, we

explored the effects of serial dilution on the total number of

infected cells and the probability of observing an infectious

signal in Eq. 9.

Using our probability models along with reasonable as-

sumptions of applied combinatorics and nonlinear inference,

we analytically derived expressions for several virus assays

to improve on existing methods of experimental data analy-

sis. For virus quantification assays, serial dilution results in

low numbers of viral particles. Using the appropriate proba-

bility model, we created new methods of estimating the par-

ticle count N0 in the initial viral stock for the plaque assay

and the endpoint dilution assay. For measuring infectivity of

a viral strain, the objective is to determine the effective mul-

tiplicity of infection µ = N/M as the ratio of successfully

infecting viruses N and the total number of cells M included

in the assay. As these assays operate under no dilution, we

employed the large N limit probability model to analytically

derive expressions for the luciferase reporter assay to estimate

µ. A summary of each estimation method along with the most

commonly used counterpart is displayed in Table I.

VQAs are primarily concerned with inferring N0 and as-

sume a priori knowledge of M and the particle to PFU ra-

tio Q. In actuality, there can be variability in the number of

cells present in the microtiter well and, as discussed in Sec-

tion II A, the true value of Q is dependent on the particu-

lar protocol and particular conditions under which an assay

was performed. If an alternative assay (RNA tagging, spec-

troscopy, super-resolution imaging, etc.) not using cell infec-

tion can accurately measure N0, then, in theory, a subsequent

infection assay can be used to infer a more reliable measure

of Q. In fact, in our analysis of the plaque assay presented

in Appendix E of the SI, we show that one can determine a

significantly higher amount of information about Q with the

same assay protocol if N0 is a priori known, rather than the

reverse case. Thus, one may argue that assays that employ

serial dilution, such as plaque and endpoint dilution assays,

may be better utilized to infer Q. Because the underlying like-

lihood of the data in all assays would be the same, the same

derivation techniques would follow with respect to Q in order

to formulate its maximum likelihood estimate. This analysis

shows the robust utility of a full probabilistic model and data

likelihood function.

Although the derived assay models provide explicit equa-

tions for inference, many of the expressions are analytically

unsolvable and require numerical solutions. To improve the

accessibility of some of our results, we have created a web-

based tool (available at https://bamistry.github.io/SMOI/) that

can accept data from either plaque, endpoint dilution, or lu-

ciferase reporter assays and automatically estimate the param-

eter of interest. Ultimately, these tools can be used for analy-

sis of future virological studies, but may also be useful when

revisiting results of studies that stress quantifying viral infec-

tivity [15, 41]. For studies that use serial dilution assays, our

approach stresses the advantages of using information in the

data associated with all dilution numbers rather than just that

of the critical dilution.

Our probabilistic models of viral infection can be further

generalized to include, for example, the effects of cell size in-

homogeneity, coinfection, and viral interference. In the Sup-

plemental Information, we provide a framework that would

allow one to explore how these confounding factors can fur-

ther alter the signal of a virus assay. Future refinement of these

extensions can help to ultimately derive a mechanistic model

for the probability of a single virus successfully infecting a

host cell, which we defined as Q−1. Understanding this prob-

ability of infection can help aid further experimental design

and allow better quantification and resolution of the infection

dynamics of particular viral strains.
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TABLE I: A summary of the analytically derived expressions used to analyze experimental results. For virus quantification assays, such as the

plaque and endpoint dilution assays, one typically wishes to estimate the number of initial viral particles N0. For luciferase reporter infectivity

assay, the ratio µ = N/M is desired. Our improved parameter estimation methods are listed next to standard methods currently used.

Comparison of Virological Assay Analyses

Assay

(Parameter)

Standard Method New Method

Plaque

(N0)
N̂0 = Ddc

(

1

T

T
∑

t=1

Pdc,t

)

0 =

dmax
∑

d=dc

T
∑

t=1

M exp
(

− N̂0

QMDd

)

−M + Pd,t

QMDd
[

1− exp
(

− N̂0

QMDd

)]

Initial guess:

N̂ init
0 = −QMDd ln

(

1−
1

MT

T
∑

t=1

Pdc,t

)

Endpoint

Dilution

(N0)

Reed and Muench:

log10(N̂0) = d50% +
Ed50% − 0.5T

Ed50% − Ed50%+1

Spearman-Karber:

log10(N̂0) = d100% −





1

2
−

dmax
∑

d=d100%

Ed

T



 log10 D

0 =

dmax
∑

d=1

Ed − T + T exp
(

− N̂0

QDd

)

QDd
(

1− exp
(

− N̂0

QDd

))

Initial guess:

N̂ init
0 =

−QDdc

2
ln

[

(

1−
Edc

T

)(

1−
Edc+1

T

)D
]

Luciferase

Reporter
(

µ = N
M

) µ̂ =
1

L0MT

T
∑

t=0

Ldata
t

0 =
1

T

T
∑

t=0

Ldata
t − L0fmaxMe−µ̂

N0
∑

r=0

rµ̂r

(K + r)r!

Initial guess:

µ̂init =
1

L0MT

T
∑

t=0

Ldata
t

research.
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SUPPLEMENTARY INFORMATION

APPENDIX A: MATHEMATICAL APPENDICES

SMOI Probability

To derive Eq. 2, we index all cells with i ∈ {1, · · · ,M} and define Ar
i as the event that cell i is infected by exactly r IUs.

Then, given N IUs across all M cells, the probability of Ar
i is given by

Pr(Ar
i |M,N) =

(

N

r

)(

1

M

)r (

1−
1

M

)N−r

. (S1)

Since cell sizes are assumed to be homogeneous, the probability in Eq. S1 is the same for all cells, but the events {Ar
1, · · · , A

r
M}

are not independent as the number of IUs N shared among the M cells is finite. Thus, we use the inclusion-exclusion principle
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[40] to derive

Pr(Mr = mr|M,N) =
M
∑

j=mr

(−1)j−mr

(

j

mr

)

∑

I⊂{1,··· ,M}
|I|=j

Pr

(

⋂

i∈I

Ar
i

)

=
M
∑

j=mr

(−1)j−mr

(

j

mr

)(

M

j

)

Pr

(

j
⋂

i=1

Ar
i

)

=

M
∑

j=mr

(−1)j−mr

(

j

mr

)(

M

j

)(

N

r, · · · , r, (N − rj)

)

[

j
∏

i=1

(

1

M

)r
]

(

M − j

M

)N−rj

=

M
∑

j=mr

(

j

mr

)(

M

j

)(

N

r, · · · , r, (N − rj)

)

(−1)j−mr (M − j)
N−rj

MN
. (S2)

Note that the inner summation in the first identity above is over every possible collection of cells of size j, but as each cell is

identical, the sum can be reduced to a single joint probability with the binomial degeneracy
(

M
j

)

.

Expected Value and Variance

For the generalized c-th moment E [M c
r ] of the number of cells Mr infected by exactly r viruses, we start with Eq. 2 to obtain

E [M c
r ] =

M
∑

mr=0

M
∑

j=mr

mc
r(−1)j−mr

(

j

mr

)(

M

j

)

(

N !

(r!)
j
(N − rj)!

)

(M − j)
N−rj

MN

=

M
∑

j=0

[

j
∑

mr=0

mc
r(−1)j−mr

(

j

mr

)

]

(

M

j

)

(

N !

(r!)j (N − rj)!

)

(M − j)
N−rj

MN
(S3)

To aid our derivation, we define the function u(j, c) as

u(j, c) =

j
∑

m=0

mc(−1)j−m

(

j

m

)

= j

j−1
∑

k=0

(k + 1)c−1(−1)j−1−k

(

j − 1

k

)

= j

c−1
∑

i=0

(

c− 1

i

) j−1
∑

k=0

ki(−1)j−1−k

(

j − 1

k

)

= j

c−1
∑

i=0

(

c− 1

i

)

u(j − 1, i). (S4)

This is a recursive relationship from which we can evaluate any u(j, c) using all u(j− 1, i) such that 0 ≤ i < c. We evaluate the

first three cases u(j, 0) = δ0,j , u(j, 1) = δ1,j , and u(j, 2) = δ1,j + 2δ2,j , where δ0,j is the Kronecker delta operator that returns

the value 1 when the two subscript arguments are equal and 0 otherwise. We use the result for c = 1 and Eq. S3 to calculate the

expected value of Mr as

E [Mr] =

M
∑

j=0

δ1,j

(

M

j

)

(

N !

(r!)
j
(N − rj)!

)

(M − j)
N−rj

MN

= M

(

N

r

)(

1

M

)r (

1−
1

M

)N−r

. (S5)
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We obtain the second moment E
[

M2
r

]

using the same method in order to obtain the variance of Mr as

Var [Mr] = E
[

M2
r

]

− E [Mr]
2

= M

(

N

r

)(

1

M

)r (

1−
1

M

)N−r

+
M(M − 1)N !(M − 2)N−2r

(r!)2(N − 2r)!MN
−

M2(N !)2(M − 1)2N−2r

(r!)2 [(N − r)!]
2
M2N

. (S6)

Asymptotic Approximation

For the derivation of Eq. 6, we take the mathematical limit N,M → ∞ while keeping the ratio µ = N
M

fixed and approximate

Eq. 2 as follows:

Pr(Mr = mr|M,N) =

M
∑

j=mr

j!M !N !(−1)j−mr (M − j)N−rj

mr!(j −mr)!j!(M − j)!(N − rj)!(r!)jMN−rjM rj

=
1

mr!

M
∑

j=mr

(−1)j−mr

(j −mr)!(r!)j
[M · · · (M − j + 1)]

[N · · · (N − rj + 1)]

M rj

(

1−
j

M

)N−rj

≈
1

mr!

M
∑

j=mr

(−1)j−mr

(j −mr)!(r!)j
M jµjre−µj

≈
1

mr!

[

Mµre−µ

r!

]mr

exp

[

−
Mµre−µ

r!

]

. (S7)

Note that, although the first approximation requires j in the summation to be sufficiently smaller than M , any contribution

from the summation for j close to M vanishes due to both the (j −mr)! term in the denominator and the
(

1− j
M

)N−rj
term

approaching 0. Under the same large M,N limit, we can derive an asymptotic approximation of the joint probability distribution

by taking the natural log of both sides of Eq. 5:

ln Pr(M0 = m0, · · · ,MN = mN ) = ln

(

1

MN

)

+ lnM ! + lnN ! +

N
∑

r=0

ln

(

1

mr!(r!)mr

)

≈ −N lnM +M ln(M)−M +N ln(N)−N +

N
∑

r=0

ln

(

1

mr!(r!)mr

)

= lnµ

(

N
∑

r=0

rmr

)

+ (lnM − µ)

(

N
∑

r=0

mr

)

−Me−µ

(

∞
∑

r=0

µr

r!

)

+
N
∑

r=0

ln

(

1

mr!(r!)mr

)

=

N
∑

r=0

ln

[

µrmrMmre−mrµ

mr!(r!)mr
exp

(

−
Me−µµr

r!

)]

−O

(

MµN

N !

)

≈ ln

[

N
∏

r=0

1

mr!

[

Mµre−µ

r!

]mr

exp

(

−
Mµre−µ

r!

)

]

. (S8)

Since the argument in the right-hand-side of the last approximation is the same as Eq. 6, we arrive at the result in Eq. 8.

Number of Infected Cells

To derive Eq. 9, we first define Nd as the number of virus particles present in the viral solution after dilution of a factor of

Dd. Obtaining Nd is effectively analogous to taking a volume of the initial viral stock scaled by D−d and counting the number

of particles captured in the volume. Thus, we expect Nd to be Poisson-distributed with mean N0D
−d and discrete probability
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density function given by

Pr (Nd = nd|N0) =
1

nd!

(

N0

Dd

)nd

exp

(

−
N0

Dd

)

. (S9)

OnceNd is chosen from the above distribution, for a given “particle to PFU ratio” Q, the number of IUs N follows a binomial dis-

tribution with a probability function similar to Eq. 1, but with N0 replaced with Nd. Note that, given an SMOI {M0, · · · ,MN},

it is immediate that M∗ = M −M0. Using this modified density of N and Eqs. 2 and S9, we can derive the discrete probability

density function of M∗ at a given dilution number d as

Pr (M∗ = m) =

N0
∑

nd=0

nd
∑

n=0

Pr(N = n|Nd = nd)Pr(M0 = M −m|N = n)Pr(Nd = nd)

=

M
∑

j=M−m

(−1)j−M+m

(

j

M −m

)(

M

j

)

e−
N0

Dd

N0
∑

nd=0

(

N0

Dd

)nd

nd!

[

1−Q−1 +Q−1

(

1−
j

M

)]nd

≈
M
∑

j=M−m

(−1)j−M+m

(

j

M −m

)(

M

j

)

exp

[

N0

Dd

(

1−
j

QM

)

−
N0

Dd

]

=

(

M

m

)[

1− exp

(

−
N0

QMDd

)]m

exp

(

−
N0

QMDd

)M−m

. (S10)

Note that the approximation that closes the exponential term in the final result employs the assumption that N0 is sufficiently

large.

APPENDIX B: INHOMOGENEOUS CELL SIZE

We derived the probability distribution in Eq. 2 assuming the plated host cells are of identical size and volume. This may

not necessarily be the case as each cell exists at different stages of the mitotic cycle, will attach to the plate bottom at random

locations, and contain deformities in shape and size. Assuming cells cover the entire surface of the well bottom, Pineda et al.

[42] showed that the cell size proportion pi for cell i is gamma distributed with probability density

f(pi) =
Mνννpν−1

i exp(−νMpi)

Γ(ν)
, (S1)

where ν is a parameter that can be estimated, for example, by fitting imaging data of cells. Under a specific realization of cell

size distributions {p1, · · · , pM}, we define Ar
i as the event that cell i is infected by exactly r viruses with probability

Pr(Ar
i ) =

(

N

r

)

pri (1− pi)
N−r. (S2)

Using the inclusion-exclusion principle as above, we derive the conditional probability distribution of the number of cells Mr

that were infected by exactly r viruses as

Pr(Mr = mr|p1, · · · , pM ) =

M
∑

j=mr

(−1)j−mr

(

j

mr

)

∑

|{iw}|=j

Pr

(

j
⋂

w=1

Ar
iw

)

=

M
∑

j=mr

(−1)j−mr

(

j

mr

)

∑

|{iw}|=j

(

N

r, · · · , r, (N − rj)

)

pri1 · · · p
r
ij

(

1−

j
∑

w=1

piw

)N−rj

=
M
∑

j=mr

(−1)j−mr

(

j

mr

)

∑

|{iw}|=j

N !

(r!)j(N − rj)!

(

j
∏

w=1

piw

)r (

1−

j
∑

w=1

piw

)N−rj

. (S3)

In order to obtain the full probability, we first take note that each cell size proportion pi is dependent on each other as they are

constrained by
∑M

i pi = 1. We avoid this dependency by noticing the expression in Eq. S1 approaches zero very rapidly as pi
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moves away from the expected value 1/M . If we define a sufficiently large proportion p̂ such that the interval [0, p̂] contains the

majority of the area under the probability density in Eq. S1, we can make the approximation

Pr(Mr = mr) =

∫ 1

0

· · ·

∫ 1

0

Pr(Mr = mr|p1, · · · , pM )f(p1, · · · , pM )dp1 · · · dpM

≈

[

Mνννe−ν

Γ(ν)

]M ∫ p̂

0

· · ·

∫ p̂

0

Pr(Mr = mr|p1, · · · , pM )

(

M
∏

w=1

pw

)ν−1

dp1 · · · dpM . (S4)

It is clear that introducing cell size inhomogeneity dramatically increases the complexity of our probabilistic SMOI model.

For relatively small numbers of cells M , image processing can be used to determine an estimation of a particular realization of

cell size distribution {p1, · · · , pM} for a given experiment and factored into Eq. S3. Note that once the probability distribution

of cell counts {M0, · · · ,MN} is determined for a given realization of cell sizes {p1, · · · , pM}, all subsequent analysis and

derivations follow the same way as in the homogeneous cell size assumption.

APPENDIX C: COINFECTION

As a vector for infection, the primary function of a single virus particle is to deliver its genetic contents into the host cell

cytoplasm or nucleus [10–12]. The typical model for viral infection assumes each virus contains all the genetic material required

to replicate within a host cell [14, 15]. Certain plant and fungi viruses, however, require two or more particles to successfully

replicate within a host cell since each particle contains only part of the complete genome [43]. Similarly, RNA viruses that target

animal cells undergo error prone replication, resulting in partially complete genome sequences. These damaged viral genes

may encode proteins needed for the host cell to successfully replicate new viruses. In this case, regardless of a successful viral

infection, new viruses capable of infecting further host cells will not be produced. Additional viral infections that contain the

missing sequence fragments, though, can “rescue” the cell’s ability to replicate the virus, a phenomenon known as coinfection.

In the context of our definition of SMOI, we now make the distinction between Mr, the number of cells that have been infected

by viral genomes from exactly r distinct virus particles, and M∗
r , the number of cells that are fully capable of replicating new

functioning viruses upon undergoing r distinct viral infections. It is immediate that each M∗
r ≤ Mr and their sum M∗ ≡

∑N

r=1Mr ≤ M −M0, so the results in Eqs. 9 and 12 are not sufficient to quantify the total number of virus-producing cells.

In order to model coinfection, we need to consider the genome of the virus species of interest. Specifically, we assume the

genome is made up of G distinct genes. For example, many variants of HIV-1 carry a gene sequence containing G = 9 genes

[10]. In our model, we assume each gene encodes a protein that is essential for replication. Though individual nucleotide

changes due to random mutations may result in an amino acid chain that is no longer functioning, some genes may be robust to

these changes due to codon degeneracy or the gene’s shear length [44]. Thus, we assume each gene g = 1, · · · , G contained

within a viral particle has a probability qg of losing function. If a cell is infected by exactly r viral genomes, we define Br
g as

the event that gene g is still no longer functional, so that Pr(Br
g) = qrg . To quantify the probability that k genes are no longer

functional in a host cell that has been infected by exactly r viral genomes, we use the inclusion-exclusion principle [40] to derive

Pr (“k failed genes given r infections”) =
G
∑

j=k

(−1)j−k

(

j

k

)

∑

I⊂{1,··· ,G}
|I|=j

Pr





⋂

g∈I

Br
g





=

G
∑

j=k

(−1)j−k

(

j

k

) 1
∑

σ1=0

· · ·

1
∑

σG=0

1

∑
G
g=1

σg=j

G
∏

g=1

qσgr
g , (S1)

where 1∑
G
g=1

σg=j is an indicator function that returns zero when the number of nonzero σg is not exactly j. The infected cell is

only capable of producing viable viruses if none of the genes have failed and is equivalent to setting k = 0 in Eq. S1. Then we

define the probability Hr that a cell infected by exactly r viral genomes will successfully produce new viruses as

Hr =

G
∑

j=0

(−1)j
1
∑

σ1=0

· · ·

1
∑

σG=0

1

∑
G
g=1

σg=j

G
∏

g=1

qσgr
g . (S2)

Note that the probability that a cell not infected by any viral genome will produce viruses is H0 = 0. Then, given an SMOI

{M0, · · · ,MN}, the number of cells M∗
r capable of virus replication after being infected by exactly r viral genomes is binomi-

ally distributed with parameters Mr and Hr. The probability of M∗ cells producing viruses is given by

Pr (M∗ = m|M0, · · · ,MN ,M,N) =
∑

M∗

1
,··· ,M∗

N

(

m

M∗
1 , · · · ,M

∗
N

) N
∏

r=1

(

Mr

M∗
r

)

H
M∗

r
r (1−Hr)

Mr−M∗

r . (S3)
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If we let m = 0 and sum over the density in Eq. 5 for all possible SMOI, given an IU count N , we can derive the probability of

observing a cytopathic effect as

Pr(“Cytopathic effect”|N) = 1−
∑

M0,··· ,MN

1

MN

(

M

M0, · · · ,MN

)(

N

0, · · · , 0, 1, · · · , 1, · · · , N, · · · , N

) N
∏

r=1

(1−Hr)
Mr

= 1−
M !N !

MN

N
∏

r=0

M
∑

Mr=0

(1−Hr)
Mr

Mr!(r!)Mr

≈ 1−
M !N !

MN
exp

[

N
∑

r=0

1−Hr

r!

]

, (S4)

where the approximation is due to the assumption that the number of cells M is large. For intermediate values of N , computing

the summation in the exponential is numerically viable, assuming the probabilities of gene failure q1, · · · , qG are known. Though

this expression may be used in place of Eq. 12 to analyze some virus quantification assays, for large values of N , numerically

evaluating Hr becomes computationally expensive.

APPENDIX D: VIRAL INTERFERENCE

To infect healthy cells, all species of viruses must undergo a series of events including cell attachment, entry via membrane

fusion or endocytosis, and intracellular transport. Retroviruses, such as HIV-1, must also undergo reverse transcription, nuclear

pore transport, and DNA integration in order to use the host cell’s transcription machinery to produce viral protein. In the

models developed in this paper, the probabilities of success for each of these processes was assumed to be subsumed into the a

priori estimated particle to PFU ratio Q. However, for certain retroviruses, it has been observed that after an initial infection,

subsequent infections from the same virus species become less likely [45, 46]. This phenomenon, known as viral interference,

is often due to the host producing new viral proteins after a refractory period that can inhibit one or more of the intracellular

processes leading to integration of subsequent viral infections. To include this dynamic into our models, we first decouple the

probabilities of integration from Q and define N as the number of viruses that have successfully completed viral entry into the

host cytoplasm, but before all intracellular processes that lead to integration. Note that all of our results concerning the statistical

multiplicity of infection (SMOI) still hold and we make the distinction between the number Mr of cells infected by r of the N
infectious units and the number M∗

s of cells with exactly s integrations. Furthermore, some species of virus can contain multiple

copies of their genome, such as HIV-1 which contains two copies per particle [10]. Let a be the number of genomes contained

in a single virus particle to be integrated into the host cell. Then the maximum number of possible integrations for a cell from

Mr is ra. Let ps be the probability of a viral genome integrating into the host DNA given that s − 1 integrations have already

occurred. Define Hr,s as the probability a cell contains s successful integrations given that it was infected by exactly r distinct

virus particles and is given by

Hr,s =

{

p1p2 · · · ps(1− ps+1)
ra−s 0 ≤ s ≤ ra

0 s > ra.
(S1)

If we define M∗
r,s as the number of cells with s integrations after infection by exactly r virus particles, then given an SMOI

{M0, · · · ,MN} and N , we can derive the probability function

Pr(M∗
r,s = m|M0, · · · ,MN , N) =

(

Mr

m

)

Hm
r,s (1−Hr,s)

Mr−m . (S2)

Noting that M∗
s =

∑N

r=0 M
∗
r,s is the number of cells with exactly s integrations, we can use Eqs. 6 and S2 to derive the expected

value as

E [M∗
s |N ] =

N
∑

r=0

E
[

M∗
r,s|N

]

=

N
∑

r=0

Hr,sE [Mr|N ]

= Me−µ

N
∑

r=0

Hr,sµ
r

r!
, (S3)
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where µ = N
M

. Note that if we are concerned with the total number M∗ = M − M∗
0 of cells with at least one integration, as

is the case for the probability distributions derived for assays employing serial dilution, issue of viral interference is negligible,

allowing us to subsume the probability of the first integration into the particle to PFU ratio Q as before and leave all subsequent

virus quantification analysis unchanged from the results in Section III A and III B. However, for assays that attempts to quantify

the total number of integrations, such as the luciferase reporter assay, the expectation in Eq. S3 can be used, assuming the

probabilities p1, · · · , pN have a priori been estimated.

APPENDIX E: SENSITIVITY ANALYSIS

The probability models derived in Section II A allowed us to construct the likelihood functions for the plaque, endpoint dilu-

tion, and luciferase reporter assays in Eqs. 14, 20, and 27 for the primary purpose of inferring unknown parameters such as N0

and µ. The utility of these functions can be extended to performing sensitivity analysis on these maximum likelihood estimates

(MLE) and optimizing experimental design. This requires constructing a Fisher Information Matrix (FIM), a quantitative mea-

sure of the information one can extract for a likelihood function with an arbitrary set of data [47, 48]. The FIM, which we will

denote as J , is constructed by computing the gradient of the log of the likelihood function with respect to the parameters being

inferred. For example, for the plaque assay and potentially inferred parameters N0, Q, and M , J is given by

J = E
[

(∇ lnL) (∇ lnL)
T
]

=







JN0,N0
JN0,Q JN0,M

JQ,N0
JQ,Q JQ,M

JM,N0
JM,Q JM,M






, (S1)

where we derive

JN0,N0
= E

[

(

∂ lnL

∂N0

)2
]

=

dmax
∑

d=dc

T exp
(

− N0

QMDd

)

Q2MD2d

[

1− exp
(

− N0

QMDd

)] , (S2)

JQ,Q = E

[

(

∂ lnL

∂Q

)2
]

=

dmax
∑

d=dc

TN2
0 exp

(

− N0

QMDd

)

Q4MD2d

[

1− exp
(

− N0

QMDd

)] , (S3)

JM,M = E

[

(

∂ lnL

∂M

)2
]

=

dmax
∑

d=dc

TN0 exp
(

− N0

QMDd

)

QM2Dd

[

1− exp
(

− N0

QMDd

)] , (S4)

JN0,Q = JQ,N0
= E

[(

∂ lnL

∂N0

)(

∂ lnL

∂Q

)]

= −

dmax
∑

d=dc

TN0 exp
(

− N0

QMDd

)

Q3MD2d

[

1− exp
(

− N0

QMDd

)] , (S5)

JN0,M = JM,N0
= E

[(

∂ lnL

∂N0

)(

∂ lnL

∂M

)]

= −

dmax
∑

d=dc

TN0 exp
(

− N0

QMDd

)

Q2M2D2d

[

1− exp
(

− N0

QMDd

)] , (S6)

JQ,M = JM,Q = E

[(

∂ lnL

∂Q

)(

∂ lnL

∂M

)]

=

dmax
∑

d=dc

TN2
0 exp

(

− N0

QMDd

)

Q3M3D2d

[

1− exp
(

− N0

QMDd

)] . (S7)

In particular, the elements of the main diagonal of J , known as Fisher Information Numbers, are interpreted as the “precision”

of each MLE and can inform an experimentalist of the potential variation in their inferred parameter with respect to data defined

by the likelihood function. Comparing the main diagonal elements can offer insight into experimental design. To illustrate, in

the example above, it is immediately apparent that the ratio of JQ,Q to JN0,N0
is N2

0 /Q
2, where it is understood that N0 is

typically several orders of magnitude higher than Q. This implies that the likelihood function of Eq. 14, and, by extension, the

plaque assay itself contains far more information about the parameter Q than N0. This provides an analytical way to decide

which parameter estimation should be the focus of a particular assay.

A more general use for the FIM is to understand the variance of an MLE given an arbitrary set of data. Independent, but

identical experiments can produce different estimates for each parameter and, according to the Cramer-Rao inequality, the matrix

inverse J−1 will provide a theoretical lower bound on the covariance matrix of the parameter estimates [47]. Furthermore, it can

be shown that the distribution of MLEs asymptotically approaches a normal distribution centered around the true experimental

parameter value with covariance J−1 as the amount of data increases [49]. For single point estimation, the FIM reduces to the
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one Fisher Information Number with which the reciprocal can be used to approximate the variance of a parameter. For example,

the plaque assay is typically used to infer only the parameter N0, so using Eq. S2, we can obtain the asymptotic approximation

Var
[

N̂0

]

≈ J−1
N0,N0

=





dmax
∑

d=dc

T exp
(

− N0

QMDd

)

Q2MD2d

[

1− exp
(

− N0

QMDd

)]





−1

. (S8)

This analytical expression for the variance can be used to determine confidence intervals of the MLE, perform sensitivity analysis

of other parameters, and aid in optimal experimental design.
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