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1 Institute for Biocomputation and Physics of Complex Systems (BIFI), University of
Zaragoza, Spain
2 Department of Theoretical Physics, University of Zaragoza, Spain
3 Department of Genetics. Saint-Justine Hospital Research Center, Montreal, Canada
4 Department of Biochemistry,University of Montreal, Canada
5 ISI Foundation, Turin, Italy

‡These authors contributed equally to this work.
* sergioarregui.sa@gmail.com

Abstract

The modeling of large-scale communicable epidemics has greatly benefited in the last
years from the increasing availability of highly detailed data. Particularly, in order to
achieve quantitative descriptions of the evolution of epidemics, contact networks and
mixing patterns are key. These heterogeneous patterns depend on several factors such
as location, socioeconomic conditions, time, and age. This last factor has been shown to
encapsulate a large fraction of the observed inter-individual variation in contact
patterns, an observation validated by different measurements of age-dependent contact
matrices. Recently, several works have studied how to project those matrices to areas
where empiric data is not available. However, the dependence of contact matrices on
demographic structures and their time evolution has been largely neglected. In this
work, we tackle the problem of how to transform an empirical contact matrix that has
been obtained for a given demographic structure into a different contact matrix that is
compatible with a different demography. The methodology discussed here allows
extrapolating a contact structure measured in a particular area to any other whose
demographic structure is known, as well as to obtain the time evolution of contact
matrices as a function of the demographic dynamics of the populations they refer to. To
quantify the effect of considering time-dynamics of contact patterns on disease
modeling, we implemented a Susceptible-Exposed-Infected-Recovered (SEIR) model on
16 different countries and evaluated the impact of neglecting the temporal evolution of
mixing patterns. Our results show that simulated disease incidence rates, both at the
aggregated and age-specific levels, are significantly dependent on contact structures
variation driven by demographic evolution. The present work opens the path to
eliminate technical biases from model-based impact evaluations of future epidemic
threats and warns against the use of contact matrices to model diseases without
correcting for demographic evolution or geographic variations.

Author summary

Large scale epidemic outbreaks represent an ever increasing threat to humankind. In
order to anticipate eventual pandemics, mathematical modeling should not only have
the capacity to model in real time an ongoing disease, but also to predict the evolution
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of potential outbreaks in different locations and times. To this end, computational
frameworks need to incorporate, among other ingredients, realistic contact patterns into
the models. This not only implies anticipating the demographic structure of the
populations under study, but also understanding how demographic evolution reshapes
social mixing patterns along time. Here we present a mathematical framework to solve
this problem and test our modeling approach on 16 different empirical contact matrices.
We also evaluate the impact of an eventual future outbreak by simulating a SEIR
scenario in the countries analyzed. Our results show that using outdated or imported
contact matrices that do not take into account demographic structure or its evolution
can lead to largely misleading conclusions.

Introduction 1

During recent years, models on disease transmission have improved in complexity and 2

depth, integrating high-resolution data on demography, mobility and social 3

behavior [1, 2]. Specifically, the topology of social contacts plays a major role in 4

state-of-the-art modeling [3–8]. The complete knowledge of the network of contacts 5

through which an epidemic spreads is usually unreachable or impossible to implement, 6

and for modeling purposes it is useful to remain at the coarse level of age-groups. Under 7

this view, the population under study is divided into different groups according to its 8

age distribution and different contact rates are assumed among these groups. 9

Age-dependent contact patterns give powerful insights on the transmission of diseases 10

where epidemiological risk is correlated to age, either as a result of behavioral or 11

physiological factors. Relevant examples are influenza-like diseases [6–10], pertussis [11], 12

tuberculosis [12, 13], and varicella [14]. Furthermore, they are instrumental for modeling 13

and implementing more efficient interventions [15,16]. 14

Given the utmost importance of contact heterogeneities, the study of age-dependent 15

social mixing has become a priority in the field. In 2008, Mossong et al. [17] published a 16

seminal work with the measurements of age-dependent contact rates in eight European 17

countries (Belgium, Finland, Germany, Great Britain, Italy, Luxembourg, Netherlands 18

and Poland) via contact diaries. Due to the high cost of gathering empirical data on 19

social contacts, Fumanelli et al. [18] proposed an alternative path consisting on building 20

synthetic contact patterns via the modeling of virtual populations. Nevertheless, other 21

authors have followed the original route open by Mossong et al., measuring empirically 22

the age-dependent social contacts of other countries such as China [19], France [20], 23

Hong-Kong [21], Japan [22], Kenya [23], Russia [24], Uganda [25] and Zimbabwe [26], 24

thus expanding significantly the available data on social mixing in the last few years. 25

In these studies, participants are asked how many contacts they have during a day and 26

with whom. This allows to obtain the (average) number of contacts that an individual 27

of a particular age i has with individuals of age-group j. The resulting matrix is not 28

symmetric due to the different number of individuals in each age-group. However, it is 29

precisely the demographic structure what imposes constraints in the entries of this 30

matrix, as reciprocity of contacts should be fulfilled at any time (i.e., the total number 31

of contacts reported by age-group i with age-group j should be ideally equal in the 32

opposite direction). Therefore, an empirical contact matrix, that has been measured on 33

a specific population, should not be used directly, without further considerations, in 34

another population with a different demographic structure. 35

This issue has important consequences in the field of disease modeling. As contact 36

matrices play a key role in disease forecast, it is essential to assure that the matrices 37

implemented are adapted to the demographic structure of the population considered in 38

order to avoid biased estimations. For some short-cycle diseases like influenza, the time 39

scale of the epidemic is much shorter than the typical times needed for a demographic 40
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structure to evolve. That means that, typically, the demographic structure can be safely 41

considered constant [10], and the eventual evolution of the contact matrix can be 42

neglected throughout the simulation of an outbreak. For these diseases, the problems 43

might arise when modelers use contact matrices that are not up to date -for instance, 44

one might wonder whether the patterns reported in [17] in 2008 can be used nowadays, 45

a decade later, during which all the European countries analyzed in that study aged 46

significantly. The same issue appears when a contact matrix measured in a given 47

location (e.g., a specific country) is directly used to simulate disease spreading in 48

another region or country with a different population structure. 49

The previous considerations are even more troublesome for the case of persistent 50

diseases that need long-term simulations, for which the hypothesis of constant 51

demographic structures does not hold anymore [12]. In those cases, contact matrices 52

should continuously evolve during the simulation to reflect the effect that an evolving 53

demography should exert on contact structures. Furthermore, it remains to be known to 54

what extent the variations between contact matrices coming from different countries are 55

due to differences in the demographic structures, divergent cultural traits and/or 56

methodological differences between studies. For instance, elderly people exhibit higher 57

contact rates with children in African countries than in Europe [26]. This could be 58

explained by the different demographic structures: one might expect to observe higher 59

contact rates toward the younger age strata in Africa than in Europe because their 60

populations have a higher density of young individuals. However, it is not clear yet 61

whether the demographic structure is the only driver of geographical heterogeneity 62

between empirical contact matrices. 63

The main focus of this work is to study how age contact matrices, originally obtained 64

for a specific setting (country and year), can be adapted to different demographic 65

structures -i.e., to another (location and/or time) setting. To this end, we first study 66

the magnitude of the reciprocity error incurred when the adaptation of empirical social 67

contacts to different age structures is ignored, thus justifying the need of studying 68

possible projections that solve this problem. Next, we analyze different methods to 69

perform these adaptations, highlighting the differences induced in the contact patterns 70

by the use of these methods. We also compare empirical contact matrices of 16 countries 71

in different areas worldwide filtering the influence of the demographic structure. This 72

allows to isolate what are the differences that are caused by other factors such as 73

cultural traits. Finally, we implement a Susceptible-Exposed-Infected-Recovered (SEIR) 74

dynamics to study the differences in prospected incidences that arise when applying the 75

methods analyzed to project social contact matrices. 76

Materials and Methods 77

Collection of empirical survey matrices 78

For this work we have gathered 16 different contact matrices coming from several 79

countries: 8 from the POLYMOD project [17] (Belgium, Finland, Germany, Great 80

Britain, Italy, Luxembourg, Netherlands and Poland), China [19], France [20], 81

Hong-Kong [21], Japan [22], Kenya [23], Russia [24], Uganda [25] and Zimbabwe [26]. 82

There are some methodological differences between these studies, thus some 83

pre-processing to homogenize the matrices is required. Specifically, we need to 84

transform them to the same definition of contact matrix and adapt them to the same 85

age-groups. Once this is done, we perform a reciprocity correction (valid for the 86

demographic structure corresponding to the country and year where the survey took 87

place), and we normalize the matrices so that the mean connectivity is equal to one. 88

Details can be found in the Supplementary Information. 89
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Demographic data 90

Data regarding the time evolution of demographic structures, either observed in the 91

past or projected until 2050, has been retrieved from the UN population division 92

database [27]. 93

Projections of a Contact Matrix 94

The basic problem explored in this work is: how can we transform the (empirical) 95

contact matrix Mi,j , that has been measured for a specific demographic structure Ni,j , 96

into a different contact matrix M ′i,j that is compatible with a different demographic 97

structure N ′i,j? This could mean to adapt data obtained in one specific country to 98

another different region that has a different demography. But the problem can appear 99

even if we remain in the same geographical setting, as a contact matrix measured at a 100

specific time τ , could not be valid for an arbitrary time t if the demographic structure 101

of that population has changed. In the following sections, we formulate the problem of 102

non-reciprocity and we present and discuss different methods of using contact matrices 103

in an arbitrary demographic structure. 104

Method 0 (M0): Unadapted Contact Matrix. The problem of 105

non-reciprocity 106

We will call Mi,j to the mean number of contacts that an individual of age i has with 107

other individuals of age j during a certain period of time. This is the magnitude that is 108

usually reported when contact patterns are measured empirically [17,19–24]. The 109

number of contacts must fulfil reciprocity, i.e., there is the same number of total 110

contacts from age-group i to age-group j than from j to i. This imposes the following 111

closure relation for the contact matrix: 112

Mi,jNi = Mj,iNj =⇒ Mi,j

Mj,i
=
Nj

Ni
(1)

where Ni is the number of individuals of age-group i. 113

Therefore, in the case of an evolving demographic structure for which the ratio Ni

Nj
is 114

not constant; the contact matrix Mi,j must change with time. Otherwise we will have 115

non-reciprocal contacts (contacts that inconsistently appear in one direction but not in 116

the other). When comparing different methods for correcting for reciprocity we will 117

usually also compare with the case in which this problem is completely ignored, and the 118

matrix Mi,j is taken directly from the survey without any further consideration. We 119

will refer to this case as Method 0 (M0). 120

The following methods correct this problem, introducing different transformations of 121

the original contact matrix Mi,j , that was measured in a demographic structure Ni, into 122

a new contact matrix M ′i,j that is well adapted to a new demographic structure N ′i (at 123

least avoiding the problem of no reciprocity). 124

Method 1 (M1): Pair-wise correction 125

The basic problem that we want to avoid is to have a different number of contacts 126

measured from i to j than from j to i. Thus, an immediate correction would be to 127

simply average those numbers, so the excess of contacts measured in one direction is 128

transferred to the reciprocal direction. This correction can be formulated as: 129

M ′i,j =
1

N ′i

1

2

(
Mi,jN

′
i +Mj,iN

′
j

)
= Mi,j

1

2

(
1 +

NiN
′
j

NjN ′i

)
(2)

June 11, 2018 4/16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/343491doi: bioRxiv preprint 

https://doi.org/10.1101/343491
http://creativecommons.org/licenses/by-nc-nd/4.0/


Method 2 (M2): Density correction 130

An alternative approach is to adapt contact patterns to different demographic 131

structures correcting by the density of available contactees, which we formalize with the 132

following equation: 133

M ′i,j = Γi,j

N ′j
N ′

(3)

Thus, we interpret that the matrix Mi,j is the product of two factors: 134

• The intrinsic connectivity matrix: Γi,j 135

• The fraction of individuals in j:
N ′

j

N ′ 136

Thus, we are assuming that an individual has an intrinsic preference over certain 137

age-groups depending on its age, captured by Γi,j and the final contact rate is modified 138

according to the density of available contactees. 139

The matrix Γi,j corresponds, except for a global factor, to the contact pattern in a 140

“rectangular” demography (a population structure where all age groups have the same 141

density). We can obtain these matrices Γi,j , that are country-specific, from survey data 142

using equation 3: 143

Γi,j = Mi,j
N

Nj
(4)

which allows to rewrite equation 3 as a function of the original matrix Mi,j : 144

M ′i,j = Mi,j

NN ′j
NjN ′

(5)

This methodology for adapting contact patterns has already been used by De Luca 145

and collaborators, introducing the matrix Γi,j in the force of infection [8]. Also a similar 146

correction is used in Prem et al. [28] to adapt European contact matrices to other 147

countries (although this work integrates more data beyond demographic structures). 148

Method 3 (M3): Density correction + Normalization 149

A cardinal feature of M2 is that it does not preserve the mean connectivity of the entire 150

network of contacts. As a result, depending on the initial contact matrix and the 151

dynamics of the demography, the evolution of the contact structure can produce average 152

connectivities that depart strongly from its initial value. For the sake of disease 153

modeling, this situation is essentially irrelevant if the contact rate of the outbreak to 154

model can be callibrated at its early stages (i.e. its reproductive number). In that case, 155

any global scaling factor multiplying the contact matrix is absorbed by the estimation 156

of a larger or smaller infectiousness β. However, if that is not the case and 157

epidemiological parameters measured in the past (i.e. a pathogen’s infectiousness) are 158

used to generate forecasts of independent outbreaks that might occur later in time, the 159

overall scaling factor of the contact networks become extremely relevant. In such 160

scenario, to couple an a-priori characterization of a pathogen’s infectiousness on top of 161

contact networks with different mean connectivities will artificially inflate or shrink the 162

size of modelled epidemic events as a function of time. Although considering an 163

evolution of the mean connectivity as demography changes might be reasonable, the 164

inability of M2 of producing contact matrices of stable mean connectivities might 165

suppose a liability in some scenarios. 166

Taking that potential issue into consideration, we have proposed an alternative 167

approach that, in addition of correcting for the densities of contactees, preserves the 168
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mean connectivity of the overall system across time. Thus, an evolution of the mean 169

connectivity could always be forced by adding a global factor in a controlled way. 170

To do so, we begin by defining M̃i,j as the connectivity matrix from M2: 171

M̃i,j = Γi,j

N ′j
N ′

(6)

and then we divide it by its connectivity: 172

M ′i,j =
M̃i,j

< k̃ >
(7)

Thus: 173

M ′i,j =
Γi,jN

′
jN
′∑

i,j

Γi,jN ′iN
′
j

= Mi,j

N ′j
Nj

N ′∑
i,j

Mi,j
N ′

iN
′
j

Nj

(8)

Notice that all methods trivially coincide in the year in which the data was obtained 174

(i.e. when the survey was done). Also the definition of Γi,j does not change between M2 175

and M3 in these cases, as the initial Mi,j has been normalized to have a mean degree of 176

1, and we extract it with the same equation as before (eq. 4). 177

Results 178

Reciprocity error 179

In order to study the error incurred when using M0, we transform the contact matrices 180

obtained from empirical studies in different countries to new matrices that correspond 181

to the same location but at different years (that could be past records or future 182

projections). As the population changes over time, the new matrices incorporate the 183

population demographies of the same countries across time. We define the reciprocity 184

error as the coefficient of variation of the number of contacts measured in both 185

directions, which gives us a matrix that we will call non-reciprocity matrix (NRi,j). It 186

is an antisymmetric matrix, in which a positive value of the entry (i, j) means that 187

there are more contacts from i to j than in the opposite direction, and viceversa. A 188

value of 0 would mean that the contacts between i and j are well balanced. More 189

details can be found in the Supplementary Information. 190

In Figure 1 we represent the demographic structures of Poland (panel A) and 191

Zimbabwe (panel B) for different years alongside the corresponding non-reciprocity 192

matrices. In the case of European countries (Poland in panel A as an example), 193

demographic structures have suffered from an ageing process during the last decades, 194

which is predicted to continue in the future. This ageing tends to provoke negative 195

values under the diagonal for the matrices NRi,j when we assumed past demographic 196

structures, while the opposite will occur in the future. The behaviour for African 197

countries (Zimbabwe in panel B) is slightly different, as their demographies have been 198

more stable for the last decades and only now they are beginning to age faster. In brief, 199

when we use directly a contact pattern in a demographic structure that is younger than 200

when it was measured, it will lead to an overestimation of the contact rate of (and the 201

force of infection corresponding to) the youngest age-groups. The opposite will occur 202

when we use contact patterns in an older population. 203

204

In figure 1C we represent the evolution of the proportion of non-reciprocal contacts 205

for all 16 countries (see Supplementary Information). This magnitude is equal to zero in 206

the year when the contact matrix was measured, as we have applied a correction for the 207
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Fig 1. Analysis of methods M0 and M1. A-B: Demographic structures for different years and the respective
non-reciprocal matrices NR′i,j for Poland and Zimbabwe respective using M0. C: Evolution of the total fraction of

non-reciprocal contacts for M0 in the 16 countries analyzed in this study. D-E: log 2(
Γ′
i,j

Γi,j
) for Poland and Zimbabwe

respectively, in four different years (10/20 years before/after the measurement of the contact patterns) for M1. The original
data corresponds to 2005 for Poland and 2013 for Zimbabwe.

empirical matrices to fulfill reciprocity at the reference setting. However, it dramatically 208

increases as we move far from the year of the survey. In the examples shown here, only 209

two years before/after the survey time, the fraction of non-reciprocal contacts already 210

reaches 5%. Note that methods M1, M2 and M3 are well balanced by construction, thus 211

NRi,j = 0 for every (i, j) when using any of them. 212

Intrinsic Connectivity error 213

We next study the evolution of the ratio between the age-dependent contact rates and 214

an homogeneous mixing scenario. This ratio gives us the matrix Γi,j , defined as the 215

intrinsic connectivity in equation 4. The entries of Γi,j are bigger than 1 when the 216

interactions between age-groups i and j surpasses what it is expected from the case of 217

homogeneous mixing, and smaller than 1 in the opposite case. See the Supplementary 218

Information for more details. 219

In Figure 1D and 1E we show 4 snapshots of the ratio of the intrinsic connectivity 220
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and the original survey (Γ′i,j/Γi,j) obtained using M1 for Poland and Zimbabwe 221

respectively. Each panel corresponds to an adaptation of the contact matrix to the 222

population demography of the countries 10 and 20 years before and after the survey 223

(i.e., the 4 matrices correspond to t = τ − 20y, t = τ − 10y, t = τ + 10y and 224

t = τ + 20y). We can see that, even if M1 corrects the appearance of non-reciprocity, 225

this method changes the tendency of some age-groups to mix with respect to others. 226

Specifically, we can see that M1 will over-represent contacts between young individuals 227

(and under-represent contacts between old individuals) as the population gets older. 228

Furthermore, the previous results are quantitatively important. For instance, if we 229

were to use the contact matrices that we have from Poland (measured in 2005) today 230

(2018), we would have that the ratio Γ′i,j/Γi,j surpasses 1.5 for some specific age-group 231

pairs, while it goes down to almost 0.5 in others, or, in other words, the usage of M1, 232

which does not take into account the changes in the fractions of individuals in each 233

age-strata that occurred between 2005 and 2018, causes a bias of more than 50% in the 234

contact densities projected between certain age groups. Consequently we say that M1 235

does not preserve intrinsic connectivity. The density correction (M2) avoids this 236

problem, as it explicitly considers a fixed intrinsic connectivity matrix (Γi,j as defined 237

in the Methods section) that is modified according to the density of each age-group (see 238

equation 3). 239

Evolution of mean connectivity 240

In Figure 2A-B we represent the contact patterns obtained with M2 and M3 for Poland 241

and Zimbabwe, respectively, in different years. We see how, specially in the case for 242

Zimbabwe, as the population gets older, the values of the matrix below the diagonal 243

(contacts toward young individuals) fade in favor of contacts toward older individuals as 244

those age-groups gain more representation. As for the mean connectivity (Figure 2C), 245

considering the evolution of contact patterns in M2 or considering them constant (M0) 246

leads to the same qualitatively behaviour, although variances are higher with M2. These 247

trends are decreasing in Europe and increasing in Africa. M0 and M1 have the same 248

mean connectivity, as M1 consists basically of a rewiring of those connections that exist 249

in M0 in order to correct for reciprocity. M3 is a normalization of M2 so the 250

connectivity is constant in this case. 251

Overview of different methods 252

We have shown up to four different methods of use heterogeneous contact patterns when 253

demography evolves in time (being the first one of them to simply use them without any 254

further consideration regarding the demographic structure). In table 1 we summarize 255

their properties. 256

Table 1. Properties of different methods

Method Reciprocity? Preserves Intrinsic Connectivity? Constant average connectivity?

M0: Unadapted contact patterns No No No
M1: Pair-wise correction Yes No No
M2: Density correction Yes Yes No
M3: Density correction + Normalization Yes Yes (with a global factor) Yes

Summary of the different methods to deal with contact patterns and their properties.
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Fig 2. Analysis of methods M2 and M3. A-B: Contact patterns Mi,j(t) for five different years with methods M2 (blue)
and M3 (green) for Poland and Zimbabwe, respectively. C: Evolution of Mean Connectivity for M2 (blue), M3 (green) and M0
and M1 (black, both methods give the same mean connectivity).

Geographical Comparisons 257

The intrinsic connectivity matrices Γi,j that we obtain for every country allow us to 258

compare the contact patterns of different settings once the influence of demography has 259

been accounted for, and removed. In Figure 3A we represent these matrices for the 16 260

countries analyzed in this work. Just by visual inspection we can identify some 261

distinctive features: European matrices are more assortative and present higher 262

interaction intensities among young individuals than African ones. To formalize this 263

observation, in Figure 3B, we place the different matrices in a two dimensional plot 264

defined by the proportion of overall connectivity produced by young individuals and the 265

assortativity coefficient (see Supplementary Information for the definition of these 266

quantities). African and European countries cluster around different values of these two 267

magnitudes: specifically, in African countries we found less assortativity and the 268

contacts are less dominated by young individuals than in the European countries. As 269

for the Asia region we see that Japan and China have significantly higher assortativity 270

and fraction of contacts among young individuals than either African or European 271

countries. In turn, Hong Kong, with its particular geographic idiosyncrasy- a small 272

country, predominantly urban, with one of the highest population densities in the 273

world-, presents an intrinsic connectivity matrix that is more similar to one from a 274

European country than from China or Japan. 275
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Fig 3. Geographical comparison of empirical contact matrices. A: Γi,j matrices for the 16 countries considered in
this work. B: Proportion of the overall connectivity that comes from individual with less than 20 years (Y) vs the
assortativity coefficient (r) for the 16 countries.

Short cycle SEIR dynamics 276

Up to now, we have shown that there are several ways to deal with demographic change 277

and evolving populations regarding the structure of the contact patterns for a given 278

population. We next address how these different methods impact disease modeling. To 279

this end, we implement a Short cycle SEIR model (details can be found in the 280

Supplementary Information) to study a situation where a short-cycle, influenza-like 281

pathogen appears in a given location, at different possible times, associated to the same 282

reproductive numbers. Under this hypothetical scenario, we would like to know how 283

different would be the forecasted size of the epidemic as a result of considering different 284

contact matrices coming from the different projection methods proposed in this work. 285

In particular, this scenario is instrumental to distinguish the outcomes from models 286

M0,M1 and M2. However, the requirement of the outbreaks to have the same 287

reproductive numbers implies the assumption that the infectiousness β can be estimated 288

independently in each event. As a consequence, since the matrices derived from M2 and 289

M3 only differ by a global scaling factor, this operation absorb the differences between 290

M2 and M3, making them indistinguisable. 291

The results of this exercise are presented in Figure 4. In Figure 4A we can see that, 292

while methods M0 and M1 predict lower age-aggregated incidences in European 293

countries in 2050 with respect to 2000, M2 reduces these differences and the incidences 294

are comparable for both years or even positive. A different situation occurs in Africa, 295

where M0 and M1 predict an increase in incidence in the future while using M2 would 296

lead to a decrease, though differences remain small (less than 5% of variation). 297

In panel 4B we represent, for two examples of Europe and Africa (Poland in blue 298

and Zimbabwe in orange), the temporal evolution of the incidence observed with the 299

different methods. Furthermore, we represent the age-specific incidence for both 300

countries in three different years: 2010, 2030 and 2050 (Panel 4C). The age-distribution 301

of the incidence evidences the differences in connectivity patterns between Poland and 302

Zimbabwe. While the incidence in elderly people drops in Poland (as the contact rates 303
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Fig 4. SEIR dynamics. A: Median age at 2000 and 2050 (black line, beginning with the value at 2000 and ending with a
bullet point with the value at 2050) for the 16 countries considered and relative variation in incidence over the same period
(colored bars), for M0, M1 and M2. B: Incidence (over all ages) vs Year for Poland (blue) and Zimbabwe (orange) using M0,
M1 and M2. C: Incidence by age group for Poland and Zimbabwe in 2010, 2030 and 2050 using M2. D: Relative differences of

the incidence by age group of M0 and M1 with respect to M2 ( Inc(M0)−Inc(M2)
Inc(M2) and Inc(M1)−Inc(M2)

Inc(M2) ).

for those age-groups also drop), it remains high in Zimbabwe for the same age-groups. 304

The different methods of implementing contact rates also affect the age-specific 305

incidence. In panel 4D we represent the relative variation in age-specific incidence 306

obtained with methods M0 and M1 with respect to M2 for Poland and Zimbabwe. In 307

Poland we see that M0 and M1 tend to underestimate the incidence specially among the 308

elder age-groups. In Zimbabwe M0 tends to overestimate the incidence among young 309

individuals, while with M1 we encounter both effects: and overestimation among the 310

youngest and a underrepresentation among the eldest. 311

The reshaping of the age-specific incidence between models is coherent with the 312
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changes in topology already studied. For the case of M0, i.e., maintaining the contact 313

patterns constant in time, we have that in the future, as the demographic structure 314

shifts to older populations, contacts toward children will be overrepresented and 315

contacts toward adults will be underrepresented. At first order we can obviate the 316

contacts that are far from the diagonal, and establish that M0 mainly underrepresents 317

contacts between adults and overrepresents contacts between young individuals (in the 318

context of aging populations). Thus, we will obtain an underrepresentation of the 319

incidence in adults, and the opposite in children. However, as the eldest age-groups 320

increase their population in Europe, they dominate the dynamics and cause and 321

underestimation of the global incidence that eventually affects all age-groups. In 322

African countries, where the contact patterns are less assortative than European 323

countries, this effect is smaller. Besides, as African populations are still young even in 324

2050, the overestimation of young contacts dominates the dynamics, and the differences 325

in incidence are mainly positive. The situation is similar for M1. As represented in 326

Figure 1D-E, for M1 we also have an underrepresentation of contacts between adults 327

and an overestimation between young individuals, yielding to similar results than M0. 328

All together, these results illustrate how an ill adaptation of the contact patterns 329

observed in the past in a given country to a later time point can translate into 330

epidemiological forecasts that are highly biased. Regarding the dynamic equivalence of 331

methods M2 and M3, we have to emphasize that it emanates only from the assumption 332

that reproductive numbers can be measured at the early stages of any of the epidemics 333

being simulated in each year, which is a conservative -often optimistic- assumption. 334

Alternatively, we could think of an scenario where the reproductive number of a given 335

pathogen was estimated in a given year, and that information used to infer the 336

probability of transmission per contact (the infectiousness β) of the pathogen, with the 337

aim of producing a-priori forecasts for posterior re-apparences of the same pathogen. In 338

such alternative scenario, the usage of different contact matrices projections would be 339

even more relevant, for it would impact directly the reproductive number of the 340

forecasted outbreaks, now characterized by a common β. In such an scenario, (which is 341

conceptually similar to the task of producing long term forecasts of persistent 342

diseases [12], based on epidemiological parameters calibrated on an initial time-window), 343

the dynamic equivalence of models M2 and M3 is broken, since running M2 or M3 with 344

the same infectiousness parameter and different average connectivities yields different 345

reproductive numbers. 346

Discussion 347

Summarizing, empirical contact patterns belong to a specific time and place. If we want 348

to integrate the heterogeneity of social mixing into more realistic models, we need to 349

address how (and in what cases) to export contact patterns from empirical studies to 350

the populations we want to study. In this work, we have studied and quantified the 351

significant bias incurred when a specific contact pattern is blindly extrapolated to the 352

future (or the past), even if we remained inside the same country where those contacts 353

were measured. In fact, only a couple of years after the measurement of these contact 354

patterns, the changes in the age structure of the population make them vary 355

significantly. Thus, for any meaningful epidemic forecast based on a model containing 356

age-mixing contact matrices, we would need to adapt them taking into account the 357

evolution of the demographic structures. Moreover, as we have shown, even for cases 358

that do not expand into long periods of time and a constant demography could be 359

assumed, it is necessary to make an initial adaptation of whatever empirical contact 360

structure we want to implement, into the specific demographic structure of our system. 361

We have also seen how these relevant differences in the topology of contacts yield to 362
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significant consequences for the spreading of a disease. Applying different methods to 363

deal with contact patterns leads to important differences not only in the global incidence 364

for a SEIR model, but also on age-specific incidences. Having such an important impact 365

for the spreading of a disease, the insights provided by this work should be taken into 366

consideration by modelers and also by public health decision-makers. 367

In a similar way, we have explored the differences between the contact patterns of 368

different countries. Thus, we have found the existence of some specific characteristics 369

beyond the underlying demographic pyramid, which warns against exporting contact 370

patterns across different geographic areas (i.e. continents). As there exists different 371

intrinsic connectivity patterns (i.e., once demography effects have been subtracted) 372

between countries, it is also likely that there exists a time-evolution of the intrinsic 373

connectivity inside the same setting. Although it is impossible to predict how society 374

will change in the future, we should always take this into account as a limitation in any 375

forecast for which the heterogeneity in social mixing is a key element. 376

Finally, we note that there are some limitations that could affect quantitatively the 377

results shown in this work. First of all, we have derived the contact patterns of the 378

different studies according to the demographic structures of the specific country for the 379

year the survey took place. Thus, we are implicitly assuming that the setting where the 380

different surveys were performed are comparable with the national data in terms of their 381

demographic pyramids. In other words, we assume that the surveys are representative of 382

the population at large. This is likely true for most of the countries analyzed, but there 383

are certin cases in which this might not be the case, either because of small study size or 384

putatively biased recruitment of participants. Besides, as we have already discussed in 385

the Methods section, the different granularity (i.e., definition of the age-groups) used 386

throughout the bibliography studied also imposes some limitations when comparing the 387

data. It is also worth pointing out that, although in this work we have focused on 388

age-structured systems (which has had its relevance in recent history of epidemiology), 389

the problem studied here can be extrapolated to other models that might categorize 390

their individuals based on other different traits that determine their social behavior. 391

The results reported here and their implications open several paths for future 392

research. One is related to the social mixing patterns themselves. In order to predict 393

the large-scale spreading of a disease, multiple scales need to be integrated and coupled 394

together. This implies that when integrating different spatial scales, we need to deal 395

with different contact matrices and local demographies. For instance, in developed 396

countries, it is known that the structure of the population is not the same in the most 397

central or most populated cities as compared to smaller ones or the countryside. Thus, 398

nation-wide demographies and surveys to infer contact matrices might need to be 399

disaggregated. What is the right spatial scale to measure both quantities is an 400

interesting and unsolved question. In this sense, here we have limited our simulated 401

disease scenario to the case of isolated populations −a country−, but it remains to be 402

seen what are the effects over a meta-population framework, in which we have mobility 403

between subpopulations of potentially very different demographic structures. We plan 404

to explore these issues in the future. 405

Supporting information 406

S1 Supporting Information Extended details on methods and additional analyses. 407
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