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Summary 

The analysis of clinical trials is limited to pre-specified outcomes, thereby precluding 

a mechanistic understanding of the treatment response. Multivariate mechanistic 

models can elucidate the causal chain of events by simultaneous analysis of multi-

modal data that link intermediate variables to outcomes of interest. A double-blind, 

randomised, controlled, phase 2 clinical trial in secondary progressive multiple 

sclerosis (MS-STAT, NCT00647348) demonstrated that simvastatin (80mg/day) over 

two years reduced the brain atrophy rate and was associated with beneficial effects 

on cognitive and disability outcomes. Therefore, this trial offers an opportunity to apply 

mechanistic models to investigate the hypothesised pathways that link simvastatin to 

clinical outcome measures, either directly or indirectly via changes in serum total 

cholesterol levels and to determine which is the more likely. 

 

We re-analysed the MS-STAT trial in which 140 patients with secondary progressive 

multiple sclerosis were randomised (1:1) to receive placebo or simvastatin (80 

mg/day). At baseline and after one and two years patients underwent brain magnetic 

resonance imaging; their cognitive and physical disability were assessed on the block 

design test and Expanded Disability Status Scale (EDSS). Serum total cholesterol 

levels were measured at each visit. We calculated the annual percentage change of 

brain volume loss using mixed-effects models. With multivariate mechanistic models 

and Bayesian mediation analyses, a cholesterol-dependent model was compared to 

a cholesterol-independent model. 

 

As described previously, the simvastatin group showed a slower rate of brain atrophy 

and clinical deterioration (as reflected by both the EDSS and the block design test) 
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and a faster decline in serum cholesterol levels (all p <0.05), when compared with 

placebo.  

 

The cholesterol-independent model, in which simvastatin has a direct effect on the 

clinical outcome measures and brain atrophy, independent of its impact on lowering 

the serum cholesterol levels, was the more likely model. When we deconstructed the 

total treatment effect on EDSS and block design, into indirect effects, which were 

mediated by brain atrophy, and direct effects, brain atrophy was responsible for 31% 

of the total treatment effect on EDSS (beta=-0.037, 95% credible interval [CI]=-0.075, 

-0.010), and 35% of the total treatment effect on block design (beta=0.33, 95% 

CI=0.06, 0.72). The effect of simvastatin on both outcomes was independent of serum 

cholesterol levels (EDSS: beta=-0.139, 95% credible interval=-0.255,-0.025; brain 

atrophy: beta=0.32, 95% credible interval=0.09,0.54).  

 

The effect of simvastatin on disability and cognitive worsening is partially mediated by 

brain atrophy but is independent of cholesterol reduction. Our mechanistic approach 

can be applied to other medications to elucidate the pathways underlying treatment 

effects in progressive MS.  
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Introduction 

Understanding the mechanisms by which a medication has beneficial effects on 

clinical and imaging outcomes is an unmet need in progressive multiple sclerosis (MS) 

research (Thompson et al., 2018). The analysis of clinical trials is usually limited to 

pre-planned outcomes, thereby precluding an understanding of the possible 

mechanistic pathways by which a treatment could have an effect. Multivariate 

mechanistic models can elucidate the most plausible chain of events, by simultaneous 

analysis of multi-modal data into models that capture hypothesised pathways linking 

intermediate variables to outcomes of interest (Bollen and Long, 1992). They have 

been employed in clinical trials of Alzheimer’s disease (Douaud et al., 2013), 

neurocognitive ageing (Kievit et al., 2014), and more extensively in social sciences 

(Imai et al., 2011).  

 

The double-blind, randomised, controlled, phase 2 clinical trial in secondary 

progressive MS (MS-STAT) (Chataway et al., 2014; Chan et al., 2017) has shown that 

simvastatin reduces the whole brain atrophy rate and has positive effects on frontal 

lobe function and disability (Chataway et al., 2014; Chan et al., 2017). This trial offers 

the opportunity to apply multivariate mechanistic models to explain the pathways 

resulting in the observed simvastatin effects. An improved understanding of the 

pathways via which simvastatin has an effect on clinical and cognitive outcomes will 

stimulate further mechanistic research in secondary progressive MS, and will show 

that this methodology can be extended to other diseases to obtain insights into the 

mechanisms through which experimental therapies provide clinical benefit.  
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In this study, we re-analysed the MS-STAT trial data and modelled hypothesised 

pathways by which simvastatin affects changes in brain atrophy, clinical and cognitive 

outcome measures, either directly or indirectly via changes in cholesterol. We tested 

the following two hypotheses: (i) The reduced rate of brain atrophy development 

mediated the beneficial effects of simvastatin on clinical and cognitive scores; (ii) The 

reduction in serum cholesterol levels mediated the impact of simvastatin on physical 

and cognitive disability. We also investigated whether simvastatin had global, or 

regionally specific, impacts on brain atrophy. 
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 Material and Methods 

Participants 

This was a post hoc study that included all participants of the MS-STAT trial 

[ClinicalTrials.gov registration number: NCT00647348] performed between 2008-

2011 at three research centres and two brain imaging centres in the UK (Chataway et 

al., 2014). MS-STAT was a phase 2 double-blind randomised controlled trial whose 

primary and pre-planned analyses have been reported previously (Chataway et al., 

2014; Chan et al., 2017). Briefly, the eligibility criteria were: (i) age between 18-65 

years, (ii) Expanded Disability Status Scale (EDSS) (Kurtzke, 1983) of between 4.0 

and 6.5, (iii) fulfilling revised 2005 McDonald criteria (Polman et al., 2005), and (iv) 

secondary progressive MS defined by clinically-confirmed disability worsening over 

the preceding two years. Patients were ineligible if they had corticosteroid treatment 

or relapse within three months of recruitment, or had received immunomodulatory or 

immunosuppressive medications within six months of recruitment. Detailed eligibility 

criteria are available elsewhere (Chataway et al., 2014). 

Randomisation  

Patients were randomised (1:1) with a central server to placebo and high-dose 

simvastatin (80 mg per day) groups. The randomisation software automatically 

minimised the following variables between placebo and treatment groups: age (<45 

and >= 45 years), gender, EDSS (4-5.5, and 6.0-6.5), centre (or MRI scanner), and 

assessing physician. Patients, treating physicians, and outcome assessors were blind 

to treatment allocation. The treatment allocation was masked to the first author (AE) 

who performed the post hoc analysis. Protocol for compliance with treatment and other 

details are explained elsewhere (Chataway et al., 2014) 

Outcomes 
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Patients underwent magnetic resonance imaging (MRI), clinical and cognitive 

assessments at baseline, after one year and two years from the study entry. This study 

was performed following the Declaration of Helsinki (Association, 2000) and Good 

Clinical Practice. Berkshire Research Ethics Committee approved the protocol. 

Participants gave written informed consent before screening.  

 

Imaging protocol  

Patients were scanned at each visit (three visits in total) with 3D T1-weighted, double-

echo proton density (PD) and T2-weighted MRI at two imaging centres in the UK with 

1.5 Tesla and 3 Tesla scanners. Scanner and MRI protocol remained unique for each 

participant throughout the trial. “Scanner” was a minimisation variable (as explained 

above) between treatment and placebo groups. We reported acquisition protocols in 

Supplementary Table 1.   

 

Clinical and cognitive outcomes 

Patients underwent comprehensive clinical and cognitive assessments. Here, we 

studied those outcomes that had shown significant (or marginally significant) changes 

in previous reports (Chataway et al., 2014; Chan et al., 2017), which were the 

following: the total cholesterol level, Expanded Disability Status Scale, Multiple 

Sclerosis Impact Scale 29v2 (total score and physical subscale)(Hobart et al., 2001), 

Wechsler Abbreviated Test of Intelligence (WASI) Block Design test (T-score) 

(Wechsler, 2011), Paced-auditory serial addition test (PASAT)(Gronwall, 1977), and 

Frontal Assessment Battery (FAB)(Dubois et al., 2000). Block Design T-score had 

been calculated against an age-matched reference healthy group from the test manual 

(Chan et al., 2017).  
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Image analysis 

We performed image analysis based on our established pipeline for patients with MS 

(Eshaghi et al., 2017). Our goals were to extract regional volumes, T2 lesion masks 

and the whole brain percentage volume change with SIENA (Smith et al., 2001). 

Briefly, the pipeline included N4-bias field correction of T1-weighted scans to reduce 

intensity inhomogeneity (Tustison et al., 2010), constructing a symmetric within 

subject template for unbiased atrophy calculation (Reuter and Fischl, 2011), rigid 

transformation of T1, PD, and T2 sequences to this space, automatic longitudinal 

lesion segmentation of visible T2 lesions with Bayesian Model Selection (BaMoS) 

(Sudre et al., 2015; Carass et al., 2017), manual editing of these lesion masks and 

quality assurance with 3D-Slicer, filling of hypointense lesions in T1 scans (Prados et 

al., 2016), brain segmentation and parcellation with Geodesic Information Flows (GIF) 

software (Cardoso et al., 2015).  Technical details are explained in detail in the 

Supplemental Methods. Supplemental Figure 1 shows the steps of this pipeline. 

Outputs of this pipeline were the following: (i) percentage whole brain volume change 

(SIENA PBVC), (ii) T2 lesion masks, and (iii) regional brain volumes according to 

Neuromorphometrics' atlas, which is similar to the Desikan-Killiany-Tourville (Klein 

and Tourville, 2012) atlas available at http://braincolor.mindboggle.info, for each 

region we summed volumes of the left and right hemispheres. 

 

Statistical analysis 

SIENA  

We used a linear regression model in which the percentage brain volume change 

between baseline and two-year follow-up visits was the response variable. This model 
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included treatment allocation as the variable of interest, and the following nuisance 

variables: age, gender, centre, and EDSS. We calculated treatment effect defined as 

the adjusted difference between percentage whole brain volume change of the two 

treatment groups, divided by the adjusted percentage whole brain volume change in 

the placebo group. We set the alpha level at 0.05 for all the analyses presented in this 

work. We adjusted univariate analyses of regional brain volumes for multiple 

comparisons with the false discovery rate method in R. We used percentage brain 

volume changes to calculate the effect size (or Cohen’s d) between placebo and 

treatment groups and compared it with the original report of this trial that used a 

different image analysis pipeline (Cohen’s d= 0.410 (Chataway et al., 2014)).  

  
Univariate analysis of T2 lesion load, clinical and cognitive changes 

Since the focus of this study was on dynamic changes, we extended the previous 

analyses (Chan et al., 2017) of clinical and cognitive outcomes–which were performed 

as pairwise average comparisons at each baseline and year two visit–to the analyses 

of rates of change in the two treatment and placebo groups. We aimed to identify 

variables with a significant difference in their rates of changes between the two groups 

including all the three visits, and to include them in multivariate mechanistic models 

(see below). We used univariate linear mixed-effects models in which fixed-effects 

were time (years from the study entry), and the interaction of time with treatment 

allocation. Random effects included time nested in “participant”. To allow for repeated 

measures, we included random intercept and slope as correlated random effects. In 

these models, dependent variables were cognitive or clinical outcomes (seven 

separate models for T2 lesion load, PASAT, block design, EDSS, Frontal Assessment 

Battery, and Multiple Sclerosis Impact Scale 29v2 total and its physical subscale). We 

included age, gender, and centre as extra (nuisance) fixed-effects variables. We used 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 11, 2018. ; https://doi.org/10.1101/343442doi: bioRxiv preprint 

https://doi.org/10.1101/343442
http://creativecommons.org/licenses/by/4.0/


 10 

NLME package (Pinheiro et al., 2017) version 3.1-131 inside R version 3.4.0 (R Core 

Team, 2014).  

Multivariate analysis 

We performed multivariate analyses in the following steps: 

(i) Variable selection: to limit the analysis to measures with significant rates of 

change. 

(ii) Model construction: to formulate mechanistic models as statistical 

hypotheses. 

(iii) Model selection: to choose the most likely hypothesis. 

(iv) Parameter estimation: to quantify, in the most likely model, pathways 

between serum, imaging, cognitive, patient-reported, and clinical variables. 

Variable selection and model construction  

We implemented multivariate analysis with structural equation modelling using Lavaan 

package version 0.5-23 (Rosseel, 2012) in R. Structural equation models allow 

simultaneous fitting of many regression models to quantify pathways across variables. 

We included outcomes from the univariate analyses (explained above) that had 

significant differences in their rate of change between placebo and simvastatin groups. 

Since nuisance variables (age, gender, and centre) did not affect the above univariate 

analyses, we did not include them in multivariate models. We only entered the physical 

subtest of Multiple Sclerosis Impact Scale-29v2 (instead of the total score) in structural 

equation models, because changes in this subtest drove the change in total score. We 

calculated the difference between baseline and second-year values for each variable 

and divided it by two. We refer to this as the annualised change throughout this 

manuscript.  
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We hypothesised two a priori models to explain relationships between these variables 

according to the literature (Bosma et al., 2015; Larochelle et al., 2016) and on the 

basis of our opinion, that are shown in Figure 3. The first is a cholesterol-mediated 

model, in which the effects of simvastatin on clinical measures (both physical and 

cognitive) and brain atrophy are mediated by changes in cholesterol (Figure 3, (A)). 

The second is a cholesterol-independent model, in which simvastatin has a direct 

effect on the clinical and MRI outcome measures, independently by its effect on serum 

cholesterol levels (Figure 3, (B)). In both models, the rate of brain atrophy 

development has a direct effect on clinical change, as measured by the Expanded 

Disability Status Scale, Block Design and the Multiple Sclerosis Impact Scale-29v2 

Figure 3). Additionally, in both models, Multiple Sclerosis Impact Scale 29v2 is 

included as the last variable in the cascade of events, because it is a subjective 

patient-reported questionnaire expected to reflect the consequences of clinical and 

cognitive changes.  

 Model selection and parameter estimation 

We fitted both the cholesterol-mediated and cholesterol-independent model (Figure 

3) using full-information maximum likelihood to adjust for missingness, and with the 

robust standard-errors to account for non-normality (e.g., EDSS). We assessed the 

goodness-of-fit for each model and reported the parameters for the most likely model. 

To evaluate overall fit of a model we used comparative fit index (CFI; compares the fit 

of the model with a model with uncorrelated variables; acceptable fit>0.95, good fit 

>0.97), standardised root mean square residual (SRMSR; square root of the average 

of the covariance of residuals, good fit<0.08) and root-mean-squared error of 

approximation (RMSEA; discrepancy between the model and population covariance; 

good fit <0.06) (Hu and Bentler, 1999). To estimate the relative quality of a model 
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given the data, we calculated information criteria (Akaike information criterion [AIC], 

and Bayesian information criterion [BIC]) of each model. Raw AIC and BIC values do 

not have a meaningful scale; therefore, we calculated Akaike and Schwarz weights to 

represent conditional probability of each model given the data directly (Wagenmakers 

and Farrell, 2004). To have an unbiased estimate we calculated fit measures 

(mentioned above) iteratively on 1000 bootstrap samples and reported the median of 

bootstrap results with 95% confidence intervals.  

 

Bayesian post hoc mediation models 

To calculate how much of the total treatment effect was mediated by intermediate 

variables we constructed post hoc models for variables involved in the significant 

pathways of a priori models (explained above). Each post hoc model included three 

variables: treatment, an intermediate variable and a final outcome. Intermediate and 

outcome variables were the rates of annual change of the following variables: total 

cholesterol level, brain atrophy, Expanded Disability Status Scale, and Block Design 

score. Here, we used Bayesian multivariate models to report credible intervals, 

especially for those of cholesterol-mediated pathways, instead of p-values and 

confidence to allow an easier interpretation of non-significant findings. This enabled 

testing whether the lack of significant cholesterol-mediated effects were because of 

lack of statistical power or there was evidence for the absence of cholesterol-mediation 

effects of simvastatin (HARTUNG et al., 1983; Altman and Bland, 1995). We used 

Blavaan package version 0.3-2.283  (Merkle and Rosseel, 2015) inside R version 3.4.0 

(R Core Team, 2014). We considered an effect to be significant when the 95% credible 

interval of a parameter did not cross zero. We discarded the first 4,000 (“burn-in” 

samples) and reported the next 10,000 samples as posterior distributions with Markov 
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Chain Monte Carlo method. We used non-informative uniform priors for Bayesian 

analyses. These models are shown in Figure 4 in sections (II) and (III). 

 

Regional rates of atrophy 

We performed analyses to calculate and compare regional atrophy rates with a 

univariate mixed-effects model including age, gender, centre, and total intracranial 

volume to adjust for the head size (Malone et al., 2015). We reported brain regions 

that had a significant rate of change in the combined treatment and placebo groups 

as well as separate rates for either of these groups. Further details of statistical 

modelling are in the Supplemental Material.  
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Results 

 

Simvastatin effects on brain atrophy, clinical measures and serum cholesterol levels 

 

Out of 140 randomised, 131 participants completed the trial and were analysed (see 

Figure 1 for available data at each visit). The baseline characteristics of the 

participants were given in the main publication of the MS-STAT trial, and summarised 

in Supplementary Table 2; no differences in whole brain volumes, Expanded 

Disability Status Scale, block design T-score Multiple Sclerosis Impact Scale 29v2 and 

serum cholesterol levels were seen between the treated and placebo group.  

Figure 1. Trial profile and available data.  
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Trial profile and available data.  This diagram shows the flow of participants from 

screening to inclusion in the MS-STAT trial. Available clinical, cognitive, and imaging 

variables are shown in the table for all the three visits. 

EDSS; Expanded Disability Status Scale, MRI; magnetic resonance imaging, MSIS; 

Multiple Sclerosis Impact Scale.  

 
The rate of whole brain volume loss over two years was faster in the simvastatin group 

than in the placebo arm: -0.42 (SD=0.50) vs.  -0.657[SD=0.62), Cohen’s d or effect 

size=0.409, p=0.002) (Figure 2). The adjusted difference of the percentage brain 

volume change between the placebo and active treatment arm was 0.245 (95% 

confidence interval=0.087 to 0.403). This was similar to the original report of this trial, 

which used a different image analysis method (0.254, 95% confidence interval: 0.087 

to 0.422). The rate of annual EDSS worsening was faster in the simvastatin group than 

in the placebo arm (estimated rate ± standard-error 0.08 ± 0.04 vs 0.21 ± 0.03, 

p=0.002) (Figure 2). Patients on simvastatin showed a significant difference in the 

rate of change of block design (0.92 ± 0.45 vs. -0.13 ± 0.33, p=0.04), and on the 

physical subtest of the Multiple Sclerosis Impact Scale 29v2 (0.26 ± 0.97 ± 0.72 vs. 

2.37 ± 0.75p=0.03) compared to patients on placebo (Figure 2). There was a 

statistically significant decline of the total cholesterol levels in the simvastatin group 

compared to the placebo arm (-0.68±0.07 mmol/year vs. -0.01±0.05 mmol/year, 

p<0.001) (Figure 2). There were no differences in rates of change between treatment 

and placebo groups in PASAT and Frontal Assessment Battery. Figure 2 shows the 

rate of change between baseline and second-year visits. There was no treatment 

effect on T2 lesion volume accumulation (see Supplemental Material for results of 

the lesion volume). 
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Figure 2. Annualised change in outcomes with a significant treatment effect. 
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Outcomes with a significant treatment effect.  The annual rate of changes for MRI, 

clinical, cognitive and patient-reported outcomes included in the mechanistic models 

(EDSS rates are jittered vertically by 0.1 to enable visualising overlapping values). In 

each of the four plots, horizontal black lines show the medians of the variable shown 

on y-axes, for placebo (blue) and statin groups (red). 

EDSS; Expanded Disability Status Scale, MSIS; Multiple Sclerosis Impact Scale, 

PBVC; percentage brain volume change.  

 

 

Effect of simvastatin on clinical outcomes is partly independent of its effect on 

cholesterol  

 

The cholesterol-independent model, in which simvastatin has a direct effect on the 

clinical and MRI outcome measures, independently by its impact on lowering the 

serum cholesterol levels, was the more likely model (Figure 3 (B). This model showed 

a better overall fit than the cholesterol-mediated model. Bootstrapped fit measures for 

the cholesterol-independent model were the following: CFI = 0.95 (95% CI=0.86, 1), 

SRMR = 0.049 (95% CI= 0.02,0.07), RMSEA = 0.11 [90%CI=0, 0.18], AIC = 1800 

(95% CI=1719, 1892), BIC = 1860 (95% CI=1779,1952), Akaike weight=0.71, 

Schwarz weight = 0.46). This means that cholesterol-independent model was 42.24 

times (!"#$%	'	()*+)$	,$+-./
	!"#$%	(	()*+)$	,$+-./

= 	 1.345
1.167

) more likely than the cholesterol-mediated model 

regarding Kullback–Leibler discrepancy. Cholesterol-independent model was 2.38 

times (!"#$%	'	89.,*:;	,$+-./
	!"#$%	(	89.,*:;	,$+-./

= 	 1.41<
	1.63=

) more likely regarding Schwarz weights than the 

cholesterol-mediated model. Figure 3 shows fit measures for both models.  
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Figure 3. Candidate a priori models that that explain the causal chain of event that leads to 
simvastatin effects on clinical scores.  

 

 
Cholesterol-mediated and cholesterol-indipendent models that  explains the 

effect of simvastatin on clinical scores. Model (A) or cholesterol-mediated model 

assumes that the cholesterol-lowering effect of simvastatin is the cause of slowing of 

the brain atrophy and disability worsening. Model (B) or cholesterol-independent (or 

pleiotropic) model assumes that the cholesterol-lowering effect of simvastatin is 

independent of its effect on brain atrophy and clinical outcomes. In both models, a 

lower rate of brain atrophy development has an effect on the clinical change, as 

measured by the Expanded Disability Status Scale, Block Design and the Multiple 

Sclerosis Impact Scale-29v2. Additionally, in both models, Multiple Sclerosis Impact 

Scale 29v2 is included as the last variable in the cascade of events, because it is a 

subjective patient-reported outcome measure. All the variables are “annualised”, 

which represent annual rates of change between baseline and second-year follow-up 

visits. Each rectangle represents a variable. Arrows represent multivariate 

regressions, where an arrow starts from a predictor and points to the dependent 
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variable. The bar plots in the right column compare fit-measures that are shown on 

the y-axis of each of the five bar plots with models (A) and (B) on the x-axis. Blue 

corresponds to cholesterol-mediated model and red to cholesterol-independent 

model. Fit measures suggest that cholesterol-independent model (or model B) was 

the most likely model given data, because it had a higher Akaike and Schwarz weights, 

higher CFI, lower SRMR, and lower RMSEA.   

EDSS; Expanded Disability Status Scale, PBVC; percentage brain volume change, 

MSIS; Multiple Sclerosis Impact Scale. CFI; confirmatory factor index, SRMR; 

standardised root mean square residual, RMSEA; root mean squared error of 

approximation. 

 

 

When we decomposed the total treatment effect on EDSS and block design, into 

indirect effects, which were mediated by brain atrophy, and direct effects, brain atrophy 

mediated 31% of the total treatment effect on EDSS (beta=-0.0364 95% credible 

interval [CI]=-0.075, -0.010), and 35% of the total treatment effect on block design 

(beta=0.324 95% CI=0.06, 0.72) (Figure 4). Simvastatin appeared to have direct 

effects on EDSS (beta=-0.164, p=0.047), and brain atrophy (beta=-0.364, p<0.001), 

but not on block design and MSIS  (Figure 4).  

 

Figure 4. Parameter estimates of the winning model (cholesterol-independent) and post 

hoc analyses of cholesterol pathways. 
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Parameter estimates of the most likely model. The section (I) shows the parameter 

estimates of the winning model (model (B) in Figure 3). Each arrow is a regression 

“path” where the arrow starts from the predictor(s) and points to the dependent 

variable(s). Significant paths (p<0.05) are shown with bold arrows, while non-
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significant paths are thinner. Black numbers on each arrow represent regression 

coefficients and their p-values. Blue numbers represent standard errors of the 

coefficients. The red numbers represent standardised coefficients. Section (II) shows 

the Bayesian post hoc analysis of cholesterol-mediated pathway vs direct pathway 

that does not depend on cholesterol to slow brain atrophy. The results confirm that a 

direct pathway (cholesterol-independent) slows brain atrophy. The numbers on the left 

side of the section (II) show median of the posterior distribution of the model 

parameters, and the numbers inside parenthesis show 95% credible intervals. The 

95% credible intervals of coefficients of direct pathway and cholesterol mediated 

pathways do not overlap, this suggests that the lack of significance in cholesterol-

mediated pathway is unlikely to be due to a lack of statistical power. We used a 

Bayesian method to ease the interpretation of non-significant findings and to report 

credible intervals (rather than the confidence intervals). The section (II) also shows 

Bayesian mediation analyses for EDSS. The direct effect is shown in blue and the 

mediation effect (or indirect effect) is shown in green. The treatment effect on EDSS 

is, at least partly, independent from its effect on cholesterol because the 95% credible 

intervals do not overlap except for the range between -0.062 to -0.025. Brain atrophy 

mediates 31% of the treatment effect on EDSS. Section (III) shows mediation analysis 

for other variables.  

 

PBVC; percentage brain volume change, EDSS; Expanded Disability Status Scale, 

MSIS; Multiple Sclerosis Impact Scale (physical subtest). 
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Post-hoc Bayesian mediation analyses confirmed that atrophy, but not cholesterol, 

mediated simvastatin effects on EDSS 

 

There was no significant mediation of the treatment effect via cholesterol on atrophy 

(treatmentècholesterolèatrophy, beta=-0.08, 95% credible interval=-0.23, 0.07, 

Figure 4[II]), while in the same model there was a significant direct effect of treatment 

that delayed atrophy (treatmentèatrophy, beta=0.32, 95% credible interval=0.09, 

0.54). Since the 95% credible intervals of these two parameters do not overlap, this 

suggests that the lack of statistical significance for cholesterol-mediated slowing of 

atrophy is not due to lack of statistical power (see Figure 4[II]). Thus, the treatment 

effect on brain atrophy is independent from its effect on cholesterol. In another 

mediation model, cholesterol did not have a significant treatment mediation effect  on 

EDSS (treatmentècholesterolèEDSS, beta=0.014, 95% credible interval=-

0.062,0.093), while in the same model there was a significant cholesterol-independent 

effect (beta=-0.139, 95% credible interval=-0.255,-0.025), suggesting that treatment 

effect on EDSS is, at least partly, independent of cholesterol. Brain atrophy 

significantly (beta=-0.037, 95% credible interval=-0.075,-0.010, Figure 4[II]) mediated 

31% of the total treatment effect on EDSS (treatmentèatrophyèEDSS) and the 

remaining 69% was direct. In the mediation model with brain atrophy and block design 

(Figure 4[III]), brain atrophy mediated 35% of the total treatment effect on block 

design (treatmentèatrophyèblock design, beta=0.33, 95% credible 

interval=0.06,0.72). There were no mediation effects of EDSS or brain atrophy on 

MSIS (treatmentèatrophyèMSIS or treatmentèEDSSèMSIS, not shown in Figure 

4).  
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Regional analysis 

In the analysis of the merged treatment and placebo groups several regions showed 

significant rate of loss over time, the fastest of which was the lateral ventricle (1.95% 

annual expansion [95% confidence interval: 1.53%, 2.38%]), and then the transverse 

temporal gyrus (estimated annual rate= -1.17% [95% confidence interval: -0.88%, -

1.46%]. Rates of volume loss in the postcentral and precentral gyri, frontal regions, 

anterior and middle parts of the cingulate cortex, precuneus, and the thalamus were 

also significant (which implies ongoing volume loss, see Figure 5 for the full list). When 

comparing placebo and simvastatin groups, the rates of atrophy were numerically 

slower in several regions in the simvastatin group (see Figure 5). Only the transverse 

temporal gyrus showed a significant difference (p=0.002) in rates of change (estimated 

annual rate [95% confidence interval] in placebo group = -1.58% [95% confidence 

interval: -1.17%, -1.98%]), simvastatin group = -0.79% [95% confidence interval: -

0.22%, -1.35%]) (50% treatment effect). The spatial pattern of focal volume loss was 

similar between the placebo and simvastatin groups on visual inspection and 

qualitative comparison.  

 

Figure 5. Atrophy rates in areas with a significant ongoing change.  
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Atrophy rates in areas with significant ongoing change. This graph shows the 

adjusted annual rates of volume loss (or expansion for the lateral ventricles) which are 

calculated from the coefficient of the interaction of time and treatment group in the 

mixed-effects models constructed separately for each region. Only regions with 

significant volume change in the combined placebo and treatment analysis are shown 

(adjusted for multiple comparisons with the false-discovery method). Different colours 

correspond to different regions that are shown with the same appearance in left on the 

T1-weighted scan of one of the patients (chosen at random) and, in the right, as bar 

plots. Two bar plots are shown; the above shows the rate of change in the combined 

analysis of placebo and treatment groups on the horizontal axis and different regions 
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on the vertical axis. The lower bar plot shows the rate of change for the same areas 

for placebo and simvastatin groups separately. This bar plot shows that only the 

transverse temporal gyrus shows a significant difference in the rate of change when 

comparing simvastatin and placebo groups. The error bars indicate 95% confidence 

interval of the rate of change. 
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Discussion 

In this study, we compared mechanistic hypotheses on how a potential 

neuroprotective drug, simvastatin, can influence imaging, clinical, cognitive, and 

patient-reported outcomes through changes in peripheral cholesterol level. The more 

likely model suggested that delaying of the EDSS worsening was caused by two 

possible effects; one by slowing of the atrophy, and another by a direct effect from 

simvastatin. This model also suggests that simvastatin delayed the brain atrophy and 

EDSS worsening independent of its cholesterol-lowering effects. Further mediation 

analysis with Bayesian models confirmed these findings: slowing of atrophy rate and 

disability worsening were more likely to be cholesterol-independent, and the slowing 

of disability was caused by the slowing of atrophy by simvastatin. Additionally, slowing 

of the atrophy also delayed the worsening of block design scores. Our work 

showcases the promise of mechanistic methods to compare underlying mechanisms 

of drug actions that are observed as treatment effects in clinical trials of progressive 

MS.  

 

Cholesterol-independent model and post hoc mediation models suggested that a 

reduction in the rate of EDSS worsening was partly (31%) explained by the treatment 

effects on brain atrophy, and partly (69%) by a separate direct treatment effect. All of 

these effects were, at least partly, independent of the change in cholesterol levels. Our 

mechanistic approach, also known as mediation analysis, goes beyond correlation 

analysis and provides causal evidence of association between two variables. This 

starts by mathematically deconstructing simvastatin effects as cholesterol-mediated 

or cholesterol-independent and allows an indirect understanding of whether beneficial 

simvastatin effects are mediated via mevalonate pathway (that produces cholesterol) 
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or not. Cholesterol is only one of the products of the 3-hydroxy-3-methyl-glutaryl-

coenzyme A (HMG-CoA) reductase (part of mevalonate pathway), an enzyme that is 

inhibited by simvastatin. Cholesterol-independent (or pleiotropic) products of this 

pathway include isoprenoids that prenylate a variety of key signalling proteins that 

regulate cell function (Greenwood and Mason, 2007). Moreover, statins have direct 

effects on leukocyte adhesion that are independent of mevalonate pathway and its 

metabolites (Weitz-Schmidt et al., 2001). Previous report of MS-STAT trial (Chataway 

et al., 2014) demonstrated no significant effect of simvastatin on five immunological 

markers (IFN-g, IL-4, IL-10, IL-17, and CD4 Fox P3). Cholesterol-independent 

simvastatin effects, however, may be mediated by many other immunomodulatory 

factors that affect leukocyte migration, antigen presentation, vasculoprotection, super 

oxides, and diffuse inflammation (Greenwood et al., 2006; Greenwood and Mason, 

2007). Taken together, our results underline the potential importance of simvastatin 

effects independent of lipid lowering and related pathways that do not affect HMG-

CoA reductase (Weitz-Schmidt et al., 2001). Our results provide novel insights and 

stimulates further mechanistic research for drug discovery in secondary progressive 

MS. 

 

The simvastatin effect on brain volume loss was driven by a general reduction in 

volume loss in multiple regions, but a significant effect was only seen in a region with 

the highest rate in the grey matter (the transverse temporal gyrus). This can be 

explained by a diffuse neuroprotective effect. Another novelty of our study, is that the 

spatiotemporal pattern of ongoing atrophy in patients with secondary progressive 

multiple sclerosis with very long disease duration (21 years), to the best of our 

knowledge, has never been investigated before. Our regional analysis showed that 
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localised atrophy in the temporal lobe, frontal lobe, limbic cortex, and the basal ganglia 

continues relentlessly, but the pattern of ongoing atrophy was generalised as opposed 

to a regional loss (e.g., thalamus) (Eshaghi et al., 2018). Regional susceptibility of 

neuroanatomical areas to neurodegeneration manifests by faster percentage of 

atrophy rates than that of the entire brain. For example, annual percentage volume 

loss can be up to 4% in the hippocampus in Alzheimer’s disease (Henneman et al., 

2009; Josephs et al., 2017), while it is up to 1% for the entire brain. In MS, the deep 

grey matter atrophy rates can be up to 1.5% (Eshaghi et al., 2018), while the whole 

brain atrophy is 0.6%. In this study, we found that the highest rate of loss was in the 

lateral ventricle–a non-specific generalised measure of atrophy. Unlike patients with 

early secondary progressive or primary progressive MS, none of the deep grey matter 

nuclei showed a higher rate than total brain rate (the thalamic atrophy rate was 0.24%), 

while the whole brain volume loss on average was similar to previous studies (0.65%). 

The slower than expected rate of atrophy in the deep grey matter suggests a floor-

effect at which the decline of these structure may slow down. Our results are in line 

with pathological observations that generalised neurodegeneration may dominate 

long-standing secondary progressive MS (Frischer et al., 2009; Hawker et al., 2009; 

Carassiti et al., 2017), while a more selective pattern is seen in earlier MS alongside 

focal inflammation that responds to immunomodulation (Frischer et al., 2009; 

Montalban et al., 2017). Although there was a general reduction in several regions in 

the simvastatin group, only the treatment effect on the transverse temporal gyrus was 

significant, which also had the highest rate of volume loss in the grey matter. 

Therefore, a general effect of slowing atrophy rate became detectable in a region with 

a higher rate. We can speculate that transverse temporal gyrus is spared until later 
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stages of secondary progressive MS, and showed a higher rate after exhaustion of 

other areas. 

 

A major difference between our study and the previous analyses of MS-STAT 

(Chataway et al., 2014; Chan et al., 2017), is that we calculated rates of change in 

imaging and clinical outcomes, rather than average differences between treatment 

groups at each visit which have been reported before (Chataway et al., 2014; Chan et 

al., 2017). As Chan et al. reported before, there was a significantly better frontal lobe 

function (as assessed by Frontal Assessment Battery) in the simvastatin group as 

compared to the placebo group at 24 months.  However, this previous report was only 

limited to pre-planned statistical analysis of this trial (Chan et al., 2017), and did not 

look at the rate of change. In this study, we performed an independent image analysis 

and looked at the rate of change, using all three visits (baseline, year 1 and year 2), 

and found that the rate was significant for the block design but not for the Frontal 

Assessment Battery. This is because frontal assessment battery, unlike block design, 

showed a ceiling effect after the first year (results are not shown) of this trial, which 

reduces the rate of change. We, therefore, only included block design scores in the 

multivariate mechanistic models. Block design evaluates the visuospatial memory and 

depends on fine motor coordination (as it is timed) (Groth-Marnat and Teal, 2000). 

While there was an association between the rate of brain volume loss and block design 

test, evidence for an indirect treatment effect on this cognitive outcome was weaker 

than Expanded Disability Status Scale. Our results demonstrate that mechanistic 

multivariate models can quantify and elucidate interrelations of multi-modal measures 

in a clinical trial.  

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 11, 2018. ; https://doi.org/10.1101/343442doi: bioRxiv preprint 

https://doi.org/10.1101/343442
http://creativecommons.org/licenses/by/4.0/


 30 

We used a novel image analysis pipeline alongside SIENA and reproduced the original 

findings of the MS-STAT trial independently, which was conducted by boundary-shift 

integral (BSI) and  different segmentation and registration methods. The differences 

between rates of atrophy between placebo and treatment groups were in excellent 

agreement (average [95%CI] difference between groups in our study: 0.245 [0.087 to 

0.403], and in the original report (Chataway et al., 2014): 0.254 [0.087 to 0.422]). The 

effect size in this study (0.409) was similar to the original report (0.410), which confirms 

a small to medium effect of simvastatin on brain atrophy. However, rates of percentage 

brain volume were slightly higher in our study. For example this rate for the placebo 

group was 0.587% annual loss in the original report but it was 0.657% in this study. 

This is a methodological artefact due to a slightly faster average atrophy rates 

calculated by SIENA (compared to BSI used in the original report). A previous 

methodological comparison showed that SIENA produces 20% faster atrophy rates, 

while these two methods had an excellent agreement otherwise (Smith et al., 2007), 

which is confirmed by the adjusted difference and similar effect sizes.  

 

It is important to note that our study is limited by its post hoc nature. While pre-planned 

statistical analyses of clinical trials are the gold-standard to compare treatments, post 

hoc analyses may nevertheless provide information to generate new hypotheses from 

the wealth of information collected as part of a trial.  

 

We showed that mechanistic modelling has the potential to compare the effects of 

neuroprotective drugs on pathways underlying disability. Beneficial effects of 

simvastatin in secondary progressive MS are mainly due to the pleiotropic effects, 

rather than its lipid-lowering effects. Simvastatin mainly affects motor functioning 
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directly, and indirectly by slowing atrophy rates. A weaker simvastatin effect on 

visuospatial memory may also exist that is mediated by slowing atrophy rates. Our 

approach can be extended to trials of neurodegenerative disorders to elucidate and 

quantify the pathways underlying disease worsening and treatment effects.   
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Supplemental material  

Supplemental methods 

Image analysis 

1. N4-bias field correction 

We used ANTs software version 2.2(Tustison et al., 2010) to correct for the scanner-

field inhomogeneity in T1 scans. We used Montreal Neurological Institute intracranial 

mask (Boyes et al., 2008) transferred with diffeomorphic registration(Avants et al., 

2008) to the native space to limit the correction to the cranium.  

2. Symmetric within-subject template construction 

We constructed an isotropic symmetric template per subject using available time-

points with iterative rigid registration(Reuter and Fischl, 2011; Leung et al., 2012). This 

step is necessary to avoid bias towards a time-point (e.g., baseline) since it distributes 

interpolation and segmentation errors across time-points for an unbiased atrophy 

calculation(Fox et al., 2011).  

3. Symmetric transformation 

We transferred T1, PD and T2 scans to the within-subject template by applying the 

symmetric transformation matrix. We reconstructed scans with B-spline interpolation 

to minimise blurring artefacts.  

4. Automatic lesion segmentation  

We used Bayesian Model Selection (BaMoS) to segment white matter lesions 

longitudinally and produce lesion masks(Sudre et al., 2015, 2017; Carass et al., 2017). 

BaMoS is a multimodal method that integrates PD, T2, and T1 segmentations to 

provide lesion masks. 

5. Manual editing 
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We used 3D-Slicer (https://www.slicer.org) version 4.6 to manually edit lesion masks 

acquired from BaMoS. 

6. White matter segmentation 

We used Geodesic Information Flows (GIF)(Cardoso et al., 2015) version 3.0 to 

segment T1 scans and calculate (normal-appearing) white matter masks. This mask 

enables filling hypointense white matter lesions while avoiding any change in 

ventricular sizes(Prados et al., 2016).  

7. T1 hypointense lesion filling 

We used a longitudinal patch-based method to fill hypointense lesions on T1 

scans(Prados et al., 2016). We used white matter mask from the previous step as a 

reference to fill hypointense lesions. This step minimises erroneous segmentation of 

hypointense-lesions as grey matter and increases the precision of atrophy estimates 

as explained elsewhere(Prados et al., 2016). 

8. Brain segmentation and parcellation 

We used GIF to segment lesion-filled T1 scans into grey matter, white matter, and 

CSF and to parcellate the brain to ~120 regions according to the Desikan-Killiany-

Tourville protocol (http://braincolor.mindboggle.info/index.html)(Klein and Tourville, 

2012). We calculated the volume of each parcellated region by multiplying 

segmentation probability maps with the voxel volume.  

To calculate whole brain percentage atrophy we used SIENA (part of FSL version 

5.0)(Smith et al., 2001). SIENA estimates the rate of atrophy by measuring the shift of 

brain edge over two separate time-points. To have consistent results between regional 

and global atrophy that were not limited by the differences in segmentation methods, 

we used GIF masks within SIENA instead of BET(Smith, 2002) and FAST(Zhang et 

al., 2001).  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 11, 2018. ; https://doi.org/10.1101/343442doi: bioRxiv preprint 

https://doi.org/10.1101/343442
http://creativecommons.org/licenses/by/4.0/


 39 

Statistical analysis 

Regional analysis 

To explore regional treatment effects, and primary drivers of the total brain atrophy we 

summed respective regions from left and right hemispheres and constructed linear 

mixed-effects models for each area (~60 models), where the volume of a given area 

was the dependent variable. Independent variables (fixed effects and random effects) 

were similar to the models used for cognitive and clinical outcomes with an additional 

variable for total intracranial volume to adjust for the head size(Malone et al., 2015) 

and scanner (1.5 Tesla or 3 Tesla). First, we extracted rates of atrophy for those 

regions that had a significant rate of change (significant slope), after adjustment for 

multiple comparisons with the false-discovery rate (Benjamini and Hochberg, 1995). 

With a similar model, we calculated the rate of change for treatment and placebo 

groups.  

 

There was no treatment effect on the rate of change in T2 lesion volume 

At baseline, lesion volume in the placebo group was 22.14 mL (95%CI: 18.82 to 

25.46), which was not different (p=0.33) from the treatment group (average=19.3, 95% 

CI: 13.48 to 25.12). Lesion volumes significantly increased in each group: average 

[95%CI] for the treatment group was 0.55 ml/year [0.25 to 0.85], and the average for 

the placebo group was 0.72 ml/year [0.55 to 0.87]). However, rates of change were 

similar between treatment and placebo groups. 
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Supplemental Figures  

Supplemental Figure 1. Image analysis pipeline 
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Supplemental tables 

Supplementary table 1. MRI protocol.  

Sequence: T1-weighted 

Centre One Two 

Vendor General electric Signa Siemens 

Magnetic field 3 Tesla 1.5 Tesla 

Voxel dimension 3D (0.93x0.93x1.1 mm) 3D (1.25x1.25x1.2) 

Repetition time 

(TR) 

7.808 ms 2400 ms 

Echo time (TE) 3.004 ms 3.45 

Acquisition matrix  256x256 192x192 

Inversion time 450 ms 1000 ms 

Flip angle 20 8 

Field of view  192x192 

Number of slices 170 160 

 

Sequence: dual echo proton density and T2-weighted 

Centre One Two 

Voxel dimension 0.97x0.97x3.0 0.48x0.48x3.0 

Acquisition type 2D 2D 

Repetition time (TR) 2600 ms 4220 ms 

Spacing between slices  3 mm 3 mm 

Echo train length 10 5 

Acquisition matrix  256x256 424x512 

Flip angle 90 150 

Number of slices 46 46 
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Supplementary Table 2. Baseline characteristics of the participants.  

 Treatment Placebo Combined 

No. of participants  67 64 131 

Average age in years (SD) 51.58 (7.03) 50.9 (6.94) 51.2 (6.97) 

Females (males) 46 (21) 42 (22) 88 (43) 

Duration of SPMS in years 

(SD) 

7.41 (5.74) 6.87 (4.62) 7.14 (5.21) 

Duration of MS in years (SD) 22.32 (8.27) 19.97 (8.94) 21.17 (8.65) 

 Median EDSS (range) 6 (6-6.5) 6 (4-7) 6 (4-7) 

Average years of education 

(SD) 

13.69 (3.07) 13.42 (3.2) 13.56 (3.16) 

Abbreviations: SD; standard deviation, SPMS; secondary-progressive multiple sclerosis, MS; multiple sclerosis, EDSS; Kurtzke’s 

Expanded-Disability Status Scale.  
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