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Membrane lysis, or rupture, is a cell death pathway in bacteria frequently caused by cell wall-targeting1

antibiotics. Although several studies have clarified biochemical mechanisms of antibiotic action, a phys-2

ical understanding of the processes leading to lysis remains lacking. Here, we analyze the dynamics3

of membrane bulging and lysis in Escherichia coli, where, strikingly, the formation of an initial bulge4

(“bulging”) after cell wall digestion occurs on a characteristic timescale as fast as 100 ms and the growth5

of the bulge (“swelling”) occurs on a slower characteristic timescale of 10-100 s. We show that bulging6

can be energetically favorable due to the relaxation of the entropic and stretching energies of the inner7

membrane, cell wall, and outer membrane and that experimentally observed bulge shapes are consis-8

tent with model predictions. We then show that swelling can involve both the continued flow of water9

into the cytoplasm and the enlargement of wall defects, after which cell lysis is consistent with both10

the inner and outer membranes exceeding characteristic estimates of the yield areal strains of biologi-11

cal membranes. Our results contrast biological membrane physics and the physics of thin shells, reveal12

principles of how all bacteria likely function in their native states, and may have implications for cellular13

morphogenesis and antibiotic discovery across di�erent species of bacteria.14
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Antibiotic resistance is one of the largest threats to global health, food security, and development today.115

Its increasing prevalence2 begs the question of whether physical principles, which may be more universal16

than particular chemical pathways, could inform work on novel therapeutics, as has been done for mechan-17

otransduction in eukaryotes3 and tissue growth and fluidity.4,5 To elucidate such principles, a physical18

understanding of the cell death pathway caused by many antibiotics, which may complement knowledge19

of related biochemical mechanisms,6,7, 8, 9, 10, 11, 12 is needed.20

21

In many bacteria, cell shape is conferred by the cell wall, which resists the internal turgor pressure and is22

composed of two or three-dimensional layers of peptidoglycan (PG).13,14, 15 In Gram-negative bacteria such23

as E. coli, the two-dimensional cell wall is sandwiched between the inner and outer membranes (IM and24

OM), while in Gram-positive species the cellular envelope comprises an inner membrane enclosed by a25

three-dimensional cell wall. PG consists of rigid glycan strands cross-linked by peptide bonds and is main-26

tained through the combined, synchronized activity of enzymes including transglycosylases and transpep-27

tidases.13,15, 16, 17 Many antibiotics, including penicillin and �-lactams, bind to transpeptidases to inhibit28

cross-linking. Inhibition of peptide bond formation, combined with mislocalized wall degradation by PG29

hydrolases, has been thought to result in large defects in the cell wall which precede bulging of the IM and30

OM and eventual cell lysis.6, 7, 18, 1931

Results32

Dynamics of bacterial cell lysis33

Inspired by previous work,16 we degraded wild-type E. coli cell walls with cephalexin, a �-lactam antibiotic,34

and observed typical cells to undergo the morphological transitions shown in Fig. 1A-C and Supplemen-35

tary Video 1. Bulging—defined here as the development of a protrusion under an approximately constant36

volume, which is accompanied by a noticeable shrinking of the cell length—was observed to occur on a37

timescale as fast as 100 ms. Swelling, defined here as the growth of the protrusion, which may involve more38

variation in cytoplasmic volume, was observed to occur on a timescale of 10-100 s (Fig. 1D).1639

40

Physical modeling can elucidate the mechanisms which drive membrane bulging and swelling, and, as41

suggested above, understanding this is important because mechanical failure of the cell wall is a poorly un-42

derstood, yet typical and exploitable, cell death pathway.16,18, 19, 20, 21 Furthermore, the role of the cellular43

envelope here may entail di�erent physics than that of eukaryotic blebbing.22,23, 24, 25, 26, 27 In a recent model-44
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ing study,28 a critical pore size for bulging was found by studying the trade-o� between the bending energy45

cost of bulging and the pressure-volume energy gained. This trade-o� appears to be irrelevant for deter-46

mining bulge size in the aforementioned �-lactam experiments, where it can be shown that the bending47

energies are negligible compared to the stretching energies and that shortening of the cell contributes to48

bulge growth (Fig. 1C-D). As we shall see, membrane remodeling and the relaxation of the entropic and49

stretching energies of the cell envelope can predict bulging and are consistent with experimental observa-50

tions.51

Cell envelope mechanics52

We model the cell wall, IM, and OM as elastic shells in contact. Although fluid membranes cannot sup-53

port in-plane shears,29 we do not consider shear strains and stresses in this work and the strain energy is54

e�ectively that of an elastic shell. Importantly, we also suppose that, on timescales longer than that of the55

elastic response, the membrane geometries can vary due to membrane fluidity while conserving their ref-56

erence surface areas. This contrasts with the rigid cell wall, whose reference configuration is assumed to be57

a cylinder. The free energy of the cell wall, IM, OM, and the volume enclosed by the IM is58
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the stretching and bending energies, respectively, of an elastic shell, T is the temperature, and S is the60

entropy of mixing water and solutes. Here only water molecules are assumed to be outside the cell and S =61
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), where k is Boltzmann’s constant, x
s

and x
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are the number fractions of solute and62

water molecules, respectively, and n

s

and n

w

are the numbers of solute and water molecules, respectively.63

We assume an ideal, dilute solution in this work and note that the presence of the entropic term implies that,64

when the chemical potentials of water are equal both inside and outside the cell, the mechanical stresses in65

the cellular envelope are proportional to p = kTC, where C is the number density of solutes inside the cell66

and p is defined as the turgor pressure (Supplementary Information, SI). Assuming characteristic parameter67

values, the bending energies are negligible compared to the stretching energies, as is typically the case for68

thin shells.30,31, 32 We therefore discard the bending energies in the expressions below and verify in the SI69

that they do not change our results. We assume linear, isotropic constitutive relations for the IM and OM and70

an orthotropic constitutive relation for the cell wall, building on evidence for a larger elastic modulus in the71

circumferential direction than the axial direction.33,34
E
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can then be expressed as E↵
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where dA is an area element and73
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Here (Y, ⌫) are the two-dimensional Young’s modulus and Poisson’s ratio of the membranes, (Y w
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)74

are the orthotropic analogues for the cell wall, and (�

↵
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,�
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) denote in-plane stresses in the axial and cir-75

cumferential directions, respectively, of the ↵ component of the cellular envelope. We relate Y

i and Y

o to76

the area-stretch moduli K
a

of lipid bilayer membranes by Y

↵

= 2(1� ⌫

↵

)K

↵

a

. Values of K
a

have been esti-77

mated to be in the range of K
a

⇡ 0.03-0.25 N/m for E. coli spheroplasts depending on external osmolarity78

and size35 and K

a

⇡ 0.2-0.4 N/m for red blood cells (RBCs) and giant unilamellar vesicles,36,37 and these79

values are expected to be similar for bacterial membranes.3580

81

As the membrane stresses may vary due to the in-plane rearrangement of phospholipids,38,33 we assume that82

they can be determined in a healthy cell by minimizing F over the possible reference states. The existence83

of excess membrane area does not significantly change our results and involves calculations similar to that84

considered below. For a range of parameter values believed to be relevant to the E. coli cellular envelope, Y w

x

85

and Y

w

y

are similar in magnitude to Y

i and Y

o. BecauseF is quadratic in the in-plane stresses, the minimiza-86

tion of F in Eq. (1) predicts that both the cell membranes and the cell wall are load-bearing. In particular,87

over the cylindrical bulk of a spherocylindrical cell for which 2
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and for characteristic values of Y w
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= Y
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= 0.1 N/m,35,33, 39, 40
Y

w

y

= 0.2 N/m,33,34 and Poisson’s ratios89

all set to 0.2,41, 42 we find that F is minimal when �

i
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yy
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⇡ 0.25pr,90

and �

w

yy

⇡ 0.5pr, where r is the cell radius. This result contrasts with the idea that the cell wall is the only91

load-bearing structure of the cellular envelope and is consistent with experimental observations suggesting92

that the IM and OM can also be load-bearing, as manifested by the known fact that bulging precedes lysis.1693

As the IM and OM are fluid, load-bearing by the IM and OM does not contradict the fact that E. coli cells94

become spherical without their cell walls.95

96

When F is minimized over the cellular dimensions, flow of water into the cytoplasm may be required.97

The bulk flow of water from the external milieu to the cytoplasm is thought to be characterized by the98

hydraulic conductivity L

p

,43 defined so that the instantaneous volumetric flow rate through a membrane is99

dV/dt = L

p

A

tot

p, where p is the turgor pressure and A

tot

is the total membrane surface area.43,44 Estimates100

of L
p

vary depending on membrane structure: studies involving osmotically shocked bacteria,45 liposomes101
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with aquaporin-1, and RBCs have found L

p

⇡ 10

�12 m3

/N ·s, while studies for liposomes and other bilayers102

without water channels have indicated L

p

⇡ 10

�13 m3

/N · s.43,46 Below, we find that the larger value of L
p

103

is consistent with a volume increase on the order of 1-10% of the initial cell volume during bulging and that104

water flow can also contribute to swelling.105

Model of bulging106

We now show that, over a timescale of 100 ms, removal of a piece of cell wall can result in bulging. As the107

amount of excess membrane surface area is finite,35 we assume that the surface areas of the reference states of108

the IM and OM remain unchanged over the timescale of bulging. We therefore consider a quasi-equilibrium109

state in which the membrane reference surface areas limit bulging, for which the envelope stresses corre-110

spond to those caused by turgor pressure loading. Furthermore, since osmoregulation is believed to occur111

on a timescale of ⇠1 min for osmotic shocks applied over less than 1 s,44,47, 48 we assume the number of112

solute molecules to remain constant after cell wall degradation. The free energy may be lowered by water113

flow and bulging if the IM and OM may assume arbitrary geometries. Hence, we wish to minimize F over114

the cell geometry and the cellular dimensions, assuming that the membrane reference surface areas are fixed.115

116

Suppose that an area A of the cell wall is removed. For simplicity, we assume A to be a circle of radius r
d

. If117

the IM and OM were at equilibrium without bulging, then 2(�
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over A; we denote the stresses satisfying force balance over A with the subscript
A

and quantities of the119

unbulged state with the subscript
u

. As discussed below, the solutes may be diluted due to water flow,120

so that p
u

= pV
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, where V
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= 2⇡rL is the volume of a healthy cell, L is its length, and V
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volume of the unbulged state. Assuming the linear strain-displacement relations uw
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length and radius, respectively, the dimensions (L
u

, r

u

) of the cylindrical bulk in the unbulged state, which124

may di�er from the dimensions (L, r) of a healthy cell, completely determine the stresses in the cell wall.125

The condition of force balance then constrains the stresses in the IM and OM over the remainder of the126

cellular envelope. Thus, the free energy of the unbulged state is127
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by the condition of fixed reference membrane areas, which for simplicity is considered only for the IM in this131

work and requiresA+A
cell,u

= A
cell

, where the scripted symbols denote corresponding reference quantities132

and A = A(1� u

i
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and A

cell

= 2⇡rL is the surface area of a healthy cell. Due to water flow, the volume enclosed by the IM may134

increase, and we show below that the amount of volume increase is consistent with the timescale of bulging.135

We now wish to find cell envelope geometries for which the free energy is lowered.136

137

As an ansatz which will later be supported by comparison with experiments, we suppose the formation of138

an ellipsoidal bulge with radii (a, a, b) and some circular cross-section coinciding with A, as described by139

the parametric angle ✓ = sin

�1

(r

d

/a) (Fig. 2A). We neglect the bending energy of the neck, as detailed in140

the SI (see also Fig. S1). As the reference membrane surface areas are conserved, bulge formation requires141

area to be appropriated from the cylindrical bulk. Below, we examine the change in stretching energy of the142

cylindrical bulk under the assumption that a reference membrane area A⇤ is removed and relegated to the143

bulge, and then include the change in stretching energy due to the formation of an ellipsoidal bulge over A144

with reference area A⇤ (whose calculation for an ellipsoidal shell is discussed in the SI).145

146

To determine the change in stretching energy of the cylindrical bulk once a reference area A⇤ is removed, we147

first examine how the bulk contracts. As above, the dimensions (L
b

, r

b

) of the cylindrical bulk after bulging148

completely determine the stresses in the cell wall, and the condition of force balance constrains the stresses149

in the IM and OM. The stretching energy of the cylindrical bulk after bulging can be expressed as150
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is the volume of the bulged cell, and A
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= 2⇡r

b
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� A is the surface area152

of the bulk. Here the subscript
b

denotes quantities of the bulged state. For any A⇤, the minimizers of153
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1
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+ A
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determine the dimensions of the bulk, where A
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A
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). Given that the cylindrical bulk shrinks, and that the reference area by which it155

shrinks is relegated to the ellipsoidal bulge, the free energy of the bulged state can then be expressed as156
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where the independent variables satisfy the reference area constraint. Here the aspect ratio " = b/a, S(V
b

)157
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is the entropy of mixing corresponding to a bulged volume V

b

= ⇡r
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are the total in-plane stresses of the bulge as functions of parametric coordinates (x, y) = (✓

0
,�). ✓0 and � de-162

note the parametric angles along and around the axis of symmetry, respectively, and dA

bulge

= a sin ✓

0
[a

2

+163
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]
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d�d✓

0 is the surface area element of the bulge (SI).164

165

Bulging is energetically favorable due to the relaxation of the entropic and stretching energies when �F =166

F
1

� F
0

< 0. For characteristic parameter values relevant to E. coli, �F is calculated numerically as de-167

tailed in the SI and plotted in Fig. 2B. The individual contributions to �F of both the changes in entropic168

energy and stretching energies of the bulk and the bulge are examined in the SI and Fig. S2. Although �F169

diverges as ✓ ! 0—corresponding to the formation of a small bulge with diverging radii of curvature—170

there are alternate paths to the energetic minima for which no energetic barriers are present and bulging171

occurs spontaneously. One such path, in which a partial spherical bulge of fixed radius protrudes from the172

defect area before filling the defect area completely, is shown in Fig. 2C and analyzed in the SI. Importantly,173

for a wide range of r
d

, the configuration in which no bulging occurs is unstable, and the predicted bulge174

geometries appear consistent with experimental measurements (Fig. 3). For larger values of r
d

, bulges cor-175

responding to smaller defects are, intriguingly, predicted to subtend larger angles, while the predictions for176

small r
d

can be supported by analytical calculations (SI). Moreover, our model predicts a volume increase on177

the order of 1-10% for characteristic values of r
d

, with larger volume changes corresponding to larger r
d

, and178

is consistent with a relaxation process in which the membranes slide against the wall due to the di�erent179

strain rates of envelope components and the cell wall shrinks in the axial direction due to the membranes180

bearing larger loads (SI).181

182

We note three further implications of our analysis. First, bulging can be energetically favorable for a defect183

radius as small as r

d

= 10 nm (SI and Fig. S2). Second, over a large range of r
d

, the bulge volume V

⇤184
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corresponding to minimizers of�F depends weakly onL (Fig. S3). The insensitivity toL suggests a physical185

explanation for the observation that cell length appears uncorrelated with bulge volume,16 and our model186

further predicts that bulge size does not significantly change over a broad range of r. Third, balancing the187

energy dissipation with the viscous drag on the bulge results in a timescale much smaller than 100 ms (SI),188

suggesting that the relaxation time may be limited by water flow: assuming the parameter values in Materials189

and Methods, the larger value of L
p

⇡ 10

�12 m3

/N · s implies a volumetric flow rate of approximately 20%190

of the initial cell volume per second and is consistent with a volume increase on the order of 1-10% of the191

initial cell volume during bulging. We anticipate further experiments, for instance ones which modulate192

membrane permeability during �-lactam killing, to elucidate the origins of these fast dynamics and test193

other predictions of our model.194

Model of swelling195

During swelling, the amount of water uptake is determined by the same balance of the entropic and stretch-196

ing energies of the cellular envelope as above: if lysis did not occur, then net flow into the cytoplasm would197

occur until the membranes are su�ciently stretched. In fact, the small synthesis rate of membrane material198

relative to water flow49 suggests that water flow is not limiting and that the membranes are always stretched.199

To support this notion, we analyzed the swelling of E. coli cells of di�erent lengths over ⇠10 s and found200

that the population-averaged volumetric flow rate is small (Fig. 4A). In contrast, image analysis reveals that201

bulges grow at a rate consistent with theory when the defect radius, r
d

, also increases (Fig. 4B), implicat-202

ing defect growth as the limiting step of bulge growth before lysis. Since the mean bulge radii at lysis are203

a ⇡ 0.9 µm and b ⇡ 0.7 µm, assuming the parameter values summarized in Materials and Methods and that204

turgor pressure has not changed due to osmotic stress responses44,45, 47, 48, 50, 51, 52 suggests an upper bound205

for the yield areal strain of the E. coli IM and OM as approximately 20%, which lies within the empirical206

range of RBCs under impulsive stretching53 and exceeds that under quasi-static loading.54207

Discussion208

To summarize, we have used a continuum, elastic description of the cellular envelope to model membrane209

bulging and found that both continued water flow into the cytoplasm and defect enlargement can contribute210

to swelling. Our results underscore the di�erent roles of each envelope component in resisting mechanical211

stresses and indicate that bulging can arise as a relaxation process mediated by membrane fluidity and212

water flow once a wall defect exists. These findings have broad implications on cellular physiology and213

morphogenesis. Because bulging and swelling result in eventual lysis and are mediated by cell wall defects,214
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the existence of large pores in bacterial cell walls can be deadly. A growth mechanism which regulates pore215

size could help cells avoid lysis, in addition to regulating wall thickness and straight, rod-like morphology.30216

217

Beyond bacterial morphogenesis, the combination of theory and experiment in our work has revealed a218

novel description of biological membrane physics and underscored the importance of mechanical stresses219

in cells. By being free to change their reference geometries, biological membranes di�er from elastic shells,220

and we have shown that this di�erence has physiological implications on cell envelope mechanics and how221

mechanical stresses are distributed between membrane-solid layers. This paves the way for investigating and222

manipulating similar, rich interactions of fluid membranes with elastic surfaces38 and the material nature223

of living cells.224
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Materials and Methods225

Model parameters226

Unless otherwise specified, in this work we assume Y

w

x

= Y

i

= Y

o

= 0.1 N/m, Y w

y

= 0.2 N/m, ⌫i = ⌫

o

=227

⌫

w

xy

= ⌫

w

yx

= 0.2, p = 0.5 atm, T = 300 K, r = 0.5 µm, L = 10 µm, and r

d

= 0.6 µm. The curves in Fig. 2B228

are drawn with L

b

determined by the condition of fixed reference membrane area, r
b

= 0.5 µm, and " = 1,229

approximately the values at which the minimum of �F over ✓, r
b

, and " is achieved.230

Bacterial strains and growth231

The wild-type strain used in this study is E. coli MG1655, and we verified that the morphological dynamics232

are statistically indistinguishable in two other wild-type strains, JOE309 and BW25113. Cells were grown233

in liquid LB (LB: 10g/L tryptone, 5g/L yeast extract, 10g/L NaCl) supplemented with no antibiotics. LB234

media containing 1.5% Difco agar (w/v) was used to grow individual colonies. Cells were taken from an235

overnight culture, diluted 100 to 1000-fold, and grown in LB at 37�C in a roller drum agitating at 60 rpm to an236

absorbance of approximately 0.3 to 0.6 (� = 600 nm). Cells were then concentrated by centrifugation at 3000237

rpm for 5 min and resuspended. We added 1 µL of the bacterial culture to No. 1.5 coverslips (24⇥60 mm)238

and placed 1 mm thick LB agarose (1.5%) pads containing 50 µg/mL of cephelaxin, a �-lactam antibiotic,239

on top for imaging. Cells were imaged immediately afterwards.240

Microscopy241

We used a Nikon Ti inverted microscope (Nikon, Tokyo, Japan) equipped with a 6.5 µm-pixel Hamamatsu242

CMOS camera (Hamamatsu, Hamamatsu City, Japan) and a Nikon 100x NA 1.45 objective (Nikon, Tokyo,243

Japan) for imaging. All cells were imaged at 37�C on a heated stage. The time between each frame during244

timelapse measurements ranged from 10 ms to 2 s, and the duration of timelapses varied from 10 min to 3245

h. Images were recorded using NIS-Elements software (Nikon, Tokyo, Japan).246

Image analysis247

Image sequences were compiled from previous work16 and from ten replicate experiments described above,248

which resulted in raw data for over 500 cells. These sequences were annotated manually in ImageJ (National249

Institutes of Health, Bethesda, MD) to obtain cell dimensions, bulge radii, defect radii, and subtended bulge250

angles. Bulged cells were fit to cylinders with protruding ellipsoids with radii (a, a, b), as described in the251

main text, to determine cell volumes and membrane areas. For Fig. 1D, a subset of 30 cells were chosen252
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among cells which bulged on a timescale ⇠100 ms. Here and below, all cells considered bulged in the253

imaging plane. For Fig. 3, a subset of 134 cells were chosen among cells which bulged on a timescale ⇠1 s.254

For Fig. 4, a subset of 112 cells were chosen among cells which bulged on a timescale ⇠1 s and for which255

the cellular dimensions could be determined, and relevant statistics were measured or computed at two256

or three time points until ⇠10 seconds after bulging. This choice of timescale was made to mitigate the257

potential influence of cellular stress responses such as transport of solutes out of the cytoplasm,44 which258

could confound volumetric measurements. We discarded data points lying beyond the ranges plotted in259

Figs. 3 and 4, which corresponded to outliers, and applied a trailing moving average filter of 10 to 20 points260

to generate the moving average curves.261
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Figure 1: Experimental observation of membrane bulging, swelling, and lysis. (A) Phase-contrast im-
age of a population of E. coli cells immediately after antibiotic treatment (see also Supplementary Video 1).
(B) Phase-contrast image of the same population approximately 1 hr after antibiotic treatment, showing that
membrane bulging and swelling is common to all cells (see also Supplementary Video 1). (C) Phase-contrast
timelapse of a single E. coli cell during antibiotic killing, with the corresponding morphological dynamics
denoted. (D) Image analysis of 30 bulging and swelling cells of varying lengths reveals that bulging usually
does not result in a significant change in cell volume, while swelling is usually accompanied by more vari-
ation in volume. Bulged cells were fit to cylinders with protruding ellipsoids; see Materials and Methods for
details on the image analysis methodology. Error bars represent variability between cells.
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because the bulge stresses diverge as a ! 1. Small bulges with diverging radii of curvature correspond
to energetically unfavorable modes, but do not necessarily present energetic barriers, and the grey curve
illustrates an alternate path to the energetic minimum which is monotonically decreasing in the free energy
(SI and Fig. S2). (C) A possible relaxation path, for r

d

= 0.6 µm.
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Figure 3: Statistics of bulged cells. Experimental measurements of bulge geometries for 134 cells. Here
the aspect ratio is defined as " = b/a. The curves represent moving averages and model predictions for
the parameter values summarized in Materials and Methods and no fitting parameters. The shaded areas
represent model predictions where the cell length is in the range [5 µm, 15 µm], and the model predictions
are less, or similarly, sensitive to similar changes in other parameters (not shown). The scatter indicates
cell-to-cell variability.
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Figure 4: Statistics of swelling cells. (A) Plot of the volumetric flow rate dV/dt against the total membrane
surface area A

tot

for 112 swelling cells of di�erent lengths and one or two data points per cell, with a linear
fit overlaid. Error bars indicate one standard deviation (dashed lines). Here and in (B), the scatter indicates
cell-to-cell variability. (B) Plot of V ⇤
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d

for the
same cells as in (A), with the moving average and theoretical prediction overlaid. The parameter values are
summarized in Materials and Methods. The shaded areas represent model predictions where the cell length
is in the range [5 µm, 15 µm], and the model predictions are less, or similarly, sensitive to similar changes in
other parameters (not shown).
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Supplementary Information

Entropic origin of turgor pressure and stresses at equilibrium. Here we show that minimization of F in
equation (1) of the main text implies that, when the chemical potentials of water are equal both inside and
outside the cell, the mechanical stresses in the cellular envelope are proportional to p = kTC, where C
is the number density of solutes inside the cell (assuming no solutes outside the cell) and p is defined as
the turgor pressure. For simplicity, we first neglect the di�erences between the cell wall, IM, and OM and
consider the cellular envelope as a homogeneous, continuum, isotropic, elastic shell, with Young’s modulus
and Poisson’s ratio Y and ⌫, respectively, and a fixed reference state. Similar conclusions can be shown to
hold assuming orthotropic material properties over the entire cellular envelope and di�erent geometries.

With notation similar to the main text, in this section we denote as L1 (L0) and r1 (r0) the (reference) length
and radius, respectively, of the cell envelope. Assuming the linear strain-displacement relations in the main
text and setting

�xx =

Y

1� ⌫2
(uxx + ⌫uyy), �yy =

Y

1� ⌫2
(uyy + ⌫uxx), (S1)

the stretching energy is
Us =

⇡L1r1
Y

(�2
xx + �2

yy � 2⌫�xx�yy). (S2)

We ignore the bending energy, as discussed below, and consider now the entropic term. We assume the
dilute limit of a small, fixed number of solutes ns inside the cell, so that ns/nw ⌧ 1, where nw denotes
the number of water molecules. In this case, and assuming that the volume occupied per solute molecule
is comparable to that occupied per water molecule, the number of water molecules contained in the cell
envelope can be approximated as nw ⇡ ⇡r21L1/mw, where mw ⇡ 30⇥ 10

�30 m3 is the volume occupied per
water molecule. By substituting these expressions into the entropy of mixing discussed in the main text, we
find that the entropic term is approximately

� TS ⇡ kT

✓
⇡r21L1

mw
ln

✓
⇡r21L1

⇡r21L1 + nsmw

◆
+ ns ln

✓
nsmw

⇡r21L1 + nsmw

◆◆
. (S3)

Since the cell envelope geometry may change, we minimize F with respect to the stresses �xx and �yy .
Anticipating that L1 = L0 + �L and r1 = r0 + �r and that uxx = �L/L0, uyy = �r/r0, and ns/(ns + nw) are
small, expanding F to second order in both uxx and uyy and first order in ns/(ns + nw) around zero and
solving for the values of �L and �r which minimize F yield

�L =

kTns(1� 2⌫)

2⇡r0Y
, �r =

kTns(2� ⌫)

2⇡L0Y
, (S4)

which implies

�xx =

kTns

2⇡r0L0
=

kTns

2⇡r1L1
+O[(ns/nw)

2
], �yy =

kTns

⇡r0L0
=

kTns

2⇡r1L1
+O[(ns/nw)

2
], (S5)

consistent with loading by a pressure p = kTC, where C = ns/(⇡r21L1). From this, we also find that ns can
be expressed in terms of cellular parameters as ns = p⇡r21L1/(kT ).

Bending energies are negligible even at the neck. Throughout this work, we have assumed that the bend-
ing energies are negligible compared to the stretching energies. The bending energy of an isotropic shell
is Ebend = 2kb

R
H2dA. Here kb is the bending rigidity, H is the mean curvature, a vanishing spontaneous

curvature is assumed for all surfaces for simplicity, and the contribution of Gaussian curvature to the elastic
energy is ignored due to the Gauss-Bonnet theorem and absence of topological change. The bending energy
Ew

bend of the orthotropic cell wall assumes a more complicated form involving bending rigidities in the xx,
xy, and yy directions [1]. However, here we do not consider bending deformations of the cell wall. We
therefore leave the form of Ew

bend unspecified and ignore it in the following. We now consider the addition
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of these bending energies to the analysis in this study. The combined bending energy of the unbulged state,
a cylinder, is E0 = Acell(kib + kob )/(2r

2
), where we drop the subscripts u and b on r for simplicity and retain

the notation used in the main text. The combined bending energy of the bulged state is

E1 =

Acell,b(kib + kob )

2r2
+ 2(kib + kob )

Z
H(✓0,�)2dAbulge + Eneck, (S6)

where we compute the mean curvature of an ellipsoid parameterized by (a sin ✓0 cos�, a sin ✓0 sin�, b cos ✓0)
from its second fundamental form as

H(✓0,�) =
b(3a2 + b2 + (a2 � b2) cos(2✓0))p
2a(a2 + b2 + (a2 � b2) cos(2✓0))3/2

, (S7)

and Eneck is the bending energy of the neck. For an ellipsoidal bulge joined to a cylinder, the mean curvature
diverges at the kink of the neck. In lieu of a perfect kink, we may suppose instead that the geometry of the
neck is described by a partial, circular torus of major and minor radiiD andC (Fig. S1). C can be set to satisfy
conservation of membrane reference surface areas, so that the reference area of the torus is identical to the
reference area of the neck that it replaces; however, D is constrained by the bulge radius to be D ⇡ a sin ✓.
For the case in which the parametric angle ✓  ⇡/2, the sector of the toroidal cross-section needed to bridge
the neck can be taken to be  ✓ with its value dependent on the choice of C, while for ✓ > ⇡/2, half of
the cross-section su�ces over a range of C (Fig. S1). Then, as the area of the toroidal neck is bounded by
Aneck . (

✓
2⇡ )⇥ 4⇡2CD, the bending energy of the toroidal neck satisfies

Eneck .

8
><

>:

✓⇡CDkb
⇣

1
C +

1
D+C

⌘2
✓  ⇡/2

⇡2CDkb
2

⇣
1
C +

1
D+C

⌘2
✓ > ⇡/2.

(S8)

Introducing a toroidal neck also results in a contribution to the stretching energy. The in-plane stress for a
circular torus are [2, 3]

(�xx,�yy) =

✓
pC

2

,
pC

2

2D + C sin�t

D + C sin�t

◆
, (S9)

where ✓t and �t are respectively the toroidal and poloidal angles of the torus and (x, y) = (✓t,�t); as the
typical volume changes we consider are small, for simplicity we ignore the e�ect of solute dilution on p here
and in the remainder of the SI, unless specified otherwise, and note that this does not significantly change
our results. Taking max�t �xx = �i

xx = �o
xx and max�t �yy = �i

yy = �o
yy , we obtain an additional stretching

energy of the neck upper bounded by Eneck,stretch = min�i Aneck

�
&i + &o

�
. Finally, introducing the neck

increases the volume enclosed by the IM, and considering its entropic contribution explicitly would only
decrease the free energy change further. Thus, the free energy change �Fneck due to bulging in the case
where a kink at the neck is replaced by a partial torus is upper bounded by

�Fneck . �F + Eneck,stretch + E1 � E0, (S10)

where �F is of the same form as that considered in the main text. For the parameter values indicated in
Materials and Methods and kb = 20 kT , D ⇠ 1 µm, and C ⇠ 10 nm, we find that the corrections indicated in
equation (S10) are of lower orders of magnitude (⇠ 10

�16 to 10

�17 J) than the energy scales considered in
the main text and do not change our results; neither do they present energetic barriers to relaxation. Taken
together, these considerations suggest that it is indeed justifiable to neglect the bending energies and the
energetic contribution of the neck.

Stress analysis of an ellipsoidal bulge and calculation of undeformed surface area. We consider the el-
lipsoidal surface parameterized by (a sin ✓0 cos�, a sin ✓0 sin�, b cos ✓0). The stress resultants of the bulge are
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found by solving the membrane equations

@T↵�

@x↵
+ T↵�

�

�
↵� + T↵�

�

�
↵� + p� = 0, T↵�K↵� = p3, (S11)

where T is the stress resultant tensor, K is the curvature tensor, ~p = (0, 0,�p) is the external force per unit
area, �i

↵� are Christo�el symbols of the second kind, and the indices (↵,�, �) range over ✓0 ⌘ x ⌘ x1 and
� ⌘ y ⌘ x2 [4, 5]. (Here 3 denotes surface normal quantities.) The in-plane stresses correspond to the stress
resultant tensor with mixed (raised and lowered) indices. Upon index lowering by the covariant metric
tensor G↵� of the deformed state, where

(G↵�) =

✓
1
2

�
a2 + b2 + (a2 � b2) cos(2✓0)

�
0

0 a2 sin2 ✓0

◆
, (S12)

these give, as functions of the parametric angle along the axis of symmetry ✓0,

�b
xx(✓

0
) = G11T

11
=

pa

2b

q
a2 + (b2 � a2) sin2 ✓0, (S13)

�b
yy(✓

0
) = G22T

22
=

pa

2b

a2 + 2(b2 � a2) sin2 ✓0q
a2 + (b2 � a2) sin2 ✓0

. (S14)

Note that, assuming the linear strain-displacement relation E↵� = e↵� = (G↵� � g↵�)/2 for a thin shell,
where E (e) is the strain tensor of the deformed (reference) state of the bulge, index lowering with the co-
variant metric tensor of the undeformed state, g↵� , and retaining the terms accurate to linear order in the
strains results in identical expressions. As we employ a linear theory in this work, we shall continue to lower
indices with G↵� below.

In the main text, we wish to determine A⇤, the reference surface area of an ellipsoidal bulge. Although
the linearized strain-displacement relations of a thin shell are analytically and numerically di�cult to solve
for the ellipsoidal geometry we consider, A⇤ can be calculated directly from the metric tensor using the
strain-displacement relation E↵� = (G↵� � g↵�)/2. In particular, we set g↵� = G↵� �2G↵�(ui

↵�,A,b)
b, where

(ui
↵�,A,b)

b is determined from equations (7) and (8) of the main text and the constitutive relation, and take
A⇤

=

R 2⇡
0

R ✓

0

p
det gd✓0d�.

Numerical minimization of �F . As the analytical calculations below suggest, the minimization of �F is
algebraically and analytically complex. We numerically minimized �F by determining F0 and then deter-
mining F1. To find the minimizers corresponding to equation (3) of the main text, we first discretized ru
over the interval [0.3 µm, 0.7 µm] into 4 steps. As the IM and OM share identical material properties for the
parameter values considered in this work, by symmetry we set �i

u = �o
u and �i

A,u = �o
A,u, and likewise for

determining F1 below. Hence, for a given a value of ru, pu and Lu can be determined self-consistently by
the membrane reference surface area constraint, and a numerical value of the expression in equation (3) of
the main text can be computed. We tookF0 to be the minimal value obtained by sampling over rb in this way.

To determine the minimizers corresponding to F1 in equation (5) of the main text, we discretized dr = r�rb
over the interval [�0.2 µm, 0.2 µm] into 4 steps, " over the interval [0.8, 1.2] into 10 steps, ✓ over the interval
[0,⇡] into 200 steps, and determined pb and Lb self-consistently from the membrane reference surface area
constraint. For given values of each sampled variable, a numerical value of F1 can therefore be computed.
We omitted computations corresponding to cases where Lb < 2rd, in which case the geometry assumed in
our model is unphysical. For Fig. 3 in the main text, we determined the model predictions as follows: for
given values of rb and ", we considered the first local minimum, �F|rb,", of �F viewed as a function of ✓
starting from ✓ = 0. We then took the predicted configuration to correspond to the minimum of �F|rb,"
over all sampled values of rb and ".
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The foregoing calculations were repeated for variations in rd, r, and L. We discretized rd over the inter-
val [0 µm, 1.4 µm] into 28 steps, r over the interval [0.3 µm, 1.1 µm] into 8 steps, and L over the interval
[2 µm, 20 µm] into 18 steps, interpolated the model predictions, and smoothed the resultant curves. We
repeated the foregoing calculations with di�erent discretizations and ranges and verified that our model
predictions were not significantly changed.

Changes in the entropic and stretching energies. In this section, we consider the changes in entropic en-
ergy, stretching energy of the ellipsoidal bulge, and stretching energy of the cylindrical bulk separately,
which we respectively denote as �TS, �Hbulge, and �Hbulk. �Hbulge and �Hbulk are the di�erences of
the first and second terms of equations (4) and (6) of the main text, respectively. For the parameter values
assumed in Materials and Methods, plots of �TS, �Hbulk, �Hbulge, �H = �Hbulk + �Hbulge, and �F as
functions of V ⇤/Vb are shown in Fig. S2A. We note, in particular, that the trade-o� between the stretching
and entropic energies determines bulge size, and that both bulge growth and shrinking of the cylindrical
bulk yield similar contributions to the increase in stretching energy in the energy-minimizing conformation.

Bulging occurs spontaneously. Here we demonstrate the existence of a path to the energy-minimizing state
shown in Fig. 2B of the main text which is monotonically decreasing in the free energy. In particular, this
path avoids the divergence of �F as ✓, V ⇤ ! 0 shown in Fig. 2B of the main text. We consider extruding
a sphere of a fixed radius R � rd through the wall defect until the cross-section of the sphere coincides
with the wall defect. Reusing notation introduced elsewhere in the text, the free energy of the cell envelope
with a spherical bulge of fixed radius R, but varying parametric angle ✓, protruding through a defect can be
written as

F2 = min

�i
b,�

i
A,�i

A,b,Lb,rb

1

2

h
A?

�
&iA + &oA

�
+Abulge

�
&iA,b + &oA,b

�
+Acell,b

�
&ib + &ob + &wb

� i� TS(Vb), (S15)

where A? = A � Ae, A = ⇡r2d is the defect area, Ae = ⇡r2H is the cross-sectional bulge area with rH =

R sin ✓  rd, Abulge = 2⇡R2
(1 � cos ✓), Acell,b = 2⇡rbLb � A is the surface area of the remaining cylinder,

and S(Vb) is the entropy of mixing corresponding to a total volume Vb = ⇡r2bLb +
1
3⇡R

3
(2� 3 cos ✓+cos

3 ✓).
The reference area constraint can be written as Abulge +Acell,b +A? = Acell, where the undeformed surface
areas can be determined from the deformed surface areas in a straightforward manner similar to that con-
sidered in the main text. The conditions of force balance on each region are 2

P
↵ �↵

xx,A =

P
↵ �↵

yy,A = prb,P
↵ �↵

xx,A,b =

P
↵ �↵

yy,A,b = pR/2, and 2

P
� �

�
xx,b =

P
� �

�
yy,b = prb, where ↵ 2 {i, o} and � 2 {i, o, w}. For

the parameter values considered in Materials and Methods, a plot of �F = F2 � F0 which is monotonically
decreasing in ✓ until ✓ = ⇡/2 is shown in Fig. S2B.

Analytical calculations under simplified model assumptions. Here we consider analytical calculations
in order to support the numerical results presented in the main text. Due to the complicated form of F ,
analytical calculations may only be tractable in certain limits and under simplifying assumptions. In this
section, in order to simplify analytical calculations and provide further intuition for the results presented
in the main text, we neglect the existence of the outer membrane and assume that Y w

x = Y w
y = Y i

= Y ,
⌫wxy = ⌫wyx = ⌫i = 0, rb = ru = r, and " = 1. We consider the dependence of the subtended angle on the
defect radius in the limit where the defect radius is small.

Under the assumptions above, it is possible to solve for �F analytically. Doing so results in algebraically
complex forms for F0 and F1:

F0 =

⇡

16Y L2
[p2r2(2Lur(6L

2 � 2LLu + L2
u) + r2d(4L

2
+ 2LLu � L2

u)) (S16)

+8Y (L� Lu)
2
(2rLu � r2d)(pr + 2Y )] + kT (ns ln(ns/(ns + nu

w) + nu
w ln(nu

w/(ns + nu
w)),
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where Lu is constrained by conservation of membrane reference surface area to yield

4r⇣Lu = pr(4Lr + r2d) + 4r2dY +

q
256L2r2Y 2

+ 8Lrr2d⇣(3pr � 4Y ) + r4d⇣
2, (S17)

where ⇣ = pr + 4Y , ns = p⇡r2L/(kT ), and nu
w, the number of water molecules in the unbulged state, is

nu
w = ⇡r2Lu/mw, and

F1 =

⇡

16L2Y
[(2Lbr � r2d)(p

2r2(6L2 � 2LLb + L2
b) + 8prY (L� Lb)

2
+ 16Y 2

(L� Lb)
2
) (S18)

+8L2p2r4d csc
3 ✓ tan(✓/2)] + kT (ns ln(ns/(ns + nb

w) + nu
w ln(nb

w/(ns + nb
w)),

where

4r⇠⇣Lb = ⇠(pr(4Lr + r2d) + 4r2dY )�
h
⇠(256L2r2Y 2⇠ + r4d⇠⇣

2 � 8Lr⇣(p2r2r2d (S19)

+2pY (8a3 � rr2d)� 16a2Y 2
) + 128a2LrY (pa� Y )⇣ cos ✓)

i1/2
, (S20)

⇠ = pr � 2Y , a = rd/ sin ✓, and nb
w, the number of water molecules in the bulged state, is nb

w = [⇡r2Lb +
4
3⇡a

3
(2 + cos ✓) sin4(✓/2)]/mw. Based on our numerical results, we anticipate that rd ⇠ ✓ in the limit of

small ✓. Expanding @✓�F to fourth order in rd/r around 0 and first order in ✓ around 0 and solving for its
nontrivial zeros then gives the following relation between rd and ✓:

rd ⇡ 5p2mwr2 + 8kTrY ln(kT/(pmw + kT ))

8p2mwr � 16pmwY
✓. (S21)

Equation (S21) describes a model prediction for the subtended (parametric) angle, ✓, as a function of the
defect radius, rd, under the simplifying assumptions discussed above. It predicts that, for small bulges, the
subtended angle is characteristically small and increases with the defect radius, consistent with the numeri-
cal results presented in Fig. 3 of the main text and Fig. S3. For the parameter values considered in this work
and Y = 0.1 N/m, the prefactor of equation (S21) is approximately 0.24 µm and the prediction of equation
(S21) is consistent with Fig. 3 of the main text.

Variables of the bulged state. For the parameter values considered in Materials and Methods, the variables
of the bulged state are a ⇡ 0.8 µm, " ⇡ 1, ✓ ⇡ 2.3, L1 ⇡ 8.8 µm, and r1 ⇡ 0.5 µm, while the fractional volume
increase of the entire cell is �V ⇡ 0.1. These variables attain similar values over a large range of rd, from
rd = 0.2 µm to rd = 1 µm; notably, �V ranges from approximately 0 to 0.5. Our model predicts that, due
to the di�erent strain rates between envelope components, the membranes may slide against the cell wall as
the cell bulges. Indeed, for the parameter values considered in Materials and Methods, the membrane strains
in the bulk are identical between the IM and OM and change from ui

xx ⇡ 0.03 and ui
yy ⇡ 0.06 to ui

xx ⇡ 0.08
and ui

yy ⇡ 0.06, while the wall strains change from uw
xx ⇡ 0.03 and uw

yy ⇡ 0.05 to uw
xx ⇡ �0.09 and uw

yy ⇡ 0.05.
Intriguingly, our model predicts that for typical parameter values the cell wall is compressed axially. In this
case, it is energetically favorable for membrane area to be appropriated by shortening the bulk beyond the
reference length of the cell wall.

Critical defect radius for bulging. In previous work [6], a critical defect radius of rd ⇡ 20 nm for bulging was
found by considering the trade-o� between the bending and pressure-volume energies. The bending energy
of a hemispherical bulge of radius rd is Ebend = 4⇡kb, while the pressure-volume energy is EpV =

2
3⇡r

3
dp.

For the parameter values considered in this work, neglecting the bending energy at the bulge neck, and
considering both the IM and OM in the presence of su�cient excess area, 2Ebend = EpV when rd = 21 nm,
consistent with the estimate in [6]. However, allowing for membrane reorganization, a critical defect radius
for bulging may exist by considering primarily the trade-o� between the bending and stretching energies.
In this case, the decrease in free energy can be caused primarily by a decrease in the stretching energy,
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which is dependent on the shape of the cell envelope: the stretching energy may be lowered if the bulge, for
which the stresses are on the order of ⇠ prd, replaced the cylindrical geometry, for which the stresses are
proportional to pr. The stretching energy saved by bulging is well approximated by the contribution over
the defect, Estretch ⇡ 1

2A(&iA + &oA). For the parameter values considered in this work, 2Ebend < Estretch even
when rd ⇡ 10 nm, approximately the thickness of a lipid bilayer. To support this estimate, Fig. S2C shows
a plot of �F for rd = 10 nm and the parameter values considered in Materials and Methods.

Timescale of the bulging response against viscous drag. We show that balancing the energy change com-
puted above with the viscous drag on the bulge implies a timescale that is smaller than 100 ms, and hence
energy dissipation cannot account for the observed timescale of bulging. The characteristic scale of �F in
our work is 10

�14 J, while the power dissipation due to viscous drag on an expanding sphere is 16⇡⌘ ˙R2R,
where ⌘ denotes the medium viscosity and R is the radius of the sphere [7]. Supposing the viscosity of
water, ⌘ = 10

�3 Pa · s, and estimating R = 0.5 µm and ˙R = 0.5 µm/(100 ms) then results in an energy scale
of 10�19 J/s. Equivalently, a power dissipation of 10�14 J/(100 ms) implies a bulging timescale of ⇠ 0.1 ms.
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Supplementary Videos

Supplementary Video 1: Lysis dynamics of E. coli cells. Supplementary Video 1 shows a population of
wild-type E. coli cells bulging, swelling, and lysing under antibiotic treatment. The time between frames is
30 seconds, the timelapse covers a period of approximately 1 hour, and the field of view is 100 µm⇥ 80 µm.
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Supplementary Figures
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Figure S1: Bending energy at the neck. To avoid the divergence of the bending energy at the neck, we con-
nect the bulge to the cylindrical bulk with a partial torus and estimate the resulting energetic contribution.
The planar diagrams show cross-sections of the axisymmetric geometries.
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Figure S2: Energetics of bulging. (A) Contributions to the free energy change: same as Fig. 2B in the main
text, but with individual contributions to �F shown. (B) Bulging can occur spontaneously: there are paths
that are monotonically decreasing in free energy to the energetic minimum shown in Fig. 2B of the main
text. For the same parameter values as in Materials and Methods, a plot of the free energy change due to the
extrusion of a spherical bulge with a fixed radius R = 0.6 µm is shown. The curve is truncated when the
subtended angle is ⇡. (C) Bulging is energetically favorable even for small defects: same as Fig. 2B in the
main text, but with rd = 10 nm and the energy change �Ebend = 2kbAbulge/a2, where Abulge is the area
of the bulge, corresponding to bending of the bulge (red curve) and the free energy change neglecting the
bending energies (black curve) shown.
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Figure S3: Dependence of bulge size on cell length, cell radius, and defect radius. (A) Plot of �F against
the parametric angle ✓ for the parameter values summarized in Materials and Methods and varying rd. For
simplicity, all curves are drawn assuming rb = r, " = 1, and Lb determined by the reference area constraint,
but the plots are qualitatively similar over a wide range of parameter values. The curves are truncated
when Lb < 2rd, in which case the geometry assumed in our model is unphysical. (B) Same as (A), but with
varying r. (C) Same as (A), but with varying L. (D) Predicted dependence of bulge volume on defect radius,
assuming the parameters summarized in Materials and Methods. (E) Same as (D), but for the dependence of
bulge volume on cell radius. The non-monotonicity is consistent with the transition between the regimes of
large and small subtended angles shown in Fig. 3 of the main text. (F) Same as (D), but for the dependence
of bulge volume on cell length.
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