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Abstract

For a population to acquire a complex adaptation requiring multiple individually neutral mu-
tations, it must cross a plateau in the fitness landscape. We consider plateaus involving three
mutations, and show that large populations can cross them rapidly via lineages that acquire
multiple mutations while remaining at low frequency. Plateau-crossing is fastest for very large
populations. At intermediate population sizes, recombination can greatly accelerate adaptation
by combining independent mutant lineages to form triple-mutants. For more frequent recom-
bination, such that the population is kept near linkage equilibrium, we extend our analysis to
find simple expressions for the expected time to cross plateaus of arbitrary width.

1 Introduction

Most mutations in most natural populations are effectively neutral. Considered in isolation, these
are irrelevant for adaptation. But the fitness effect of a mutation generally depends on the genetic
background on which it occurs, a phenomenon known as epistasis. Thus, there are likely to be
combinations of these neutral mutations that interact epistatically to have an effect on fitness. If
this effect is positive for a given combination, then that combination forms a complex adaptation,
separated from the wild type by a fitness plateau. How frequently do we expect populations to
acquire such adaptations? On one hand, a given complex adaptation should typically be harder
for a population to find than a simple adaptation requiring only a single beneficial mutation. On
the other hand, if a genome of length L has O(L) possible neutral mutations, then there are
O(LK) genotypes that could potentially be a complex adaptation involving K mutations. So if
even a modest fraction of these genotypes are indeed adaptive, the number of possible complex
adaptations could far exceed the number of available beneficial mutations, and it could be that
they are collectively a frequent form of adaptation [Fisher, 2007, Weissman et al., 2009, Trotter
et al., 2014]. To evaluate their importance, we must know more about how rapidly population
explore fitness plateaus.

Populations can cross fitness plateaus via a sequence of neutral mutations fixing by drift until
only one more mutation is needed for the (formerly complex) adaptation. But this process is
slow and inefficient; in a high-dimensional fitness plateau, the population will be much more likely
to drift away from a complex adaptation than towards it. Large, asexual populations can cross
plateaus and even fitness valleys much more rapidly (e.g., [van Nimwegen and Crutchfield, 2000,
Komarova et al., 2003, Iwasa et al., 2004, Weinreich and Chao, 2005, Durrett and Schmidt, 2008,
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Weissman et al., 2009]). They can do this because many mutations will be present in the population
at low frequency. If the population is sufficiently large, even these low-frequency mutations will be
present in a large absolute number of individuals, some of which will happen to also carry additional
mutations. Thus, genotypes that are multiple mutations away from the consensus genotype will
already be present in the population and exposed to natural selection, allowing the population to
effectively “see” several steps away in the fitness landscape, and “tunnel” directly to the adaptive
genotypes Jain and Krug [2006].

Recombination changes these dynamics in two ways. First, by combining mutations that occur in
different lineages, it accelerates the population’s exploration of the plateau Christiansen et al. [1998].
On the other hand, recombination breaks up the beneficial combination once it is formed Eshel and
Feldman [1970], Feldman [1971], Karlin and McGregor [1971], slowing adaptation Takahata [1982],
Michalakis and Slatkin [1996]. While the latter effect is fairly easy to understand quantitatively,
the former depends on the spectrum of mutant lineages that coexist in the population and has only
been fully understood in the simplest case of two-locus plateaus [Weissman et al., 2010]. Here we
extend this analysis to the three-locus case, considering the full spectrum of possible population
sizes, recombination rates, mutation rates, and selective advantages of the adaptive genotype. We
also analyze the dynamics for arbitrary-width plateaus when recombination is frequent relative to
selection.

2 Model

We consider a haploid Wright-Fisher population of size N . The genome consists of K loci each of
which has two possible alleles, 0 and 1; for much of the analysis, we will focus on the case K = 3.
Initially, all individuals have the all-0 genotype. All genotypes have the same fitness except the all-1
genotype, which has a strong selective advantage s � 1/N ; see Figure 1. Individuals mutate (in
both directions) at a rate µ per locus per generation. Each generation, each offspring is produced
clonally (with possible mutations) with probability 1 − r; with probability r, it is the product of
recombination between two parents. Recombinant offspring sample each locus independently with
equal probability from their parents (again, with possible mutation). We will focus on finding
the expected time T until the all-1 genotype first makes up the majority of the population. For
simplicity, we will also refer to the “rate” of crossing the plateau, defined as T −1, even though it is
not a true rate, as the distribution of time to cross the plateau is not exponential in general. The
definitions of the most important symbols are collected in Table 1. Exact simulations were done in
Python (Figs. 3 and 4) and Mathematica (Figs. 5 and 6).

3 Results

There are two fundamentally different plateau-crossing dynamics, depending on the relative rates of
selection and recombination Eshel and Feldman [1970], Feldman [1971], Suzuki [1997], Jain [2009].
If recombination is weak relative to selection (r � s), the adaptive genotype is rarely broken up
by recombination and can spread rapidly once formed even if the individual mutant alleles are very
rare in the population. If, on the other hand, recombination is strong (r � s), the population is
kept in quasi-linkage equilibrium, with the dynamics determined by the allele frequencies. Because
the dynamics are so different, we consider these two regimes separately. Figure 2 and Table 2
summarize the different possible scaling behaviors of T over all of parameter space.

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/343053doi: bioRxiv preprint 

https://doi.org/10.1101/343053


Figure 1: A visualization of the fitness landscape in the case of K = 3. The nodes represent the
fitness of wild type, single-, double-, and triple-mutant genotypes. Wild-type alleles are denoted by
0 and mutants by 1. The {1, 1, 1} genotype has a fitness 1 + s > 1 and the rest have fitness 1.

Table 1: Symbol definitions
Symbol Definition
N Haploid population size
µ Mutation rate per locus per generation
r Recombination rate per generation
s Selective advantage of the all-mutant genotype
T Expected time until the all-mutant genotype

makes up the majority of the population
Ri(t) The rate at which i-mutant individuals arise in

the population at time t
pi(t) The probability that an i-mutant lineage arising

at time t will be successful
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Figure 2: Schematic diagram of the asymptotic dynamics by which a population crosses a three-
mutation (K = 3) fitness plateau to acquire a complex adaptation providing advantage s, as a
function of recombination rate r and population size N . Color qualitatively represents the expected
time T for the population to cross; for quantitative expressions, see Table 2. For r � s, selection
can drive the triple-mutant genotype to fixation while the other mutant genotypes remain rare,
while for r � s the population always remains close to linkage equilibrium; plateau crossing is
fastest for intermediate recombination rates. The time to cross the plateau decreases as population
size increases from the “sequential fixation” regime to the “deterministic” regimes. The “stochastic
tunneling (sexual)” regime is a combination of several different regimes that can be practically
indistinguishable, with boundaries that depend on the value of µ/s – see Appendix A.1.
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Table 2: Rate of plateau-crossing (inverse of expected crossing time T ) for asymptotic regimes
shown in Figure 2, organized by main divisions of parameter space.

Divisions Name T −1 scaling Refs.
r < s Nµ� 1 Triple-mutants deterministic s/ ln(s/µ) Section 4.1.1

Double-mutants deterministic (asexual)
(
Nµ3s

)1/3
Section 4.1.2

Double-mutants deterministic (sexual)
(
Nµ3rs

)1/4
Section 4.1.2

Single-mutants deterministic (asexual)
(
N2µ5s

)1/4
Section 4.1.3

Single-mutants deterministic (sexual)
(
N2µ5r3s

)1/7
Section 4.1.3

Nµ� 1 Stochastic tunneling (asexual) Nµ2 (s/µ)
1/4

Section 4.1.4
Stochastic tunneling (sexual) ∼ N1.4µ1.9r0.4s0.1 Appendix A.1

Semi-linkage-equilibrium tunneling Nµ2
(
N3µrs

)1/4
Section 4.1.4

Tunneling after 1 mutation fixes (asexual) µ Section 4.1.5
Tunneling after 1 mutation fixes (sexual) µ Section 4.1.5

r � s Nµ� 1 Alleles deterministic
(
µ2s
)1/3

Section 4.2.1
Nµ� 1 Linkage equilibrium (LE) tunneling Nµ2(Ns)1/3 Section 4.2.2

LE tunneling after 1 mutation fixes µ Section 4.2.2

N � 1/
√
µs Sequential fixation µ Section 4.2.2

3.1 Rare recombination, r � s

For r � s, we must track genotype frequencies rather than just allele frequencies, so the complexity
of the dynamics increases rapidly with the width of the plateau; we therefore focus on the simplest
case that has not yet been fully characterized, K = 3. Even for this simplest case, there are many
possible dynamical regimes (left half of Figure 2, Figure 3), depending on how difficult it is for the
population to generate the adaptive genotype. For all but the largest population sizes, plateau-
crossing becomes faster with increasing recombination rates, so the optimal rate is r . s. The
equations in this section all apply to this regime as well, with s replaced by the average rate of
increase of triple-mutants when rare, s̃ = s− r.

If mutation and recombination are so frequent and the population is big enough that the triple-
mutant genotype is generated effectively instantaneously, then the expected plateau-crossing time
T is just the time for a selective sweep, and depends primarily on s. For smaller µ, r, and N , most
of T is waiting for the successful triple-mutant to be produced and the strongest dependence is on µ.
N and r are most important at intermediate levels of diversity, where producing triple-mutants is
difficult but there are opportunities for simultaneous polymorphisms at multiple loci to recombine.
Quantitatively, when the mutation supply is large (Nµ � 1), then the expected plateau-crossing
time is approximately:

T ≈


ln(s/µ)/s if

(
Nrµ3/s3

)1/4 � 1 or Nµ (Ns)
−2/3 � 1(

Nµ3rs
)−1/4

if r � (Nµ3s)1/3,
(
N3µ5/(rs)

)1/4 � 1, and
(
Nrµ3/s3

)1/4 � 1(
N2µ5r3s

)−1/7
if r � (N2µ5s)1/4 and

(
N3µ4r/s2

)1/7 � 1.

(1)

The first line of Equation 1 corresponds to the approximately deterministic dynamics of very large
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populations, which are insensitive to rare recombination (because the only substantial linkage dise-
quilibrium is that generated by selection on the triple mutants after they are already on their way to
fixation). In the second line, fluctuations in the number of triple-mutants are important, but single-
and double-mutants can be treated deterministically (the “doubles deterministic (sexual)” regime).
In the third line, fluctuations in the numbers of both triple- and double-mutants are important, but
single-mutants can still be treated deterministically (the “single deterministic (sexual)” regime). If
the recombination rate is lower than the thresholds in the second and third lines of Equation 1, the
population is effectively asexual and T follows the scaling behavior described in Weissman et al.
[2009] and Equations 6 and 9 below.

If the mutation supply is low (Nµ � 1), then T is approximately the expected waiting time
for the first successful mutation. Since exploration of genotype space is more of a challenge for
populations when mutations are rare, recombination has the potential to make more of a difference.
When the recombination is very rare, the population is effectively asexual, with plateau-crossing
rate T −1asex ≈ Nµ2(s/µ)1/4 (Equation 10, see also Weissman et al. [2009]). As the recombination
rate increases, it becomes easier mutations to be successful, and plateau-crossing speeds up. There
are eight different asymptotic scaling regimes for rare recombination as N → ∞, depending on
exactly how µ, r, s → 0, but for reasonable parameter values they are generally fairly similar (see
Appendix A.1), with the expected rate of plateau-crossing roughly given by T −1 ≈ N1.4µ1.9r0.4s0.1.
As recombination becomes more frequent (but still r � s), pairs of large single-mutant lineages
are able to succeed by reaching linkage equilibrium with each other and then recombining with
a smaller third lineage (“semi-linkage-equilibrium tunneling”), and the rate of crossing increases
further to T −1 ≈ (Nµ)2(µrs/N)1/4 (Equation 11). This is the regime where recombination speeds
plateau-crossing the most; comparing Equations 10 and 11, we see that it increases the rate by a

factor ∼
(
N3µ2r

)1/4
, which could exceed an order of magnitude if Nr > 106.

3.2 Frequent recombination, r � s

For frequently recombining populations (r � s), we find the expected time for plateau crossing
across the full spectrum of possible plateau widths K, mutation rates µ, population sizes N , and
selective coefficients s (Figure 4). These population will be in quasi-linkage equilibrium and selection
will therefore act on alleles rather than genotypes. In this regime, the plateau-crossing time depends
primarily on the mutation rate and is typically ∼ O(1/µ). When mutations are frequent (Nµ� 1),
the population crosses the plateau nearly deterministically and solving the deterministic mutation-
selection dynamics gives plateau-crossing time: T ≈ (s/µ)1/K/µ.

When mutations are rare (Nµ � 1), stochasticity is important and the dynamics typically
proceed in two stages: first, K − m of the necessary mutations sequentially drift to fixation by
chance; then, once the population is sufficiently close to the adaptive genotype, it relatively rapidly
acquires the last m mutations together via stochastic tunneling. The typical value of m is the largest
integer such that the probability of a new mutation triggering a tunneling event of m mutations is
higher than the probability 1/N of fixation by drift:

m ≈

⌊
1

2
+

√
1

4
− 2 ln(Ns)

ln(Nµ)

⌋
, (2)

where b.c represents the floor function. Therefore, the plateau-crossing time is typically dominated
by the time for K − m mutations to drift to fixation, unless m ≥ K, in which case the popula-
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Figure 3: Expected time T for a rarely recombining population to cross a three-mutation fitness
plateau, as a function of the mutation rate µ. Points show simulation results, curves show analytical
predictions. Note that in some regions, several analytical expressions give almost the same exact
expected time. Typical plateau-crossing dynamics of the different asymptotic regimes are illustrated
in Figures 5 and 6. The analytical solution for the double-mutants deterministic asexual and sexual
paths (red and green), semi-linkage-equilibrium tunneling (solid blue) and single-mutant stochastic
tunneling (blue dashed line) regimes is given by Equations 6, 11, and 27, respectively. Parameter
values: N = 1011, r = 10−3, s = 1. Error bars are smaller than the size of the points.

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/343053doi: bioRxiv preprint 

https://doi.org/10.1101/343053


Figure 4: Expected time T for a frequently recombining population to cross a three-mutation
fitness plateau, as a function of the population size N . Points show simulation results, curves show
analytical predictions Equation 13 (blue) and Equation 18 (green, brown, and red). Parameter
values: r = 0.5, µ = 10−6, s = 0.05. The time to cross the plateau depends strongly on N for
N . 1/µ, and levels off for large or very small populations. Error bars are smaller than the size of
the points.

tion tunnels directly. Summarizing these regimes, the expected time for a frequently recombining
population to cross a fitness plateau is:

T ≈


1
µ

(
µ
s

)1/K
if Nµ� 1

N(Ns)−
1
K (Nµ)−

K+1
2 CK if Nµ� 1 and m ≥ K

ln(K/m)
µ if Nµ� 1 and m < K,

(3)

where CK in the second line (pure tunneling) is a combinatorial factor that depends only on K (see
Equation 16).

Comparing the Equation 3 to the expected time for an asexual population to cross the plateau

(T ≈ 1
Nµ2 (s/µ)

−21−K

for N � 1/µ, T ≈ K
s ln(s/µ) for N � sK−1/µK , with additional asymptotic

regimes for intermediate population sizes [Weissman et al., 2009]), we see that frequent recombina-
tion tends to speed up adaptation in small populations (relative to asexuality), where the primary
challenge is producing the beneficial genotype, while slowing it down in large populations, where
most of the time is spent fixing the genotype after it has been produced.
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4 Analysis

4.1 Rare recombination (r � s)

In this section we will consider the plateau-crossing process in populations with rare recombination,
starting with very large populations and progressively decreasing in size. As N decreases, the
population’s ability to efficiently explore genotype space (measured by N , µ, and r) becomes more
important, and its ability to exploit its discoveries (s) less so. At the largest population sizes, T is
essentially determined by s. For all the lower population size regimes, there will be at least some
genotypes that are only rarely produced, and T will be approximately the waiting time for the
production of the first successful lineage of a rare genotype.

4.1.1 Very large populations: deterministic dynamics

For extremely large population sizes, the number of single-, double-, and triple-mutant individuals
are well approximated by their expected values after only a few generations. Triple mutants are
produced almost instantaneously, and the plateau-crossing time is dominated by the time it takes
them to sweep to fixation. This can easily be found by solving the deterministic equations for
the dynamics of the genotype frequencies under mutation and selection, with recombination only
reducing the effective selective advantage of the triple mutants:

T ≈ 3

s
ln

(
s

µ

)
, (4)

It is straightforward to generalize Equation 4 to arbitrary plateau widths K:

T ≈ K

s
ln

(
s

µ

)
.

For this deterministic approximation to be accurate, the production rate of triple mutants,
R3(t), must be large at the time t ∼ 1/s when the first triple-mutant lineage reaches number 1/s
and becomes established. Triple mutants are produced by double-mutant individuals that either
acquire another mutation or recombine with single mutants, so R3 is:

R3(t) = µn2(t) +
r

24N
n1(t)n2(t), (5)

where ni is the total number of i-mutant individuals, so n1(t) ≈ 3Nµt and n2(t) ≈ 3Nµ2t2. (The
factor of 1/24 in Equation 5 is because to make a triple mutant, each double mutant can only
successfully recombine with 1/3 of the single mutants, and only 1/8 of the offspring will inherit
the correct alleles.) At t ∼ 1/s, Equation 5 gives R3 ≈ 3Nµ3/s2. (The recombination term is
smaller by a factor ∼ O (r/s).) So to be in this regime, the population must have size N � s2/µ3.
Note that recombination is almost irrelevant in this regime: mutants are produced so frequently
that there is no need for recombination to generate new combinations. (It does slightly slow down
adaptation, as technically s should be replaced in the equations by s̃ = s− r.)

4.1.2 Large populations: single- and double-mutants common, triple-mutants rare

Slightly smaller populations (with N � s2/µ3) will still only occasionally be producing triple-
mutants at the time they cross the plateau, so while the single- and double-mutant populations will
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have nearly deterministic dynamics, fluctuations in the number of triple-mutants will be important.
Because triple-mutant lineages are rare, we can consider them in isolation, and T will be the waiting
time for the first successful triple-mutant. The probability that a successful triple-mutant lineage

will have been produced by time t is P3(t) = 1 − exp
[
−
∫ t
0
dt′sR3(t′)

]
, using that the probability

that a triple-mutant lineage is successful once it has been produced is ∼ s Ewens [2004]. Therefore,
the expected waiting time T is given by:

T =

∫ ∞
0

dt exp

[
−s
∫ t

0

dt′R3(t′)

]
≈

{(
Nµ3s

)−1/3
, r � (Nµ3s)1/3 (asexual path)(

Nµ3rs
)−1/4

, r � (Nµ3s)1/3 (sexual path),
(6)

where we are ignoring constants of O(1). In the first line, the population is effectively asexual, i.e.,
the successful triple-mutant is likely to arise via mutation from a double-mutant. In the second
line, it is more likely to arise via recombination between a double-mutant and a single-mutant. The

two expressions in Equation 6 are generally close, differing by a factor of only ∼
(
r3/(Nµ3s)

) 1
12 :

recombination can provide a mild increase in speed, but as in the previous section, the population
is so large that the triple-mutant genotype will rapidly be produced by mutation alone anyway.

In deriving Equation 6, we ignored fluctuations in the number of double-mutants (as well as of
single-mutants), so these must be negligible on time scales similar to T for the expressions to be
valid. There are two ways that this approximation can hold. First, if the number of double-mutants
is in fact close to its expectation with high probability. This will be true if the production rate R2(t)
of double-mutants is high, i.e., R2(T ) � 1, so that the double-mutant population is composed of
many lineages and fluctuations in the individual lineage sizes average out. R2 is given by:

R2(t) = 2µn1(t) +
r

12N
n1(t)2 (7)

Plugging in the first line of Equation 6 for t gives the requirement R2(T ) ∼ µ
(
N2/s

)1/3 � 1
In the recombination-dominated regime in the second line of Equation 6, there is an additional

way for the fluctuations to be negligible: recombination can cap their size by preventing them from
greatly exceeding linkage equilibrium with the much larger and approximately deterministic wild-
type and single-mutant populations. In this case, if R2 � 1 the number of double-mutants will be
fluctuating as lineages are sporadically produced and die out, but no one lineage will drift for a
time much exceeding ∼ 1/r before being broken up by recombination. We will see what condition
this puts on the parameters in the following section, but for now, note that this mechanism requires
the single-mutants to be approximately deterministic, so at a minimum we require R1 ∼ Nµ� 1.

Finally, we must also check the conditions for our assumption that the triple-mutant lineages
are rare enough to be considered in isolation. This is equivalent to R3(T ) � 1 – the flip side to
the parameter condition in the preceding section requiring that triple-mutants be approximately
deterministic. Plugging in our expressions for R3 and T , we get µ(N/s2)1/3 � 1, which is indeed
the reverse of the previous condition.

4.1.3 Moderately large populations: single-mutants common, double-mutants rare

For populations slightly smaller than those in the previous section, the mutation supply will still
be high (Nµ � 1), so single-mutants will still be approximately deterministic, but double-mutant
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Figure 5: Typical simulation results of plateau-crossing dynamics for very large population sizes
where T is dominated by the waiting time for the arrival of the first successful triple-mutant
individual that has been produced following a mutation event in the growing population of double-
mutants. The inset is a magnified view of the last 50 generations before the adaptive genotype fixes
in the population which demonstrates the establishment time and sweep time of the triple-mutants.
The model parameters for this simulation are N = 1011, µ = 10−6, r = 10−3, and s = 1.
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lineages will be rare (R2(T ) � 1) and we must consider their fluctuations. Since they are rare,
we can consider each lineage in isolation, and T will be the waiting time for the first successful
double-mutant to arise.

A double-mutant lineage can be successful by either mutating or recombining with single-
mutants to produce a successful triple-mutant. Since the single-mutants are deterministic (n1(t) ≈
3Nµt), we can lump these two processes into a single time-dependent effective mutation rate,
µ̃ ≡ µ + r

24N n1(t) ≈ µ
(
1 + 1

8rt
)
. Since in this regime we expect the waiting time for the first

successful double-mutant lineage to be long compared to the time for which that lineage must drift
before producing the successful triple-mutant, we can further treat this effective mutation rate as
being approximately constant over each lineage’s lifetime. With this approximation, the problem is
reduced to that considered in Weissman et al. [2009]: a lineage mutates at rate µ̃ to a genotype with
advantage s; additionally, the double-mutant lineage has an effective selective disadvantage r due to
being broken up by recombination with the wild type. The probability p2(t) that a double-mutant
lineage arising at time t will be successful is therefore [Weissman et al., 2009]:

p2(t) ≈

{√
µs
(
1 + 1

8rt
)

if µs
(
1 + 1

8rt
)
� r2

µs
r

(
1 + 1

8rt
)

if µs
(
1 + 1

8rt
)
� r2.

(8)

In the first line of Equation 8, a lineage is most likely to succeed by drifting for long enough
to produce many (∼ 1/s) triple-mutants. In the second line, recombination is too frequent and
lineages are broken up before they can drift for that long. We therefore see that the condition
for being able to ignore fluctuations in the double-mutant numbers as in the previous section is
µs
(
1 + 1

8rT
)
� r2. Since this case is covered by that section’s analysis, we will now focus on the

case p2(t) ≈
√
µs
(
1 + 1

8rt
)

where fluctuations are key. Combining the success probability p2(t)

with the production rate R2(t) ≈ Nµ2t
(
2 + 3

4rt
)
, we can find the expected waiting time T for the

first successful double-mutant (ignoring O(1) constants):

T ≈
∫ ∞
0

exp

[
−
∫ t

0

dt′R2(t′)p2(t′)

]
≈

{(
N2µ5s

)−1/4
r � (N2µ5s)1/4 (asexual path)(

N2µ5r3s
)−1/7

r � (N2µ5s)1/4 (sexual path).
(9)

BothR2 and p2 switch from being mutation-dominated to recombination-dominated at time t ∼ 1/r.
In the first line of Equation 9, T � 1/r so the population is effectively asexual. In the second line,
T � 1/r so the successful double-mutant is likely both to be produced by recombination and to
produce the successful triple via recombination.

4.1.4 Moderately small populations: occasional triple polymorphisms

If the mutation supply is low (Nµ � 1), then the population will typically be monomorphic.
The plateau-crossing time is dominated by the waiting time for a lucky single-mutant lineage that
drifts long enough to either fix or encounter additional mutations that allow it to tunnel across the
plateau. We will consider the latter process in this section. Call this mutation A, and let TA be
the time for which this mutation’s lineage must drift to be likely to be successful; over this time,
the lineage will typically reach a size nA ∼ TA. The mutation will manage to drift this long with
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probability p1 ∼ 1/TA, so the expected plateau-crossing time is T = 1
3Nµp1

= TA

3Nµ . Note that if

TA > N (or, equivalently, T > 1/µ), the lineage is more likely to fix than tunnel. We now find
expressions for the necessary drift time TA.

First, we will review the asexual process. Weissman et al. [2009] showed that TA ∼
(
µ3s
)−1/4

(ignoring combinatoric factors) is long enough for the lineage to be likely to acquire two additional
mutations (which we will call B and C) and be successful. The expected time to cross the plateau
is thus:

T ∼ 1

Nµ2

(µ
s

)1/4
. (10)

Comparing TA to N , we see that the population will only tunnel if N
(
µ3s
)−1/4

> 1. This result
therefore applies only to populations within a fairly narrow band of sizes, with the lower limit of

validity only a factor of (µs)
1/4

smaller than the upper limit – less than three orders of magnitude
for realistic parameters.

Recombination can speed up tunneling (i.e., reduce the necessary TA) by allowing the original
A lineage to acquire B and C from the ∼ NµTA independent mutant lineages that arise while
it is drifting. Let B be the mutation carried by the largest such lineage; it will typically drift
for TB ∼ NµTA generations, reaching a size nB ∼ NµTA. If TB � 1/r, recombination will
effectively reduce the linkage disequilibrium between A and B, i.e., there will be an average of
nAB ∼ nAnB/N ≈ µT 2

A AB individuals over most of the TB generations for which both mutations
are drifting. During this time, there will be ∼ NµTB C lineages produced by mutation, the largest
of which will therefore typically drift for TC ∼ NµTB ≈ (Nµ)2TA generations to size nC ∼ TC .
AB and C individuals will therefore coexist for ∼ TC generations, during which they will generate
∼ r

N nABnCTC ≈ N3µ5rT 4
A triple-mutant recombinants. Each of these has a probability ≈ s of

being successful, so we see that for our original A lineage to be likely to be successful, its drift time

TA must satisfy N3µ5rT 4
A ∼ 1/s. Solving for TA gives TA ∼

(
N3µ5rs

)−1/4
, corresponding to an

expected plateau-crossing time of:

T ∼ 1

(Nµ)2

(
N

µrs

)1/4

. (11)

We refer to this as “semi-linkage-equilibrium tunneling”, since the two most frequent mutations are
in linkage equilibrium with each other while drifting, but the third mutation may not be, and the
triple-mutant will produce large linkage disequilibria once it starts to sweep.

The derivation of Equation 11 assumed that A and B were close to being in linkage equilibrium
with each other, i.e., rTB � 1. Substituting in TB ∼ NµTA, this is equivalent to a condition
that TA � 1/(Nµr). However, it may be the case that the A and B lineages can produce enough
recombinants to be successful before they approach linkage equilibrium. This is true for small
values of r, where the time to approach linkage equilibrium becomes very long. In this situation,
the analysis here overestimates how large TA must be, and therefore overestimates the time required
to cross the plateau. The correct analysis of this regime is even more involved, and we leave it for
Appendix A.1. We also ignored the possibility that the AB individuals might produce a triple
mutant directly via mutation, but it is straightforward to check that this is rare in the relevant
parameter range: as long as N � 1/

√
µr, acquiring the third mutation via recombination is more

likely.
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Figure 6: Typical simulation results of plateau-crossing dynamics for moderately large population
sizes where T2 is dominated by the waiting time for the arrival of the first successful double-
mutant lineage t2 (indicated on the inset) that has been produced following a recombination event
between two single-mutants. The inset is a magnified view of the last few thousands of generations
before the adaptive genotype fixes in the population which demonstrates that while the successful
double-mutant lineage is drifting for t∗ generations, the population of single-mutants has, to a very
good approximation, remained constant. The model parameters for this simulation are N = 1011,
µ = 5× 10−10, r = 10−3, and s = 1.
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4.1.5 Small populations: single-mutants drift to fixation

For smaller populations, the most likely way for a single-mutant to be successful is for it to drift to
fixation, which occurs with probability 1/N . The expected waiting time is therefore T = 1/(3µ).
Once the single-mutant has fixed, the population only needs two additional mutations, so Weissman
et al. [2010]’s two-locus analysis applies. The average time to tunnel will necessarily be small
compared to the time for the first mutant to drift to fixation, so it can be neglected in T . The
exception is for very small populations, N � 1/

√
µs, where the second mutation is also more likely

to drift to fixation than to tunnel [Weissman et al., 2010]. In this case, the total waiting time is
T ≈ 1

3µ + 1
2µ = 5

6µ . (The final fixation of the third mutation is relatively rapid as long as Ns� 1.)

4.2 Frequent recombination (r � s)

If recombination is frequent (r � s), selection will be too weak to generate linkage disequilibrium,
and the population will stay close to linkage equilibrium (LE). We can therefore simply track
allele frequencies, rather than genotype frequencies. For this much easier problem, we can consider
plateaus of arbitrary width K.

4.2.1 Large populations (Nµ� 1): deterministic dynamics

When the mutation supply is large, Nµ � 1, the mutant allele frequency trajectories are nearly
deterministic, and therefore almost the same as each other, i.e., a single variable x(t) can describe
the frequency of all the mutant alleles. When the mutations are rare (x � 1), their increase
according to:

ẋ ≈ µ+ sxK , (12)

where xK is the frequency of the beneficial genotype. Solving Equation 12 for t such that x(t) ≈ 1
gives the time to cross the plateau:

T ≈ 1

µ

(µ
s

)1/K
. (13)

We can understand this as the time it takes for mutation to drive the mutations to the frequency
x ∼ (µ/s)1/K at which selection takes over, after which fixation is rapid.

4.2.2 Small populations (Nµ � 1): sequential fixation + stochastic tunneling of mu-
tant alleles

When the mutational supply of the population is small (Nµ � 1), most loci will usually be
monomorphic, with occasional drifting mutant lineages. To cross the plateau, the population needs
some combination of mutations drifting to fixation, and others producing the beneficial genotype
and tunneling together. We can think of the tunneling dynamics as allowing the population to
“see” the adaptive genotype once the dominant genotype is within m mutations of it, for some m.

We must first find how the maximum tunneling range m depends on N , µ, and s. As in
section ??, a population can cross the plateau via a rare mutant lineage that grows to a large
size over an extend period of time. Suppose that such a lineage persists for ∼ T1 generations,
typically growing to size ∼ T1. There will be ∼ (m − 1)NµT1 mutations at other loci during this
time, the largest of which will typically persist for T2 ∼ (m − 1)NµT1 while the original allele is
still drifting. During T2, the longest-drifting mutation at a third locus will typically persist for
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T3 ∼ (m− 2)NµT2 = (m− 1)(m− 2)(Nµ)2T1, and so on, with the the mth mutation persisting for
Tm ∼ (K − 1)!(Nµ)m−1T1. The frequency xm of the m-mutant genotype will peak at:

xm ∼
m∏
k=1

(Tk/N)

∼
(

(Nµ)
m−1

2
T1
N

)m
(m− 1)!m−1

G(m+ 1)
,

where G is the double gamma function. For the mutations to establish, this peak frequency must
exceed ∼ 1/Ns. Solving this condition for T1 gives the time scale over which the first mutation
must drift to be likely to be successful:

T1 ∼ N(Ns)−
1
m (Nµ)−

m−1
2 e−

m
4 (m− 1)

m−4
2 , (14)

where the final combinatorial factors are approximations valid for large m, and negligible for small
m. For the initial mutation to be more likely to tunnel than to fix, T1 must be small compared to
N . Solving T1 ∼ N for m therefore gives the maximum tunneling range:

m ≈

⌊
1

2

(
1 +

√
1 +

8 ln(Ns)

| ln(Nµ)|

)⌋
, (15)

where b.c is the floor function.
If m ≥ K, then a wild-type population can tunnel directly to the beneficial genotype. The

probability that a mutation successfully tunnels is ∼ 1/T1, so the expected waiting time is:

T ≈ T1
KNµ

≈ N(Ns)−
1
K (Nµ)−

K+1
2 e−

K
4 (K − 1)

K−6
2 , (16)

where we have substituted Equation 14 with m = K for T1. If 1 < m < K, the total plateau-
crossing time is dominated by the time it takes for the population to fix K − m mutations via
drift so that it can get close enough to the adaptive genotype to tunnel the rest of the way. (If
m = 1, then the population cannot tunnel and must fix K − 1 mutations by drift, at which point
the Kth mutation becomes beneficial.) The kth mutation fixes after an expected waiting time of
1/(K − k + 1)µ, so the total expected waiting time for K −m mutations to fix is

T ≈
K−m∑
k=1

1

(K − k + 1)µ

≈ ln(K/m)

µ
for K −m� 1. (17)
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4.2.3 Three-mutation plateaus

Plugging in K = 3 to the above analysis, the expected time to cross the plateau is (with O(1)
combinatorial factors included for clarity):

T ≈


1
µ (µ/s)1/3 for Nµ� 1 (deterministic)(
3Nµ2

)−1
(2Ns)−1/3 for (µ3s)−1/4 � N � 1/µ (pure tunneling)

1/(3µ) + 1
N (µ3s)−1/4 for (µs)−1/2 � N � (µ3s)−1/4 (tunneling after one mutation fixes)

5/(6µ) for N � (µs)−1/2 (sequential fixation).

(18)
The second term in the third line is the K = 2 tunneling time [Weissman et al., 2010].

5 Discussion

We have shown that even moderately large populations can acquire complex adaptations requiring
three individually-useless mutations substantially faster than would be expected if mutations had
to fix sequentially by drift. In other words, natural selection can at least somewhat effectively
promote mutations that not only provide no direct selective benefit, but also do not directly increase
evolvability, i.e., do not change the distribution of mutational effects. Recombination helps most at
intermediate population sizes, where there can be simultaneous polymorphisms at multiple loci but
triple mutants are rare. In this range, the rate of plateau-crossing is maximized when recombination
is just somewhat rarer than selection.

Across regimes, the rate of crossing the three-mutant fitness plateau scales sub-cubically in the
mutation rate, i.e., complexity is not strongly suppressing the rate of adaptation, suggesting that
even more complex adaptations could also potentially be acquired. However, analyzing even the
three-mutation case for r . s involved a proliferation of different dynamical regimes, so simply
extending our analysis to wider plateaus is likely to be impractical. The asexual case Weissman
et al. [2009] and the case r � s analyzed above are simpler but plateau-crossing is fastest for r . s,
meaning that these easier limiting cases may be missing essential dynamics.

How practically important could adaptive paths across three-mutation plateaus be? Could we
hope to observe experimental populations following them? Viruses often have large populations
and high mutation rates; if we consider an RNA virus with a mutation rate of ∼ 10−4 per base per
replication and a potential adaptation providing a ∼ 10% fitness advantage, a population size of
N > 109 – fewer than might be present in a single infected host – would be enough for the population
to deterministically acquire the triple-mutant genotype. On the other hand, if we consider a yeast
population in which the relevant mutations have target sizes of ∼ 300 base pairs, for a mutation
rate of ∼ 10−7 Lynch et al. [2008], it would be difficult to maintain a large enough experimental
population for long enough to reliably acquire the adaptation via any of the paths we have described
here.

The major limitation in seriously applying any of our analysis to real populations is that we have
considered the necessary loci in isolation. As mentioned in the Introduction, a major part of our
motivation in considering the possibility of complex adaptation is that a combinatorial argument
suggests that there are potentially very many of them available. But if there are in fact very many
possible complex adaptations, then the first one that actually fixes in the population is likely to be
one that happened unusually quickly, potentially by different dynamics than those considered here
Weissman et al. [2010]. Thus at a minimum, we would need to consider the entire distribution of
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plateau-crossing times rather than just its mean. More precisely, we would need to describe the left
tail of the distribution. This may in fact simplify the analysis – there may be only a few ways for a
lineage to get a lot of mutations quickly, regardless of the population parameters Weissman et al.
[2010] – and thus provide a way forward to analyzing wider plateaus.

The fact that the population is likely to be adapting at more than just K loci does not only
mean that we need to think about the left tail of crossing-time distribution; it also means that we
need to think about how adaptation elsewhere in the genome may affect evolution at the focal loci.
If there is substantial fitness variance due to the rest of the genome and limited recombination,
the dynamics of the mutant lineages will be completely different due to hitchhiking Neher and
Shraiman [2011]. In addition, the complex adaptation may be lost due to clonal interference once it
is produced, reducing its fixation probability. The fixation probability in this case is likely to require
a careful calculation in its own right, as the background fitness is likely to systematically differ from
the mean because of the required conditioning on long-lasting lineages carrying the intermediate
mutations.

Perhaps even more importantly than clonal interference is the potential epistatic interference.
When we consider just the K focal loci, substitutions at other loci should turn the fitness landscape
into a constantly shifting “seascape” Mustonen and Lässig [2009]. In the most extreme case,
other mutations may fix that permanently disrupt the potential complex adaptation, forcing the
population onto another path. We have no understanding of how this should affect the probability
of complex adaptation in anything beyond the simplest possible case of a single beneficial mutation
blocking a two-mutation complex adaptation in an asexual population Ochs and Desai [2015]. We
can already see that is likely to substantially change the interpretation of our results by looking at
Table 2 and our results for generic K with r � s and Nµ� 1. The regimes in which the population
only tunnels through the last mutations while initially fixing the others via drift appear to have
roughly the same rate of plateau-crossing as the sequential fixation regime in which all mutations
but the very last must drift to fixation. But this is because our model assumes that all populations
reach the adaptive genotype eventually. In a more realistic model in which populations can get
diverted and miss potential adaptations entirely, being able to tunnel through m mutations greatly
increases the zones of attraction of adaptive genotypes in the fitness landscape, and could make a
large difference in the probability of finding them.

In addition to epistatic interactions with other loci, the plateau could shift because of environ-
mental changes Masel [2006], Kim [2007]. It is difficult to say which process is likely to be more
important. We currently do not even know whether changes in the selective coefficient of single
mutations are driven more often by environmental changes or changes in the rest of the genome,
let alone what drives changes in selection on the rest of the genome. More generally, the basic
difficulty in analyzing more complex, realistic fitness landscapes is that we have no idea what they
should look like. Even mapping out the local fitness landscape of a single gene requires a heroic
experimental effort (e.g., Bank et al. [2016]) – and then we only know it in a limited number of
artificial environments. Our best hope may be to try to develop a theory that can reduce the full
complexity of landscapes to a reasonable number of parameters describing their features that are
most relevant for adaptation, but it is an open question whether such a theory exists.
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A Appendix

A.1 Small populations with rare recombination

Here we focus on populations with low mutation supply, Nµ� 1, and rare recombination, r � s.
In particular, we focus on those that fall in between the asexual and semi-linkage equilibrium cases
discussed above, for which recombination is frequent enough to speed plateau-crossing but too rare
to bring even the largest mutant lineages into linkage equilibrium with each other. As above, the
expected plateau-crossing time is dominated by the waiting time for the production of the first
successful single-mutant lineage A which drifts for time TA, with the other possible mutations
labeled B and C. All genotypes that drift for a time TX reach a typical size nX ∼ TX , so we will
not need to distinguish between drift times and lineage sizes in the following. We will exploit our
freedom in labeling the B and C mutations to always label the double mutant AB if it has the
A allele, so the AC genotype will not appear in our analysis. Throughout, we will ignore O(1)
numerical factors arising from combinatorics and integration, none of which change the results
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Figure 7: A schematic plot of 8 different ways in which the plateau-crossing can occur given that
all the mutant alleles are not frequently produced in the population. In case (i), the two bigger
lineages, A and B, recombine with each other to produce the AB lineage which in turns recombines
with the C lineage to produce the first successful ABC lineage after TA generations. Cases (ii) and
(iii) also correspond to the same dynamics as case (i) except for that the second and third biggest
mutant lineages could be different. Case (iv) occurs when lineages A and B recombine to produce
an AB lineage which later mutates to produce the beneficial mutant. In both cases (v) and (vi), the
A lineage mutates to produce the AB lineage which then recombines with the C lineage to produce
the successful ABC lineage. In case (vii), the B lineage mutates to produce a BC lineage which
later recombines with A. Case (viii) occurs when the B and C lineages recombine to produce a BC
lineage which then recombines with the A lineage.

significantly. We can identify eight possible asymptotic scenarios, depending on the relative sizes
of the different relevant lineages (Figure 7):

(i) TA � TB � TC � TAB : While three independent mutant lineages are drifting, the larger two
recombine, and then that recombinant recombines with the third lineage to produce the successful
triple-mutant. Typical sizes are TB ∼ NµTA, TC ∼ NµTB , and TAB ∼ r

N TATBTC (because we only
consider the largest AB lineage that arises while C is drifting). The number of ABC individuals
produced by recombination between C and AB during the ∼ TAB generations that they coexist is
≈ r

N TCT
2
AB ; we need this quantity to be ∼ 1/s for success to be likely:

1 ∼ rs

N
TCT

2
AB

∼ rs

N

(
(Nµ)2TA

) ( r
N

(NµTA)3
)2

≈ N5µ8r3sT 7
A.
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Solving for TA and the other drift times gives:
TA ∼

(
N5µ8r3s

)−1/7
TB ∼

(
µr3s/N2

)−1/7
TC ∼

(
r3s/(N9µ6)

)−1/7
TAB ∼

(
Nµ3r2s3

)−1/7
.

(19)

(ii) TA � TC � TB � TAB : While three independent mutant lineages are drifting, the largest
recombines with the smallest, and then that recombinant recombines with the middle lineage to
produce the successful triple-mutant. Typical sizes are TC ∼ NµTA, TB ∼ NµTC , and TAB ∼
r
N TAT

2
B . To get ∼ 1/s triple-mutants, we need:

1 ∼ rs

N
TCT

2
AB

∼ rs

N
(NµTA)

( r
N

(Nµ)4T 3
A

)2
≈ N6µ9r3sT 7

A.

Solving for TA and the other drift times gives:
TA ∼

(
N6µ9r3s

)−1/7
TC ∼

(
µ2r3s/N

)−1/7
TB ∼

(
r3s/(N8µ5)

)−1/7
TAB ∼

(
N2µ4r2s3

)−1/7
.

(20)

(iii) TA � TB � TAB � TC : Two single-mutant lineages recombine. While that recombinant
double-mutant is drifting, a third single-mutant lineages arises and recombines with it to produce
a successful triple-mutant. Typical sizes are TB ∼ NµTA, TAB ∼ r

N TAT
2
B , and TC ∼ NµTAB . To

get ∼ 1/s triple-mutants, we need:

1 ∼ rs

N
TABT

2
C

∼ rs

N
(Nµ)2

( r
N

(Nµ)2T 3
A

)3
∼ N4µ8r4sT 9

A.

Solving for TA and the other drift times gives:
TA ∼

(
N4µ8r4s

)−1/9
TB ∼

(
r4s/(N5µ)

)−1/9
TAB ∼

(
Nµ2rs

)−1/3
TC ∼

(
rs/(N2µ)

)−1/3
.

(21)

(iv) TA � TB � TAB : Two single-mutant lineages recombine, and that recombinant lineage
then mutates and succeeds. Typical sizes are TB ∼ NµTA and TAB ∼ r

N TAT
2
B . The AB lineage
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will produces ∼ µT 2
AB mutants while it is drifting; setting this equal to ∼ 1/s gives:

1 ∼ µsT 2
AB

∼ µs
( r
N

(Nµ)2T 3
A

)2
∼ N2µ5r2sT 6

A.

Solving for TA and the other drift times gives:
TA ∼

(
N2µ5r2s

)−1/6
TB ∼

(
r2s/(N4µ)

)−1/6
TAB ∼ (µs)

−1/2
.

(22)

(v) TA � TC � TAB : While two single-mutant lineages are drifting, the mutates at the third
locus. This double-mutant then recombines with the other single-mutant lineage. Typical sizes are
TC ∼ NµTA and TAB ∼ µTATC (because we only consider the largest-double mutant lineage that
arises while C is drifting). To get ∼ 1/s triple-mutants, we need:

1 ∼ rs

N
TCT

2
AB

∼ rs

N
NµTA

(
Nµ2T 2

A

)2
∼ N2µ5rsT 5

A.

Solving for TA and the other drift times gives:
TA ∼ 1

µ

(
N2rs

)−1/5
TC ∼

(
N3/(rs)

)1/5
TAB ∼

(
N/(rs)2

)1/5
.

(23)

(vi) TA � TAB � TC : A single-mutant lineage mutates. While the resulting double-mutant
lineage drifts, a new lineage with a mutation at the third locus arises and successfully recombines
with it. Typical sizes are TAB ∼ µT 2

A and TC ∼ NµTAB . To get ∼ 1/s triple-mutants, we need:

1 ∼ rs

N
TABT

2
C

∼ rs

N
µT 2

A

(
Nµ2T 2

A

)2
∼ Nµ5rsT 6

A.

Solving for TA and the other drift times gives:
TA ∼

(
Nµ5rs

)−1/6
TAB ∼

(
Nµ2rs

)−1/3
TC ∼

(
N2µ/(rs)

)1/3
.

(24)

(vii) TA � TB � TBC : While two single-mutant lineages are drifting, the smaller one acquires
an additional mutation at the third locus. This double-mutant lineage then successfully recombines
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with the larger single-mutant lineage. Typical sizes are TB ∼ NµTA and TBC ∼ µT 2
B . To get ∼ 1/s

triple-mutants, we need:

1 ∼ rs

N
TAT

2
BC

∼ rs

N
N4µ6T 5

A

Solving for TA and the other drift times gives:
TA ∼

(
N3µ6rs

)−1/5
TB ∼

(
N2/(µrs)

)1/5
TBC ∼

(
N4µ3/(rs)2

)1/5
.

(25)

(viii) TA � TB � TC � TBC : While three single-mutant lineages are drifting, the smaller two
recombine. The recombinant then successfully recombines with the largest single-mutant lineage.
Typical sizes are TB ∼ NµTA, TC ∼ NµTB , and TBC ∼ r

N TBT
2
C . To get ∼ 1/s triple-mutants, we

need:

1 ∼ rs

N
TAT

2
BC

∼ rs

N
TA
(
N4µ5rT 3

A

)2
∼ N7µ10r3sT 7

A.

Solving for TA and the other drift times gives:
TA ∼ 1

Nµ

(
µ3r3s

)−1/7
TB ∼

(
µ3r3s

)−1/7
TC ∼ Nµ

(
µ3r3s

)−1/7
TBC ∼ N

(
µ5/(r2s3)

)1/7
.

(26)

For all of these cases, the expected plateau-crossing time is T ∼ TA/(Nµ). All require that the
double-mutant drift times TAB or TBC be small compared to 1/r, so that the lineage is not broken
up by recombination. We collect the predicted rates and conditions here:

T −1 ∼



Nµ
(
N5µ8r3s

)1/7
, N � r5/(µs)3 (i)

Nµ
(
N6µ9r3s

)1/7
, N �

√
r5/(µ4s3) (ii)

Nµ
(
N4µ8r4s

)1/9
, N � r2/(µ2s) (iii)

Nµ
(
N2µ5r2s

)1/6
, r � √µs (iv)

Nµ2
(
N2rs

)1/5
, N � s2/r3 (v)

Nµ
(
Nµ5rs

)1/6
, N � r2/(µ2s) (vi)

Nµ
(
N3µ6rs

)1/5
, N �

(
s2/(µr)3

)1/4
(vii)

(Nµ)2
(
µ3r3s

)1/7
, N �

(
s3/(µr)5

)1/7
(viii).

(27)
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For parameter values where multiple cases apply, the predicted T value is the one corresponding
to the case with the smallest TA – the rates for the different cases do not add, since all are dependent
on the same initial dynamic of an unusually long-lived single-mutant. If even the smallest TA is
greater than N , single-mutants are more likely to fix than tunnel. For most reasonable parameter
values, multiple different cases give similar values in Equation 27, i.e., populations are not in the
true asymptotic regimes corresponding to one case or another. However, since they all roughly
agree, the predicted value for T is still accurate.
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