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Abstract 15 

The CRISPR/Cas system is a highly specific genome editing tool capable of distinguishing alleles differing 16 

by even a single base pair. However, current tools only design sgRNAs for a reference genome, not taking 17 

into account individual variants which may generate, remove, or modify CRISPR/Cas sgRNA sites. This 18 

may cause mismatches between designed sgRNAs and the individual genome they are intended to target, 19 

leading to decreased experimental performance. Here we describe AlleleAnalyzer, a tool for designing 20 

personalized and allele-specific sgRNAs for genome editing. We leverage >2,500 human genomes to 21 

identify optimized pairs of sgRNAs that can be used for human therapeutic editing in large populations in 22 

the future. 23 

 24 
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Background 29 

The CRISPR/Cas genome-editing system is highly specific, with the ability to discriminate between similar 30 

genomic sites, even alleles, based on a single nucleotide difference[1]. In order to target a genomic region 31 

with the CRISPR system, a single-guide RNA (sgRNA) must be designed that is specific to the region of 32 

interest. While current sgRNA design tools incorporate various data relating to predicted efficiency and 33 

specificity such as epigenetic marks and chromatin accessibility[2–4], in the vast majority of cases, sgRNAs 34 

are designed using reference genomes, such as the hg38 assembly for human or the GRCm38 assembly for 35 

mouse. Since sgRNAs are often used on cell lines or organisms with many nucleotide differences from the 36 

reference (e.g., on average 0.1% of a human genome[5]). Despite the finding that sgRNAs can sometimes 37 

tolerate a single basepair mismatch, these mismatches frequently negatively impact sgRNA efficiency and 38 

render imprecise the results of specificity prediction[2, 6, 7]. Furthermore, the use of CRISPR to research 39 

areas such as haploinsufficiency, genomic imprinting, and dominant negative diseases require allele-40 

specific sgRNA design. To address these challenges, we developed AlleleAnalyzer, a software tool that 41 

designs personalized and allele-specific sgRNAs for individual genomes, identifies pairs of sgRNAs to 42 

generate excisions likely to block expression of a gene, and leverages patterns of shared variation from 43 

>2,500 human genomes to design sgRNA pairs for that will have the greatest utility in a target population. 44 

 45 

Results and Discussion 46 

 47 

Incorporating genetic variation into sgRNA design enables personalized and allele-specific CRISPR 48 

experiments. Personalized design involves accounting for variants that disrupt, generate or modify sgRNA 49 

sites in a given genome. A genetic variant can impact sgRNA sites by being located in or near a protospacer 50 
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adjacent motif (PAM site), potentially generating or eliminating sgRNA sites in an individual in a 51 

heterozygous or homozygous manner. Rather than being an impediment, these variants can be incorporated 52 

into sgRNA design, yielding personalized or allele-specific sgRNAs, depending on variant zygosity (Figure 53 

1a). Because Cas nucleases have different PAM sequences, a variant may impact an sgRNA site for one 54 

Cas but not another. We analyzed 11 Cas types (Supplementary Table 1) and ~81 million genome-wide 55 

variants annotated by the 1000 Genomes Project[8] (1KGP), finding that most variants impact sgRNA sites 56 

for at least one Cas type, even when considering only variants in PAMs, which are putatively more  allele-57 

specific[1] (Figure 1b). The likelihood that a variant impacts an sgRNA site differs across Cas nucleases 58 

(range: 19-98%), is positively correlated with PAM frequency in the reference genome (Pearson rho=0.9, 59 

p=0.04), and is negatively correlated with PAM size (Pearson rho=-0.9, p=0.05). In fact, 3.6% of sgRNAs 60 

in the widely used Brunello genome-wide CRISPR screening sgRNA library[9] contain at least one 61 

common genetic variant (AF > 5% in the 1KGP cohort), and 2.1% of these sgRNAs contain a variant in the 62 

individual human genome of an induced pluripotent stem cell (iPSC) line WTC, commonly used for disease 63 

Fig. 1.  Analysis of allele specific sgRNA sites 
A) In a sample genome, tools designing sgRNAs for the reference genome are imperfect matches due to genetic variants, 
exemplified by guide 1. This tool designs personalized sgRNAs, as demonstrated by guides 2 and 3, which incorporate 
homozygous and avoid heterozygous variants. It also designs allele-specific sgRNAs based on incorporation of 
heterozygous variants, shown by guides 4-6. B) Most variants annotated by the 1000 Genomes Project (1KGP) are in or 
near a PAM site, demonstrating both a need as well as an opportunity for sgRNA personalization. C) Analysis of 
common variants, and variants in an individual cell line within the Brunello sgRNA library .  
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modeling [10] (Figure 1c), impacting ~13% of protein-coding genes in both cases. Failing to account for 64 

variants can reduce the efficacy of sgRNAs and also generate unexpected off-target effects. These results 65 

emphasize the importance of designing sgRNAs using the personal genome of the patient or cell line where 66 

they will be deployed, or at least accounting for both heterozygous and homozygous genetic variants when 67 

interpreting results using generic sgRNA libraries. 68 

 69 

Genetic variants are not just an impediment to sgRNA design; they can be leveraged to establish new 70 

therapeutic and research possibilities. Questions that allele-specific editing could help address include 71 

haploinsufficiency, imprinting, and allele-specific gene regulation, as well as discovery and correction of 72 

heterozygous disease variants. One promising example is genome surgery to treat dominant negative 73 

disease by excising only the disease causing copy of a gene, an approach which rescues healthy phenotypes 74 

in cell and animal models of dominant negative diseases including Huntington’s disease[11] and retinitis 75 

pigmentosa[12, 13].  We assessed this strategy genome-wide by attempting to design a pair of allele-specific 76 

sgRNAs for each human protein-coding gene that could generate a genomic excision and eliminate protein 77 

production from just one allele. Given a Cas nuclease, an estimated maximum distance between the two 78 

sgRNAs on the haplotype to be excised, and allele-specific sgRNA sites, it is possible to classify genes–or 79 

other genomic elements, such as enhancers–as putatively targetable or not (Supplementary Figure 1). We 80 

use the term putatively targetable when a pair of allele-specific sgRNAs exists but has not yet been tested, 81 

because it will not always be possible to cut specifically at a site and coding exon excision will not always 82 

stop expression[14]. If we choose a maximum distance of 10 kilobases (kb) between sgRNAs, require the 83 

sgRNAs to be within the gene including introns, and consider 11 Cas varieties, the average individual from 84 

1KGP is putatively targetable for allele-specific excision at 77% of protein-coding genes. This rate is evenly 85 

distributed across chromosomes but varies by Cas nuclease and gene (Supplementary Figure 2). For genes 86 

that are not putatively targetable, additional allele-specific sgRNA sites may be found by leveraging non-87 

coding variants up- and down-stream of the gene, or even in distal enhancers for the gene. Genome-wide, 88 

we found that by simply including the 5 kb flanking regions of each gene, we can increase the expected 89 
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proportion of targetable protein-coding genes per individual from 77% to 85%. We conclude that allele-90 

specific excision is applicable to the vast majority of genes in most human genomes.  91 

 92 

Since some genes in a given individual do not have a pair of allele-specific sgRNAs, we asked if gene 93 

silencing with a single allele-specific sgRNA within the coding sequence (single-guide strategy) makes 94 

more genes excisable. We compared paired-guide and single-guide strategies for allele-specific gene 95 

knockout in the individual human genome of the WTC iPSC line [10] and found that more than twice as 96 

 
Fig. 2: Targeting pairs of allele specific polymorphisms 
A) 82 pairs of allele-specific sgRNA sites for SpCas9 are shared by at least 10% of 1KGP in the gene RHO 
including 1 kb flanking the gene. B) Development of a set cover optimization algorithm allows targeting of the 
largest population possible with the fewest allele-specific sgRNA pairs. C) Most targetable individuals have at 
least one of five SpCas9 sgRNA pairs optimized to be highly shared among the 1KGP cohort in the gene RHO 
plus the 1 kb regions flanking the gene. D) All possible allele-specific sgRNAs for SpCas9 in RHO plus the flanking 
1 kb sequences were designed and scored for predicted specificity using CRISPOR. In the violinplot showing the 
score distribution for sgRNAs designed against the reference and alternate alleles per each heterozygous variant, 
the inner boxplot denotes the quartiles of each dataset. 
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many genes are putatively targetable with paired guides (Supplementary Figure 3), because one or both 97 

sgRNAs can fall in introns or untranslated regions whereas single sgRNAs are limited to coding regions. 98 

Genes that are putatively targetable with a single- and not paired-guide approach tend to have less than two 99 

heterozygous variants in the gene, indicating lack of multiple variants as the primary reason a paired-guide 100 

strategy fails. These genes likely could be putatively targetable with a paired-guide strategy by 101 

incorporating flanking, promoter, or other regulatory regions. We therefore recommend paired-guides for 102 

allele-specific gene excision.  103 

 104 

Genome editing sgRNAs do not need to be designed one genome at a time. Variants that impact sgRNA 105 

sites are often shared among large proportions of the individuals within and sometimes between populations 106 

due to haplotype structure. Allele sharing varies by population and locus, as individuals with common 107 

ancestry will share haplotypes that harbor specific sets of variants. We therefore developed an algorithm to 108 

identify allele-specific sgRNA guide pairs for a given gene that cover the maximum number of individuals 109 

in a population; these have the broadest therapeutic potential, similar to designing a drug to treat as many 110 

people as possible. Specifically, our method seeks to cover the most people with the fewest sgRNA pairs 111 

using their shared heterozygous variants; this is similar to the set cover problem in that the algorithm 112 

identifies an optimal combination rather than simply selecting most shared sgRNA pairs, which could 113 

disproportionately favor one group over another [15]. Our algorithm generates optimized pairs of sgRNAs 114 

that can be used to study or treat genetic diseases in large groups, potentially eliminating the need to develop 115 

new sgRNA pairs for each patient or cell line, with practical implications for the development of genome 116 

surgery as a field. Our algorithm can also be used to identify sgRNA pair combinations applicable to a 117 

custom cohort, enabling researchers to design guides that are maximally shared among multiple cell lines, 118 

for example, which would improve experimental efficiency. 119 

 120 

As a case study, we investigated the feasibility of excising one allele of exon 1 of RHO, which can cause 121 

dominant negative macular dystrophy[13]. Considering the gene plus 1 kb of flanking sequence on either 122 
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side, there are 82 pairs of allele-specific sgRNA sites for SpCas9 that are shared by >10% of all 1KGP 123 

individuals, with the number and composition of these pairs varying across 1KGP populations (Figure 2a, 124 

Supplementary Figure 4). We sought to identify an optimal combination of five allele-specific sgRNA pairs 125 

to target the majority of the 1KGP cohort (Figure 2b). We found that five allele-specific sgRNA pairs could 126 

putatively excise one allele of RHO while leaving the other allele intact in ~88% of 1KGP individuals with 127 

at least two variants, or 57% of the overall 1KGP population (Figure 2c). We also demonstrated how 128 

avoiding heterozygous variants and incorporating homozygous variants enables personalized sgRNA 129 

design in the RHO locus for the WTC genome for many Cas varieties, including SpCas9, SaCas9 and cpf1 130 

(Cas12a) (Supplementary Figure 5, Supplementary Tables 2 and 3). The dominant negative disease gene 131 

RHO clearly demonstrates the power of using genetic variation in sgRNA design.  132 

 133 

We incorporated these methods into AlleleAnalyzer, an open-source software tool (Supplementary Figure 134 

6). This tool designs personalized and allele-specific sgRNAs for unique individuals and cohorts, given 135 

their genetic variants, and optimizes sgRNA pairs to cover many individuals based on shared variants. To 136 

our knowledge, this is the first computational resource that designs personalized and allele-specific CRISPR 137 

sgRNAs, thus expanding and building upon the existing repertoire of sgRNA design tools (Supplementary 138 

Table 4). We integrated the specificity scoring capabilities of CRISPOR[4] to enable users to stratify guides 139 

by that metric as desired (Figure 2d). The AlleleAnalyzer toolkit and tutorials are available along with the 140 

database of annotated 1KGP variants (Supplementary Table 5) at 141 

https://github.com/keoughkath/AlleleAnalyzer.  142 

 143 

Conclusions 144 

The genetic variation aware sgRNA design tool AlleleAnalyzer is an important step towards effective 145 

deployment of CRISPR-based technologies in diverse genomes, including but not limited to research and 146 

therapeutic development for once incurable dominant negative diseases. 147 

 148 
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Methods 149 

PAM occurrence in the human reference genome 150 

PAM frequency 151 

The AlleleAnalyzer tool includes a script enabling scanning of a reference genome fasta file for existing 152 

PAM sites. We used this to identify PAM sites for 11 Cas types (Supplementary Table 1) in the reference 153 

human genomes hg19 and hg38. 154 

PAM size 155 

PAM sizes were equated as the sum of non-N (A, C, G or T) bases in a PAM site. Thus “NGG” for SpCas9 156 

would have size 2, and “NNGRRT” for SaCas9 would have size 4. 157 

AlleleAnalyzer analysis of the 1000 Genomes cohort 158 

Annotation of variants 159 

Genetic variants were determined to generate or destroy an allele-specific sgRNA site if they were proximal 160 

to or in a PAM site (Figure 1a). Sufficient proximity to a PAM site was defined for this study as 20 base 161 

pairs based on the common length of sgRNA recognition sequences. For all Cas varieties this was the 20 162 

base pairs 5’ of the PAM, except for cpf1 (Cas12a) for which it was 3’ of the PAM. The sgRNA design 163 

tools that are part of AlleleAnalyzer allow different user-defined sgRNA lengths and addition of Cas 164 

enzymes and PAMs. There is evidence to suggest that genetic variants that generate or destroy a PAM are 165 

more likely to lead to allele-specific Cas activity compared to those in the seed sequence1; AlleleAnalyzer 166 

thus provides options to differentiate between CRISPR sites in a PAM site versus the sgRNA recognition 167 

sequence. All variants genome-wide were annotated for the 1KGP cohort for reference genomes hg19 nd 168 

hg38 and are available for querying; an example subset of these data for the first 100 variants annotated by 169 

1KGP on chromosome 1 in reference genome hg19 is available in Supplementary Table 5.  170 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2018. ; https://doi.org/10.1101/342923doi: bioRxiv preprint 

https://doi.org/10.1101/342923
http://creativecommons.org/licenses/by/4.0/


9 

Generation of gene set 171 

The gene set analyzed was compiled using the canonical transcripts for RefSeq gene annotations for human 172 

reference genome hg19 and hg38 downloaded using the UCSC table browser[16], and filtered for genes 173 

with at least one coding exon. When non-protein-coding genes were excluded, 15,199 genes were evaluated 174 

for hg19, and 16,143 for hg38. Values reported in the text are for hg19 unless stated otherwise, but analyses 175 

were conducted for both reference genomes with similar results. 176 

Allele-specific putative gene targetability genome-wide 177 

Putative allele-specific targetability of a gene is defined here as whether a gene contains a pair of allele-178 

specific sgRNA sites for at least one of the 11 Cas enzymes evaluated that are less than 10 kb apart on the 179 

same haplotype in an individual that will disrupt a coding exon (Supplementary Figure 1). This metric was 180 

calculated for each protein-coding gene for all 2,504 1KGP individuals. 181 

Set cover analysis 182 

In order to determine optimal pairs of sgRNAs to cover large groups of people in a particular gene, we 183 

applied set cover optimization which we implemented using the Python package PuLP[17]. The aim was 184 

to maximize the number of individuals from the 1KGP for whom a user-supplied maximum number of 185 

sgRNA pairs would putatively target a given gene. This script can also be used to determine a minimum 186 

percentage of people to be covered by a set of sgRNA pairs. 187 

WTC sequencing  188 

The genome for the iPSC line WTC[10] was sequenced by the Allen Cell Science Institute. Analysis and 189 

variant calls in the reference genome hg19 were done according to GATK version 3.7 best practices[18] 190 

and phased using Beagle version 4.1 with default settings[19]. 191 
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WTC targetability analysis 192 

Variant annotation procedures were the same as in the 1KGP analysis. The same genes lists used in the 193 

1KGP analysis were analyzed in WTC, except when specified in the text, for the cases of 1 kb flanking the 194 

gene RHO, or when analyzing targetability for all genes + 5 kb flanking vs. genic region only.  195 

Packages used 196 

Python 197 

Docopt was used for handling of command-line arguments. Pandas[20] version 0.21.0 and NumPy[21] 198 

version 1.13.3 and elements of the standard Python distribution sys, os, and regex were used for multiple 199 

aspects of data analysis. PuLP[17] version 1.6.8 was used for set cover analysis. PyTables[22] was used for 200 

data management. Biopython[23] and pyfaidx[24] were used for Fasta processing. Scripts from 201 

CRISPOR[4] were integrated into AlleleAnalyzer to facilitate specificity scoring of sgRNAs. 202 

R 203 

Packages used to generate arcplots included viridis version 0.5.1, viridisLite version 0.3.0, igraph version 204 

1.1.2, ggraph version 1.0.0, ggplot2 version 2.2.1, reshape2 version 1.4.3, dplyr version 0.7.4, tidyr version 205 

0.7.2, and readr version 1.1.1. 206 

Bioinformatics 207 

Bcftools versions 1.5 and 1.6 were used to manipulate VCF and BCF files. 208 

Scripts 209 

Scripts were written in Python version 3.6.1, R version 3.3.2 and Bash version 3.2.57.  210 
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Data Availability 211 

1KGP phase 3 data were downloaded from the 1KGP website (http://www.internationalgenome.org/). The 212 

reference hg19 and hg38 genome data were downloaded from the UCSC genome browser. The 1KGP 213 

analysis dataset has been made available for public access online at 214 

(http://lighthouse.ucsf.edu/public_files_no_password/excisionFinderData_public/1kgp_dat/). 215 

Code Availability 216 

All data processing and analysis scripts as well as the sgRNA design tool are located at 217 

github.com/keoughkath/AlleleAnalyzer.  218 

List of Abbreviations 219 

sgRNA: single-guide RNA 220 

PAM site: protospacer adjacent motif site 221 

1KGP: 1000 Genomes Project 222 

kb: kilobases (1000 genomic basepairs) 223 

iPSC: induced pluripotent stem cell 224 
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Supplementary Figure 1 320 

A pair of allele-specific sgRNA sites is defined at putatively targetable if their predicted excision will 321 

disrupt at least one protein-coding exon. 322 
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 328 

 329 

Supplementary Figure 2 330 

This faceted density plot shows the percentage of putatively targetable 1KGP individuals (2,504 total individuals) per 331 

protein-coding gene for 11 types of Cas nuclease. 332 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2018. ; https://doi.org/10.1101/342923doi: bioRxiv preprint 

https://doi.org/10.1101/342923
http://creativecommons.org/licenses/by/4.0/


18 

Supplementary Figure 3 333 

Many more genes are targetable in the genome of WTC with a paired (dual)- as opposed to single-guide 334 

strategy. The number of variants in a gene is influential in determining targetability. Many genes that are 335 

not dual- or single-guide targetable have very few variants, and the genes that are only targetable with a 336 

single-guide approach compared to a dual-guide approach also tend to have fewer variants. All 11 Cas 337 

varieties are considered in this analysis. 338 

 339 
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 354 

 355 

Supplementary Figure 4 356 

Shared pairs of sgRNAs per locus vary by population. We show allele-specific sgRNA site pairs shared by 357 

at least 10% of each population for SpCas9 in the gene RHO plus the 1 kb flanking regions in the five super-358 

populations in the 1KGP as well as the overall 1KGP cohort. 359 
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 361 

Supplementary Figure 5 362 

Integrative Genomics Viewer track view of allele-specific (lavender, upper track) and personalized (multi-363 

colored, middle track) sgRNAs for SpCas9, SaCas9 and cpf1 (Cas12a) in the gene RHO plus 1 kb flanking 364 

in WTC. Allele-specific guides are shaded according to position of the variant in the guide, with variants 365 

closer to the PAM being darker based on their putative greater specificity. The track labeled “WTC genetic 366 

variants” (top) denotes genetic variants in WTC in this locus, of which there are only heterozygous variants. 367 

The bottom track shows the RefSeq annotation for the first exon of this gene in hg38.  368 
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 371 

Supplementary Figure 6 372 

Flowchart for the AlleleAnalyzer software tool. 373 
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 396 

Supplementary Table 1 397 

11 types of Cas enzyme were evaluated, each of which has a distinct PAM site. 398 

Supplementary Table 2 399 

 400 

All possible allele-specific sgRNAs for SpCas9, SaCas9 and cpf1 (Cas12a) in the region surrounding the 401 

first exon of RHO WTC (Supplementary Figure 6).  402 

Common name(s) Abbreviation PAM Properties

SpCas9 SpCas9 NGG

Streptococcus pyogenes  (Sp) Cas9., most widely 
used version with dozens of variants using same 
PAM, e.g. eSpCas9, SpCas9-HF1, eSpCas9 1.1 and 
more (Jinek et al. 2012)

SpCas9 VRER Variant SpCas9-V1 NGCG
Version of  SpCas9 with alternative targeting range 
(Kleinstiver et al. 2015)

SpCas9 EQR Variant SpCas9-V2 NGAG
Version of  SpCas9 with alternative targeting range 
(Kleinstiver et al. 2015)

SpCas9 VQR Variant SpCas9-V3 NGAN or NGNG
Version of  SpCas9 with wider targeting range 
(Kleinstiver et al. 2015)

SaCas9 SaCas9 NNGRRT
Staphylococcus aureus (Sa) Cas9.  Small relative to 
SpCas9, (Horvath et al. 2008, Jiang et al. 2013)

SaCas9 KKH Variant SaCas9-V1 NNNRT

Version of  SaCas9 with 2 to 4-fold increased 
targeting range relative of SaCas9 (Kleinstiver et al. 
2015)

nmCas9 nmCas9 NNNNGATT
Neisseria meningitidis (Nm) Cas9, with different PAM 
site (Hou et al. 2013)

cpf1 cpf1 TTTN

Multiple variations, notably opposite orientation 
system and sticky-end cut rather than blunt. Multiple 
species exist, including from Acidaminucoccus and 
Lachnospiraceae. (Zetsche et al. 2015)

StCas9 1 StCas9-V1 NNAGAA

Streptococcus thermophilus (St) Cas9. Smaller 
relative of SpCas9. Increased specificity. (Kleinstiver 
et al. 2015, Muller et al. 2016)

StCas9 2 StCas9-V2 NGGNG

Streptococcus thermophilus (St) Cas9. Smaller 
relative of SpCas9. Increased specificity. (Muller et al 
2016)

cjCas9 cjCas9 NNNNACA
Campylobacter jejuni Cas9. Smallest Cas9 ortholog 
to date, easy to package (Kim et al. 2017)
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Supplementary Table 3 403 

All possible personalized sgRNAs for SpCas9, SaCas9 and cpf1 (Cas12a) in the region surrounding the 404 

first exon of RHO WTC (Supplementary Figure 6). WTC has no homozygous variants in this region, thus 405 

allele frequency and variant-related columns are blank. However, the sgRNAs are designed to avoid the 9 406 

heterozygous variants that WTC has in this region. 407 

 408 

Supplementary Table 4 409 

Comparison of AlleleAnalyzer features with other commonly used CRISPR sgRNA design tools.  410 

 411 

Supplementary Table 5 412 

An example subset of variant annotations for the first 100 variants on chromosome 1 from 1KGP. 413 
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enzymes

Off-
target	
scoring

AlleleAnalyzer yes yes yes yes yes yes yes yes yes
CRISPOR	(Haeussler	et	

al.	2016) no no yes no no yes yes no yes
GuideScan	(Perez	et	al.	

2017) no no no yes no yes yes no yes
E-CRISP	(Heigwer	et	al.	

2014) no no no yes no yes no no yes
MIT	design	tool	(Hsu	et	

al.	2013) no no no no no yes no no yes
CRISPRscan	(Moreno-
Mateos	et	al.	2015) no no no no no no yes no yes
FlashFry	(McKenna	&	
Shendure,	2018) no no yes no no yes yes no yes
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