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Abstract: Real-time neurofeedback enables human subjects to learn to regulate their brain activity, effecting 

behavioral changes and improvements of psychiatric symptomatology. Neurofeedback up-regulation and down-

regulation have been assumed to share common neural correlates. Neuropsychiatric pathology and aging incur 

suboptimal functioning of the default mode network. Despite the exponential increase in real-time neuroimaging 

studies, the effects of aging, pathology and the direction of regulation on neurofeedback performance remain largely 

unknown. Using open-access analyses and real-time fMRI data shared through the Rockland Sample Real-Time 

Neurofeedback project (N=136), we first modeled neurofeedback performance and learning in a group of subjects 

with psychiatric history (na=74) and a healthy control group (nb=62). Subsequently, we examined the relationship 

between up-regulation and down-regulation learning, the relationship between age and neurofeedback performance 

in each group and differences in neurofeedback performance between the two groups. Results show that in an initial 

session of default mode network neurofeedback with real-time fMRI, up-regulation and down-regulation learning 

scores are negatively correlated. Moreover, age correlates negatively with default mode network neurofeedback 

performance, only in absence of psychiatric history. Finally, adults with psychiatric history outperform healthy 

controls in default mode network up-regulation. Interestingly, the performance difference is related to no up-

regulation learning in controls. 
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Introduction  

Neuroimaging research is contributing considerably to progress towards the apprehension of neurological 

and psychiatric disorders, by illustrating and characterizing their neural substrates. Current translational efforts are 

focused on validating non-invasive, neuroimaging-based diagnostic and therapeutic clinical applications. Out of the 

most innovative technological developments of our time, neurofeedback (NF) based on real-time functional 

magnetic resonance imaging (rt-fMRI) enables human subjects to learn to self-regulate their brain function, effecting 

behavioral changes and improvements of clinical symptomatology (Sitaram et al., 2017). Numerous recent studies 

have demonstrated therapeutic effects of rt-fMRI NF training on chronic pain (deCharms et al., 2005), addiction (Li 

et al., 2013; Hartwell et al., 2013), Parkinson’s disease (Subramanian et al., 2011), stroke (Robineau et al., 2017; 

Liew et al., 2016), tinnitus (Haller et al., 2010) and depression (Linden et al., 2012; Young et al., 2014; Young et al., 

2017); consolidating the view that patients can learn to normalize abnormal patterns of brain activity that are 

associated with pathology (Sitaram et al., 2017; Stoeckel et al., 2014). Nevertheless, knowledge on the precise 

mechanisms underpinning the self-regulation of brain function is only nascent at present, and no conclusive 

theoretical framework for NF learning has been established (Sitaram et al., 2017). Especially in the context of 

clinical NF applications, the field is still lacking fundamental empirical evidence.  

First, it has not been ascertained whether individuals with a history of psychiatric pathology are generally 

expected to perform equally to healthy participants in self-regulating brain function. Second, the way in which 

psychiatric pathologies affect specific cognitive requirements of a regulation task (e.g. mind wandering vs. focusing 

attention) is unknown. Third, key performance constraints, such as the effect of age, in relation to self-regulation of 

brain function and pathology, have not been investigated. 

           Here we address these three open issues regarding self-regulation of brain function, using the largest publicly 

available rt-fMRI NF repository, comprising data from healthy participants and psychiatric patients, during 

bidirectional self-regulation of the default mode network (DMN). The DMN is a large-scale cerebral 

network (Raichle et al., 2001) associated with a variety of brain functions, including perception (Kelly et al., 2008), 

attention (Weissman et al., 2006) and working memory (Mayer et al. 2010), which has become highly relevant for 

clinical applications (Zhang and Raichle, 2010; Brakowski et al., 2017; Mulders et al., 2015; Hamilton et al., 2015). 

Similarly to psychiatric pathology, aging also incurs suboptimal functioning of the human brain’s DMN (Whitfield-

Gabrieli and Ford, 2012; Damoiseaux et al., 2008). Recent studies have demonstrated that DMN activity can be 
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modulated through NF training (Harmelech et al., 2013; Megumi et al., 2015; Van De Ville et al., 2012). Thus, the 

DMN provides an optimal neural substratum for investigating the generic self-regulation of brain function.  

Based on previous work assuming common neural mechanisms for up-regulation and down-regulation 

(Emmert et al., 2016) and proposing a generic neurofeedback learning network (Sitaram et al., 2017), we 

hypothesized that up-regulation and down-regulation learning scores would be positively correlated. Due to 

previously noted aberrant DMN function in pathological populations (Whitfield-Gabrieli and Ford, 2012), we 

expected that healthy participants would perform better than psychiatric patients in DMN self-regulation. Because of 

the impeding effects of aging on DMN function (Damoiseaux et al., 2008), we predicted that age would show a 

negative correlation with DMN self-regulation performance. 

 

Materials and Methods 

Participants 

Young adults, aged 20 to 45 years (M = 30.94 years, SD = 7.32, N = 140; 58% female), took part in the study. 

Participants were residents of the Rockland County (New York, U.S.A.) and participated voluntarily in the Rockland 

Sample Real-Time Neurofeedback project, a large study aiming to create a sample with extensive 

neuropsychological and medical profiling, including several functional neuroimaging tasks (McDonald et al., 2017; 

Nooner et al., 2012). In order to include participants with a range of clinical and sub-clinical symptoms, minimally 

restrictive exclusion criteria were applied to exclude individuals with severe illnesses that would compromise 

compliance with experimental instructions (e.g. history of neoplasia requiring intrathecal chemotherapy or focal 

cranial irradiation, Global Assessment of Function < 50, history of psychiatric hospitalization, or suicide attempts 

requiring medical intervention). Modal psychiatric diagnoses were substance abuse and major depressive disorder. 

All subjects gave written informed consent; Institutional Review Board Approval was obtained for this project at the 

Nathan Kline Institute and at Montclair State University (Nooner et al., 2012). Subjects that presented a past or 

ongoing psychiatric diagnosis comprised the pathological group (M = 30.70 years; SD = 7.17; na = 74; 55.4% 

female; 89.2% dextrous); subjects that had not presented any psychiatric diagnosis comprised the control group (M 

= 30.71 years; SD = 7.48; nb = 62; 50% female; 90.3% dextrous); and four unclassified subjects were excluded from 

further analysis. 
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Experimental design 

Participants completed a variety of assessments and functional neuroimaging tasks comprising the Enhanced 

Nathan Kline Institute-Rockland Sample (NKI-RS) protocol, described in detail elsewhere (McDonald et al., 2017; 

Nooner et al., 2012). The protocol included a six-minute resting state fMRI acquisition, followed by a twelve-minute 

neurofeedback task. Rt-fMRI data were used to derive neurofeedback performance and neurofeedback learning 

scores for each participant and for each direction of regulation, via general linear modeling.  

Correlation testing was utilized to investigate the relation between DMN up-regulation neurofeedback learning 

and DMN down-regulation learning scores in the entire sample. Permutation testing was utilized to investigate 

differences in neurofeedback performance between the experimental group and the control group, for each direction 

of regulation. Nonparametric correlation testing was used to investigate the relation between neurofeedback 

performance and age, in each group.  

To control for Type I error due to performing five individual statistical tests using data from the same sample, 

we used the Bonferonni correction method (Abdi, 2007) to adjust the typical significance level, α = 0.05 (see 

Statistical analysis). For the typical Type II error rate (β = 0.2), a priori computations of required sample size, using 

statistical power estimation software (G*Power v 3.1; Heinrich-Heine-Universität Düsseldorf RRID:SCR_013726; 

Faul et al., 2007; Faul et al., 2009), confirmed sufficient two-tail statistical power for effects of medium or large size 

using the entire sample (d > 0.487) and for effects of moderate or large size using only the pathological group (d > 

0.660) or only the control group (d > 0.727).  

 

Resting state and neurofeedback task 

A resting state acquisition preceded the neurofeedback task because it was required for the delineation of each 

participant’s DMN. During resting state, participants fixated on a white plus (+) sign centered on a black 

background for six minutes. During the neurofeedback task, stimuli comprised of the neurofeedback display 

illustrated in Figure 1B, which was implemented using a programming library (Vision Egg RRID:SCR_014589; 

Straw 2008) and is publicly available online from the ‘OpenCogLab Repository’ (GitHub; RRID:SCR_002630; 

https://git.io/vptev). All subjects participated in 12 counterbalanced, alternating trials of DMN up-regulation and 

down-regulation, of varying length (30 s, 60 s, 90 s). Each type of trial (e.g. up-regulation for 30 s) was repeated 

twice, once in the first and once in the second block of the session. Participants were instructed at the beginning of 
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each trial to attempt to either let their mind wander (up-regulation), or to focus their attention (down-regulation), 

while attending to one out of four counterbalanced NF displays (Figure 1A). Counterbalancing was performed with 

regards to the following: 1) each trial featured a duration of either 30s, 60s or 90s; 2) each trial featured a central 

instruction, which was either “Focus” or “Wander”; 3) each trial featured the words “Focused” on the left and the 

word “Wandering” on the right or vice versa.  

 

MRI data acquisition  

Scanning was performed with a 3 T Siemens Magnetom TIM Trio scanner (Siemens Medical Solutions, 

Malvern, PA, USA) using a 12-channel head coil. Before the functional MR measurements, a fast localizer and 

high-resolution anatomical sequence were acquired. Anatomical images were acquired using a 3D T1-weighted 

MPRAGE (Mugler and Brookeman, 1990) GRAPPA (Griswold et al., 2002) sequence with an acceleration factor of 

2 and 32 reference lines. 192 sagittal partitions were acquired, each of a 256×256 field of view (FOV), using a 

2600 ms repetition time (TR), a 3.02 ms echo time (TE), 900 ms inversion time (TI) and 8° flip angle (FA), resulting 

in a 1 mm3 isomorphic voxel resolution. Functional images were acquired using echo planar imaging (EPI) with a 

TE of 30 ms, FA 90° and a TR of 2000 ms. Slice-acquisition was interleaved within the TR interval. The matrix 

acquired was 64×64 voxels with a FOV of 220 mm, resulting in an in-plane resolution of 3.4×3.4 mm2. Slice 

thickness was 3.6 mm with an interslice gap of 0.36 mm (30 slices). Images were exported over a network interface 

(Cox et al., 1995; LaConte et al., 2007). Physiological measures including galvanic skin response, pulse oximetry, 

rate of breathing and depth of breathing were measured during the functional acquisitions. Functional scanning 

included a six-minute resting state, prior to NF and other functional tasks using counterbalanced orders (McDonald 

et al., 2017).  

 

MRI data processing 

Prior to the NF session, the DMN of each participant was delineated, based on the data from the resting state 

scan, using data preprocessing and support vector machines described elsewhere (McDonald et al., 2017). All 

neuroimaging data were subjected to the ‘Preprocessed Connectomes Project Quality Assessment Protocol’ 

(GitHub; RRID:SCR_002630; https://git.io/vptfA; Shehzad et al., 2015). A DMN template (Smith et al., 2009) was 

used to compute normalization transforms between MNI and anatomical space; white matter and cerebrospinal fluid 
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signals were regressed out of the functional data and a support vector regression model was used to extract the DMN 

activation of each participant, for each TR, using software routines from AFNI (Analysis of Functional 

NeuroImages v 18.1.05; National Institute of Mental Health RRID:SCR_005927; Cox, 1996; LaConte et al., 2005) 

and FSL (FMRIB Software Library v 5.0; Oxford Centre for Functional MRI of the Brain RRID:SCR_002823; 

Zhang et al., 2001; Jenkinson et al., 2002; Jenkinson and Smith, 2001; Greve and Fischl, 2009; Greve and Fischl, 

2009). 

Data had been curated on and were accessed via the Collaborative Informatics and Neuroimaging Suite Data 

Exchange (COINS; Mind Research Network RRID:SCR_000805; Scott et al., 2011; Wood et al., 2014). The data 

featured a neurofeedback logfile for each participant, summarizing the measures of moment-to-moment 

neurofeedback performance derived by the real-time processing pipeline that was applied during data acquisition. 

The neurofeedback logfile for each participant was programmatically retrieved and read into computer memory 

using software (Matlab v 9.3; Mathworks RRID:SCR_001622). Structured variables were constructed to store all 

relevant information, regarding each participant's and each trial's characteristics and to perform hypothesis testing as 

illustrated in complete detail in the publicly available computer program developed for the analysis.   

 

Code accessibility 

All original code developed for the analysis has been made available to any researcher for purposes of 

reproducing or extending the analysis, via the ‘NKI_RS_analysis’ public repository (GitHub; RRID:SCR_002630; 

https://git.io/vxddI). Following download, the analysis and progressive output can be viewed on any browser 

(HTML version) or replicated and modified interactively using the Live Editor in Matlab v 9.3 or higher (MLX 

version). 

 

Data accessibility 

Neuroimaging data, further described in (McDonald et al., 2017), are available online via the 

Neuroimaging Informatics Tools Resources Clearinghouse (NITRC; RRID:SCR_003430). Diagnostic assessment 

data are available following the completion of a data transfer agreement with the Nathan Kline Institute (Nathan S. 

Kline Institute for Psychiatric Research; New York; USA, RRID:SCR_004334) via the Collaborative Informatics 

and Neuroimaging Suite Data Exchange (COINS; Mind Research Network RRID:SCR_000805). 
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Statistical analysis 

Standard general linear modeling was employed to quantify NF performance and learning. Using Pearson’s r 

as a metric of similarity, actual NF moment-to-moment regulation, as captured by the angular position of a needle 

on a tachometer-like NF display (Figure 1B), was compared to a linear vector representing the target performance of 

the experimental design (Figure 1C), producing a measure of NF performance for each of the 12 experimental trials. 

For each participant, average NF scores were computed separately for DMN up-regulation trials (wander), and 

DMN down-regulation trials (focus), in each of the two experimental blocks. NF learning score was computed as the 

improvement in NF regulation from the first to the second block of the session. NF performance score was 

computed as the average correlation between target performance and actual NF regulation in the second block of the 

session (following the introductory block of the session which comprised the participants’ very first practice 

experience of NF and of each trial type). Lilliefors test (Lilliefors, 1969) was used to assess normality and Grubbs’ 

test (Grubbs, 1969) was used for outlier detection. Parametric correlation testing was used to assess the relation 

between DMN up-regulation learning and DMN down-regulation learning score, because the variables were 

normally distributed. Non-parametric correlation testing was used to assess the relation between neurofeedback 

performance and age, because the distribution of age deviated from normality. Permutation testing was used to 

assess differences in neurofeedback performance scores between the experimental and control groups. Detailed 

documentation of the analysis, along with explanatory comments and an interactive program have been made 

available to facilitate replication and in support of the Open Science initiative. Five statistical tests were performed 

in total. To control for Type I error due to performing multiple statistical tests using data from the same sample, we 

used the Bonferonni correction method (Abdi, 2007) and set the adjusted two-tail significance level to α = 0.005. 
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Results 

 

Direction of regulation 

Lilliefors testing (Lilliefors, 1969) showed that NF up-regulation learning and down-regulation learning 

scores did not deviate from normality. Further quality assurance using Grubbs’ test for outlier detection (Grubbs, 

1969) showed that no outliers were present in any utilized variables. Parametric correlation testing revealed that 

DMN NF up-regulation learning (M = 0.135, SD = 0.554, N = 136) and down-regulation learning scores (M = 0.189, 

SD = 0.587) were significantly negatively correlated, with a weak association explaining approximately 7% of the 

variance, r(136)=-0.258, R2=0.067, P=0.0024; Figure 2A.  

 

Age 

Lilliefors testing showed that the distribution of age (M = 30.71 years, SD = 7.28, N = 136) deviated from 

normality. Non-parametric correlation testing using Spearman’s correlation coefficient revealed that in the 

pathological group, age (M = 30.70 years; SD = 7.17; na = 74) had no effect on neurofeedback performance (M = 

0.333, SD = 0.301), r(74) = -0.0711, P = 0.547. In the control group, age (M = 30.71 years; SD = 7.48; nb = 62) 

correlated negatively with DMN NF performance score (M = 0.195, SD = 0.312) with a moderate association that 

explained 17% of the variance, r(62) = -0.412, R2 = 0.17, P = 0.0009; Figure 2B.  

 

Psychiatric pathology 

Non-parametric independent samples t-tests, with 100,000 permutations per test, revealed that participants 

with a psychiatric history performed significantly better in DMN NF up-regulation (M = 0.383, SD = 0.420, na = 74) 

than the control group (M = 0.159, SD = 0.467, nb = 62), t(134) = -2.951, P = 0.0036; d = 0.504; Figure 3A. Down-

regulation performance was not significantly different between participants with a psychiatric history (M = 0.283, 

SD = 0.385) and the control group (M = 0.232, SD = 0.462), t(134) = -0.711, P = 0.479. The difference in up-

regulation performance was due to a lack of learning, with regards to mind-wandering, in the control group; Figure 

3B. 
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Discussion  

In relation to existing questions of fundamental importance to self-regulating brain function, we have 

shown that initial learning of DMN self-regulation is influenced by age and psychiatric history. Specifically, during 

an initial, brief DMN rt-fMRI NF session, participants with a psychiatric history outperform healthy controls in 

DMN up-regulation. Further, age correlates negatively with the ability to self-regulate DMN function, only in 

participants without psychiatric history. Finally, up-regulation learning and down-regulation learning scores are 

negatively correlated in both patients and healthy controls.  

A negative effect of age on DMN self-regulation is not surprising, given reduced resting-state brain activity 

(Kelly et al., 2008) and connectivity (Sambataro et al., 2010; Dennis and Thompson, 2014) within the DMN in 

normal aging. The DMN also comprises the primary locus of earliest amyloid deposition due to aging in cognitively 

normal individuals (Kelly et al., 2008; Palmqvist et al., 2017). Although it does not affect cognitive performance, 

such a neurobiological burden poses limitations on the neural efficiency of the DMN, leading to functional 

connectivity changes (Palmqvist et al., 2017) and age-related decline in task-related modulation of DMN activity 

(Sambataro et al., 2010). Our finding indicates that in healthy subjects, age explains 17% of the variation in NF self-

regulation scores. This strong effect is even more remarkable considering that the age range in our study was limited 

to young adults (20-45 years of age), similarly to most NF studies to date. Hence, age must be considered and 

explicitly modeled when assessing the ability to self-regulate brain function.  

Although no previous rt-fMRI study investigated age effects on rt-fMRI NF performance, our finding 

corroborates complementary evidence, regarding self-regulation, from electrophysiological biofeedback and 

neurofeedback studies. Heart rate variability biofeedback performance has been reported to correlate negatively with 

age and the effects of biofeedback self-regulation training on cardiovascular measures were less pronounced in older 

subjects (Lehrer et al., 2006). EEG theta amplitude up-regulation was also illustrated to be noticeably better in 

young compared to old subjects, although that study did not investigate performance differences between age groups 

via statistical testing (Wang and Hsieh, 2013). 

DMN activity has been linked primarily to occipital alpha band activity (Jann et al., 2010) that is known to 

decrease with age (Breslau et al., 1989), substantiating a plausible physiological basis for the effects observed here. 

It should be noted that despite the evidence for decreased self-regulation performance in older subjects, the 

beneficial effects of neurofeedback and biofeedback self-regulation training on cognitive and respiratory function, 
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are stronger in elders (Lehrer et al., 2006; Wang and Hsieh, 2013), suggesting the suitability of self-regulation 

training as a promising intervention to support healthy aging. 

A surprising finding from our study relates to the absence of an age effect in the pathological group. In 

cohort with the complementary finding of better performance in the pathological group, our results suggest that good 

self-regulation performance is not necessarily reflecting healthy brain function. Higher up-regulation performance in 

the pathological group is supported by pathologically altered DMN connectivity at baseline (Broyd et al., 2009) and 

may be associated to reduced DMN coherence, pointing to higher functional stability of the DMN in the control 

group and in healthy aging. These observations regarding initial DMN regulation performance suggest that generic 

hypotheses of reduced performance in pathological populations need to be revisited.  

It is worth considering that the capacity to show improvement in NF performance is contingent upon 

aberrant baseline activity. That is, when NF is used to normalize brain activity in patients that present moderately 

abnormal, aberrant activity, the patients will probably perform better than controls that present normal, stable 

activity patterns. On the other hand, in the face of severe pathology that impairs fundamental learning capacities, the 

ability to improve NF performance will be impaired as well, although this was not the case for the high-functioning 

pathological group of the present study.  

The third important finding of our study is that initial learning of DMN self-regulation is unidirectional, 

with the amount of learning in one direction of regulation opposing learning in the other direction of regulation and 

explaining 7% of its variation. In this study, up-regulation was associated with mind-wandering strategies and 

down-regulation with focusing attention. Thus, our findings suggest that learning to self-regulate depends on task-

specific performance constraints rather than a more generic ability to self-regulate. This may partly explain why the 

search for general predictors of successful neurofeedback learning has not been successful so far and why the 

proportion of up to 30% of participants that fail to self-regulate effectively, even following extensive practice 

(Harmelech et al., 2015), varies between targeted brain regions and paradigms (Sitaram et al., 2017). In order to 

design improved experimental and clinical protocols, it is critical to consider the direction of regulation, task-

specific peculiarities, and individual predispositions.  

 It remains possible that the present findings may be influenced by unaccounted factors that are not 

homogeneously distributed across the two experimental groups or across the age range of the sample. These may 

include experience with types of training that can exert a covert influence on the ability to self-regulate 
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physiological processes; e.g. meditational practice, musical training, acting experience etc. (Gruzelier, 2014a, 

2014b). It is possible that, on average, the pathological group had received more training in self-regulation of 

cognitive and physiological functions through participation in cognitive behavioral therapy programs. Moreover, it 

remains possible that our findings are limited only to the DMN and only to initial sessions of self-regulation. Future 

research should systematically investigate learning effects in cardinal brain networks (i.e. default mode, executive 

control and salience networks) across several sessions using identical protocols.  

In conclusion, we have illustrated that participants with a psychiatric history can perform better than 

healthy controls in self-regulating brain function. The ability to up-regulate brain function appears to decrease with 

age only in the absence of psychiatric history, and good performance in learning to up-regulate the DMN through 

mind-wandering does not imply equally good performance in down-regulating the DMN through focusing attention. 

Although it remains to be determined to what extent these findings are specific to the DMN and to initial sessions of 

self-regulation through rt-fMRI NF, our findings contribute to the furtherment of neurophysiological knowledge and 

our understanding of the neural mechanisms underpinning self-regulation of brain function specifically. We 

anticipate that our findings will solidify the foundations for more systematic modeling of the self-regulation of brain 

function and assist in the design of advanced technologies and experimental protocols for clinical applications. 
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Figures 

 

Figure 1. Modeling regulation performance.  

A, Spatial map of the average default mode network in the utilized repository (reprinted with permission, from 

McDonald et al. 2017). B, Each experimental trial featured one of the four counterbalanced displays resembling 

tachometers. At the beginning of each trial, the angular position of the needle pointer was set to 90° and was updated 

with every new functional volume according to real-time regulation performance; e.g. the rightmost display shows 

an angular position of 135°. C, The graph shows the average default mode network neurofeedback regulation 

performance for the pathological group (dashed blue line; N=74), for the control group (dotted brown line; N=62) 

and for the entire sample (black line; N=136), against target performance (yellow line), in one of four 

counterbalanced trial orders. It is apparent that on average, learning occurred for both up-regulation and down-

regulation and that performance improved noticeably in the second half of the real-time fMRI scanning session.  
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Figure 2. Illustration of the correlation tests performed. 

A, The figure shows lines of best fit for the pathological group (dashed blue line; N=74), the control group (dotted 

brown line; N=62) and the entire sample (black line; N=136). Default mode network neurofeedback up-regulation 

and down-regulation learning, are negatively correlated. B, Default mode network neurofeedback regulation 

performance decreases with age only in psychiatrically healthy adults.  
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Figure 3. Neurofeedback scores across groups. 

A, Neurofeedback performance and neurofeedback learning scores for up-regulation, down-regulation and overall 

regulation. Scores are depicted separately for the control group, the pathological group and the entire sample. Error 

bars represent standard errors. Possible neurofeedback performance scores range from a value of -1 (corresponding 

to worst possible performance) to a value of 1 (corresponding to best possible performance). B, Possible 

neurofeedback learning scores range from a value of -2 (corresponding to worsening performance) to a value of 2 

(corresponding to maximal learning). 
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