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Author summary1

Genomic data are becoming available for a rapidly increasing number of species, and contain2

information about their recent evolutionary history. If we wish to understand how they ex-3

panded, contracted or admixed as a consequence of recent and ancient environmental changes,4

we need to develop general inferential methods. Currently, demographic inference is either5

done assuming that a species is a single panmictic population or using arbitrary structured6

models. We use the concept of IICR (Inverse of the Instantaneous Coalescence Rate) together7

with Markov chains theory to develop a general inferential framework which we call the Non-8

Stationary Structured Coalescent and apply it to explain human and Neanderthal genomic data9

in a single structured model.10

Abstract11

In the last years, a wide range of methods allowing to reconstruct past population size changes12

from genome-wide data have been developed. At the same time, there has been an increasing13

recognition that population structure can generate genetic data similar to those produced under14

models of population size change. Recently, Mazet et al. (2016) showed that, for any model of15

population structure, it is always possible to find a panmictic model with a particular function16

of population size changes, having exactly the same distribution of T2 (the coalescence time17

for a sample of size two) to that of the structured model. They called this function IICR18

(Inverse Instantaneous Coalescence Rate) and showed that it does not necessarily correspond19

to population size changes under non panmictic models. Besides, most of the methods used20

to analyse data under models of population structure tend to arbitrarily fix that structure21

and to minimise or neglect population size changes. Here we extend the seminal work of22

Herbots (1994) on the structured coalescent and propose a new framework, the Non-Stationary23

Structured Coalescent (NSSC) that incorporates demographic events (changes in gene flow24

and/or deme sizes) to models of nearly any complexity. We show how to compute the IICR25

under a wide family of stationary and non-stationary models. As an example we address the26

question of human and Neanderthal evolution and discuss how the NSSC framework allows to27

interpret genomic data under this new perspective.28
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1 Introduction31

Reconstructing the demographic history of populations and species remains one of the great32

challenges of population genetics and statistical inference (Harpending and Rogers, 2000; Beau-33

mont et al., 2002; Goldstein and Chikhi, 2002; Hey and Machado, 2003; Li and Durbin, 2011;34

Liu and Fu, 2015; Scerri et al., 2018). In the last decades significant progress has been made in35

the development of likelihood and likelihood-free methods, hence facilitating the estimation of36

parameters of interest such as migration or admixture rates, and the dates of putative bottle-37

necks, expansions or splitting events (Beaumont, 1999; Beaumont et al., 2002; Marjoram et al.,38

2003; Hey and Nielsen, 2004; Gutenkunst et al., 2009; Li and Durbin, 2011; Bunnefeld et al.,39

2015).40

The rich body of methods and approaches that have been developed during that period41

can be divided into methods that ignore population structure and thus view the demographic42

history of species as a series of population size changes (Beaumont, 1999; Chevalet and Nikolic,43

2010; Li and Durbin, 2011; Liu and Fu, 2015; Bunnefeld et al., 2015) and those that account for44

population structure (Nielsen and Wakeley, 2001; Chikhi et al., 2001; Hey and Nielsen, 2004;45

Gutenkunst et al., 2009; Gronau et al., 2011). In the first family of models, the number of46

population size changes can be fixed (Beaumont, 1999) or it can itself be estimated (Li and47

Durbin, 2011; Nikolic and Chevalet, 2014; Liu and Fu, 2015; Boitard et al., 2016). In the48

second, the model of population structure is typically fixed a priori and relatively simple, and49

its parameters estimated (Chikhi et al., 2001; Hey and Nielsen, 2004; Gutenkunst et al., 2009;50

Gronau et al., 2011). Some recent methods allow for complex multi-population split models51

with admixture (Gutenkunst et al., 2009; Gronau et al., 2011). However, while the sizes of52

ancestral and derived populations can be different in these methods, each one is usually assumed53

constant and the model structure remains fixed. If the hypothesis made by the underlying54

models are violated (for example, if the populations evolve under a different type of structure),55

the estimated parameters may be difficult to interpret (Mazet et al., 2016; Chikhi et al., 2018).56

There is thus no general inferential framework that allows the joint estimation of population57

structure and population size changes (Scerri et al., 2018). This is understandable because it58

would probably be beyond the current methods to estimate the parameters of such complex59

models. Still, if we wish to understand the recent evolutionary history of species, including that60
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of humans, it may be necessary to identify the models with or without population structure61

that can (and those that cannot) explain patterns of genomic diversity.62

This is challenging because an increasing number of studies have shown that population63

structure per se can generate spurious signals of population size change in genetic or genomic64

data. This suggests that the first group of methods may generate misleading histories of65

population size change (Wakeley, 1999; Storz and Beaumont, 2002; Chikhi et al., 2010; Heller66

et al., 2013; Mazet et al., 2016; Chikhi et al., 2018) that can explain the data as well as more67

realistic models of population structure.68

Since many species are de facto structured in space, a powerful approach to improve the69

inferential process might be to reduce the model and parameter space so as to focus on models70

that can explain the data in their genomic complexity. Models that cannot explain the data71

could then be rejected. For instance, Chikhi et al. (2018) showed, using simulated IICR (inverse72

instantaneous coalescence rate) plots defined in Mazet et al. (2016), that several models used to73

quantify admixture between humans and Neanderthals cannot explain human and Neanderthal74

PSMC plots (Li and Durbin, 2011).75

In the present study we introduce a mathematical and conceptual framework based on the76

structured coalescent (Herbots, 1994). We show that IICR curves can be used to develop77

a powerful model choice and model exclusion strategy for structured models of nearly any78

complexity. In a few words, the IICR is a time-dependent function that can be interpreted as79

an effective size in a panmictic population. However, for structured models this interpretation80

may be misleading. For instance, there are various IICR curves for the same demographic81

model that depend on the temporal and geographical sampling scheme (Mazet et al., 2016;82

Chikhi et al., 2018). IICR curves can thus be seen as sample-dependent coalescent histories,83

which together may represent a unique signature for a complex model. The IICR is related84

to the PSMC method of Li and Durbin (2011) in the sense that the PSMC method, while85

generally interpreted in terms of population size changes, actually infers the IICR for a sample86

of size two (Mazet et al., 2016). The IICR curves can thus be seen as summaries of genomic87

information (Chikhi et al., 2018).88

We extend previous work on the IICR by applying the theory of Markov chains (see for ex-89

ample Norris (1998)) to models of population structure of nearly any complexity (i.e., including90
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changes in gene flow and/or deme sizes). We show how the transition rate matrices associated91

to a given structured model can be used to compute the corresponding IICR curves with very92

high accuracy, with a much lower computational time than the simulation-based approach used93

in Chikhi et al. (2018). We apply this new framework to the structured coalescent of Herbots94

(1994) and extend it to non-stationary models, hence introducing the Non-Stationary Struc-95

tured Coalescent (NSSC), and discuss the possibility to extend it to less constrained genealogical96

models.97

To that aim we first review and summarise the main results and terminology required98

to link the Markov chain described by the structured coalescent with the notion of IICR.99

We acknowledge the seminal work of Herbots (1994) who derived the transition rate matrix100

corresponding to the structured coalescent. We apply this approach to compute the IICR of101

several models of population structure, such as the n-island model, and 1D and 2D stepping102

stone models, under arbitrary sampling schemes. Using the semi-group property we show103

how our results can be naturally extended to models with an arbitrary number of changes in104

gene flow. We then show how demes with different sizes (e.g., continent-island models), or105

changes in the deme sizes can be easily incorporated into this framework. In addition, we show106

that transition rate matrices can be simplified using symmetries for several models (n-island,107

continent-island) reducing the computational costs by several orders of magnitude. We finally108

apply these results to humans and Neanderthals and identify models of population structure109

that can explain human and Neanderthal genomic diversity.110

2 The structured coalescent and transition rate matrices:111

towards the IICR112

The distribution of coalescence times in models that account for population structure (i.e.,113

population subdivision) has been the centre of interest of important and early theoretical studies114

(Takahata, 1988; Notohara, 1990; Herbots, 1994; Barton and Wilson, 1995; Wakeley, 1999,115

2001; Nordborg, 2001; Charlesworth et al., 2003). In particular, Herbots (1994) developed an116

elegant extension of the coalescent (Kingman, 1982) for structured populations under a number117

of constraints regarding gene flow (see below). This extension, named structured coalescent,118
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has been extremely important and is based on a continuous-time Markov chain. It allows to119

compute explicitly the moment-generating function of the coalescence times under a wide range120

of models considering population structure (Herbots, 1994; Wilkinson-Herbots, 1998). In this121

section we review the terminology and theory leading to the structured coalescent, introduce122

transition rate matrices and show how they can be used to compute the IICR of Mazet et al.123

(2016).124

2.1 From the discrete-time model to the continuous-time approxima-125

tion126

Following Herbots (1994), we consider a haploid population divided into a finite number n of127

subpopulations or demes which are panmictic and whose size, Ni for deme i, is assumed to be128

large. Each deme is also assumed to behave as a haploid Wright-Fisher model. These demes129

are connected to each other by migration events. Every generation a proportion qij of the130

haploid individuals from deme i migrates to deme j (migrants are chosen without replacement,131

independently and uniformly from deme i). We assume that deme sizes and migration rates132

are constant in time. In this model the number of haploid individuals in deme i is Ni = 2ciN ,133

where ci is a positive integer and N is large. Also, the proportion qij is of the order of 1/N for134

every (i, j). In the classical n-island model of Wright (1931), the ci are all identical and set to135

one. If we set c :=
∑n

i=1 ci, we can write the total haploid population size as NT = 2cN . Note136

that in diploid applications, ciN is the number of diploid individuals in deme i and thus the137

diploid population size will be cN .138

The structured coalescent of Herbots (1994) assumes that the size of each subpopulation is139

maintained constant under migration, which generates the following constraint at the popula-140

tion level:141

∀i, j : ci
∑
j 6=i

qij =
∑
j 6=i

cjqji, (1)

where qij is the probability that one individual migrates from deme i to deme j. In other words,142

all outward migrants must be replaced by inward migrants from the other islands.143

This condition is required in the structured coalescent but we stress that it is not required144

in the structured model of Notohara (1990) or when simulating data under structured models145
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using the ms software of Hudson (2002).146

Looking now backward in time, Herbots (1994) defines the backward migration parameter147

from deme i to deme j (denoted mij) as:148

mij =
Njqji
Ni

=
cj
ci
qji.

The backward migration parameter mij represents the proportion of individuals in deme i that149

were in deme j just before the migration step. Also, mi =
∑

i6=jmij represents the proportion150

of individuals inside deme i that were in a different deme just before the migration step.151

In this backward perspective, we suppose that we have a sample of k haploid genomes152

at a time which we arbitrarily call time zero. We then trace back the ancestral history of153

the k lineages until their MRCA (Most Recent Common Ancestor). We are interested in154

the statistical properties of the gene trees of this sample of k lineages at different loci in the155

genome. Following Herbots (1994), we define αN := {αN(r); r = 0, 1, 2, ...}, where αN(r) is156

a vector whose ith component denotes the number of distinct lineages in subpopulation i, r157

generations ago.158

Herbots (1994) proved that, measuring time in units of 2N generations, αN converges to a159

continuous-time Markov chain called the structured coalescent, as N tends to infinity and as all160

mij (i 6= j) tend to zero, in such a way that Mij/2 := 2Nmij and Mi =
∑

j 6=iMij are constant,161

finite and non-zero. In the rest of the manuscript we drop the N index in αN , but we wish to162

stress that αN(r) represents the configuration of the remaining ancestral lineages at generation163

r backwards in the discrete-time model and α(t) represents the ancestral configuration t time164

units ago, in the continuous-time model. When r = 0 or t = 0, it is simply the initial sample165

configuration. The structured coalescent is thus the continuous-time Markov chain whose states166

are all the possible configurations for the ancestral lineages at different times in the past. It167

is thus characterised by the transition probabilities between configurations. A key element168

describing this Markovian process is its transition rate matrix denoted Q hereafter.169

2.2 The transition rate matrix of a continuous-time Markov chain170

Transition rate matrices are briefly introduced in this section. For a full background, see for171

instance Norris (1998).172
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A transition rate matrix on the finite set I is a square matrix Q = Q(i, j), with i, j ∈ I173

satisfying the two following conditions:174

• ∀i 6= j, Q(i, j) ≥ 0,175

• ∀i, Q(i, i) = −
∑
j 6=i

Q(i, j).176

If we now define, for all t ≥ 0, the exponential matrix Pt = etQ which has the same size as Q,177

Pt then satisfies the following properties, for all s, t:178

• Pt+s = PtPs (semigroup property),179

• P ′t =
d

dt
Pt = QPt = PtQ,180

• Pt is a stochastic matrix (each coefficient is non-negative and the sum over each row is181

one).182

Also each coefficient of the matrix Pt, for all t ≥ 0, is a transition probability:183

Pt(i, j) = P(Xt = j|X0 = i),

where (Xt)t≥0 is a continuous-time Markov chain on the finite set I. In other words, Xt is a184

jump process, whose behaviour is the following:185

• if at a given time s ≥ 0 we have Xs = i, then it jumps away from state i after an186

exponential time of parameter −Q(i, i), which does not depend on s,187

• at each jump from state i, the rate at which state j is reached is
Q(i, j)∑
j 6=iQ(i, j)

=188

−Q(i, j)/Q(i, i).189

The transition rate matrix Q then contains all the information on the behaviour of (Xt)t≥0,190

given the initial condition X0. We can see that, for all i ∈ I, the parameter Q(i, j) is the rate191

of going from i to j, as soon as j 6= i, and the parameter −Q(i, i) is the rate of leaving i.192

In the case of the structured coalescent the jump process of interest is the ancestral lineage193

process. The set I is the set of possible configurations α = (α1, . . . , αn), where αi is the194

number of lineages present in the ith deme, and n the number of demes. A “jump” between195

two configurations occurs when a lineage migrates from one deme to another (say, from deme196
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i to deme j), or when a coalescence takes place within a deme in which there are at least two197

lineages. We thus have now all the elements necessary to compute the IICR for stationary198

models under the structured coalescent.199

3 Transition rate matrices allow us to compute the IICR200

for a wide family of structured models201

Mazet et al. (2016) introduced and defined the IICR. They derived it analytically for the n-202

island model and for k = 2 lineages for the only two distinguishable sampling schemes (the203

two lineages in the same deme, respectively in different demes) available for that model (initial204

configurations or states of the Markov chain). In this section we show how transition rate205

matrices can be used to analyse a wide family of models of population structure. We take the206

case of k = 2 and step by step explain how the transition rate matrix can be constructed. We207

then describe the general algorithm used to construct the IICR for all the models analysed here208

for k = 2. We finally apply this method to the n-island model and show that we can re-derive209

the results obtained by Mazet et al. (2015) and Herbots (1994).210

3.1 General case211

As noted above, Herbots’ discrete-time process converges to a continuous-time Markov process212

(called structured coalescent). Here we describe in more details how to construct the associated213

transition rate matrix. Let’s assume that we have numbered the demes of the model from 1214

to n where n is the total number of demes. Then the vector (c1, c2, ..., cn) indicates the size of215

each deme. We take a sample of k genes (k ≥ 2) from the population at the present (t = 0)216

and we trace the ancestral lineages back to the MRCA. The vector α = (αi)1≤i≤n, where αi217

is the number of ancestral lineages in deme i, represents a possible ancestral configuration for218

the lineages when going backwards in time. For example, for n = 3 demes and k = 2 samples,219

the vector α = (1, 1, 0) is an element of N3 and indicates that there is one ancestral lineage220

in deme 1, one ancestral lineage in deme 2 and no ancestral lineage in deme 3. Note that221

k = |α| =
∑n

i=1 αi. We call Ek,n the set of all possible states of a structured model with n222
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demes and a sample of size k. We have:223

Ek,n = {α, α ∈ Nn, 1 < |α| ≤ k} ∪ {c}

where c represents the state when the MRCA of the sample is reached (|α| = 1).224

The Markov chain can change from one state α ∈ Ek,n to another state β ∈ Ek,n either by a225

migration event (which implies that |β| = |α|) or by a coalescence event inside a deme (which226

implies that |β| = |α| − 1). Before constructing the associated transition rate matrix we need227

to define an order on Ek,n. We choose the inverse lexicographical order. For example for n = 3228

and k = 2 it would be:229

(2, 0, 0) ≺ (1, 1, 0) ≺ (1, 0, 1) ≺ (0, 2, 0) ≺ (0, 1, 1) ≺ (0, 0, 2) ≺ c.

Note that the state c (when the MRCA of the sample is reached) is placed in the last position.230

We denote φ the function that associates an element of Ek,n with the corresponding index in231

the inverse lexicographical order. For example, taking the previous example, for α = (2, 0, 0)232

it will be φ(α) = 1 and φ(c) = 7. Throughout the next sections we will assume that there is233

an order on the set Ek,n given by the function φ. We define nα := φ(α) so that Pt(nα, 1) refers234

to the first element of the row nα in the matrix Pt.235

The corresponding transition rate matrix can be constructed as:236

Q(nα, nβ) =



αi
Mij

2
if β = α− εi + εj (i 6= j)

1
ci

αi(αi−1)
2

if β = α− εi

−∑i

(
αi

Mi

2
+ 1

ci

αi(αi−1)
2

)
if β = α

0 otherwise,

(2)

where εi is the vector whose components are 1 on the ith position and 0 elsewhere.237

The matrix Q describes two types of possible events for each configuration α:238

• β = α − εi + εj when one lineage migrates (backward in time) from island i to island j.239

The rate of this migration is Mij/2 (migration rate to deme j for each lineage in deme i)240

times αi, the number of lineages present in deme i.241

• β = α − εi denotes a coalescence event between two lineages in deme i, which reduces242
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the number of lineages by one in this deme. This occurs only if αi ≥ 2. If this is not243

the case we can see that αi(αi− 1) = 0. The term αi(αi − 1)/2 is the number of possible244

pairs among the αi lineages. This term is multiplied by 1/ci since the ith island has a245

population size equal to 2ciN , and 1/ci is the coalescence rate for each pair of lineages in246

this island since time is scaled by 2N .247

Since no other kind of event can occur than a migration or a coalescence, and multiple coa-248

lescences or migrations are negligible, the other rates are null. Note that the opposite of the249

diagonal coefficient −Q(nα, nα) is the total jump rate from configuration α.250

The transition rate matrix can be very large depending on the model of population structure251

assumed and on the sample size. For k ≤ n the number of states is on the order of nk, and the252

matrix will have on the order of n2k terms.253

3.2 Case of a sample of two lineages (k = 2)254

We now consider the case where we take a sample of two lineages (i.e., k = 2 corresponding255

to two haploid genomes or one diploid genome) in an arbitrary model of population structure256

with n demes of size 2ciN , for large N . We can reduce all possible configurations to only two257

types of configurations, excluding the configuration where the two lineages have coalesced:258

• both lineages are in the same deme i: α = 2εi,259

• the two lineages are in different demes, say, demes i and j with i 6= j: α = εi + εj.260

When the two lineages are in the same deme (first case), there are two possible events that261

can change the configuration: a coalescence with rate 1/ci, or a (backward) migration from i to262

j 6= i for each lineage, with rate αiMij/2 for both lineages, hence a total rate of αiMij. When263

a coalescence happens, the number of lineages decreases by one. When a migration from deme264

i to deme j happens, the new configuration is one in which the lineages are now in different265

demes, which is a second-type configuration.266

When the two lineages are in different demes, no coalescence can occur and the two lineages267

may either stay in the same deme or migrate to another deme, from i to ` (which can be equal268

to j) for the first lineage, with rate αiMi`/2, or from j to ` (which can be equal to i) for the269
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second lineage, with rate αjMj`/2. If the lineages end up in the same deme we are back to a270

configuration of the first type, otherwise, we end up in a second-type configuration.271

By definition, the number of rows and columns of the full transition rate matrix (that we272

will call nc) is the number of different configurations for the ancestral lineages. In the case of a273

model with n demes and a sample of size k = 2, we have that nc = n2 + 1. We will assume that274

the “last configuration” is the one in which the two lineages have coalesced, and thus ignore275

where the coalescence took place. Also note that the rate of a coalescence event in deme i276

(which is equal to 1/ci) depends on the size of deme i. In the transition rate matrices that we277

will use here the coalescence configuration corresponds to the last row and column.278

3.3 General algorithm for the construction of the transition rate ma-279

trix for k = 2280

Here we give a general algorithm that can be used to construct the transition rate matrix of a281

given model. The first step is to explicitly order all the demes. Then, given the number n of282

(ordered) demes the set of all possible configuration for k = 2 lineages is:283

E2,n = {α ∈ N2, α = εi + εj with i, j = 1, . . . , n} ∪ {c},

where εi + εj means that there is one lineage in deme i and one lineage in deme j (note that it284

could be i = j); and c is the configuration where both lineages have coalesced.285

As in section 3.1 we take the inverse lexicographical order on E2,n. Define φ as a function286

from E2,n to {1, 2, ..., |E2,n|} such that φ(α) is the index of α according to the inverse lexico-287

graphical order. Then φ−1 is the inverse of φ and φ−1(i) gives the element of E2,n which is at288

position i according the inverse lexicographical order.289

Once the function φ is defined and we have the values of C = (c1, . . . , cn) (the size of the290

demes) and Mij (the migration matrix), we can use the following algorithm to construct the291

transition rate matrix Q:292

1: procedure createQmatrix(C, M) . (C: deme sizes; M : migration matrix)293

2: n← length(C) . Initialisation; number of demes294

3: nc ← n(n+ 1)/2 + 1 . Initialisation; number of states295
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4: Q← nc × nc matrix full of zeros . Initialisation; transition rate matrix296

5: for k in {1 . . . nc − 1} do297

6: (x1, x2, . . . , xn)← φ−1(k)298

7: for i in {1 . . . n} do299

8: if xi > 0 then300

9: for j in {1 . . . n} do301

10: if j 6= i then302

11: (y1, y2, . . . , yn)← (x1, x2, . . . , xn) . migration events303

12: yi ← xi − 1304

13: yj ← xj + 1305

14: l← φ(y1, y2, . . . , yn)306

15: Qk,l ← xiMi,j307

16: end if308

17: end for309

18: if xi = 2 then310

19: Qk,nc ← 1/ci . coalescence events311

20: end if312

21: end if313

22: end for314

23: end for315

24: for k in {1 . . . nc − 1} do316

25: Qk,k ← −
∑

l 6=kQk,l . rows of the matrix Q must sum to zero317

26: end for318

27: return Q319

28: end procedure320

Note that since the last configuration (coalescence) is an absorbing state of the Markov process,321

the last row has only zeros.322
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3.4 Using the transition rate matrix to derive the distribution of co-323

alescence times and evaluate the IICR for samples of size two324

We now focus on the coalescence time between two lineages and see that we can derive the325

IICR in terms of transition rate matrices. The theory of Markov chains (Norris, 1998) gives the326

tools allowing to compute the probability distribution of T2 based on the matrix exponential of327

the transition rate matrix for the model of interest328

Pt = etQ,

where Pt is the transition semigroup of the corresponding Markov process, i.e., Pt(nα, nβ) =329

P(α(t) = β| α(0) = α), where we α(t) denotes the ancestral lineages configuration at time t in330

the past and α(0) represents the initial sample configuration.331

As noted in Section 2.2, the terms of Pt represent the transitions probabilities of interest.332

For instance, the term in row nα and column nβ of Pt represents the probability that the333

process is in the configuration β at time t given that it was in the configuration α at time zero.334

Thus, the probability that two lineages in the configuration α at t = 0 have reached their most335

recent common ancestor at time t can be found as Pt(nα, nc), where nc is the last column since336

nc = φ(c) is the column number of the coalescence state.337

Consequently, if we denote by Tα2 the coalescence time of two lineages sampled in the338

configuration α, the cumulative distribution function (cdf) of this random variable can be339

computed from the transition semigroup:340

FTα2 (t) = P(Tα2 ≤ t) = Pt(nα, nc).

The probability density function (pdf) of Tα2 , fTα2 (t), is by definition the derivative of FTα2 (t).341

It can thus be computed from the matrix Pt, by using the property342

P ′t = PtQ = QPt,

where P ′t is the matrix whose cells contain the derivative of the corresponding cells of Pt. We343
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can thus write344

fTα2 (t) =
d

dt
P(Tα2 ≤ t) = P ′t(nα, nc) = (PtQ)(nα, nc).

It is then easy to derive, for any time t ≥ 0, the instantaneous coalescence rate, which is345

the probability to coalesce at time t given that the lineages have not coalesced yet. This is by346

definition the ratio347

fTα2 (t)

1− P(Tα2 ≤ t)
.

The Inverse Instantaneous Coalescence Rate (IICR) of Mazet et al. (2016), is simply the348

inverse of this ratio, in which all the terms can be written as a function of Pt and the transition349

rate matrix, namely:350

IICR(t) =
1− Pt(nα, nc)
(PtQ)(nα, nc)

.

In the next section, we show how transition rate matrices can be used to re-derive the351

analytical results of Mazet et al. (2016) on the IICR of the n-island model.352

3.5 The IICR of the n-island model for k = 2 using the simplified353

transition rate matrices354

In the symmetric island model of Wright (1931) the n demes (n ≥ 2) are equal-sized islands355

with the same migration rate between any two islands (Figure 2. With the notations above,356

we have ∀i = 1, . . . , n, ci = 1, Mi = M and Mij = M/(n − 1) for j 6= i. Taking into account357

the fact that the model is fully symmetrical, we only need to consider two configurations for358

a sample of two lineages: they are either in the same deme (denoted s) or in different demes359

(denoted d). There is a third state that corresponds to the coalescence event which takes place360

at rate 1. We thus obtain the simplified transition rate matrix361

Q =


−1−M M 1

M
n−1 − M

n−1 0

0 0 0

 ,

where the first configuration is s, the second is d, and the third one corresponds to a coalescence362

event, which can only occur when both lineages are in the same island.363
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n = 9, M = 1, same island
n = 9, M = 1, different islands
n = 9, M = 10, same island
n = 9, M = 10, different islands

Figure 1: IICR for the n-island model. We plotted the IICR for a model with n = 9 islands and
assuming two values for the migration rate, M = 1 and M = 10. For each model we started
with the two configurations in which the genes are either sampled in the same (IICRs) or in
different (IICRd) islands.

This matrix is simple and small enough to allow the derivation of explicit formula for its364

exponential Pt = etQ and hence for the corresponding IICR functions under the two possi-365

ble starting configurations (IICRs or IICRd for samples taken in the same or different demes366

respectively):367

IICRs(t) =
1− Pt(1, 3)

(PtQ)(1, 3)
=

(1− β)e−αt + (α− 1)e−βt

(α− γ)e−αt + (γ − β)e−βt

and368

IICRd(t) =
1− Pt(2, 3)

(PtQ)(2, 3)
=
βe−αt − αe−βt
γe−αt − γe−βt ,

with369

α =
1

2

(
1 + nγ +

√
∆
)
, β =

1

2

(
1 + nγ −

√
∆
)
,

370

∆ = (1 + nγ)2 − 4γ, γ =
M

n− 1
= αβ.

These formulae are identical to those of Mazet et al. (2015), who obtained them using a371

different approach. We can see the plots of the IICRs and IICRd for the n-island model in372

Figure 1.373
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4 Constructing the IICR for two stationary models, the374

2D stepping stone and continent-island models375

We now apply the framework and algorithm described above to two stationary models. To376

our knowledge, there is no analytical expression for the distribution of the coalescence time377

T2 under these two models. The transition rate matrices and IICR results for several other378

stationary models are shown in the Supplementary Materials.379

4.1 2D stepping stone models with and without edges380

Stepping stone models (Kimura, 1994; Malécot and Blaringhem, 1948) assume that the demes381

are located at the nodes of a regular lattice in one or two dimensions (hereafter 1D and 2D382

stepping stone models). Each deme can have up to four neighbours and migration events383

are only possible between neighbouring demes. These models incorporate space, and are thus384

thought to be more realistic than the n-island model described above, which implicitly assumes385

that migration is as likely between neighbouring than between distant islands. The border386

demes can either be connected with each other, hence forming a torus, or can behave as bouncing387

borders (Figure 2). In some models the bouncing borders migrants are assumed to stay in their388

deme, whereas in other models they are distributed among the demes to which their deme is389

connected.390

For the 2D stepping stone model, we set, ∀i, j = 1, . . . , n, ci = 1 and Mij = M/4 if islands391

i and j are neighbours, and Mij = 0 otherwise. The difference between the models with and392

without edges used here is thus in the way neighbours are defined. In the model with borders393

the four corner islands have only two neighbours, the islands on the borders of the lattice have394

three, and the others have four neighbours (see Figure 2).395

Figure 3 shows the IICRs (two haploid genomes sampled in the same deme, or one diploid396

genome), for a 3 × 3 stepping stone model with and without borders (Figure 2). In the latter397

case (no borders), all demes are statistically identical, and there can thus be only one IICRs398

plot. In the model with borders, there are three possible ways to sample a diploid individual,399

and three IICRs are plotted. This figure confirms the results of Chikhi et al. (2018) by showing400

that the IICRs plots for a stepping stone are also S-shaped. They all start in the recent past401
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Figure 2: Diagrams for commonly used structured models. From left to right: n-islands, torus
2D stepping stone, 2D stepping stone and continent-island model.
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without edge
with edge, island 1 (corner)
with edge, island 2 (middle edge)
with edge, island 5 (center)

Figure 3: IICR plots for the 2D stepping stone model. Here we assumed a model with 3×3 = 9
islands and M = 1, with and without edge effect. In the model with edge effect, we plot the
three ways to sample two lineages in the same island: in island 1, 3, 7 or 9 (corner), in island
2, 4, 6 or 8 (middle of the edge), and in island 5 (center of the lattice).

at a value equal to the deme size and converge in the ancient past towards the same plateau.402

However, it is remarkable that they differ in the trajectory from the present to the plateau403

value, depending on the location of the deme (corner, border or centre). These results thus404

confirm that in a stepping stone model, two diploid individuals sampled in different demes405

(i.e., geographical regions) will both exhibit signals of population decrease that will be different406

even though the population size was constant and they both belonged to the same structured407

model (Chikhi et al., 2018). Note that, as for the n-island model, the IICR exhibits a signal408

of spurious population increase when the two genes are sampled in different demes (IICRd, see409

Supplementary Materials).410
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4.2 Continent-island model411

4.2.1 General case412

Here we assume a model where the population is divided into n demes (one big deme called413

continent and n − 1 equally sized demes, smaller than the continent, called islands). The414

continent is connected with the remaining n − 1 islands, but the islands are not connected415

between each other (Figure 2). Therefore, migration can only occur between the continent416

and the islands, but not between different islands. We order the n demes in such a way that417

the continent is deme number 1, whose (scaled) size is c1. We denote c2 the size of the other418

islands, and M1/2 the (scaled) migration rate from the continent to each island, and M2/2419

the migration rate from each island to the continent. Condition (1) implies that we have the420

following constraint:421

c1

(
(n− 1)

M1

2

)
= ((n− 1)c2)

M2

2
⇐⇒ c1

c2
=
M2

M1

. (3)

For the case n ≥ 3, the symmetry of the model allows us to consider, for a sample of two422

lineages, only five possible different configurations:423

1. Both lineages are in the continent. A coalescence can occur with rate 1/c1, leading to424

configuration 5, or any of the two lineages may migrate to one of the n− 1 islands, each425

with rate M1/2, leading to the second configuration.426

2. One lineage is in the continent and the other in an island. There can be no coalescence427

event, but three different migration events can occur: if the lineage in the island migrates,428

which arrives at rate M2/2, this leads to the first configuration. The lineage in the429

continent can migrate at rate M1/2, and it can either reach the island where the other430

lineage is (leading to configuration 4 below) or migrate to a different island (leading to431

configuration 3 below).432

3. The two lineages are in different islands. No coalescence can occur and any of the two433

lineages can migrate to the continent, each with rate M2/2, leading to configuration 2.434

4. The two lineages are in the same island. Either a coalescence occurs with rate 1/c2, leading435

to configuration 5, or a migration event of one of the two lineages to the continent, each436
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with rate M2/2, leading to configuration 2.437

5. The two lineages have coalesced. This is an absorbing state.438

If we replace M2 by M and M1 by c2M/c1 in equation (3) and normalise population sizes by439

fixing c1 = 1, then denoting c2/c1 = c2 = c we obtain the following transition rate matrix (see440

Supplementary Materials for details):441

Q =



−1− cM(n− 1) cM(n− 1) 0 0 1

M/2 −M(cn− c+ 1)/2 (n− 2)cM/2 cM/2 0

0 M −M 0 0

0 M 0 −M − 1/c 1/c

0 0 0 0 0


.

Note that c is the ratio between the sizes of the islands and the continent, and that the diagonal442

entries are obtained by the constraint that the sum over each row is zero.443

Figure 4 shows the IICRs and IICRd plots for the different sample configurations for a pairs of444

genomes in a continent-island model with n = 4 (one continent and three islands). As expected445

from previous work on the IICR (Mazet et al., 2016; Chikhi et al., 2018), first generation446

hybrid individuals, whose genome is sampled in different demes, exhibit IICR plots which447

would be interpreted as expansions from an ancient stationary population, even though the total448

population size is constant. One of the most striking result is that a diploid individual sampled449

in one of the islands exhibits an IICR that suggests (forward in time) an ancient stationary450

population which first expanded before being subjected to a significant population decrease.451

Thus, different individuals will exhibit very different history, not because their populations452

were subjected to different demographic histories, but because the IICR does not represent453

the history of a population. It represents the coalescent history of a particular sample in a454

particular model.455
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Figure 4: IICR for a continent-island model. We constructed the transition rate matrix for
a model with n = 4, namely one continent and three same-sized islands. The sizes of the
continent and of the islands were set to c1 = 1 and c2 = 0.05, respectively. In other words, the
continent was 20 times larger than the islands. We set the migration rates to M1/2 = 0.05,
M2/2 = 1 (note that once M1 is set, M2 is constrained to keep inward and outward migrant
gene numbers equal, as required by equation 1). In this model there are only four types of IICR
curves, two IICRs and two IICRd. The first two correspond to the cases where we sample the
two lineages either in the continent or in one of the islands. The IICRd curves correspond to
cases where one gene comes from the continent and the other from an island or when the two
genes come from two different islands.
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5 The Non-Stationary Structured Coalescent (NSSC):456

constructing the IICR for models with changes in popu-457

lation structure458

In this section we extend our work to non-stationary structured (NSS) models under the co-459

alescent and show how the semigroup property can be used to characterise a large family of460

complex NSS models. The semigroup property allows to compute the probability that a Markov461

jump process is in a given state at time t+ ∆t by taking into account all its possible states at462

time t. Applied to the structured coalescent, this makes it possible to trace ancestral lineages463

backward to the MRCA in models where some parameters (n, ci, Mij) may change at some464

time point in the past. In particular, this gives a way to compute (at least numerically) the465

distribution of coalescence times for a wide family of non-stationary structured models, hence466

allowing us to introduce and study the NSSC.467

5.1 Applying the semigroup property to the structured coalescent468

Previous sections showed that to any given stationary structured population model corresponds469

a transition rate matrix, Q that can be constructed and used to predict the IICR for a given470

sample configuration. Assuming that we sample k genes in configuration α, we call Tαk the471

time to the first coalescence event among these k lineages. We also described how the theory of472

Markov chains allows to compute the probability distribution of Tαk from Q using the formula:473

P(Tαk ≤ t) = Pt(nα, nc) = etQ(nα, nc),

where nα denotes the index of the configuration α and nc is the number of possible configurations474

and corresponds to the index of the coalescence configuration.475

The matrix Pt (which is the transition semigroup) has size nc × nc and is obtained by476

computing the exponential of the matrix tQ. The elements of this nc×nc matrix are functions477

of the parameters of the model (n, ci, Mij), which are assumed to be constant under the478

structured coalescent (stationary model). Now, the semigroup property states that for any479
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positive values t and u we have:480

Pt+u = e(t+u)Q = etQeuQ = PtPu. (4)

By using the semigroup property, the structured coalescent can be extended to non-stationary481

models (e.g., models with changes in the size of one or more demes or in the values of gene flow482

at some point in the past).483

For simplicity, we assume here that the number of demes n is fixed for a given species. The484

reason for doing this is that, once we fix the number of genes sampled at the present (k) and485

the number of demes (n), the number of possible states or configurations of the Markov process486

(|Ek,n|) is also fixed and so is the size of the corresponding transition rate matrix. It will be487

thus straightforward to compute products of matrices, using Equation (4). Keeping n constant488

guarantees that other parameter changes (i.e., ci, Mij) will not modify the state space of the489

Markov jump process, even if the transition probabilities between these states will change. So,490

the size of the matrix Pt will always be the same.491

Assume that at time t = T in the past, some of the parameters Mij or ci change. This492

change has no influence on Ek,n and does not affect the evolution of the process between t = 0493

and t = T . Denote by Q0 the transition rate matrix of the Markov chain for 0 ≤ t ≤ T and494

Q1 the corresponding transition rate matrix for t > T . If we call P̃t the transition semigroup495

of the Markov chain that models this structured scenario with a demographic change event at496

time T , we can compute P̃t by using the semigroup property as follows:497

P̃t =


etQ0 , if t ≤ T

eTQ0e(t−T )Q1 , otherwise.

In particular, the distribution of Tαk , the first coalescence time of k genes sampled in configu-498

ration α under this structured model with a past demographic change event, can be computed499

by:500

P(Tαk ≤ t) = P̃t(nα, nc)
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The pdf of Tαk can then be computed by fTαk (t) = P̃ ′t(nα, nc), where501

P̃ ′t =


etQ0Q0, if t < T

eTQ0e(t−T )Q1Q1, otherwise.

This procedure can be extended to any number of parameter changes, by defining the502

respective transition rate matrices for each of the time intervals between successive changes in503

the parameters of the structured model. Thus, the distribution of coalescence times (and the504

IICR) for structured models in which migration rates and demes sizes can arbitrarily change,505

can be obtained from the computation of matrix exponentials and matrix products.506

Moreover, the NSSC framework allows to compute the IICR for models considering a pop-507

ulation split. For example, a model considering one ancestral population that separated into508

two subpopulation at time T can be easily approximated under the NSSC framework. To do509

this, just set a value of gene flow from the present to time T . Then set a gene flow equal to510

infinity (in practice we use a gene flow high enough so that the two populations behave as a511

panmictic one) from time T to the past. The following section considers a more general model512

of population split that gives a new perspective to the history of evolution of humans and513

Neanderthals.514

5.2 Application: Humans and Neanderthals IICR515

In this section we show how a single model (Figure 5) incorporating both humans and Nean-516

derthals as structured species derived from an unknown ancestral Homo species that was itself517

structured, can be used to predict the PSMC plots inferred for humans and Neanderthals (see518

details below). The IICR for humans and for Neanderthals were predicted using the NSSC519

framework, assuming that one diploid was sampled in a human deme and another in a Nean-520

derthal deme. Following the approach used by Chikhi et al. (2018) we also computed the IICR521

using T2 values simulated with Hudson’s ms software for the same demographic scenario. Fi-522

nally, the PSMC plots inferred from real data are also plotted in the same panel for comparison.523

As an additional validation step we also plot in panel b the PSMC inferred from genomic data524

simulated with ms (i.e., DNA sequences rather the T2 values) for the same scenario together525

with the PSMC from the real sequences.526
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c. 1.1 MYA

c. 510 KYA

c. 287 KYA

c. 192 KYA

c. 55 KYA

M = 0.85

M = 0.55

M = 4.0

M = 0.5

M = 1.0

M = 5.0

M = 4.0

M = 1.0

M = 0.55

Ancestral Species

Humans

Neanderthals

Figure 5: Hypothetical scenario presenting humans and Neanderthals as structured species
derived from and unknown Homo species that was itself structured. The times at which gene
flow (M) changed are indicated by horizontal lines.

In the proposed scenario (see Figure 5), humans and Neanderthals descend from a Homo527

species that was structured in ten interconnected demes, as in Mazet et al. (2016), and whose528

connectivity changed around 3 million years ago (MYA) when the migration rate M = 4Nm529

decreased from 0.85 to 0.55. Then, around 1.1 MYA, M increased significantly from 0.55 to530

4. The following period of reasonably high connectivity (M = 4 corresponds to an Fst of 0.11531

across the whole species) was maintained in the lineage that led to humans until 0.287 MYA532

whereas a significant change occurred when Neanderthals split from that common lineage, some533

time about 0.51 MYA. Our model suggests that to fit the estimated Neanderthal PSMC results534

the original Neanderthals are the result of a “sub-sampling” or split from human demes (n = 7535

demes in our model). These new Neanderthal demes were around 16% of the size of human536

demes. At the same time (0.51 MYA) M decreased from 4 to 0.5 in the Neanderthal lineage537

whereas, as noted above, it remained constant in humans. In the case of Neanderthals, the538

reduction is surprisingly close to the level of connectivity of the ancestral species (between 3539

and 1.1 MYA). It is as if archaic Neanderthals were a group of small demes that derived from540

human demes and that had gone back to an ancestral low connectivity state. Neanderthals541

stayed in that low connectivity state until 287 KYA. One striking result is that a simultaneous542
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change is observed at that time in humans and Neanderthals, and that it is now in the opposite543

direction. Whereas gene flow started to decrease in humans, from M = 4 to M = 1, it doubles544

in Neanderthals from M = 0.5 to M = 1. Then, around 192 KYA, gene flow increases to545

M = 5 in Neanderthals and decreases to M = 0.55 in humans. It is as if in a period of 100546

KY Neanderthals’ gene flow had increased 10-fold, perhaps as a consequence of a geographic547

contraction. Humans on the other hand appear to have maintained a low connectivity until548

the Neolithic as discussed in Mazet et al. (2016). Assuming a mutation rate per generation549

equal to 1.25× 10−8, the proposed scenario is consistent with a deme size of 1276 for humans550

and a deme size of 200 for Neanderthals. Note that under this scenario, deme sizes remain551

constant and the PSMC patterns can be explained only by changes in connectivity. Note also552

that in this figure, we did not simulate the Neolithic expansion, which is why the human IICR553

and PSMC plots continue to decrease to the local deme size in the recent past, as explained in554

Mazet et al. (2016) and Chikhi et al. (2018).555

If we trace the theoretical IICR corresponding to the scenario described above, we can see556

that it is similar to the PSMC plots obtained from real human and Neanderthal data (Figure557

6). Moreover, we simulated 40 full genome length (i.e., 3 GB) sequences with ms under the558

proposed scenario. The first 20 corresponded to a genome sampled in a human deme and the559

last 20 corresponded to a genome sampled in a Neanderthal deme. We then applied the PSMC560

to each of these simulated sequences and compared the results with the PSMC plots obtained561

from real data (Figure 6).562

It is worth stressing that the absolute dates presented here should be taken with a grain of563

salt since they depend on various parameters which we took from previous studies. In Mazet564

et al. (2016) and Chikhi et al. (2018) we used the mutation rates of Li and Durbin (2011)565

but here we used the values of Prufer et al. (2014) to be able to compare our IICR results to566

the PSMC results obtained by the latter study. This explains why several dates are shifted567

compared to those of Mazet et al. (2016).568

Altogether, these results show that the scenario proposed explains the skyline plots ob-569

tained by PSMC from real data. It is thus possible to construct a scenario in which humans570

and Neanderthals are structured and descend from a common ancestral species that was also571

structured. PSMC plots are usually interpreted in terms of population size change. However,572
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PSMC Humans real data Humans Theor. IICR (left) PSMC simulated data (right)
PSMC Neand. real data Neand. Theor. IICR (left) PSMC simulated data (right)
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Figure 6: IICR and PSMC plots for humans and Neanderthals. The PSMC plots obtained
from real human and Neanderthal sequences are similar to the theoretical IICR (left panel)
corresponding to the proposed scenario. Also, they are similar to the PSMC plots obtained
from sequence data simulated under the proposed scenario (right panel).

this scenario explains PSMC plots without any change in population size in humans, and with573

a split, disconnection and deme size reduction in Neanderthals. The scenario, however, requires574

neither gene flow nor admixture between humans and Neanderthals. The simple fact of sam-575

pling diploids in different demes (humans or Neanderthals) generates the very different PSMC576

plots inferred for humans and Neanderthals.577

6 Discussion and perspectives578

6.1 The NSSC as an extension of the structured coalescent579

The theoretical framework presented in this study is closely related to Herbots’ works (Herbots,580

1994; Wilkinson-Herbots, 1998), who introduced the use of transition rate matrices for studying581

structured models and computed the coefficients of the transition rate matrix for many station-582

ary models. Here we extended the existing theory to non-stationary structured models. This583

can impact future population genetic studies in several important ways. The NSSC framework584

gives a theoretical way for computing the cdf and the pdf of T2 under a wide family of models585

of structured population. It also includes a natural way of incorporating past demographic586

events (i.e., changes in deme sizes and/or in gene flow) into models of population structured.587
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Currently, most of the population genetic studies either assume panmixia and try to infer past588

changes in population size or consider that population is structured and infer parameters re-589

lated to the structure without taking into account the changes in the population size. The590

NSSC framework developed here is original because it allows to combine changes in population591

structure and size into the same model. Allowing to incorporate past demographic events into592

a model considering population structure is a step forward that may help to disentangle the593

confounding effects of structure on methods used to reconstruct demographic history that has594

been pointed by previous studies (Chikhi et al., 2010; Heller et al., 2013).595

Moreover, given that theoretical distribution of T2 is known, we can use numerical approxi-596

mations to compute corresponding IICR curves with much lower computational time than the597

simulation based approach used in Chikhi et al. (2018). This gives a very quick way of testing598

alternative scenarios and also lays the theoretical bases to implement an inferential framework599

using the IICR computed from genomic data by methods like PSMC Li and Durbin (2011) or600

MSMC (Schiffels and Durbin, 2013). However, the construction of a such inferential process601

as well as the corresponding validations for simple and complex models would need a full and602

independent study.603

We would like to stress that the theoretical arguments that guarantee the convergence of604

the discrete-time process described in 2.1 to a continuous-time Markov process lay on the605

assumption given in equation 1 (see Herbots (1994) for details). However, some authors have606

proposed methods based on the same approximation to a continuous-time Markov process607

without taking condition 1 into account (Notohara, 1990; Costa and Wilkinson-Herbots, 2017).608

Moreover, simulation software like the popular ms (Hudson, 2002) do not necessarily make609

this hypothesis when dealing with structured models. The question of whether the hypothesis610

given in 1 is crucial or can be removed without affecting the convergence to the continuous-time611

Markov process is beyond the objectives of this work and deserves an independent study too.612

6.2 Humans, Neanderthals, and genomic story-telling613

While the scenario proposed in 5.2 should not be taken at face value, some hypothesis and614

interpretations based on a such scenario may be interesting. This scenario suggests that one615

major event dated around 290 KYA induced a change in connectivity that was simultaneous616
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in humans and Neanderthals. In this sense, we identify a striking consistency across the two617

species. One interpretation could be that the two Homo species responded to the same environ-618

mental change, around 290 KYA, one species (Neanderthals) with an increase in connectivity619

as a possible consequence of a spatial contraction and the other (humans) with a decrease in620

gene flow between populations, as a possible consequence of geographic expansion towards new621

territories. Another interpretation would be that only one of the species (most likely humans),622

reacted to a major environmental change or experienced a major behavioural change, that are623

both yet to be identified. This change in distribution may have led to a change in the in-624

teractions humans had with Neanderthals perhaps as a consequence of a human geographical625

expansion. This could have led the Neanderthals to contract. By doing so, Neanderthal popu-626

lations that used to be little connected started to interact more and behave increasingly like a627

panmictic population, hence reducing the apparent Ne (or more precisely reducing the IICR).628

For reasons that we can only speculate on, Neanderthals went extinct not because they became629

separated and isolated, but rather as a consequence of a likely reduction of their distribution630

which led to an increase of gene flow after long periods during which they survived as small631

isolated populations.632

One should be very careful at this stage as there is not much Neanderthals’ genomic data633

available that could make possible to infer the PSMC for other individuals and determine if634

there is a signature of spatial structure. Here, we focused on n-island (i.e., non-spatial) models,635

even though we have noted in Chikhi et al. (2018) that spatial models will likely be necessary636

to explain the diversity of human PSMC plots. We stress however that the proposed structured637

model provides a new and fundamentally different outlook on Neanderthals extinction. Our638

model explains the decrease in the Neanderthal PSMC plots, not as a decrease in population size639

but rather as a result of decreased isolation of Neanderthal populations, and as a consequence of640

the properties of the IICR in structured models. Indeed, the “humps and bumps“ of IICR plots641

(Chikhi et al., 2018) can be caused by changes in connectivity or by a constitutive property of642

the IICR (Mazet et al., 2016; Chikhi et al., 2018).643

While the presented scenario does not aim to explain all the complexity of human and644

Neanderthal evolution it explains genomic patterns that are currently not explained by several645

existing admixture models. For instance, Chikhi et al. (2018) used coalescent simulations of646
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T2 values to compute the IICR for several models of population structure, and applied their647

simulation-based approach to the admixture and ancient structure models of Yang et al. (2012).648

They found that none of the models used by Yang et al. (2012) could explain the PSMC plots649

of humans and Neanderthals even though some admixture models could explain a modified650

allele frequency spectrum better than models without admixture. Here we proposed a new651

scenario that can explain the PSMC plots of Neanderthals and humans and is thus consistent652

with a no admixture history between humans and Neanderthals. This model is in agreement653

with Eriksson and Manica (2012) who argued that the D-statistic used to quantify Neanderthal654

admixture is influenced by population structure.655

Similarly, Kuhlwilm et al. (2016) used a model with splitting populations to represent the656

evolution of humans, Neanderthals and Denisovans. Their model was not inferred from the657

data but rather chosen a priori and probably on the basis of beliefs (or knowledge) that the658

authors had gathered. While they did carry out several validation steps, the model was not659

inferred from the data. Based on our understanding of the IICR in structured models Mazet660

et al. (2016); Chikhi et al. (2018), it seems very unlikely that their model could explain the661

known PSMC curves of humans and Neanderthals. For instance their model assumes constant662

population sizes and ignores gene flow one of which at least is typically necessary to generate663

humps and bumps in IICR plots Mazet et al. (2016); Chikhi et al. (2018).664

The fact that we mainly used models without changes in population size does not mean665

that we believe that there were no changes in deme size in the history of most species including666

humans or Neanderthals. It however means that such changes are not always necessary to667

explain the data and that changes in connectivity should be better integrated in our under-668

standing of the recent evolution of species Chikhi et al. (2010); Mazet et al. (2016); Chikhi669

et al. (2018). Mazet et al. (2016); Chikhi et al. (2018) showed how different individuals from670

the same species can exhibit very different “demographic histories” simply because they or their671

genes were sampled in different locations of a structured population.672

Changes in connectivity in a complex splitting model produce complex genomic patterns673

that cannot be easily interpreted. By using the IICR and the NSSC we were able to re-interpret674

human and Neanderthal evolution, while stressing that it is only one of probably many possible675

interpretations.676
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The structured scenario used here for humans and Neanderthals ignores spatial structure677

but Chikhi et al. (2018) noted that to understand human evolution, spatial models such as678

stepping stone models would probably be necessary to explain the variability observed in human679

PSMC plots. For Neanderthals similar claims cannot be made yet since only one Neanderthal680

PSMC plot has been published to date. In our model, when Neanderthals split from the681

common ancestral species, they have much smaller demes than humans and these demes are682

less connected. It is interesting to note that a recent genomic study by Rogers et al. (2017)683

suggested that Neanderthals were probably distributed in small and isolated demes. Our results684

are thus consistent with that idea. We note though that there are significant differences. In685

our model, Neanderthals saw a significant increase in gene flow around 290 KYA (maybe more686

recently depending on the mutation rate) and again around 190 KYA.687

The fact that two sets of independent models can explain humans and Neanderthal PSMC688

plots suggests that admixture between humans and Neanderthals is not necessary to explain689

human or Neanderthals PSMC plots. We thus conclude with Chikhi et al. (2018) that claims of690

admixture may be weaker than usually believed, even if we must also conclude that admixture691

cannot be excluded today.692

Beyond humans and Neanderthals, the NSSC modelling presented here should now be de-693

veloped as a full inferential tool to identify quickly and efficiently models that can, and models694

that cannot, explain known genomic features. The transition rate matrices approach can make695

the computation of the IICR extremely efficient. This suggests that the IICR can be computed696

for various models and compared to observed PSMC plots. It can thus be used as a summary697

of genomic data and estimated with the PSMC and MSMC methods, as suggested by Chikhi698

et al. (2018) to exclude models or identify the best models.699

6.3 Increasing the sample size to more than two sequences700

The Markov process approach used in sections 2 and 5 allows to trace back ancestral lineages701

coming from a sample of arbitrary size. This means that we can compute the distribution of702

the first coalescence event in a sample of k genes (denoted Tk) for k ≥ 2. Thus, it is theo-703

retically possible under the NSSC framework to obtain statistical properties of the underlying704

genealogical tree for samples of size k. However, in this study we mainly focused on the IICR705
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as defined by Mazet et al. (2016) for T2. The reason for this is that when k ≥ 3 the number706

of states to consider in the Markov process becomes very large and so does the corresponding707

transition rate matrix. It becomes messy to enumerate all the states and to construct the corre-708

sponding transition rate matrix. Moreover, the computation of the matrix exponential becomes709

intractable under the classic numerical methods (Moler and Loan, 2003). Some optimisations710

need to be done taking advantage of the particular structure of the matrices associated to the711

NSSC framework. Also there is a need for a clear algorithm enumerating all the possible states712

when tracing back more than two ancestral lineages to the MRCA. It may also be possible to713

construct a “reduced” transition rate matrix instead of the one if there are “symmetries” in the714

model. For instance, the n-island model is highly symmetrical (all islands have the same size715

and migration rates are identical between all islands). The advantage of using symmetries is716

that it significantly reduces the size of the transition rate matrix and computation time but717

this idea will not be viable for all structured models.718

In conclusion, one of the great challenges of population genetics inference is to identify the719

structured models that could explain existing genomic data. Until now the choices of structured720

models has been to a large extent arbitrary. The NSSC modelling framework proposed here may721

be a powerful and promising way to overcome that challenge, and perhaps reduce arbitrariness722

and some level of story-telling that has often plagued human evolution discourse. All scripts723

used to carry out the simulations or analyse the data will be made available upon publication724

of the manuscript.725
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1 General algorithm for the construction of the transition
rate matrix for two lineages

We give a general algorithm that can be used to construct the transition rate matrix of a given
model. The first step is to explicitly order all the demes. Then, given the number n of (ordered)
demes the set of all possible configuration for k = 2 lineages is:

E2,n = {α ∈ N2, α = εi + εj with i, j = 1, . . . , n} ∪ {c},

where εi + εj means that there is one lineage in deme i and one lineage in deme j (note that it
could be i = j); and c is the configuration where both lineages have coalesced.

We take the inverse lexicographical order on E2,n. Define φ as a function from E2,n to
{1, 2, ..., |E2,n|} such that φ(α) is the index of α according to the inverse lexicographical order.
Then φ−1 is the inverse of φ and φ−1(i) gives the element of E2,n which is at position i according
the inverse lexicographical order.

Once the function φ is defined and we have the values of C = (c1, . . . , cn) (the size of the
demes) and Mij (the migration matrix), we can use the following algorithm to construct the
transition rate matrix Q:
1: procedure createQmatrix(C, M) . (C: deme sizes; M : migration matrix)
2: n← length(C) . Initialisation; number of demes
3: nc ← n(n+ 1)/2 + 1 . Initialisation; number of states
4: Q← nc × nc matrix full of zeros . Initialisation; transition rate matrix
5: for k in {1 . . . nc − 1} do
6: (x1, x2, . . . , xn)← φ−1(k)
7: for i in {1 . . . n} do
8: if xi > 0 then
9: for j in {1 . . . n} do

10: if j 6= i then
11: (y1, y2, . . . , yn)← (x1, x2, . . . , xn) . migration events
12: yi ← xi − 1
13: yj ← xj + 1
14: l← φ(y1, y2, . . . , yn)
15: Qk,l ← xiMi,j

16: end if
17: end for
18: if xi = 2 then
19: Qk,nc ← 1/ci . coalescence events
20: end if
21: end if
22: end for
23: end for
24: for k in {1 . . . nc − 1} do
25: Qk,k ← −

∑
l 6=kQk,l . rows of the matrix Q must sum to zero

26: end for
27: return Q
28: end procedure
Note that since the last configuration (coalescence) is an absorbing state of the Markov process,
the last row has only zeros.
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2 Constructing the IICR for stationary models. Examples:
stepping stone and continent-island

We now apply the framework and algorithm described above to some stationary models. By a
stationary model we understand a structured model in which the parameters (i.e., number of
demes, sizes of demes and gene flow) remain constant over time. To our knowledge, there is no
analytical expression for the distribution of the coalescence time T2 under these models. For
some of them it is possible to find a simplified transition rate matrix using some symmetries.
In those case we give the corresponding transition rate matrix Q that can be used to compute
numerically the distribution of T2 and the IICR. In other cases it is not possible to get a
simplified version of Q and we used the algorithm given in section 1 to obtain the IICR.

2.1 stepping-stone models

Stepping stone models (Kimura, 1953; Malécot, 1948) assume that the demes are located at
the nodes of a regular lattice in one or two dimensions (hereafter 1D and 2D stepping stone
models). Each deme can have up to four neighbours and migration events are only possible
between neighbouring demes. These models incorporate space, and are thus thought to be more
realistic than the n-island model described above, which implicitly assumes that migration is
as likely between neighbours as it is between distant islands. The border demes can either be
connected with each other, hence forming a torus, or can behave as bouncing borders (Figure
S1). In some models the bouncing borders migrants are assumed to stay in their deme, whereas
in other models they are distributed among the demes to which their deme is connected.

We will distinguish two cases:

1. Without edges: One dimension (1D circular stepping stone) and two dimensions (2D
torus stepping stone). They are more symmetric since all the migration rates are equal.

2. With edges: 1D and 2D stepping stone. Islands located on the edges and in the corners
have fewer neighbours than islands in the middle of the lattice. In order to maintain
simplicity and symmetry, the same migration rate is taken between each pair of islands.
This implicitly assumes that migrants trying to migrate “outside” are bouncing back to
their deme of origin. As we will see there are still more parameters in the model, and the
corresponding transition rate matrices are more complex.

We will give an example of each of the four combinations: one or two dimensions, and with
and without edge effects.

2.1.1 Circular 1D stepping-stone model

Here we assume that the population is divided into n (n ≥ 2) equal-sized islands which are
located on a circle (Figure S2). Each island thus receives immigrants coming only from its two
neighbours.

With the notations of the main manuscript, ∀i = 1 . . . n we set ci = 1, Mi = M , and
Mij =M/2 if |i− j| = 1 or |i− j| = n− 1, Mij = 0 if not.

The symmetry of the model allows us to consider that the configuration of a sample of two
lineages depends only on their distance d, defined as the number of islands separating them, d
ranges from 0 to bn/2c (bxc is the largest integer not larger than x), that is, bn/2c+1 different
values.

The corresponding matrix Q is then of size bn/2c+ 2, the last configuration corresponding
to the coalescence event, which can occur only if both lineages are in the same island. When
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there are five demes (n = 5), then we have bn/2c = 2, the simplified transition rate matrix Q
has thus 4 rows and columns:

Q =


−1− 2M 2M 0 1

M −2M M 0
0 M −M 0
0 0 0 0

 .

The first row represents the transitions away from the configuration in which both lineages
are in the same island. They coalesce with rate 1/ci = 1. Each lineage can migrate with
rate M/2 towards any of the two neighbouring islands. Any of these migrations will lead to a
configuration in which both lineages are in a pair of islands distant of 1 unit (this is the second
configuration that we consider).

From this second configuration (corresponding to the second row), no coalescence can occur
and each lineage can only migrate to the next island, leading to two possible configurations.
Either the migration brings them back on the same island (and we are back to the first con-
figuration with rate M/2) or one of them migrates to the next island hence increasing the
distance between them by one unit to 2 units (this is the third configuration). Since there are
n = 5 islands there cannot be a distance greater than two (islands 2 and 5 or islands 1 and 4
are only 2 units distant) and we have thus all possible configurations of the simplified matrix
Q. Also, since n = 5 is odd, migration events from this third configuration can only lead to
configurations that are identical to itself or to the second one (with rate M/2) (see Figure S2).
Some IICR corresponding to the circular stepping stone are shown in Figures S3, S4 and S5.

When there are six demes (n = 6), then we have bn/2c = 3, the simplified matrix Q has
thus 5 rows and columns:

Q =


−1− 2M 2M 0 0 1

M −2M M 0 0
0 M −2M M 0
0 0 2M −2M 0
0 0 0 0 0

 .

The only difference with the previous example is the fourth configuration, which corresponds
to the largest distance of 3 units. From that configuration all migration events necessary lead
to the third configuration (corresponding to a distance of 2).

2.1.2 1D stepping-stone model with bouncing edges

Here we consider the edge effects since the two islands located at the extremes of the 1D
stepping stone have only one neighbour. The population is divided into n (n ≥ 2) equal-sized
island (see Figure S6).

Keeping the same notations, ∀i = 1 . . . n we set ci = 1, and Mij =
M
2
if |i− j| = 1, Mij = 0

if not.
Since there are fewer symmetries than in the circular model, there are significantly more

possible configurations in the simplified transition rate matrix Q and we now have to take into
account the distance between the two lineages, and the distance from the edge of the linear
stepping stone.

The general case can be analysed using combinatorics approaches but this will not be
presented here and we will simply give the results for n = 4. Even in this case the simplified
version of the transition rate matrix Q has as many as seven rows and seven columns. If we
denote by (i, j) the configuration when one lineage is in island i and the other in island j, with
i, j = 1 . . . 4, and given the central symmetry of the model, we can enumerate the configurations
as follows :

4
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1. (1, 1) which is the same as (4, 4)

2. (1, 2) which is the same as (3, 4)

3. (1, 3) which is the same as (2, 4)

4. (1, 4)

5. (2, 2) which is the same as (3, 3)

6. (2, 3)

7. coalescence c

This allows us to construct the corresponding matrix Q:

Q =



−1−M M 0 0 0 0 1
M/2 −3M/2 M/2 0 M/2 0 0
0 M/2 −3M/2 M/2 0 M/2 0
0 0 M −M 0 0 0
0 M 0 0 −1− 2M M 1
0 0 M 0 M −2M 0
0 0 0 0 0 0 0


.

The IICR corresponding to a 1D stepping stone with bouncing edges is shown in Figure S7.

2.1.3 2D stepping stone models with and without edges

For the 2D stepping stone model, we set, ∀i, j = 1, . . . , n, ci = 1 and Mij = M/4 if islands
i and j are neighbours, and Mij = 0 otherwise. The difference between the models with and
without edges used here is thus in the way neighbours are defined. In the model with borders
the four corner islands have only two neighbours, the islands on the edges of the lattice have
three, and the others have four neighbours (see Figure S1). In the 2D stepping stone model,
we computed the corresponding transition rate matrix from the migration matrix of the model
using the algorithm given in section 1.

Figure S8 shows the IICRs (two haploid genomes sampled in the same deme, or one diploid
genome), for a 3× 3 stepping stone model with and without borders (Figure S1). In the latter
case (no borders), all demes are statistically identical, and there can thus be only one IICRs

plot. In the model with borders, there are three possible ways to sample a diploid individual,
and three IICRs are plotted. This figure confirms the results of Chikhi et al. (2018) by showing
that the IICRs plots for a stepping stone are also S-shaped. They all start in the recent past
at a value equal to the deme size and converge in the ancient past towards the same plateau.
However, it is remarkable that they differ in the trajectory from the present to the plateau
value, depending on the location of the deme (corner, border or centre). These results thus
confirm that in a stepping stone model, two diploid individuals sampled in different demes (i.e.,
geographical regions) will both exhibit signals of population decrease that will be different even
though the population size was constant and they both belonged to the same structured model
(Chikhi et al., 2018).

2.2 Continent-island model

2.2.1 General case

Here we assume a model where the population is divided into n demes (one big deme called
continent and n − 1 equally sized demes, smaller than the continent, called islands). The

5
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continent is connected with the remaining n − 1 islands, but the islands are not connected
between each other (Figure S1). Therefore, migration can only occur between the continent
and the islands, but not between different islands. We order the n demes in such a way that
the continent is deme number 1, whose (scaled) size is c1. We denote c2 the size of the other
islands, and M1/2 the (scaled) migration rate from the continent to each island, and M2/2 the
migration rate from each island to the continent. Recall that we have the following condition:

∀i ∈ {1, . . . n},
∑
j 6=i

Mijci =
∑
j 6=i

Mjicj. (1)

This implies the following constraint:

c1

(
(n− 1)

M1

2

)
= ((n− 1)c2)

M2

2

and thus
c1
c2

=
M2

M1

. (2)

For the case n ≥ 3, the symmetry of the model allows us to consider, for a sample of two
lineages, only five possible different configurations:

1. Both lineages are in the continent. A coalescence can occur with rate 1/c1, leading to
configuration 5, or any of the two lineages may migrate to one of the n− 1 islands, each
with rate M1/2, leading to the second configuration.

2. One lineage is in the continent and the other in an island. There can be no coalescence
event, but three different migration events can occur: if the lineage in the island migrates,
which arrives at rate M2/2, this leads to the first configuration. The lineage in the
continent can migrate at rate M1/2, and it can either reach the island where the other
lineage is (leading to configuration 4 below) or migrate to a different island (leading to
configuration 3 below).

3. The two lineages are in different islands. No coalescence can occur and any of the two
lineages can migrate to the continent, each with rate M2/2, leading to configuration 2.

4. The two lineages are in the same island. Either a coalescence occurs with rate 1/c2, leading
to configuration 5, or a migration event of one of the two lineages to the continent, each
with rate M2/2, leading to configuration 2.

5. The two lineages have coalesced. This is an absorbing state.

We can thus construct, for the case when n ≥ 3, the following 5× 5 transition rate matrix
for a sample of size two (remembering that diagonal terms are obtained such that the sum of
the the terms is zero over each row):

Q =


−(1 + c1M1(n− 1))/c1 M1(n− 1) 0 0 1/c1

M2/2 −(M1(n− 1) +M2)/2 (n− 2)M1/2 M1/2 0
0 M2 −M2 0 0
0 M2 0 −M2 − 1/c2 1/c2
0 0 0 0 0

 .
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If we replaceM2 byM in equation (2) we haveM1 = c2M/c1. Then, we normalise population
sizes by fixing c1 = 1. Denoting c2/c1 = c2 by c, we obtain the following transition rate matrix:

Q =


−1− cM(n− 1) cM(n− 1) 0 0 1

M/2 −M(cn− c+ 1)/2 (n− 2)cM/2 cM/2 0
0 M −M 0 0
0 M 0 −M − 1/c 1/c
0 0 0 0 0

 .

Note that c is the ratio between the sizes of the islands and the continent, and that the diagonal
entries are obtained by the constraint that the sum over each row is zero.

Figure S9 shows the IICRs and IICRd plots for the different sample configurations for a pair
of genomes in a continent-island model with n = 4 (one continent and three islands). As ex-
pected from previous work on the IICR (Mazet et al., 2016; Chikhi et al., 2018), first generation
hybrid individuals, whose genome is sampled in different demes, exhibit IICR plots which would
be interpreted as expansions from an ancient stationary population, even though the total pop-
ulation size is constant. One of the most striking result is that a diploid individual sampled
in one of the islands exhibits an IICR that suggests (forward in time) an ancient stationary
population which first expanded before being subjected to a significant population decrease.
Thus, different individuals will exhibit very different history, not because their populations were
subjected to different demographic histories, but because the IICR does not represent the his-
tory of a population. It represents the coalescent history of a particular sample in a particular
model.

2.2.2 Particular case: only one continent and one island

If we focus on the particular case where there is only one continent and one island (i.e. n = 2),
then configuration 3 in the case n ≥ 3 does not exist anymore. We thus obtain the following
4× 4 transition rate matrix:

Q =


−(1 + c1M1(n− 1))/c1 M1(n− 1) 0 1/c1

M2/2 −(M1 +M2)/2 M1/2 0
0 M2 −M2 − 1/c2 1/c2
0 0 0 0

 .

When we replace M2 by M and c1 by 1 as above, we get:

Q =


−1− cM(n− 1) cM(n− 1) 0 1

M/2 −M(c+ 1)/2 cM/2 0
0 M −M − 1/c 1/c
0 0 0 0

 .
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Figure S1: Diagrams for commonly used structured models. From left to right: n-islands, torus
2D stepping stone, 2D stepping stone and continent-island model.

Figure S2: 1D circular stepping stone with 5 islands

Figure S3: 1D circular stepping stone, n = 5, different values of M
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Figure S4: 1D circular stepping stone, M = 1, different values of n

Figure S5: circular stepping stone, n = 5, M = 1, different sampling : two lineages in the same
island, two lineages in nearby islands, two lineages in distant islands

Figure S6: 1D stepping stone with 4 islands
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Figure S7: Comparison of two 1D Stepping Stone Models: with and without edge. Number of
demes n = 5 and gene flow M = 1. Sampling two lineages in the same deme. When there is
edge effect, we present the three ways to sample in the same island: extreme deme (number 1
or 5), demes right next to the extreme (2 or 4) and the middle one (number 3).
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Figure S8: IICR plots for the 2D stepping stone model. Here we assumed a model with 3×3 = 9
islands and M = 1, with and without edge effect. In the model with edge effect, we plot the
three ways to sample two lineages in the same island: in island 1, 3, 7 or 9 (corner), in island
2, 4, 6 or 8 (middle of the edge), and in island 5 (center of the lattice).
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Figure S9: IICR for a continent-island model. We constructed the transition rate matrix for
a model with n = 4, namely one continent and three same-sized islands. The sizes of the
continent and of the islands were set to c1 = 1 and c2 = 0.05, respectively. In other words, the
continent was 20 times larger than the islands. We set the migration rates to M1/2 = 0.05,
M2/2 = 1 (note that once M1 is set, M2 is constrained to keep inward and outward migrant
gene numbers equal, as required by equation 1). In this model there are only four types of IICR
curves, two IICRs and two IICRd. The first two correspond to the cases where we sample the
two lineages either in the continent or in one of the islands. The IICRd curves correspond to
cases where one gene comes from the continent and the other from an island or when the two
genes come from two different islands.
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