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Abstract 
Motivation: Tumor sequencing has entered an exciting phase with the advent of single-cell techniques 

that are revolutionizing the assessment of single nucleotide variation (SNV) at the highest cellular res-

olution. However, state-of-the-art single-cell sequencing technologies produce data with many missing 

bases (MBs) and incorrect base designations that lead to false-positive (FP) and false-negative (FN) 

detection of somatic mutations. While computational methods are available to make biological infer-

ences in the presence of these errors, the accuracy of the imputed MBs and corrected FPs and FNs 

remains unknown. 

Results: Using computer simulated datasets, we assessed the robustness performance of four existing 

methods (OncoNEM, SCG, SCITE, and SiFit) and one new method (BEAM). BEAM is a Bayesian evo-

lution-aware method that improves the quality of single-cell sequences by using the intrinsic evolution-

ary information in the single-cell data in a molecular phylogenetic framework. Overall, BEAM and SCITE 

performed the best. Most of the methods imputed MBs with high accuracy, but effective detection and 

correction of FPs and FNs require sampling a large number of SNVs. Analysis of an empirical dataset 

shows that computational methods can improve both the quality of tumor single-cell sequences and 

their utility for biological inference. 

Conclusions: Tumor cells descend from pre-existing cells, which creates evolutionary continuity in sin-

gle-cell sequencing datasets. This information enables BEAM and other methods to correctly impute 

missing data and incorrect base assignments, but correction of FPs and FNs remains challenging when 

the number of SNVs sampled is small relative to the number of cells sequenced. 

Availability: BEAM is available on the web at https://github.com/SayakaMiura/BEAM. 

Contact: s.kumar@temple.edu 

 

1 Introduction 

Tumor sequencing is yielding critical insights into somatic drivers of tu-

morigenesis and clonal structure of heterogeneous tumors (Brastianos, et 

al., 2015; Gawad, et al., 2014; Gundem, et al., 2015; McFadden, et al., 

2014; Nassar, et al., 2015; Navin, et al., 2011; Nik-Zainal, et al., 2012; 

Sanborn, et al., 2015; Xue, et al., 2017; Yachida, et al., 2010; Zhao, et al., 

2016). The rapid advancement of single-cell sequencing technologies has 

made it possible to profile somatic mutations carried by individual cells 

(Eirew, et al., 2015; Francis, et al., 2014; Gawad, et al., 2014; Gawad, et 

al., 2016; Huang, et al., 2015; Hughes, et al., 2014; Navin, 2014; Navin, 

2015; Paguirigan, et al., 2015; Shapiro, et al., 2013; Van Loo and Voet, 

2014; Yu, et al., 2014; Zafar, et al., 2016). Many studies have performed 

single-cell sequencing on tumors to identify clones and their evolutionary 

relationships (Eirew, et al., 2015; Gawad, et al., 2014; Hou, et al., 2012; 

Jan, et al., 2012; Li, et al., 2012; Melchor, et al., 2014; Navin, 2015; Potter, 

et al., 2013; Xu, et al., 2012; Yu, et al., 2014). Thus, single-cell sequencing 

will be instrumental in revealing the genetic changes that occur during 

cancer progression, which is a prerequisite for clone identification and the 

inference of evolutionary relationships among cells and relative timing of 

mutation events.  But, the utility of current single-cell sequencing technol-

ogies is limited by many technical issues (Gawad, et al., 2016; Navin, 
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2014; Navin, 2015; Ning, et al., 2014; Wang and Navin, 2015). For exam-

ple, the low physical coverage of some genomic regions and positions pre-

vents unambiguous assignment of a nucleotide base to those positions, 

known as “missing bases” (MBs). Allelic dropout (ADO) events cause 

false-negatives (FNs) when mutant alleles are present but not amplified. 

Infidelity of amplification can cause false-positives (FPs) when errors dur-

ing initial amplification are inherited to subsequent molecules and a “mu-

tation” is identified that was not present in the sampled cell. Sometimes a 

single-cell cannot be completely separated from other cells, which results 

in the sequencing of multiple cells together. FP rates (3×10–5 – 7×10–5 per 

homozygous wild-type positions) and ADO rates (0.2 – 0.4 per heterozy-

gous site) can exceed the rate of occurrence of true mutations (Ross and 

Markowetz, 2016). MBs also occur at frequencies as high as 58% (Hou, 

et al., 2012) in single-cell data sequences (Gawad, et al., 2016). All of 

these problems result in inaccurate single-cell sequences even when high 

sequencing coverage has been achieved.  
Many new methods have been developed to compensate for these issues 

and allow reliable inference from single-cell sequence datasets. For exam-

ple, OncoNEM (Ross and Markowetz, 2016) and BitPhylogeny (Yuan, et 

al., 2015) identify clones and their evolutionary relationship (i.e., clone 

phylogeny). SiFit infers cell phylogeny with the consideration of sequenc-

ing errors (Zafar, et al., 2017). SCITE (Jahn, et al., 2016) and Kim and 

Simon (2014) methods are designed to infer the order of mutation accu-

mulated over time in a tumor from the single-cell sequences. SCG is de-

signed to deal with the issue of multi-cell sequencing when inferring clone 

sequences (Roth, et al., 2016). 

These methods produce corrected single-cell sequences, but they do not 

report their performance in imputing MBs correctly and reducing FPs and 

FNs. The primary focus of these current methods has been to improve the 

quality of biological inferences from error-containing single-cell sequenc-

ing data. Consequently, the absolute and relative performance of current 

methods for reducing the error present in single-cell sequences is not 

known. Significant improvement in the quality of single-cell sequences 

will enable use of a large number of sophisticated methods in molecular 

phylogenetics (Nei and Kumar, 2000) for inferring the evolutionary his-

tory of clones, reconstructing ancestral clones, identifying early and late 

occurring driver mutations, and characterizing inter- and intra-tumor het-

erogeneity. These standard approaches cannot currently be used for tumor 

single-cell data, because they are not robust to the presence of high levels 

of sequence error (Zafar, et al. (2017). For example, a widely-used maxi-

mum likelihood method (Stamatakis, 2014) produces a cell phylogeny 

(Fig. 1b) from simulated single-cell sequence data (with MBs, FPs, and 

FNs) that is clearly very different from the true tree (Fig. 1a). In addition 

to various inconsistencies in the evolutionary relationships, the branch 

lengths leading to the tips of the phylogeny are extensively overestimated, 

because all the cells of a clone (same color) are actually identical (Fig. 

1a). Consequently, the inferred cell phylogeny shows much greater evo-

lutionary depth, resulting in inflated estimates of tumor heterogeneity and 

incorrect mapping of mutations. Therefore, single-cell sequences require 

correction before use in downstream biological analysis. 

In this article, we present the performance of four existing methods 

(OncoNEM, SCG, SCITE, and SiFit) in correctly imputing MBs and re-

ducing the numbers of FPs and FNs. We excluded methods that did not 

produce single-cell sequences, e.g., BitPhylogeny (Yuan, et al., 2015) and 

the method of Kim and Simon (2014). In addition, we propose and test a 

new method, Bayesian Evolution-Aware Method (BEAM), which em-

ploys molecular phylogenetics and a Bayesian prediction framework to 

improve the quality of single-cell sequences (see Methods). Our testing 

focused on computer simulated datasets, as knowledge of the true single-

cell sequences enables direct assessment of the performance of computa-

tional methods (Ross and Markowetz, 2016; Roth, et al., 2016). We also 

analyzed one empirical dataset (Li, et al., 2012) to gauge the utility of 

computational approaches in a real-world scenario and the concordance of 

the inferences produced.  

In the following, we present information on the simulated data used in 

our evaluation of methods, followed by a description of the BEAM ap-

proach and the assumptions, parameters, and accuracy measures used. We 

then present results from our analyses of simulated and empirical data dis-

cuss the patterns observed. 

2 Methods 

2.1 Generation of datasets by computer simulations 

Roth et al. datasets (R1000×50 and R100×50 datasets): We used the 

simulator and parameter settings described by Roth, et al. (2016) to pro-

duce 240 datasets. This simulator first generates a clone phylogeny and 

then the clone genotypes. A new model phylogeny is generated for every 

dataset (e.g., Fig. 1a for 1,000 cells and 10 distinct clones). To generate a 

clone phylogeny, new clones are created by accumulating mutations (a 

mutation rate set to 0.1 per site) until all SNV loci (50) are created. The 

simulator uses an infinite sites assumption, so no mutations override each 

Figure 1. Impact of missing data and sequencing errors on the inferred cell phylogeny. (a) 

The true evolutionary tree of 1,000 cells distributed among tumor clones A-K (shown in different 

colors); the number of cells sampled for each clone is in parentheses. (b) Cell phylogeny inferred 

using simulated single-cell sequences in which 500 SNVs were sampled. Roth, et al. (2016) soft-

ware and parameter settings were used to generate the data with 20% missing bases, 28% false-

positives, and 7% false-negatives. A maximum likelihood method for phylogenetic analysis of 

SNV data (Stamatakis, 2014) was used to infer the cell phylogeny. Branch lengths are drawn to 

scale (number of SNVs/site). The inferred cell phylogeny shows greater sequence divergence than 

the true phylogeny due to the influence of many false-positive mutations. 
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other, and introduces loss of heterozygosity at a rate of 0.2 per site in 

which heterozygous mutants are changed into homozygous mutants with-

out allowing any loss of mutations. A clone genotype is assigned to each 

cell by sampling from a categorical distribution (clonal prevalence), which 

is generated from a symmetric Dirichlet distribution with the parameter 

value of 1. Datasets with 100 and 1,000 cells were produced by Roth, et 

al. (2016) in which doublet single-cell sequencing was simulated by sam-

pling two clone genotypes at different rates: 5%, 10%, 20%, and 40% of 

the cells. The simulator generated allelic count data with ADO by sam-

pling from the empirical distribution of SNV frequencies specified in 

Roth, et al. (2016). The depth of coverage at each locus was chosen from 

a Poisson distribution with a mean of 1,000 reads. The number of variant 

reads was sampled from a Binomial distribution with the parameter se-

lected from an empirical distribution and the depth of coverage sampled 

from a Poisson distribution. To determine if an allele was present or ab-

sent, the Binomial exact test was performed and a p-value threshold of 10–

6 was used. In the resulting data, 3–51% of the observed mutant alleles 

were FPs and 2–20% of the observed homozygous wild-type alleles were 

FNs. We randomly assigned a “missing” value (MB) to 20% of the bases.  
Ross and Markowetz datasets (M10×50 – M50×300 datasets). This col-

lection of 690 datasets was generated using the Ross and Markowetz 

(2016) simulator and parameter settings. In their approach, clone phylog-

enies were first generated by iteratively adding a branch with a node to an 

existing node that was randomly chosen from a growing phylogeny (1, 5, 

10, and 20 clones). Unobserved clones were then introduced by removing 

clones that had at least two descendant clones (0, 1, 2, 3, and 4 unobserved 

clones). A new clone phylogeny was generated for each dataset, and each 

cell is assigned to a clone with a probability corresponding to its size (10, 

20, 30, and 50 cells). Figure 2a shows an example phylogeny of 20 cells 

used to simulate clone evolution for generating M datasets (M10×50 – 

M50×300 datasets) Along the clone phylogeny, true clone genotypes were 

generated by assigning mutations with a uniform probability (50, 100, 

200, and 300 SNVs). Observed genotypes were derived from true geno-

types by introducing MBs (10%, 20%, 30%, and 40% of SNVs), FPs (10–

5%, 5%, 10%, 20%, and 30% of mutant alleles), and FNs (5%, 10%, 20%, 

and 30% of wild-type alleles). 

2.2 Accuracy measurements 

We recorded the numbers of missing bases (MBs), false-positives (FPs), 

and false-negatives (FNs) in the simulated single-cell sequence datasets. 

The total number of correct positions (with no MB, FP, or FN) were ag-

gregated and divided by the product of the number of cells and the number 

of SNVs. This quantity is referred to as the initial sequence quality (Q0), 

which is the same as the mean Hamming distance between the true and 

the inferred single-cell sequence. After the sequence data was subjected to 

computational analysis by BEAM, OncoNEM, SCG, SCITE, and SiFit, 

the sequence quality was reassessed (QBEAM, QOncoNEM, QSCG, QSCITE, and 

QSiFi, respectively). 

While the positions containing MBs, FPs, and FNs are known for sim-

ulated data, no such information exists in the analysis of empirical data 

and the computational methods must be applied to all the positions. There-

fore, we also compared the total numbers of MBs, FPs, and FNs before 

and after the application of a computational method to a dataset. 

2.3 New method evaluated (BEAM)  

The new Bayesian evolution-aware method (BEAM) uses classical mo-

lecular evolutionary phylogenetics to impute missing data and detect base 

assignment errors in the single-cell sequencing data. It is based on the 

premise that significant evolutionary information is present in the initial 

cell sequences regardless of base assignment errors. For example, cells 

from the same clone show a strong tendency to occur in close proximity 

in the initial cell phylogeny (Fig. 1b), as seen by the location of cells 

marked by the same color in the true tree (Fig. 1a), despite the presence 

of a large number of MBs, FPs, and FNs in the simulated sequence data. 

BEAM uses this intrinsic evolutionary information and computes a Bayes-

ian posterior probability (PP) of observing all possible alleles at each SNV 

position in each single-cell sequence, as described below.  

For brevity, we explain BEAM using an example dataset that was gen-

erated using the cell phylogeny in Figure 2a. It consists of 20 single-cells 

from eight distinct clones and 200 SNVs. The simulated sequence dataset 

contained 800 MBs, 429 FPs, and 106 FNs (Fig. 3a). For this data, we first 

infer a cell phylogeny from the observed single-cell sequences by using a 

maximum likelihood method specifically suited for phylogenetic analysis 

of SNV data (Stamatakis, 2014) (Fig. 3a). This approach does not require 

the infinite sites assumption, i.e., mutations are allowed to be lost and they 

may occur at the same genomic position in different cells, which is differ-

ent from the principle applied in OncoNEM, SiFit, and SCITE (Jahn, et 

al., 2016; Ross and Markowetz, 2016; Zafar, et al., 2017).  

In this example, cells from the same clones (the same color) generally 

cluster together, but identical cells of a clone can show extensive observed 

sequence divergence (e.g., brown cells in Fig. 2a and 3a). Given this ini-

tial cell phylogeny and the initial cell sequences, we estimate PP of each 

possible base assignment at each position in a cell sequence. This compu-

tation is explained by considering a set of four sequences (Fig. 4). In this 

tree, x1 to x3 represent the nucleotides at a given position in the tumor cell 

sequence; x4 is the wild-type base from the normal cell sequence. 

We estimate relative probabilities of different bases to assign to x1. We 

represent nucleotides at the three other tip nodes by the vector x = (x2, x3, 

x4) and let y = (y1, y2) represent the vector of nucleotides y1 and y2 at the 

two ancestral nodes in this phylogeny. In order to estimate x1 given the 

single-cell sequences 1 to 4, we compute the Bayesian posterior probabil-

ity for each possible set of nucleotides (x1, y) following Liu, et al. (2016):  

f(x1|x;b) = f(x1) × f(x|y;b) / f(x;b)         (equation 1) 

Here, b is the vector of branch lengths b1, …, b5. We compute the proba-

bility f(x1|x;b) for all possible combinations of x1, y1, and y2. The posterior 

probability (PP) of base A at x1, for example, is given by: 

  PP (x1 = A) = Σy;x1=A  f(A) × f(x|y; b) / f(x; b)   (equation 2) 

We compute PP for each possible base assignment at each position (i) 

in the single-cell sequence 1. If there are m single-cell sequences and n 

SNV positions in the dataset, m×n computations are performed. We as-

signed the base with PP > 0.7 to the position of interest. This cut-off was 

Figure 2: An example cell phylogeny used in computer simulations. In this phy-

logeny, there are eight distinct clones (A − H), each represented by 1 – 5 cells. This 

phylogeny was used to generate one dataset by Ross and Markowetz (2016) simulator. 
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selected because it led to the best performance in computer simulations. 

When none of the bases show PP > 0.7 at a position, we assign the base or 

missing value originally observed at that position. 

In our example, BEAM improves the single cell sequences by imputing 

base identities at MB positions by reducing these from 800 to 93, reducing 

FPs from 429 to 155, and reducing FNs from 106 to 92. Because of these 

improvements, the inferred cell phylogeny becomes more accurate (Fig. 

3b). At the same time, the erroneously long tip branches in the initial phy-

logeny are shortened via elimination of FPs (Fig. 3a).  

In the next step, we use the new cell phylogeny (Fig. 3b) and recompute 

PPs by applying equations 1 and 2. Now, MBs decrease from 93 to 14 and 

FPs and FNs increased slightly (155 to 162 and 92 to 109, respectively; 

Fig. 3c). The cell phylogeny inferred using these single-cell sequences 

looks similar to the true phylogeny (Fig. 2). 

The next step is clone annotation. Clones delineation can proceed by 

using the bootstrap procedure to assess the robustness of the branching 

patterns (Felsenstein, 1985; Nei and Kumar, 2000), merging cells by iter-

ative clustering of nodes along branches (Ross and Markowetz, 2016), or 

by using a k-medoids clustering approach on a distance matrix that is ob-

tained from the latest cell phylogeny (Zafar, et al., 2017). BEAM provides 

the user with an option to assign identical sequences to all the cells of a 

clone by erasing potentially spurious mutations. In our simulations, we 

found that it was best to assign identical clone sequences to cells that were 

connected with effectively zero branch lengths in the phylogeny when the 

number of new mutations was small (default: <2% of SNVs; Fig. 3d). In 

this case, BEAM will finalize sequences by computing PPs of each possi-

ble base assignment and comparing the average PPs between potential ba-

ses in order to assign the base with the highest average PP to all the cells 

from the same clone. Ultimately, BEAM produces refined single-cell se-

quences as well as the cell phylogeny.  

2.4 Options used for analyzing data  

We used default or recommended parameters to perform SCG, SCITE, 

OncoNEM, and BEAM analyses. SCG (Roth, et al., 2016) was performed 

with the doublet option. When the status of mutations (presence or ab-

sence) within a predicted clone genotype had <0.95 probability, we as-

signed missing values to those positions. To assign a clone for each cell, 

SCG additionally computed the probability of having a predicted clone 

genotype for each cell. Thus, we assigned the predicted clone genotype 

with the highest probability. When none of predicted clone genotypes had 

a high probability (>0.01) for a cell, no predicted clone genotype was as-

signed to the cell. Cells lacking clone genotype assignments were re-

moved, and datasets consisting entirely of cells lacking clone genotype 

assignments were removed from accuracy considerations as we consid-

ered that SCG failed to correct sequences for these datasets. 

OncoNEM (Ross and Markowetz, 2016) analyses were performed us-

ing true rates of false positive and false negative base assignment errors in 

the input files (observed sequences). Maximum Bayes factor for which a 

smaller model was preferred was 10, and the model search stopped when 

the best scoring tree stabilized for at least 200 iterations. Mutant nucleo-

tides were assigned when the probability of observing the mutation at a 

Figure 4. A simple tree used in explaining PP computation. xi is a base in 

the single-cell sequence, yi is a base in the ancestral sequence, and bi refers 

to a branch length. 

Figure 3. An overview of the BEAM approach. (a) The initial cell phylogeny, 

along with branch lengths, derived from single-cell sequence data simulated using 

the model tree in Figure 2. The Ross and Markowetz (2016) simulator and parame-

ter settings were used. The number of MBs, FPs, and FNs in the initial sequence 

data are shown in the box. (b) Cell phylogeny produced from the data in which MBs 

were imputed and FPs and FNs were corrected. The remaining MBs, FPs, and FNs 

are shown. (c) Improved cell phylogeny after recomputing PPs by using the phylog-

eny in panel b. (d) The final cell phylogeny produced by BEAM along with the 

remaining MBs, FPs and FNs. The topology and branch lengths are very similar to 

those in the model tree shown in Figure 2. 
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given position was > 0.95 and missing bases were assigned when the prob-

ability of observing the mutant nucleotide was between 0.05 and 0.95. 

SCITE (Jahn, et al., 2016) analyses were performed by giving true rates 

of false-positive and false-negative detections of mutations. The desired 

number of repetitions of the MCMC was 1, and the desired chain length 

of each MCMC repetition was 900,000. Often, mutant nucleotides were 

not assigned to any cells. When mutant nucleotides were not assigned to 

any cells, those sites were assigned with wild-type bases. When multiple 

possible cell phylogenies for a dataset were produced, we used the option 

to marginalize out the alternatives. We distinguished heterozygous and 

homozygous mutations for R1000×50 and R100×50 datasets. When mul-

tiple cell sequences were inferred for a single cell, we replaced incon-

sistent base assignments with MBs. For SiFit (Zafar, et al., 2017) analyses, 

we also input true rates of false positive and false negative detection of 

mutations. The number of iterations run for each restart was 10,000. Cell 

genotypes were inferred by inferring the order of mutations along the cell 

phylogeny predicted by SiFit. LOH rate and deletion rate were set to zero. 

2.4 Empirical data   

We analyzed a single-cell sequencing dataset from muscle-invasive blad-

der tumors (Li, et al., 2012), which has been analyzed previously in other 

articles proposing new methods (Ross and Markowetz, 2016; Zafar, et al., 

2017). We obtained sequenced reads in FASTQ format by using SRA 

toolkit (v2.8.1)(Leinonen, et al., 2011). We mapped these sequenced reads 

to the human genome sequence (hg18 from UCSC database; https://ge-

nome.ucsc.edu/) by using the Burrows-Wheeler alignment tool (BWA 

v0.7.12)(Li and Durbin, 2009) with aln and samse options. Samtools 

(v1.3.1)(Li, et al., 2009) was used to remove reads with low mapping qual-

ity (≤40) when creating BAM files, which were sorted by chromosome 

coordinate. This initial data processing follows the protocol described in 

Zafar, et al. (2016).   

We then used Monovar (Zafar, et al., 2016) to call mutations. We per-

formed mpileup in Samtools with the options presented in the instructions 

for Monovar (i.e., minimum base quality was zero). Monovar analysis was 

performed with the default or recommended options, i.e., offset for prior 

probability of false-positive error was 0.002; offset for prior probability of 

allelic drop out was 0.2; threshold for variant calling was 0.05; and the 

number of threads used in multiprocessing was 2. 

For downstream computational analysis, we selected SNVs in coding 

regions that were identified by Zafar, et al. (2016). Nucleotides identified 

among the majority of normal cells were assigned as wild-types, and the 

other bases found in tumor cells were assigned as mutants. Our analyses 

did not distinguish homozygous and heterozygous mutations. Following 

Zafar, et al. (2016), we assigned missing values to positions with coverage 

depth less than 6x, in addition to positions where Monovar did not predict 

a genotype. Lastly, we removed one cell that contained a very large num-

ber of missing bases.  
  

Figure 5: Improvement in the single-cell sequences realized by using computational methods for processing larger datasets (R1000×50). (a) Sequence quality of data input to 

computational methods and of data output from four computational methods. (b) Proportions of missing bases imputed correctly by computational methods. (c) The ratio of the 

number of FPs and FNs in the output and the input sequences (output/input). 

Figure 6: Improvement in the single-cell sequences for medium sized datasets (R100×50). (a) Sequence quality of the data input to five computational methods and of 

output from computational processing. (b) Proportions of missing bases imputed correctly by computational methods. (c) The ratio of the number of FPs and FNs in output and 

input sequences (output/input). 
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3 Results 

3.1 Analysis of simulated large datasets 

We first present results from the analysis of 120 large datasets that con-

sisted of 1000 cells each with 50 SNVs (R1000×50). The initial sequence 

quality (Q0) of these datasets ranged from 65−75% (Fig. 5a), which was 

caused by 20% MBs, 7−51% FPs, and 2−16% FNs. Four of the five meth-

ods were able to handle these large datasets and produced refined single-

cell sequences of much higher quality than the input (Fig. 5a). The average 

QBEAM was 89% and varied from 80% - 95%. The performance was the 

best when the input sequences contained the fewest errors and the worst 

when the input sequence error was the largest. SCITE performed similarly 

well (QSCITE = 90%) and showed very similar trends describing the rela-

tionship between input and output quality. While SCG also worked well 

(QSCG = 89%), it showed much greater variability in performance. SiFit 

showed the smallest improvements (QSiFit = 80%). Overall, the sequence 

quality improved for all datasets after a computational method was used.  

We found that the correct imputation of MBs was the primary reason 

for the improvements observed for R1000×50 datasets. The fraction of 

MBs found in the single-cell sequences decreased, on average, by 100%, 

100%, 100%, and 96% after the application of BEAM, SCG, and SCITE, 

respectively, and most of the missing data were correctly imputed (88%, 

88%, and 87%, respectively)(Fig. 5b). Although SiFit imputed all of the 

MBs without producing new MBs, SiFit correctly imputed a much smaller 

fraction of MBs than the other methods (70% of MBs were correctly im-

puted). Interestingly, however, no method showed a significant ability to 

reduce the total number FPs and FNs in this data (Fig. 5c), as the numbers 

of FPs and FNs in the output were greater than in the input (output/input 

ratio > 1.0). Of all the methods, SiFit showed the worst average ratio 

(2.18), which can happen because the correction procedure has to be ap-

plied to all the bases in the input sequence data as the positions with FP 

and FN are not known in the real world data analysis. This causes the cre-

ation of many new false positives and false negatives. 

Next, we tested the accuracy of computational methods for datasets in 

which the number of sequenced cells was reduced to 100 (R100×50). 

Again, all methods successfully improved single-cell sequences with very 

similar output sequence quality (Fig. 6a). Outcomes were similar to those 

observed for R1000×50 datasets, except that SiFit performed much better 

and OncoNEM produced results. As with the larger dataset (R1000×50), 

the correct imputation of MBs was the primary improvement observed 

(Fig. 6b), and all of the methods produced sequences in which the num-

bers of FPs and FNs were similar to or much larger than the error in the 

input sequence data (Fig. 6c).  

 In both R1000×50 and R100×50 datasets, we observed that the identi-

fication of FPs and/or FNs was less effective than the imputation of MBs 

for all the methods (Fig. 5c and 6c). We hypothesized that, unlike the im-

putation of MBs, detection and correction of FPs and FNs was very sensi-

tive to the available cell relationship information that can be gleaned from 

the initial error-prone single-cell sequencing data. We tested this hypoth-

esis by increasing the number of SNVs used to 500 (R1000×500), while 

keeping the number of errors per SNV the same as in R1000×50 dataset. 

We applied BEAM and SCG to the new collection of datasets and found 

that the output/input ratio of FPs and FNs for BEAM became much less 

than 1 (Fig. 7a). That is, BEAM was able to produce sequences with ~40% 

fewer FPs and FNs. This improvement over R1000×50 datasets is ex-

plained by the fact that the initial cell relationships derived using the input 

data in BEAM are more accurate when the number of SNVs analyzed is 

large (compare phylogenies in Fig. 7c and 1b). This improvement enables 

the Bayesian analysis to generate better predictions, because the phyloge-

netic prior is closer to the truth.  

Figure 7: Detection and correction of FP and FNs in datasets containing 1000 

cell sequences with SNVs. Scatter graphs show the relationships of the number of 

the FPs and FNs in the input data (x-axis) and the output data  (y-axis) produced by 

(a) BEAM and (b) SCG. Linear regression slopes through the origin are 0.62 and 

1.12, respectively. (c) The initial cell phylogeny when the number of SNVs is small 

(50), which is very different from the true cell phylogeny and the cell phylogeny 

derived using 500 SNVs (Fig. 1b). 

Figure 8: Improvement in the single-cell se-

quences for datasets containing a small num-

ber of cells (M). (a) Sequence quality of the data 

input to computational methods and of the data 

output from all five methods. (b) Proportions of 

missing bases imputed correctly. These are ag-

gregate patterns from the analysis of 690 da-

tasets; see figures 9 and 10 for more detailed re-

sults. 
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The performance of SCG did not improve, and still created more FP 

and FN errors in the output (Fig. 7b). This may be because SCG first clus-

ters cells to identify clones and then assigns clone genotypes. This proce-

dure does not appear to benefit from increased evolutionary information 

in the dataset. Additional analyses support this reasoning, as BEAM, On-

coNEM, SCITE, and SiFit were able to detect and correct many FPs and 

FNs when the number of SNVs sampled was large in relation to the num-

ber of cells sampled. 

3.2 Analysis of smaller datasets 

Next, we next analyzed 690 datasets that were generated by Ross and 

Markowetz (2016) (M datasets). All contained fewer cells than the R1000 

datasets (largest) and R100 datasets (medium-sized), but the M datasets 

contained the same or larger numbers of SNVs (50, 100, 200, and 300 

SNVs) compared to the R datasets. All five methods produced results for 

all datasets, in which the initial quality of cell sequences was between 65 

and 75%. BEAM, SCITE, and SiFit increased the quality of the sequences 

to an average 92% (Fig. 8a), but OncoNEM (82%) was less accurate and 

SCG performed poorly (65%). OncoNEM and SCG did not impute miss-

ing data as accurately as BEAM, SCITE and SiFit (Fig. 8b). 

All methods, except SCG, decreased the numbers of FPs and FNs in the 

analysis of M datasets (Fig. 9), because the ratio of the number of SNVs 

to the number of cells was greater than that for R datasets. In fact, increas-

ing the number of SNVs provides a proportional increase in the perfor-

mance of BEAM, OncoNEM, and SiFit. Patterns observed for M datasets 

(Fig. 9) confirm the results for R datasets with 500 SNVs (Fig. 7): BEAM 

becomes more accurate with larger numbers of SNVs and SCG’s perfor-

mance does not improve. OncoNEM performed the best in correcting FPs 

and FNs in M datasets, but achieves this at the expense of producing many 

MBs (Fig. 8).  

As expected, the quality of the inferred sequences became higher as the 

number of SNVs increased (Fig. 10a). The quality of the inferred se-

quences was higher when the number of cells was high (Fig. 10b), because 

all methods utilize similar cell sequences (or clusters of SNVs) to impute 

MBs and correct FPs and FNs. For example, the PP calculation is affected 

by the base assignments of neighboring cells, which will become more 

accurate when a base assignment is supported by larger number of cells 

from the same clone. Overall, BEAM, SCITE, and SiFit provided the most 

robust results when the number of cells was small, and OncoNEM and 

SCG were greatly impacted if multiple cells per clone were not sampled. 

Lastly, the quality of the output sequences was a direct function of the 

fraction of MBs (Fig. 10c), FPs (Fig. 10d), and FNs (Fig. 10e). 

Before proceeding with an analysis of empirical datasets, it is important 

to note that we did not introduce any loss of mutant alleles in our simula-

tions, e.g., loss of heterozygosity (LOH) and the loss of genomic seg-

ments. Such mutations will negatively impact the performance of most 

methods, as the evolutionary relatedness of sequences will be disturbed by 

such losses. Therefore, such positions should be detected and removed be-

fore applying these computational methods. Also, we found that a high 

rate of doublet sequencing did not adversely impact the performance of 

any of the computational methods (Fig. 10f). This result is consistent with 

the finding in Jahn, et al. (2016), who reported that doublet sequencing did 

not lead to lower accuracy in biological inference, which was a major mo-

tivation for the development of  SCG (Roth, et al., 2016).  

Figure 9: Improving FPs and FNs in the single-cell sequences. The ratio of FP and FN base assignments in the output and the input sequences (output/input) for BEAM, SCG, 

SCITE, SiFit, and OncoNEM. For SCG, the trend was truncated at 2.0 for simplicity. 

Figure 10: The relationship of the output sequence quality with the various sim-

ulation parameters. (a) Number of SNVs in the data, (b) number of cells se-

quenced, and fractions of (c) missing bases, MBs, (d) false positives, FPs, and (e) 

false negatives, FNs in M datasets. (f) Effect of increasing doublet sequencing rates 

on the quality of the output sequencing for R datasets. 
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3.3 Analysis of an empirical dataset  

We applied all five methods to a previously published dataset of a muscle-

invasive bladder tumor (Li, et al., 2012). This dataset contained 55 cells 

with 84 SNVs in protein coding regions (see Methods). The cell 

phylogeny before and after the application of BEAM is shown in Figures 

11a and 11b, respectively. As observed from computer simulated datasets, 

the phylogeny based on the initial single-cell sequences shows high 

diversity among cells, with no clear demarcation of clones; note that we 

colored tips in Figure 11a based on BEAM’s clone predictions in Figure 

11b). Following the application of BEAM, the cell phylogeny shows 

distinct clonal structure with 11 different tumor clones (Fig. 11b).  

Li et al. (2012) suggested that all of the tumor cells were derived from 

a single ancestral cell. This conclusion is supported by BEAM, as the 

inferred cell phylogeny showed that all of the tumor cells had a common 

ancestral cell. Li et al. (2012) reported that a set of 15 cells, which they 

identified as a single clone, arose early in the tumor’s evolution. BEAM 

found that 14 of these cells belonged to a group of early-emerging clones 

(gray, green, and pink clones in Fig. 11b), and one cell was a part of a 

later arising (yellow) clone. Two BEAM-identified clones (purple and red) 

are the closest relatives and were contained in the second clone in Li et al. 

(2012). Cells from the third clone in Li et al. (2012) are divided among 5 

closely-related clones by BEAM. Therefore, the cell phylogeny produced 

by BEAM provides a more detailed clonal structure, which remains 

consistent with the clonal structure (three major clones) presented by Li et 

al. (2012). 

The initial cell phylogeny (Fig. 11a) was transformed into the final cell 

phylogeny (Fig. 11b) by BEAM, because the final single-cell sequences 

contained only 6 positions with missing values. This is a major 

improvement, as the original dataset contained 666 positions with missing 

values. In imputing MBs, BEAM assigned a mutant base to 337 positions 

and the normal base to 323 positions. 63% of the mutant base and 74% of 

the wild-type base assignments made by BEAM were also suggested by 

all other methods (Fig. 11c and d, respectively). In fact, more than 93% 

of BEAM’s assignments for MBs were shared with at least one other 

computational tool. Therefore, extensive consensus exists among 

methods. We also examined whether BEAM’s base assignments for MBs 

were supported by the read count data. As mentioned in an earlier section, 

Monovar does not assign a base when there are only a few reads. So, we 

tested whether the wild type base assignments by BEAM were supported 

by higher read counts than other bases at the examined positions. This was 

indeed the case, the read counts of wild type alleles assignments averaged 

7 times higher. Assignment of mutant alleles to MBs were also supported 

by 22% larger read counts than the wild type alleles. Therefore, read count 

data generally supports the assignments made by BEAM.  

In addition to imputing almost all MBs in the observed sequences (99% 

of MBs), BEAM corrected wrong mutant and wild-type base assignments. 

In these predictions, 105 mutation calls were found to be false positives, 

65% of which were also detected by at least two other methods. That is, 

they were consensus assignments (≥ 3 out of 5 methods). Also, 183 wild-

types were detected to be false negatives, i.e., they should have been 

mutant assignments. 88% of these were consensus assignments, becase at 

least two other methods suggested the same base assignment. Therefore, 

we expect that the use of these computational methods will enable better 

biological conclusions. 

4 Discussion 

We have reported that computational methods are generally capable of 

imputing missing bases with high accuracy and, thus, can improve the 

quality of the tumor single cell sequences. In particular, BEAM, SCG and 

SCITE performed well in imputing missing bases for datasets with a large 

number of cells. Our results also confirm Ross and Markowetz (2016) 

conclusion regarding the accuracy of SCG for datasets representing a large 

number of cells but containing few SNVs. However, we have newly re-

ported that the gain in accuracy is due to correct imputation of missing 

data, and that SCG does not perform well in correcting FPs and FNs. In 

fact, all methods require a large number of SNVs to detect and correct FPs 

and FNs. And, as mentioned earlier, no other methods provided infor-

mation on their performance in accurately imputing MBs and correcting 

FPs and FNs, so our results provide the knowledge of potential errors that 

each method may produce in actual empirical data analyses, which will be 

a guide to analyze the inferences of these methods for practitioners. 

We have shown that, when the number of SNVs sampled is large, many 

methods also show good performance in detecting and correcting false 

positive and false negative mutation assignments. In our analyses, BEAM, 

SCITE, and SiFit methods performed very well for datasets containing a 

Figure 11: Analysis of an empirical dataset. (a) The cell phylogeny produced by using the initial single-cell sequences from Li et al. (2012).  (b) The cell phylogeny produced by 

BEAM after imputing MBs and correcting FPs and FNs. The proportions of imputed MBs that were assigned a (c) wild-type base and (d) a mutant base are shown, with different 

slices indicating the number of methods (in parentheses) that made the same assignment, including BEAM. 
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small number of cells, both for small and large number of SNVs. These 

three methods employ molecular phylogenetics, but BEAM is based ex-

clusively on classical molecular phylogenetic methods and applies a 

Bayesian framework to impute MBs and correct FPs and FNs by using the 

initial cell sequence phylogeny as a prior. In contrast, SCITE and SiFit 

employ a model that account for sequencing error rates in the process of 

inferring the evolutionary tree of cells, which also results in improved cell 

sequences (Jahn, et al., 2016; Zafar, et al., 2017). SiFit produces refined 

cell sequences by inferring the order of mutations along the inferred max-

imum likelihood cell phylogeny with given error rates, whereas SCITE 

uses a Bayesian method to search for a cell phylogeny that intrinsically 

maps mutations along branches in the phylogeny. We consider BEAM and 

SCITE to be in the same class of methods, with the difference that SCITE 

needs to model sequencing error rates but BEAM does not. Interestingly, 

both of them show comparable results, which are among the best. That is, 

BEAM obviates the need to apply the same sequencing error rate model 

throughout the tree, which may be preferable because mutational patterns 

change in cells based on their evolved state (Frank and Nowak, 2004), 

potentially resulting in heterogeneity of error rate models among clones.  

Our results show that methods that incorporate the cell phylogeny are 

more powerful than others, especially when the number of cells per clone 

is small and the number of SNVs is large. This is because BEAM, SiFit, 

and SCITE perform better than OncoNEM, which aims to infer clone phy-

logeny, and SCG, which employs a mixture model that identifies groups 

of cells with shared clone genotypes. Because tumor cells descend from 

pre-existing cells, there is evolutionary continuity in cell sequencing da-

tasets, which enables computational methods to correctly impute missing 

data and make correct base assignments. We find that molecular evolu-

tionary methods that have been successfully applied for species and strain 

phylogenetics for decades serve as a strong foundation for phylogenetic 

approaches with greater power to impute missing data and refine cell se-

quences for small datasets. 
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