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Abstract 

• Background: The popularisation and decreased cost of genome resequencing has resulted in 

an increased use in molecular diagnostics. While there are a number of established and high 

quality bioinfomatic tools for identifying small genetic variants including single nucleotide 

variants and indels, currently there is no established standard for the detection of copy 

number variants (CNVs) from sequence data. The requirement for CNV detection from high 

throughput sequencing has resulted in the development of a large number of software 

packages. These tools typically utilise the sequence data characteristics: read depth, split 

reads, read pairs, and assembly-based techniques. However the additional source of 

information from read balance, defined as relative proportion of reads of each allele at each 

position, has been underutilised in the existing applications.  

• Results: We present Read Balance Validator (RBV), a bioinformatic tool which uses read 

balance for prioritisation and validation of putative CNVs. The software simultaneously 

interrogates nominated regions for the presence of deletions or multiplications, and can 

differentiate larger CNVs from diploid regions. Additionally, the utility of RBV to test for 

inheritance of CNVs is demonstrated in this report. 

• Conclusions: RBV is a CNV validation and prioritisation bioinformatic tool for both genome 

and exome sequencing available as a python package from 

https://github.com/whitneywhitford/RBV  
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Background 

There are four main types of variation in the human genome: single nucleotide variants 

(SNVs), small scale changes in genomic content in the form of short indels, structural 

variants, and aneuploidies. Structural variants consist of medium to large scale changes to the 

genomic structure, and includes both balanced chromosomal rearrangements (such as 
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inversions and translocations) and copy number variants (CNVs). CNVs are typically defined 

as deletions or multiplications of sections of the genome, resulting in changes of genomic 

content greater than 1 kb [1]. Initial efforts to map genetic variation on the whole genome 

scale indicated that SNVs constituted the majority of variation between individuals [2]. 

However, large scale collaborations mapping CNVs in the human genome found on average 

an individual harbours over 1,000 CNVs of 443 bp or greater [3–6]. Taken together, although 

there is a greater number of SNVs per individual (approximately 3.6 million or ~0.1% of the 

genome [5]), due to the greater average size of CNVs and indels, they are responsible for 

greater genomic variance between genomes (up to 48.8 Mb or ~1.5% [6]). 

CNVs play an important role in gene expression with changes in genetic content larger than 

1Mb estimated to be responsible for 17.7% of the genetic impact on gene expression [7]. One 

would expect that the proportion of genetically controlled variation in gene expression would 

be higher if CNVs smaller than 1Mb were included in such analyses. CNVs are able to effect 

gene expression directly through copy number changes of genes and regulatory elements [8], 

and indirectly through unmasking of recessive alleles [9] and positional effects [10]. As such, 

there has been increasing volume of research into the role of CNVs in disease. In particular, 

CNVs have been implicated in the aetiology of neuropsychiatric disorders including 

schizophrenia, intellectual disability, and autism spectrum disorder (as reviewed by Malhotra 

& Sebat, 2012 [11]). Therefore, chromosomal microarray (CMA) has become a first-tier 

clinical diagnostic test for patients with unexplained intellectual disability, autism spectrum 

disorder, or multiple congenital anomalies, with diagnostic yield of 15-20% (reviewed by 

Miller, et al., 2010 [12]). The use of high throughput sequencing (HTS) in the form of whole 

exome sequencing (WES) and whole genome sequencing (WGS) is increasing for diagnostic 

testing, both due to its decreasing cost and ability to investigate genetic variants without prior 

hypotheses. HTS based methods offer the potential of identifying SNV, indels and CNVs not 

detected by current diagnostic CMA thresholds [13] in a single test.  

With the rapid implementation of HTS in molecular diagnostics and research, there has been 

a proliferation in tools for variant identification. There are currently over 80 software 

packages designed to identify CNVs from WGS alone [14]. These tools predominantly rely 

on four characteristics of the sequence data: read depth, split reads, read pairs, and assembly-

based techniques (reviewed by Zhao, et al., 2013 [15]). As yet underutilised, the allele 

balance of reads at a position contributes additional data that can also be exploited for CNV 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2018. ; https://doi.org/10.1101/340166doi: bioRxiv preprint 

https://doi.org/10.1101/340166
http://creativecommons.org/licenses/by-nc/4.0/


variant detection and validation. This ‘read balance’ is computed from relative read coverage 

of each allele at a given locus. The read balance can provide information regarding the copy 

number over the region in the form of the allele-specific copy number (ASCN). Positions in 

diploid regions of the genome are primarily invariant (homozygous) (as demonstrated in 

Figure 1A). This is represented by a relative read distribution peak about 1. The heterozygous 

positions (SNVs) are represented by a normal distribution centred on 0.5, with the reads split 

evenly across the two alleles. A deleted (hemizygous) region should not contain any 

heterozygous positions, resulting in a distribution peak centred around 1, as depicted in 

Figure 1B.  A triplicated region as represented in Figure 1C, however, is expected to have 

homozygous SNVs along with the heterozygous SNVs represented by two normal 

distributions centred on 0.33 and 0.66, indicating that one third of the reads at a given locus 

include one allele, and two thirds of the reads include the other. 

Figure 1 Distribution of relative reads for diploid, haploid, and triploid regions in whole genome 
sequence. A. Expected distribution of all positions in a diploid genome. B. Expected distribution of 
all positions in a hemizygous genome. C. Expected distribution of all positions in a triploid genome. 
 

A number of bioinformatic tools have utilised ASCN for determining CNVs in cancer 

samples [16–24]. These techniques rely on sequence data from paired tumour and normal 

tissue samples, and therefore are not suitable for identifying germline CNVs. Alternatively, 

AS-GENSENG[25] and ERDS[26] incorporate read balance information into their algorithms 

along with read depth based data to discover CNVs. However, there is no independent 

platform providing validation of CNVs using read balance, allowing for integration of this 

additional data source in established bioinformatic pipelines that use alternative CNV 

discovery tools.  
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RBV utilises read balance data to validate CNVs identified by other software packages, 

allowing for prioritisation of CNVs for causation in molecular diagnostic testing. 

Implementation 

RBV is a python package, which incorporates the read balance data from positions within the 

CNV of interest with randomly sampled windows across the genome to predict the 

authenticity of CNVs. The software extracts the read balance information from a variant call 

format (vcf) file, and uses CNV coordinates from an interval list, and can be employed for 

both WGS and WES generated data. The analyses can be refined by restricting investigation 

to callable regions or outside of known gaps in the reference through the inclusion of either 

an interval list of callable regions, or an interval list of gaps in the reference genome provided 

by the user. RBV specificity can be adjusted by the user through setting of parameters quality 

and depth cut-offs at each position in the vcf, readbal cut-off for deletion analyses, and the 

number of randomly generated permutations for the positions and windows. RBV can 

incorporate data derived from popular variant callers (HaplotypeCaller[27], SAMtools[28], 

Freebayes[29], and Platypus[30]), and all aligners. However, issues with read balance 

calculations may arise from non-uniquely aligned regions of the genome if the aligner of 

choice places these reads at more than one position in the genome. We therefore recommend 

using aligners that randomly place reads to only one mappable location by default, such as 

BWA [31]. 

RBV is freely available via https://github.com/whitneywhitford/RBV.  

Results 

The analysis performed by RBV validates two separate hypotheses:  that the putative CNV is 

a deletion with the region being hemizygous or nullizygous, or that the putative CNV is 

multiplicated where the region is triploid or greater. 

Deletion analyses 

Deletions should represent areas of absence of heterozygosity (AOH), therefore the 

probability that a deletion exists (p-value) is calculated based on an empirical cumulative 
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distribution function (eCDF). For this calculation, a large number of windows (default 1,000) 

of the same number of callable base pairs as the CNV of interest are randomly generated and 

the number of heterozygous SNVs in each window is subsequently calculated. The empirical 

p-value is calculated using the eCDF (equation 1) for the resulting distribution, with the 

probability being the proportion of randomly generated windows containing the same number 

or fewer heterozygous SNVs for the CNV in question.  

𝐹𝐹�(𝑡𝑡) =
1
𝑛𝑛
�1x𝑖𝑖≤𝑡𝑡

𝑛𝑛

𝑖𝑖=1

 

(1) 

Where x1, …, xn represent n number of randomly generated windows of the same size as the 

CNV, and t is the number of heterozygous SNVs within the CNV of interest. 

Multiplication analyses 

The multiplication hypothesis is interrogated using the two-sample Kolmogorov–Smirnov 

(KS) test, included in the scipy.stats module for Python. For this analysis we only consider 

the most common allele at each heterozygous position, which gives the distribution in Figure 

2A and Figure 2B. The differences in the distribution of read balance for randomly generated 

diploid heterozygous SNVs and the heterozygous SNVs (default 10,000) in the putative CNV 

are compared using the 2 sample KS test, represented in Figure 2C.  

Figure 2 RBV data analysis curves. A. Read balance of the most common allele from heterozygous 
positions in a diploid genome. B. Read balance of the most common allele from heterozygous 
positions in a triploid genome. C. CDF curve utilised in a 2-sample KS test, comparing distribution of 
read balance between randomly generated heterozygous SNVs throughout the reference diploid 
genome: a 100kb diploid region, and a 100kb triplicated region. 
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Performance 

To analyse the performance of RBV, a number of common clinically relevant CNVs 

identified by Matsunami, et al., [32] were simulated using Enhanced Artificial Genome 

Engine (EAGLE) [33]. Paired regions of the same size and covering the same number of 

callable positions for each CNV were randomly generated to facilitate comparison. The 

ability of RBV to prioritise the simulated clinically relevant CNVs over the randomly 

generated regions is shown in Figure 3. The comparison shows a clear enrichment of the 

simulated CNVs >10kb with lower p-values, highlighting the performance of RBV with 

larger CNVs. Therefore RBV will have reduced sensitivity to detect smaller CNVs due to the 

reliance upon the presence of relatively infrequent heterozygous positions in the randomly 

generated windows for deletion analysis, and the increased power of a 2-sample KS test with 

a greater number of heterozygous positions in the CNV. For the regions analysed >10kb, 

RBV is able to identify statistically significantly (P≥0.05) CNVs with a sensitivity of 0.38 

and 1.0 along with a specificity of 1.0 and 0.9, for deletions and duplications (KS), 

respectively.  

 

Figure 3 Ability of RBV to prioritise authentic CNVs. Comparision between the results from 
simulated common causative CNVs identified by Matsunami, et al., [32] and randomly generated 
diploid regions or the same size and number of callalble positions as each CNV A. Performance of 
RBV for deleted CNVs. B. Performance of RBV for duplicated CNVs. 
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Use case 

Another use for RBV is to test the potential inheritance of CNVs. Using HTS our laboratory 

recently identified a causative 19.6Mb 2q37 terminal deletion in a child with ASD (reported 

in [34]). There was both WES and WGS data available for the affected child, and WES data 

for the parents. RBV was run with default parameters using all four sequence sources, and 

determined the region (GRCh37 Chr2:233834098-253404903; NC_000002.11:g. 

233834098_253404903del) to be deleted with a p-value of 0.0 from both WES and WGS 

from the affected child (with 0 and 92 heterozygous SNVs predicted in the vcf file over the 

region, respectively). In comparison, the two parents had 284 and 294 heterozygous SNVs in 

the exonic sequence in the same region, resulting in p-values of 0.898 and 0.936, 

respectively. This provided evidence that the causative deletion is de novo, which was 

subsequently confirmed using Sanger sequencing. 

Discussion 

As more research and diagnostic centres are investigating the identification of CNVs through 

sequence data, there is increasing need for the ability to prioritise clinically relevant variants 

called from the various CNV detection software platforms. Although there are a number of 

these detection tools that use read depth, split reads, read pairs, and assembly-based 

techniques, the utility of read balance, or ASCN, in CNV analysis has so far been largely 

underutilised. Thus, RBV was developed to exploit this additional piece of sequence 

information to reinforce calls from CNV calling pipelines, allowing for prioritisation of 

variants in the identification of clinically relevant CNVs.  

We compared the results of RBV from simulated clinically relevant CNVs and randomly 

generated diploid regions. From this we were able to display the ability of RBV to 

differentiate genuine CNVs >10kb from diploid loci. Thus, this software has utility in 

highlighting genuine potentially clinically significant CNVs >10kb. However, the utility of 

RBV decreases for smaller variants. We were also able to demonstrate the ability of RBV to 

determine the inheritance of a CNV using an example of a clinical case. 

Conclusions 
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RBV is a software tool designed to assist in the rapidly expanding speciality of identifying 

clinically relevant CNVs through prioritisation. RBV is a python based package and available 

under the open source GPL v3 license at https://github.com/whitneywhitford/RBV. 

The software includes utility for both multiplication and deletion analysis of nominated CNV 

sites for both WES and WGS data. Sample data for the operation of RBV is available via the 

GitHub repository. 

List of abbreviations 

AOH: absence of heterozygosity 

ASCN: Allele-specific copy number 

CMA: Chromosomal microarray 

CNV: Copy number variant 

HTS: High throughput sequencing 

kb: kilo base 

RBV: Read balance validator 

SNV: Single nucleotide variant 

WES: Whole exome sequencing  

WGS: Whole genome sequencing 
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