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Abstract

We investigate the fate of de novo mutations that occur during the in-host replication of a pathogenic

virus, predicting the probability that such mutations are passed on during disease transmission to

a new host. Using influenza A virus as a model organism, we develop a life-history model of

the within-host dynamics of the infection, using a multitype branching process with a coupled

deterministic model to capture the population of available target cells. We quantify the fate of

neutral mutations and mutations affecting five life-history traits: clearance, attachment, budding,

cell death, and eclipse phase timing. Despite the severity of disease transmission bottlenecks, our

results suggest that in a single transmission event, several mutations that appeared de novo in the

donor are likely to be transmitted to the recipient. Even in the absence of a selective advantage for

these mutations, the sustained growth phase inherent in each disease transmission cycle generates

genetic diversity that is not eliminated during the transmission bottleneck.
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INTRODUCTION 1

Many pathogens experience population dynamics characterized by periods of rapid expansion, while 2

a host is colonized, interleaved with extreme bottlenecks during transmission to new hosts. The 3

effect of these transmission cycles on pathogen evolution has been well-studied, with particular focus 4

on long-standing predictions regarding the evolution of virulence (reviewed in Alizon et al. 2009), 5

conflicting pressures of within- and between-host fitness (Gilchrist and Sasaki 2002; Coombs 6

et al. 2007; Day et al. 2011; see Mideo et al. 2008 for review), or broader factors affecting the 7

evolutionary emergence of pathogenic strains (Antia et al. 2003; Iwasa et al. 2003; Reluga et al. 8

2007; Alexander and Day 2010; see Gandon et al. 2012 for review). 9

In the experimental evolution of microbial populations, the impact of population bottlenecks has 10

also been studied in some depth, both theoretically (Bergstrom et al. 1999; Wahl and Gerrish 11

2001; Wahl et al. 2002) and experimentally (Burch and Chao 1999; Elena et al. 2001; Raynes 12

et al. 2014; Lachapelle et al. 2015; Vogwill et al. 2016). While severe population bottlenecks 13

clearly reduce genetic diversity, the period of growth between bottlenecks can have the reverse effect: 14

generating substantial de novo adaptive mutations and promoting their survival (Wahl et al. 2002). 15

The survival of a novel adaptive lineage is predicted to depend not only to the timing and severity 16

of bottlenecks, but on the details of the microbial life history and the trait affected by the mutation 17

(Alexander and Wahl 2008; Patwa and Wahl 2008; Wahl and Zhu 2015). 18

The effects of transmission bottlenecks on the evolution of an RNA virus have been explicitly studied 19

in a series of experimental papers, demonstrating that severe bottlenecks (one surviving individ- 20

ual) reduced fitness (Duarte et al. 1992) despite rapid population expansion between transmission 21

events (Duarte et al. 1993). The magnitude of this effect depends on both the initial fitness of 22

the lineage (Novella et al. 1995) and on bottleneck severity (Novella et al. 1996). In theo- 23

retical work, a model of a viral quasispecies undergoing periodic transmission events predicts that 24
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pathogens should maintain a mutation-selection balance with high virulence if the pathogen is hori- 25

zontally transferred, if the bottleneck size is not too small, and if the number of generations between 26

bottlenecks is large (Bergstrom et al. 1999). 27

Unlike the bottlenecks imposed in serial passaging, transmission bottlenecks in nature are not 28

constrained by experimental control. Thus, key parameters such as the bottleneck size – the number 29

of microbes initiating an infection – have proven difficult to estimate. Nonetheless experimental 30

models (see Abel et al. 2015 for review), as well as recent techniques such as DNA barcoding 31

(Varble et al. 2014) and sequencing of donor-recipient pairs in humans (Poon et al. 2016) have 32

shed new light on this issue. In addition, we note that many human viruses – including human 33

immunodeficiency virus, hepatitis B virus, and influenza A virus – reproduce by viral budding in 34

the context of a potentially limited target cell population (Garoff et al. 1998); the survival of 35

de novo mutations has not yet been predicted for this microbial life history. Thus, the effects of 36

transmission bottlenecks on the genetic diversity of viral pathogens, that is, on the fate of de novo 37

mutations, are as yet unknown. 38

In this contribution, we first develop a deterministic model of the within-host dynamics of early 39

infection by a viral pathogen. We couple this to a detailed life-history model, using a branching 40

process approach to follow the fate of specific de novo mutations that are either phenotypically 41

neutral, or affect various life-history traits. These techniques allow us to predict which adaptive 42

changes in virus life history are most likely to persist, and how the diversity of the viral sequence 43

is predicted to change between donor and recipient. We can thus predict, for example, the rate at 44

which de novo single nucleotide polymorphisms arise during the course of a single infection, and are 45

transmitted to a subsequent host. 46

Throughout the paper, we will illustrate our results with parameters that have been chosen to model 47

the life history and transmission dynamics of influenza A virus (IAV). IAV is an orthomyxovirus 48
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(Bouvier and Palese 2008) that imposes a significant burden on global health, causing seasonal 49

epidemics, sporadic pandemics, morbidity and mortality (Carrat and Flahault 2007). It is 50

estimated that infection with seasonal strains of influenza results in around 36,000 deaths per year 51

in the United States, although exact numbers are difficult to determine (Chowell et al. 2008). 52

Mathematical modelling is a well-established tool for predicting the evolution of influenza (Larson 53

et al. 1976; Bocharov and Romanyukha 1994). Because of the critical importance of immune 54

evasion in influenza, interest has focused on the adaptation of the virus in response to immune 55

pressure, focusing on antigenic drift (Boianelli et al. 2015) and antigenic shift (Feng et al. 2011) 56

in the global influenza pandemic (van de Sandt et al. 2012). Recent models, however, have 57

specifically addressed the within-host dynamics of influenza A virus (Beauchemin et al. 2005; 58

Baccam et al. 2006; Beauchemin and Handel 2011; Smith and Perelson 2011; Dobrovolny 59

et al. 2013; Boianelli et al. 2015). In concert with these contributions, recent empirical work has 60

elucidated the life history of the influenza A virus, providing quantitative estimates of parameters 61

such as the minimum infectious dose (Varble et al. 2014; Poon et al. 2016), the size of the target 62

cell population, and the kinetics of viral budding (Baccam et al. 2006; Beauchemin and Handel 63

2011; Pinilla et al. 2012). Although we now have an increasingly clear picture of the within-host 64

life history of this important pathogen (Beauchemin and Handel 2011; Biggerstaff et al. 65

2014), estimates of the rate at which de novo mutations arise and are transmitted have not yet been 66

available. Our approach allows direct access to this question. 67

LIFE HISTORY AND TRANSMISSION MODEL 68

Deterministic Model We use a system of ordinary differential equations (ODEs) to approximate 69

the within-host dynamics during the early stages of infection by a pathogenic virus, assuming a 70

life history that involves infection of a target cell, an eclipse phase, and finally an infectious stage. 71
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Specifically, we propose: 72

target cells: dyT
dt

= −αyT (t)v(t)

infected (eclipse): dyE
dt

= αyT (t)v(t)− (D + E)yE(t)

budding cells: dyB
dt

= EyE(t)−DyB(t)

free virus: dv
dt

= −Cv(t) +ByB(t)− αyT (t)v(t)


. (1)

Here yT represents susceptible target cells (in the case of influenza A virus we consider epithelial cells 73

of the upper respiratory tract), yE represents cells that are infected by the virus but not yet in the 74

budding stage, yB represents mature infected cells (infected cells that are budding), and v represents 75

the free virus, that is, virions not attached to target cells (Baccam et al. 2006). Parameter B gives 76

the rate at which budding cells produce infectious free virus; C gives the clearance rate for free 77

virus. Infected cells die at constant rate D, while E represents the rate at which infected cells 78

mature, leaving the eclipse phase and becoming budding cells. The parameter α gives the rate of 79

attachment per available target cell. Thus the overall attachment rate for a virion is a function of 80

the time-varying target cell population, and can be written A(t) = αyT (t), with the corresponding 81

mean attachment time, A(t)−1. 82

A limitation of ODE approaches is that all transitions are described by exponential distributions. 83

To relax this assumption, we introduce a sequence of k infected stages through which infected cells 84

pass before reaching the budding stage. This ‘chain of independent exponentials’ allows for more 85

realistic gamma distributions of eclipse times (Wahl and Zhu 2015). Specifically, we replace system 86

(1) with: 87

target cells: dyT
dt

= −αyT (t)v(t)

eclipse stage 1: dy1
dt

= αyT (t)v(t)− (D + kE)y1(t)

eclipse stage 2...k
dyj
dt

= kEyj−1(t)− (D + kE)yj(t) j = 2...k

budding: dyB
dt

= kEyk(t)−DyB(t)

free virus: dv
dt

= −Cv(t) +ByB(t)− αyT (t)v(t)


. (2)

When k = 1, this model reduces to System 1; for k > 1, y1 gives the population of initially infected 88
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cells, which pass through k eclipse stages at rate kE before budding. The transition rate kE is 89

set such that the expected time in the eclipse phase, in total, is fixed at 1/E for any value of k. 90

In the supplementary material, we also investigate a model in which the death term, D, is set to 91

zero during the eclipse stages and only acts during the budding stage. This likewise gives a more 92

realistic distribution for the lifetime of infected cells. 93

The founding virus begins as an initial population of free virus (the initial infectious dose, v(0) = v0) 94

at time t = 0. We do not assume that all viral particles in the founding dose are genetically identical, 95

but we do assume that they are phenotypically identical, that is, they are described by the same 96

parameter values in the deterministic model. As described further in the stochastic model below, we 97

assume that disease transmission occurs at time τ during the peak viral shedding period (when the 98

free virus population, v is at or near a peak value). For the transmission event to a new susceptible 99

individual, a new founding population is sampled from the total viral load. In particular, each free 100

viral particle becomes part of the infectious dose transmitted to the next individual with probability 101

F . The value of F is computed such that for the founding virus, the expected size of the transmitted 102

sample is v0, that is, F = v0/v(τ). Note that only free virions – those not yet attached to a target 103

cell – are transferred to the next individual during transmission. 104

Immune responses clearly play a critical role in the within-host dynamics of viral infections, as well- 105

documented for models of influenza A (Beauchemin and Handel 2011; Smith and Perelson 106

2011; Dobrovolny et al. 2013). In the model proposed above, innate immune mechanisms are 107

included in the clearance rate of free virus and the death rate of infected cells. Because we use 108

this model only until the time of peak viral shedding, which occurs 54.5 hours post infection (see 109

parameter values, below) and before the adaptive immune response is activated (Tamura and 110

Kurata 2004), we do not include the adaptive immune response. We address this issue further in 111

the Discussion. Likewise, we do not include replenishment of the susceptible target cell population 112

over the initial 54.5 hours of the infection. This is consistent with complete desquamation of the 113

epithelium (loss of all ciliated cells) within three days post-infection in murine influenza, followed 114
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by regeneration of the epithelial cells beginning five days post-infection (Ramphal et al. 1979). 115

Stochastic Life History Model To describe the lineage associated with a rare de novo mutation, 116

a stochastic model is required. To gain tractability, we assume that the mutant lineage propagates 117

in an environment for which the overall dynamics of the target cell population are driven by the 118

deterministic system (2). Thus we treat the free virus, eclipse-phase cells and budding cells in the 119

mutant lineage stochastically, but use the deterministic system to predict the susceptible target cell 120

population at any time. 121

As in the deterministic model, free virions clear at a constant rate C or adsorb to susceptible host 122

cells at rate A(t). Note that the attachment rate of a free virion is not constant; it depends on 123

target cell availability, such that A(t) = αyT (t), where yT (t) is the target cell population predicted 124

by system (2). Host cells enter the eclipse phase when a virion adsorbs, and exit the eclipse phase 125

at rate E. After the eclipse phase, mature infected cells bud virions at rate B. Since budding itself 126

does not immediately kill the host cells (Garoff et al. 1998), after infection the cell is subject to 127

a constant death rate D, or in other words the cell remains alive for an average time 1/D. 128

This stochastic growth process can be described as a branching process, using a multitype proba- 129

bility generating function (pgf) to describe a single lineage of free virions (associated with dummy 130

variable (x1), infected cells (x2), and mature cells (x3). As derived in the Appendix, the pgf for this 131

process, G(t, x1, x2, x3), satisfies: 132

∂G

∂t
= (A(t)x2 + C − (A(t) + C)x1)

∂G

∂x1

+(−(E +D)x2 + Ex3 +D)
∂G

∂x2

+(Bx1x3 +D − (D +B)x3)
∂G

∂x3

(3)
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where A(t), B, C, D and E are attachment, budding, clearance, cell death and eclipse matura- 133

tion rates, respectively. Equation (3) captures the time evolution of the pgf, given each of these 134

probabilistic events. As shown in the Appendix, Equation (3) can be converted to a system of 135

ODEs using the standard method of characteristics, and is thus amenable to numerical solution. 136

Analogous to System (2), Equation (3) can also be extended to include a chain of k infected stages 137

before the budding stage, yielding more realistic distributions of the eclipse time. 138

To estimate the probability that the lineage associated with a de novo mutation does not survive the 139

transmission bottleneck, we will need a pgf describing a complete cycle of in-host growth followed 140

by a transmission bottleneck. We thus numerically integrate the pgf G, described above, from time 141

0 to time τ , and then compose it with a pgf describing disease transmission. To describe disease 142

transmission, we simply assume that each free virion in the infected host is transmitted with fixed 143

probability F , as described above. As derived in the appendix, this approach allows us to estimate 144

the probability that a de novo mutation that first occurs at time t0 is transmitted to the next host, 145

1 − X(t0), the rate at which such “surviving” mutations arise at each time during the infection, 146

ν(t0), and, ultimately, the probability that a given mutation occurs de novo and is transmitted to 147

the next host, P . 148

Beneficial Mutations Our goal is to predict the fate of mutations that may arise de novo in the 149

viral population. Although most mutations will be deleterious, we note that the virus population 150

grows by several orders of magnitude (possibly up to seven) during a single infection, and thus dele- 151

terious mutations should be effectively purged by selection. We therefore focus in this contribution 152

on neutral mutations (no phenotypic effect), or rare mutations that confer an adaptive advantage 153

to the virus. For a budding virus, changes in five life history traits can confer a selective advantage: 154

a reduction in either the cell death rate, D̃ = D−∆D, or clearance rate, C̃ = C −∆C ; an increase 155

in the attachment rate, α̃ = α + ∆α, or budding rate, B̃ = B + ∆B; or an increase in the rate at 156

which cells mature and begin budding, Ẽ = E + ∆E. 157
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To estimate the probability that a beneficial mutation ultimately survives, we substitute the pa- 158

rameters above for the analogous parameters in the pgf G(t, x1, x2, x3) and numerically evaluate 159

G(τ, x1, 1, 1), which describes the distribution of free virions in the mutant lineage at time τ , as 160

described in the Appendix. We then compose this function with the pgf describing disease transmis- 161

sion. The accuracy of these numerical solutions was verified using an individual-based Monte Carlo 162

simulation, developed for a reduced model without target cell limitation, similar to the approach 163

described by Patwa and Wahl (2009). 164

Selective Advantage Finally, in order to compare the fitness of mutations affecting different 165

traits, we calculate the selective advantage of each mutation. Following common experimental 166

practice, we define fitness in terms of the doubling time, that is, we assume that in the time required 167

for the founding population to double, the mutant lineage grows by a factor of 2(1 + s). Given the 168

founding growth rate g, we substitute the founding doubling t = ln(2)/g into 2(1 + s) = exp(g̃t) to 169

find the selective advantage of the mutant, s = 2s̄ − 1, where s̄ = g̃
g
− 1. (For the relatively small 170

s values presented here, this definition of the selective advantage differs from the more appropriate 171

but less commonly used s̄ by a constant factor of ln 2.) 172

To estimate the average growth rates, g and g̃, we consider a single cycle of growth, starting from 173

a single free virus at time 0. In this case the partial derivative of G with respect to x1, defined 174

as Z = ∂G(τ, 1, 1, 1)/∂x1, gives the expected number of free virions at time τ , illustrated here for 175

the case k = 1 (Grimmett and Welsh 2014). The derivative was calculated numerically, and the 176

average exponential growth rate of the free virus population is then given by g = lnZ/τ . 177

Parameter values for influenza A virus Parameter values were estimated where possible from 178

the empirical and clinical literature for influenza A virus, and are displayed in Table 1. Beauchemin 179

and Handel 2011 give a range of values for several relevant parameters, from which parameter 180
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estimates for C, D, and E were chosen. Specifically, we take the clearance time to be 3 hours, the 181

cell death time 25 hours, and the eclipse time 6 hours (Baccam et al. 2006; Beauchemin and 182

Handel 2011). 183

Table 1: Parameter Estimates for Influenza A Virus

Parameter Definition Estimate

α per target cell attachment rate 2.375×10−9

hour cell

1/B mean time between each budding event 19 hours
200 infectious virions

1/C mean clearance time 3 hours

1/D mean cell death time 25 hours

1/E mean eclipse time 6 hours

yT (0) initial number of target cells 4× 108

v(0) = v0 number of virions to initiate infection 100

k stages in eclipse phase 30

µ mutation rate (per site per replication) 6.7× 10−7

To estimate the time between each budding event, 1/B, we first consider the total number of 184

virions produced per cell, the “burst size”. For influenza A virus, the burst size has been estimated 185

to be between 1000-10000 virions (Stray and Air 2001). However, not all virions produced are 186

infectious and in fact a large fraction are unable to infect a host cell; the particle to infectivity ratio 187

for influenza A is approximately 50:1 (Martin and Helenius 1991; Roy et al. 2000). Taking the 188

upper bound of the range for burst size, of the 10000 virions produced only 200 are predicted to 189

be infectious. Recall that budding does not kill the host cell, therefore budding time depends on 190

the eclipse and cell death times. An eclipse time of 6 hours and a cell death time of 25 hours gives 191

a budding time of 19 hours. Therefore, the time between each infectious budding event, 1/B, is 192

assumed to be assumed to be 19/200 hours per infectious virion. 193

The number of upper respiratory epithelial cells in a healthy adult is estimated to be 4 × 108
194
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(Baccam et al. 2006). Consistent with the complete desquamation of the epithelium observed in 195

murine influenza (Ramphal et al. 1979), we therefore take yT (0) = 4× 108. In the supplementary 196

material we investigate the sensitivity of our main results to this value. Similarly, we assume that 197

an infection is founded by v0 = 100 virions, consistent with recent sequencing of donor-recipient 198

pairs (Poon et al. 2016). However since values of 10-200 have been suggested in the literature 199

(McCaw et al. 2011; Varble et al. 2014; Peck et al. 2015), we will also demonstrate results over 200

a range of v0 values. 201

To allow for realistically distributed eclipse times, we assume a gamma-distributed eclipse phase by 202

including a sequence of k infected stages before the budding stage. As described above, the mean 203

eclipse time, 1/E, is set to 6 hours. The variance of the eclipse period of influenza A can then be 204

used to estimate k. Pinilla et al. (2012) used a best-fit analysis for kinetic parameters of influenza 205

A to predict a mean eclipse time of 6.6 hours, with an eclipse period standard deviation, σ, of 1.2 206

hours. Since the standard deviation for a gamma distribution with mean m is given by σ = m/
√
k, 207

these values suggest that a realistic value of k is approximately 30. 208

We fix the attachment rate, α, such that that the peak of the free viral load occurs within the 209

reported range for influenza A of 48 to 72 hours post-infection (Wright et al. 2001; Lau et al. 210

2010). The attachment rate α = 2.375×10−9 per hour per cell provided in Table 1 yields a peak time 211

of τ = 54.5 hours, and implies a mean attachment time, 1/A(0), of just over one hour when target 212

cells are plentiful. We assume that disease transmission is most likely at the peak viral shedding 213

time, and thus study a transmission event that occurs at this peak time, τ . Note that when we 214

examine the sensitivity of the model, for example when changing v0, we leave the attachment rate 215

α fixed. We recompute the time course v(t) and assume that the transmission event occurs at the 216

peak value of v(t). The transmission time, τ , then differs slightly between cases. In no case was τ 217

outside the empirically estimated range of 48-72 hours. 218

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/339861doi: bioRxiv preprint 

https://doi.org/10.1101/339861


The probability that each free virion survives the bottleneck and is transmitted to the next sus- 219

ceptible individual is defined as F . This probability is calculated by using the peak number of 220

free virions, v(τ), found by numerically solving model 2. As only free virions contribute to the 221

infectious dose, the fraction of free virions surviving the bottleneck is F = v0/v(τ), where again v0 222

is the founding population size for the next infected individual. 223

The mutation rate for influenza A, per nucleotide per replication, has been estimated as µ = 2×10−6
224

(Nobusawa and Sato 2006). This estimate was obtained for the IAV nonstructural gene during 225

plaque growth, and thus does not include lethal mutations. Neglecting differences in transition and 226

transversion rates, we divide this value by three to estimate the rate at which a specific, non-lethal 227

nucleotide substitution occurs. We investigate the sensitivity of our results to this parameter as 228

well. 229

Data Availability The authors affirm that all data necessary for confirming the conclusions of 230

this article are represented fully within the article and its tables and figures. 231

RESULTS 232

Figure 1 illustrates the deterministic dynamics of System 2, showing the time course of the in- 233

host influenza A infection. The free virus peaks at 54.5 hours, just after the peak in the mature 234

(budding) cell population. Note that in this simplified model, the availability of target cells limits 235

the infection. As described earlier, this model is only accurate while the adaptive immune response 236

remains negligible; although we illustrate the full seven days of infection, we use only the first 54.5 237

hours in the subsequent analysis. 238
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Figure 1: The time course of influenza A infection over the span of a week (168 hours). Parameter
values are provided in Table 1, with the following initial conditions: 4× 108 epithelial cells (target
cells), 100 virions (initial infection dose), all other populations initially zero.

Figure 2 shows what we will refer to as the mutation transmission rate, that is, the probability 239

that at least one copy of a specific mutation arises de novo during an infection time course, survives 240

genetic drift and is successfully transmitted to the subsequent host. Model predictions for beneficial 241

mutations affecting each life history trait are shown versus the selective coefficient, s; the intercept 242

at s = 0 shows the prediction for neutral mutations. Here we have assumed for comparison that 243

the baseline mutation rate is equal for all types of mutation, however the y-axis in Figure 2 scales 244

approximately linearly with µ. In the Supplementary Material, we illustrate results for a wide range 245

of mutation rates. 246
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To interpret these results, the empirical mutation rate must be carefully considered. The rate 247

estimate we use reflects the probability, per replication, that a specific substitution occurs at a 248

specific nucleotide in the influenza A sequence, given that the substitution is non-lethal. Thus for 249

example if the substitution of interest is neutral or effectively neutral, the model predicts that this 250

substitution would occur de novo in the donor and be transmitted to a recipient about once in every 251

2000 transmission events. If the substitution of interest confers a selective advantage, the mutation 252

transmission rate would be higher. Clearly, a large fraction of viable mutations will be deleterious 253

and would be outcompeted before transmission; this would correspond to a lower overall mutation 254

rate as examined in the Supplementary Material and outlined further in the Discussion. 255

The most striking result of Figure 2 is the predicted evolvability of influenza A during a single 256

transmission cycle. The mutation transmission rate of one in two thousand, per substitution per 257

site, may contribute substantial diversity since the influenza A genome is a sequence of over 13,000 258

nucleotides with three possible substitutions per site. We will return to the interpretation and 259

implications of this prediction in the Discussion. 260

The near-overlapping lines in Figure 2 indicate that the mutation transmission rate does not vary 261

widely across life history traits, and also illustrates the maximum selective advantage made possible 262

by improvements to each trait. For example, clearance and cell death rates can only be reduced 263

to zero, limiting the range of s for these traits. Although there is no upper bound on the rates of 264

attachment or maturation to budding (eclipse rate), once these rates are effectively instantaneous, 265

further increases do not appreciably change the growth rate, and so higher s values are also inac- 266

cessible for these traits. Similarly, increases to the budding rate cannot improve the growth rate 267

without bound, due to target cell limitation. 268

Results in Figure 2 assume the default parameter set (Table 1); in particular, 100 virions are chosen 269

at random from the free virus population and transmitted to the new host. In Figure 3, we fix the 270
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Figure 2: Probability that at least one de novo mutation arises during the infection time course
and is passed to the next host, for mutations affecting the life history of influenza A virus, versus
their selective coefficient. Parameters as provided in Table 1.

selective coefficient (s = 0.05) but vary the size of this transmission bottleneck. We find that the 271

mutation transmission rate increases roughly linearly with bottleneck size. 272

The results above compare mutations that have equivalent effects on the overall growth rate of the 273

virus, assuming that the underlying mutation rate is the same for all mutations. Although the 274

question of mutational accessibility is beyond our focus, some sense of the degree to which these 275

mutations might be physiologically achievable can be obtained by considering the relative changes 276
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Figure 3: Probability that at least one de novo mutation arises during the infection time course
and is passed to the next host, for mutations affecting the life history of influenza A virus, versus
the number of virions in the transmission bottleneck. All mutations have a selective advantage of
s = 0.05, except for the curve marked “neutral”, for which s = 0. Other parameters as provided in
Table 1.

required to the trait value. To this end, Figure 4 shows the relative change in each life history 277

parameter necessary to achieve a specific increase in growth rate (selective coefficient). To incur an 278

advantage of s = 0.08, for example, requires less than a 10% change in the rate at which cells leave 279

the eclipse phase and begin budding; in contrast the attachment rate would need to double (change 280

by over 100%) to achieve the same selective advantage. Note again that clearance and cell death 281

rates can only be reduced by at most 100%, limiting the range of their possible effects. For the 282
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other three traits, as described previously, beneficial mutations can produce selection coefficients 283

in the approximate range 0 < s < 0.2, but further rate increases produce diminishing returns and 284

fitness saturates. 285
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Figure 4: The change in selective coefficient achieved by a given absolute percent change in trait
value, for mutations affecting the five life-history traits. For example, large changes in attachment
rate would be required to achieve the same advantage as relatively small changes in eclipse timing.

Figure 2 gives the overall probability that a de novo mutation is generated and passed on. As 286

described in the Methods, this value reflects the integrated probability of occurrence and survival for 287

mutations that could first occur at any time during the infection time course. To better understand 288

the dynamics of this process, in Figure 5 we show the predicted survival probability, the probability 289

that the mutation survives and is transmitted to the next host, for mutations that arise at time 290
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Figure 5: Given that a de novo mutation first occurs at time t0 after the start of the infection, the
probability that at least one copy of it is transmitted to the next host, versus t0. All mutations
have a selective advantage of s = 0.05, except for the curve marked “neutral”, for which s = 0.
Parameters as provided in Table 1. The inset shows the same results with in a semilog plot.

t0 during the infection time course. Despite the fact that transmission to the next host occurs at 291

54.5 hours, the figure gives the impression that mutations that arise after about the first 10 hours 292

of infection have little chance of survival. 293

The results in Figure 5 are mitigated, however, by the fact that many more replication events occur 294

later during the growth phase. To investigate the rate at which surviving mutations (mutations that 295

are transfered to the next host) first occur, we consider the product of the transmission probability 296

for mutations that arise at each time and the number of new virions produced at that time, ByB(t0). 297
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Figure 6: The rate at which transmitted mutations appear, versus the time at which they first
appear. For this figure, the probabilities of being passed on to the next host illustrated in Figure
5 are multiplied by the number of new virions produced at each time, µByB(t0) from Equation 2.
Thus the figure illustrates the relative numbers of ultimately transmitted mutations that occur at
each time during the infection time course.

Figure 6 shows these results. The model predicts that transmitted mutations occur throughout the 298

infection time course, except during the first few hours of infection, when very few new virions are 299

produced, and for a brief window approximately 10 hours before the transmission event. The latter 300

effect presumably occurs because virions produced in this window are unlikely to be free at the time 301

of transmission (infected cells are not transmitted). The oscillations in these curves occur because 302

the founder virions start syncronously at t = 0 as free virions, and must attach and complete the 303

eclipse phase before new virions can be produced. 304
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DISCUSSION 305

We develop a model of within-host pathogen evolution, and use this to predict the fate of de 306

novo mutations that occur during disease transmission cycles. Using parameter values specific to 307

influenza A virus and an estimate of the non-lethal mutation rate for IAV, our results predict that 308

the probability that at least one copy of a de novo nucleotide substitution is transmitted to the 309

subsequent host is about 5× 10−4 per substitution per site, assuming the mutation is either neutral 310

or beneficial. Multiplying by three possible nucleotide changes and the ≈ 13,600 sites in the IAV 311

genome yields an estimate that as many as 20 sites in the founding dose for the recipient may contain 312

substitutions that occurred de novo in the donor. This upper bound, however, must be corrected by 313

the fraction of non-lethal mutations that are either neutral or beneficial. If approximately half of all 314

non-lethal mutations are neutral or beneficial, as reported for another single-stranded RNA animal 315

virus with a similar genome size (Sanjuán et al. 2004), we predict each recipient founding dose will 316

contain about ten de novo substitutions. If the fraction of neutral or beneficial mutations, among 317

non-lethal mutations, is closer to 10% (see Eyre-Walker and Keightley (2007) for review), 318

we predict about two new substitutions per transmission. As demonstrated in Figures S2 and S7, 319

these estimates scale directly with the underlying mutation rate and the size of the transmission 320

bottleneck. Despite this inherent uncertainty, our results predict that a small handful of mutations 321

occurring de novo in the donor will be transmitted to each recipient of IAV. 322

Our approach makes the simplifying assumption that the founding infectious dose in the donor is 323

phenotypically, but not genetically uniform. Thus the predicted de novo mutations may occur on 324

different genetic backgrounds circulating within the donor. Recent evidence suggests that multiple 325

lineages are transmitted between donor-recipient pairs in IAV (Poon et al. 2016), and it seems 326

unlikely that all transmitted lineages would be phenotypically identical. Thus a clear direction for 327

future work would be to expand our approach to track multiple distinct lineages within the host, 328

and predict the fates of mutations occurring on these backgrounds. 329
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We can also take our estimate of (1.5 × 10−3 non-lethal substitutions per site per transmission 330

event)×(10-50% neutral or beneficial) to predict 1.5 − 7.5 × 10−4 substitutions per site per trans- 331

mission event. These values are consistent with the observed evolutionary rate of IAV throughout a 332

seasonal epidemic, 2×10−3 substitutions per site per year in the nonstructural (NS) gene (Kawaoka 333

et al. 1998), if the chain of influenza transmission typically involves 3 to 13 transmission events per 334

season. 335

Although transmission bottlenecks in IAV, as in many other pathogens, can be extremely severe, 336

our results are consistent with previous work demonstrating that the period of growth between 337

population bottlenecks has an even greater impact (Wahl et al. 2002); this period of sustained 338

population expansion promotes the survival of new mutations, as seen more generally in any growing 339

population (Otto and Whitlock 1997). The rapid growth of influenza during early infection, 340

from a relatively small infectious dose to peak viral loads many orders of magnitude larger, implies 341

that neutral substitutions, or mutations conferring even a small benefit, will have ample opportunity 342

to compete with founder strains. This further implies that the life history of influenza A should 343

be well adapted to the disease transmission cycle in humans, in other words, selection has the 344

opportunity to rapidly fine-tune the life histories of pathogens experiencing extreme transmission 345

bottlenecks. 346

This result is consistent with previous theoretical (Bergstrom et al. 1999) and experimental work 347

on viral evolution (Duarte et al. 1992; Duarte et al. 1993; Novella et al. 1995; Novella et al. 348

1996). The latter work focused on the loss of fitness due to population bottlenecks, but fitness 349

could be maintained or improved when the bottleneck size was as large as five or ten individuals 350

(Novella et al. 1996). Similarly, Bergstrom et al. 1999 predicted that viral pathogens would 351

be well-adapted if the bottleneck size is large (or order five or ten), and the number of generations 352

between bottlenecks is large (of order 25 or 50). The parameter values we explored for influenza 353

A correspond to over 25 population doublings between transmission events, with bottleneck sizes 354

of 10 to 200, and are thus consistent with a parameter regime in which the pathogen is able to 355
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improve or maintain fitness. 356

The use of a specific life-history model imposes natural limits on the growth rate and thus the 357

selective advantage that can be achieved by budding viruses. For the parameters specific to influenza 358

A, changes to the clearance rate of the free virus or death rate of infected cells could only achieve a 359

selective advantage of s < 0.1. This occurs mathematically because these rates cannot be reduced 360

below zero; it follows intuitively because even if infected cells or virus never die or lose infectivity, 361

growth remains limited by other processes. Mutations with larger beneficial effects, in the range 362

0.1 < s < 0.2, are accessible only by reducing the eclipse phase, or through very large magnitude 363

changes to the attachment or budding rates. Given that predicted differences in survival probability 364

for the different traits are rather modest (Figure 5), these results suggest that small magnitude 365

changes in the eclipse timing of influenza A will be subject to selective pressure. The limits we 366

observe in the achievable growth rate suggest that larger effect beneficial mutations in influenza A 367

are not only unlikely, they may not be physically possible given the life history of this virus. 368

We have focused this study on the in-host life history of the virus. In principle, however, a beneficial 369

mutation could also affect the transmissibility of the lineage (parameter F ), producing virions that 370

are preferentially transferred to a new host (Handel and Bennett 2008). This would be distinct 371

from mutations that increase viral load; mutations affecting F would increase the probability that 372

an individual viral particle is transmitted, for example by prolonging the stability of the virion in 373

the external environment. 374

These results explore mutations affecting a single trait in isolation. Clearly higher fitness could 375

be achieved by mutations that affect several traits, if beneficial pleiotropic mutations are available. 376

Previous work suggests that the survival probability of pleiotropic mutations typically falls between 377

the predictions obtained for single-trait mutations of equivalent selective effect (Wahl and Zhu 378

2015). In addition, we have investigated the transmission of de novo mutations when rare. Given the 379
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magnitude of the viral loads measured in influenza A, it is clear that multiple beneficial mutations 380

could emerge and compete before the virus is transmitted to a new host. Thus we would expect 381

that clonal interference and multiple mutation dynamics might come into play in describing the 382

adaptive trajectory more fully (Desai and Fisher 2007; Desai et al. 2007). 383

A limitation of the model is that the immune response is not explicitly included as a dynamic 384

variable. Innate immunity is activated when an infection is detected, which is usually within the 385

first few hours of infection. Adaptive immunity, however, is activated, at the earliest, three days 386

post-infection (Tamura and Kurata 2004). Since our model addresses early infection (up to 54.5 387

hours post-infection) adaptive immune effects are assumed negligible. The innate immune response, 388

however, cannot be neglected, as its main purpose is to limit viral replication (van de Sandt et al. 389

2012). In our approach, innate immune mechanisms are included in the viral clearance and infected 390

cell death rates, but are assumed to be constant throughout this early stage of the infection. This 391

phenomenon has been reviewed in some detail in previous work (Smith and Perelson 2011; 392

Boianelli et al. 2015; Baccam et al. 2006; Beauchemin and Handel 2011), from which it is 393

clear that directly incorporating the immune response is necessary for an accurate representation 394

of the full time course of infection (Boianelli et al. 2015). Even when limiting our attention to 395

early infection only, interferon-I and natural killer cells could be included to more accurately model 396

innate immunity (Boianelli et al. 2015). However, the complexity of the immune system creates 397

a significant challenge in accurately modeling influenza A dynamics, even during this initial time 398

period (Boianelli et al. 2015). In particular, many key parameters of immune kinetics remain 399

unquantified, creating additional uncertainty (Dobrovolny et al. 2013). 400

Finally, it is well understood that antigenic drift is associated with the evolution of influenza A virus 401

(Carrat and Flahault 2007). Antigenic drift would be formalized in our model as a reduction in 402

the death rate of infected cells or the clearance rate of free virions, as these life history parameters 403

would be improved by any immune evasion. In fact, Figure 2 predicts that for mutations with 404

small selective effects (s < 0.08), of all possible mutations with the same selective effect, clearance 405
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mutations are the most likely to survive when rare. Thus mutations affecting the viral clearance 406

rate are most likely to adapt. This could shed light on the mechanisms underlying the maintenance 407

of antigenic drift, however much remains to be understood about the complex transmission and 408

evolutionary dynamics of influenza A virus. It is our hope that predicting the fate of de novo 409

mutations affecting IAV life history is an important piece of this interesting puzzle. 410
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APPENDIX 566

Let plmn(t) be the probability that l free virions, m infected cells, and n mature cells exist in the focal 567

lineage at time t, and let A(t) denote the time-dependent per virion attachment rate, which depends 568

on the available target cells, yT (t), as predicted in the deterministic model 1. Parameters B, C, and 569

D represent the budding, clearance and cell death rates, while E denotes the rate at which cells exit 570

the eclipse phase and begin budding. Although the stochastic model follows the mutant lineage, for 571

simplicity we will use A as opposed to Ã, etc., throughout the Appendix. Also for notational clarity 572

we illustrate the case k = 1. Taking into account the stochastic events of attachment, budding, 573

clearance, cell death and cell maturation, is is straightforward to demonstrate that the probability 574

generation function (pgf) describing the time evolution of the lineage must satisfy: 575

G(t+ ∆t,−→x ) = G(t,−→x ) +
∑
l,m,n

plmn(t)lC∆t[−xl1xm2 xn3 + xl−1
1 xm2 x

n
3 ] +

∑
l,m,n

plmn(t)lA(t)∆t[−xl1xm2 xn3 + xl−1
1 xm+1

2 xn3 ] +

∑
l,m,n

plmn(t)mE∆t[−xl1xm2 xn3 + xl1x
m−1
2 xn+1

3 ] +

∑
l,m,n

plmn(t)mD∆t[−xl1xm2 xn3 + xl1x
m−1
2 xn3 ] +

∑
l,m,n

plmn(t)nB∆t[−xl1xm2 xn3 + xl+1
1 xm2 x

n
3 ] +

∑
l,m,n

plmn(t)nD∆t[−xl1xm2 xn3 + xl1x
m
2 x

n−1
3 ]

(4)

Taking the limit as ∆t→ 0, Equation 4 yields the following linear partial differential equation: 576

∂G

∂t
= (A(t)x2 + C − (A(t) + C)x1)

∂G

∂x1

+(−(E +D)x2 + Ex3 +D)
∂G

∂x2

+(Bx1x3 +D − (D +B)x3)
∂G

∂x3

(5)
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Equation 5 can be converted to a system of ordinary differential equations using the standard

method of characteristics, which yields the following system of ordinary differential equations

dx1

dT
= A(t)x2 + C − (A(t) + C)x1

dx2

dT
= −(E +D)x2 + Ex3 +D

dx3

dT
= Bx1x3 +D − (D +B)x3

dt

dT
= −1


.

This system can be solved numerically to determine the value of G at time τ , given the known initial 577

condition corresponding to a single free virion at time t0, G(t0, x1, x2, x3) = x1. For convenience we 578

let G(t0, x1) = G(τ, x1, 1, 1) under this initial condition. 579

The function G(t0, x1), then, gives the distribution of free virions at time τ , just before disease 580

transmission, given the lineage began with a single virion at time t0. Composing this with the pgf 581

of the bottleneck process, we obtain G(t0, 1 − F + Fx1) as the pgf describing the distribution of 582

free virions transmitted to a new host (given that one new host is infected). The probability that 583

a given lineage, that arose at time t0, is not transmitted to the new host is obtained by evaluating 584

at x1 = 0: 585

X(t0) = G(t0, 1− F ) .

We then use this to compute the expected rate at which surviving mutant strains appear at time 586

t0, where “surviving” means the lineage will be transfered to the next host: 587

ν(t0) = µ (1−X(t0))B yB(t0)

where µ is the probability that the mutation of interest occurs, per new virion produced. We use 588

this to compute S, the expected number of times that the mutation of interest occurs de novo, over 589
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the course of the infection, and survives to be transmitted to the next host: 590

S =

∫ τ

0

ν(t0)dt0 .

Consider dividing the time interval (0, τ) such that δt = τ/N and ti = iδt. In this case for small 591

δt, the quantity ν(t0)δt approximates the probability that a surviving mutation occurs during time 592

interval (t0, t0 + δt). This allows us to compute P , the probability that the mutation of interest 593

occurs de novo during the course of the infection and is transmitted to the new host: 594

P = 1− lim
N→∞

N−1∏
i=0

(
1− ν(ti)

τ

N

)

which by product integration can be succinctly expressed as: 595

P = 1− e−S .

We also compute the expected number of mutant virions transmitted to the recipient host, N . We 596

do this by first computing ∂xG(t0, x)|x=1, which gives the expected number of mutant virions at 597

time τ , given that a mutant virion was produced at time t0. We multiply this value by the number 598

of mutant virions being produced at time t0, µByB(t0), and integrate from 0 to τ , to get the total 599

expected number of mutant virions at time τ . Multiplying by the bottleneck fraction, F , gives the 600

expected number of mutant virions transmitted to the recipient host: 601

N = F

∫ τ

0

µByB(t0) · ∂xG(t0, x)|x=1dt0 .

Note that S and N differ because each de novo mutation produces a lineage that could in principle 602

contribute more than one virion to the recipient. 603
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Supplementary Figures

S1. Expected number of successful de novo occurrences, S
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Figure S1: The number of times that a given mutation is expected to arise de novo, during a single
infection time course, and produce a lineage that is transmitted to the next infected individual (S,
as described in the Appendix), versus the selective coefficient. This quantity scales linearly with µ,
the mutation rate.
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S2. Expected number of transmitted mutant virions, N
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Figure S2: The expected number of virions transmitted to the recipient that have arisen de novo
during a single infection time course in the donor (N , as described in the Appendix), versus the
selective coefficient.
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S3. Effect of non-exponential cell lifetimes: Deterministic time course
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Figure S3: The time course of influenza A infection over the span of a week (168 hours). This
figure is analogous to Figure 1, except that the cell death rate, D, has been set to zero during the
eclipse stages, and increased during the budding phase such that the mean infected cell lifetime
is unchanged. Other parameters as provided in Table 1. The infection time course is relatively
insensitive to these changes in the distribution of infected cell lifetimes.
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S4. Effect of non-exponential cell lifetimes: Transmission probability
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Figure S4: The probability that at least one de novo mutation arises during the infection time
course and is passed to the next host, P , versus the selective coefficient, s. This figure is analogous
to Figure 2, except that the cell death rate, D, has been set to zero during the eclipse stages, and
increased during the budding phase to yield the same mean infected cell lifetime. Other parameters
as provided in Table 1. We find that the transmission of de novo mutations is insensitive to these
changes in the distribution of infected cell lifetimes.
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S5. Effect of available target cells: Deterministic time course
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Figure S5: The time course of influenza A infection over the span of a week (168 hours). This figure
is analogous to Figure 1, except that the initial target cell population, yT (0), has been reduced by a
factor of 3. Although complete desquamation is the expected outcome of the infection, it is possible
that spatial considerations might spare a fraction of the epithelial cells in the upper respiratory
tract; we therefore included this case in sensitivity analysis. Other parameters as provided in Table
1. Comparing with Figure 1, the magnitude of the infection is scaled and the dynamics are slightly
delayed. However this has little impact on the probability of transmission of a mutation (see Figure
S6).
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S6. Effect of number of available target cells: Transmission probability
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Figure S6: The probability that at least one de novo mutation arises during the infection time
course and is passed to the next host, P , versus the selective coefficient, s. This figure is analogous
to Figure 2, except that the initial target cell population, yT (0), has been reduced by a factor of 3.
Other parameters are as provided in Table 1. We find that the transmission of de novo mutations
is insensitive to the initial number of available target cells.
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S7. Effect of varying mutation rate
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Figure S7: The effect of mutation rate on the probability of transmission. The probability that
at least one copy of a de novo mutation is transmitted to the next host is plotted against the
selective coefficient, for a mutation that increases the viral attachment rate. The mutation rate per
replication event, µ, is varied. Other parameters as provided in Table 1.
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