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Abstract

Biomedical repositories such as the UK Biobank provide increasing access to prospectively collected cardiac

imaging, however these data are unlabeled which creates barriers to their use in supervised machine learning. We

develop a weakly supervised deep learning model for classification of aortic valve malformations using up to 4,000

unlabeled cardiac MRI sequences. Instead of requiring highly curated training data, weak supervision relies on

noisy heuristics defined by domain experts to programmatically generate large-scale, imperfect training labels.

For aortic valve classification, models trained with imperfect labels substantially outperform a supervised model

trained on hand-labeled MRIs. In an orthogonal validation experiment using health outcomes data, our model

identifies individuals with a 1.8-fold increase in risk of a major adverse cardiac event. This work formalizes a

learning baseline for aortic valve classification and outlines a general strategy for using weak supervision to train

machine learning models using unlabeled medical images at scale.
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Introduction

Aortic valve disease inclusive of bicuspid aortic valve (BAV) is the most common congenital malformation of

the heart, occurring in 0.5-2% of the general population [1], and is associated with a variety of poor health

outcomes [2]. In isolation, valvular dysfunction in BAV often leads to substantial cardiovascular pathology requiring

surgical replacement of the aortic valve [3]. Machine learning models for automatically identifying aortic valve

malformations via medical imaging could enable new insights into genetic and epidemiological associations with

cardiac morphology. However, our understanding of the etiologies of BAV and its disease correlates have been

limited by the variability in age of diagnosis and the absence of large, prospectively collected imaging datasets.

Obtaining labeled training data is one of the largest practical roadblocks to building machine learning models

for use in medicine [4]. Recent deep learning efforts in medical imaging for detecting diabetic retinopathy [5]

and cancerous skin lesions [6] each required more than 100,000 labeled images annotated by multiple physicians.

Standard approaches to increase the volume of labeled data are poorly suited to medical images due to the domain

expertise required and the logistics of working with protected health information. More fundamentally, labels are

static artifacts with sunk costs: labels themselves do not transfer to different datasets and changes to annotation

guidelines necessitate re-labeling data.

Recently, the UK Biobank released a dataset of >500,000 individuals with comprehensive medical record data

prior to enrollment along with long-term followup. Importantly, these data also include prospectively obtained

medical imaging and genome-wide genotyping data on 100,000 participants [7], including the first release of phase-

contrast cardiac magnetic resonance imaging (MRI) sequences for 14,328 subjects. The high-dimensionality and

overall complexity of these images makes them appealing candidates for use with deep learning [8]. However, these

prospectively collected MRIs are unlabeled, and the low prevalence of malformations such as aortic valve disease

introduces considerable challenges in building labeled datasets at the scale required to train deep learning models.

In this work, we present a deep learning model for aortic valve malformation classification that is trained using

largely unlabeled MRI data building on the paradigm of weak-supervision. Instead of requiring hand-labeled

examples from cardiologists, we use new methods [9, 10] to encode domain knowledge in the form of multiple,

noisy heuristics or labeling functions which are applied to unlabeled data to generate imperfect training labels.

This approach uses a factor graph-based model to estimate the unobserved accuracies of these labeling functions

as well as infer statistical dependencies among labeling functions [11, 12]. The resulting factor graph model is

applied to unlabeled data to produce “de-noised” probabilistic labels, which are used to train a discriminative

train a state-of-the-art hybrid Convolutional Neural Network / Long Short Term Memory (CNN-LSTM) model

to classify aortic valve malformation. To assess the real-world relevance of our image classification model, we

apply the CNN-LSTM to a cohort of 9,230 new patients with long-term outcome and MRI data from the UK
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Biobank. In patients identified by our classifier as having BAV, we find a 1.8-fold increase in risk of a major

adverse cardiac event. These findings demonstrate how weakly supervised methods help mitigate the lack of

expert-labeled training data in cardiac imaging settings, and how real-world health outcomes can be learned

directly from large-scale, unlabeled medical imaging data.
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Results

Experiments

We compare our weakly supervised models against two traditionally supervised baselines using identical CNN-

LSTM architectures: (1) expert labels alone and (2) expert labels with data augmentation. Our supervised

BASELINE model was trained using all hand-labeled MRIs from the development set. Due to class imbalance

(6:100), training data was rebalanced by oversampling BAV cases with replacement.

We evaluate the impact of training set size on weak supervision performance. These models are trained using

only weakly labeled training data, i.e., no hand-labeled MRIs, built using a set of patients disjoint from our 412

gold annotation cohort. All probabilistic labels are split into positive and negative bins using a threshold of 0.5

and sampled uniformly at random with replacement to create balanced, training sets, e.g., sample 50 BAV and

50 TAV for a training set size of 100. We used balanced samples sizes of {50, 250, 500, 1000, 2000, 4000}. The

final class balance for all 4,239 weak labels in the training set was 264/3975 BAV/TAV. Full scale-up metrics for

weak labels are shown in Fig 1. Mean precision increased 128% (30.7 to 70.0) using 4,239 weakly labeled MRIs;

sensitivity (recall) matched performance of the expert-labeled baseline (53.3 vs. 60.0). At ≥ 1264 weak training

examples, all models exceeded the performance of a model trained on 106 expert-labeled MRIs.

In Table 1, we report baseline model performance and the best weak supervision models found across all

scale-up experiments. Models trained with 4,239 weak labels and augmentation performed best overall, matching

or exceeding all metrics compared to the best performing baseline model, expert labels with augmentation. The

best weak supervision model had a 64% improvement in mean F1 score (37.8 to 61.4) and 128% higher mean

precision (30.7 to 70.0). This model had higher mean area under the ROC curve (AUROC) (+13%) and normalized

discounted cumulative gain (NDCG) (+57%) scores. See Supplementary Figure 1 for ROC plots across all scale-up

sizes.

Table 2 shows individual labeling function performance on test data, where metrics were computed per-frame.

Precision, recall, and F1 scores were calculated by counting abstain votes as TAV labels, reflecting a strong prior

on TAV cases. Individually, each function was a very weak classifier with poor precision (0 - 25.0) and recall (0 -

69.1), as well as mixed coverage (9.8% - 90%) and substantial conflict with other labeling functions (8 - 41.7%).

Note that labeling functions provide both negative and positive class supervision, and sometimes performed best

with a specific class, e.g., LF Intensity targets negative (TAV) cases while LF Perimeter targets positive (BAV)

cases.

In total, 570/9,230 subjects were classified as having BAV. In a time-to-event analysis encompassing up to 22

years of follow-up on the 9,230 included participants with cardiac MRI data, the individuals with model-classified
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Fig 1. Weak supervision scale up performance metrics. Metrics include (a) positive predictive value
(precision); (b) sensitivity (recall); (c) area under the ROC curve (AUROC); and (d) normalized discounted
cumulative gain (NDCG). The y-axis is the score in [0,100] and the x-axis is the number of unlabeled MRIs used
for training. The dashed horizontal line indicates the expert-labeled baseline model with augmentations. Shaded
regions and grey horizontal lines indicate 95% confidence intervals (where n = the number of unlabeled training
MRIs).

Table 1. Best Weak Supervision vs. Hand Labeled Models

Model Size Precision Recall F1 AUROC NDCG
HL 106 10.0 [1.3, 18.7] 20.0 [5.4, 34.6] 12.8 [2.5, 23.1] 85.4 [80.8, 90.0] 40.6 [36.4, 44.9]
HL+Aug. 106 30.7 [20.8, 40.6] 53.3 [38.7, 68.0] 37.8 [27.7, 47.9] 83.4 [79.5, 87.3] 55.7 [51.5, 59.9]
WS 4239 83.3 [64.5, 100.0] 53.3 [38.7, 68.0] 60.8 [50.6, 71.0] 91.4 [87.8, 95.0] 84.5 [81.1, 88.0]
WS+Aug. 4239 70.0 [55.4, 84.6] 60.0 [48.1, 72.0] 61.4 [55.3, 67.5] 94.4 [91.3, 97.6] 87.3 [83.6, 91.0]
WS indicates weak supervision models, HL indicates hand-labeled models, and Aug. indicates augmentation.

Scores are computed with 95% confidence intervals (where n = the size column), with bold text indicating best
performance overall.

Table 2. Frame-level Labeling Function Performance Metrics

Labeling Functions Coverage% Conflict% Pos. Acc. Neg. Acc. Precision Recall F1
LF Area 22.6 11.5 76.5 62.9 25.0 31.0 27.7
LF Perimeter 9.8 8.0 100.0 0.0 20.8 26.2 23.2
LF Eccentricity 87.4 38.9 85.7 42.3 12.7 85.7 22.1
LF Intensity 28.9 24.1 0.0 69.0 0.0 0.0 0.0
LF Ratio 90.4 41.7 67.5 49.6 10.7 64.3 18.3

BAV showed a significantly lower MACE-free survival (Hazard Ratio 1.8; 95% confidence interval 1.3-2.4, p

= 8.83e-05 log-rank test) (see Fig. 2) consistent with prior knowledge of co-incidence of BAV with comorbid
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cardiovascular disease [13, 14]. In a linear model adjusted for age, sex, smoking, hyperlipidemia, diabetes, and

BMI, individuals with model-classified BAV displayed a 2.5 mmHg increase in systolic blood pressure (p < 0.001).

Fig 2. Unadjusted Survival from MACE in 9,230 Participants Stratified by Model Classification.
MACE occurred in 59 of 570 individuals (10.4%) classified as BAV compared to 511 of 8660 individuals (5.9%)
classified as TAV over the course of a median 19 years of follow up (Hazard Ratio 1.8; 95% confidence interval
1.3-2.4, p = 8.83e-05 log-rank test).

Fig. 3 shows a t-SNE plot of BAV/TAV clusters using the CNN-LSTM’s last hidden layer output (i.e., the

learned feature vector). In the post-hoc analysis of 36 predicted MRI labels, TAV cases had 94% (17/18) PPV

(precision) and BAV cases had 61% (11/18) PPV, with BAV misclassifications occurring most often in cases with

visible regurgitation and turbulent blood flow.

Table 3 shows the post-hoc analysis of 100 positive BAV predictions. In total, 28% of all positive predictions

were true BAV cases, with 75% of predictions mapping to one or more valve pathologies of the aortic valve.

Distribution across each sampled bucket (Q1-Q4) was largely uniform, indicating errors were randomly distributed

in positive class predictions.

Table 3. Prediction Set Validation

Q1 Q2 Q3 Q4 Overall
Total BAV 24% (6) 28% (7) 36% (9) 24% (6) 28%
Total Non-BAV Valve Pathologies 48% (12) 44% (11) 40% (10) 56% (14) 47%
Total Flow/Image Artifacts 28% (7) 28% (7) 24% (6) 20% (5) 25%
Aortic Stenosis 40% (10) 44% (11) 28% (7) 36% (9) 37%
Aortic Insufficiency 4% (1) 8% (2) 16% (4) 16% (4) 11%
Tethered/Thickened Leaflet 16% (4) 4% (1) 20% (5) 24% (6) 16%
Turbulent Flow Artifact 40% (10) 40% (10) 20% (5) 36% (9) 34%
Image Artifact 4% (1) 4% (1) 0% (0) 4% (1) 3%
TOTAL SUBJECTS 25 25 25 25 100
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Bold rows are disjoint category counts for true BAV, confounding non-BAV valve pathologies, and imaging

artifacts. Italicized rows contain categories where counts may overlap with non-BAV valve pathologies and image

artifacts.

a

b

c

d

Tricuspid Aortic 
Valve (TAV)
Bicuspid Aortic 
Valve (BAV)

Misclassified 
Subject

5 cm

Fig 3. Patient clustering visualization. t-SNE visualization of the last hidden layer outputs of the
CNN-LSTM model as applied to 9,230 patient MRI sequences and (a-d) frames capturing peak flow through the
aorta for a random sample of patients. Blue and orange dots represent TAV and BAV cases. The model clusters
MRIs based on aortic shape and temporal dynamics captured by the LSTM. The top example box (a) contains
clear TAV cases with very circular flow shapes, with (b) and (c) becoming more irregular in shape until (d) shows
highly irregular flow typical of BAV. Misclassifications of BAV (red boxes) generally occur when the model fails to
differentiate regurgitation of the aortic valve and turbulent blood flow through a normal appearing aortic valve
orifice.
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Discussion

In this work we present a deep learning model for classifying aortic valve malformations from phase-contrast MRI

sequences. These results were obtained using models requiring only a small amount of labeled data, combined

with a large, imperfectly labeled training set generated via weak supervision. The success of this weak supervision

paradigm, especially for a classification task with substantial class-imbalance such as BAV, is a step towards the

larger goal of automatically labeling unstructured medical imaging from large datasets such as the UK Biobank.

For medical applications of machine learning as described here, we propose an additional standard of validation;

that the model not only captures abnormal valve morphology, but more importantly the captured information is

of real-world medical relevance and consistent with prior-knowledge of aortic valve pathology. Despite criteria

selecting healthier individuals for study by MRI [15, 16], individuals identified by our model showed more than an

1.8-fold increase in risk for comorbid cardiovascular disease.

Large unstructured medical imaging datasets are increasingly available to biomedical researchers, but the use

of data on cardiac morphology derived from medical imaging depends upon their integration into genetic and

epidemiological studies. For most aspects of cardiac structure and function, the computational tools used to

perform clinical measurements require the input or supervision of an experienced user, typically a cardiologist,

radiologist, or technician. Large datasets exploring cardiovascular health such as MESA and GenTAC which both

include imaging data have been limited by the scarcity of expert clinical input in labeling and extracting relevant

information [17,18]. Our approach provides a scalable method to accurately and automatically label such high

value datasets.

Automated classification of imaging data represents the future of imaging research. Weakly supervised

deep learning tools may allow imaging datasets from different institutions which have been interpreted by

different clinicians, to be uniformly ascertained, combined, and analyzed at unprecedented scale, a process termed

harmonization. Independent of any specific research or clinical application, new machine learning tools for

analyzing and harmonizing imaging data collected for different purposes will be the critical link that enables

large-scale studies to connect anatomical and phenotypic data to genomic information, and health-related outcomes.

For the purposes of research, such as genome-wide association studies, higher precision (positive predictive value)

is more important for identifying cases. Conversely, in a clinical application, the flagging of all possible cases of

malformations for manual review by a clinician would be facilitated by a more sensitive threshold. The model

presented here can be tuned to target either application setting.

Our analytical framework and models have limitations. Estimation of the true prevalence of uncommon

conditions such as BAV and ascertainment of outcomes within a given population is complicated by classical

biases in population health science. Registries of BAV typically enroll patients only with clinically apparent
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manifestations or treatment for disease which may not account for patients who do not come to medical attention.

Estimates derived from population-based surveillance are usually limited to relatively small numbers of

participants due to the cost and difficulty of prospective imaging, and small cohort sizes impede accurate estimates

for rare conditions such as BAV. Age and predisposition to research participation may also affect estimates of

disease prevalence, a documented phenomenon within the UK Biobank [19]. Morbidity and mortality from BAV

are accrued cumulatively over time, thus studies of older participants are missing individuals with severe disease

who may have died or been unable to participate. Conversely calcific aortic valve disease, which increases in

incidence with age, may result in an acquired form of aortic stenosis difficult to distinguish from BAV by cardiac

flow imaging [20].

A structured post-hoc analysis of 100 model-classified aortic valve malformations showed that the model

is broadly sensitive to the detection of aortic valve pathology including BAV, but also aortic stenosis, aortic

insufficiency, and the presence of thickened or tethered aortic valve leaflets (Table 3). Relative to a normally

functioning aortic valve with a circular or symmetrically triangular appearing pattern of flow, each of these

pathologies may result in turbulent blood flow which appears asymmetric or non-uniform in phase-contrast imaging

of the aortic valve (Fig. 3). Thus even for the current best-performing model, one displaying good predictive

characteristics for a class-imbalanced problem, misclassification events do occur. However, many of these failure

modes are challenging even for clinicians to discriminate when restricted to the single MRI view utilized in this

study. Integrating additional views of the aorta can help clinicians discriminate BAV from these other valve

pathologies, underlining the need to explore machine learning models that synthesize multiple streams of MRI

data. Incorporating side information from ICD9/10 and OPCS-4 codes to leverage data on long-term outcomes

and confounding pathologies is another exciting area for future model improvement.

This work demonstrates how weak supervision can be used to train a state-of-the-art deep learning model

for aortic valve malformation classification using unlabeled MRI sequences. Using domain heuristics encoded as

functions to programmatically generate large-scale, imperfect training data provided substantial improvements in

classification performance over models trained on hand-labeled data alone. Transforming domain insights into

labeling functions instead of static labels mitigates some of the challenges inherent in the domain of medical

imaging, such as extreme class imbalance, limited training data, and scarcity of expert input. Most importantly,

our BAV classifier successfully identified individuals at long-term risk for cardiovascular disease, demonstrating

real-world relevance of imaging models built using weak supervision techniques.
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Methods

Dataset

From 2006-2010, the UK Biobank recruited 502,638 participants aged 37-73 years in an effort to create a

comprehensive, publicly available health-targeted dataset. The initial release of UK Biobank imaging data

includes cardiac MRI sequences for 14,328 subjects [21], including eight cardiac imaging sets. Three sequences

of phase-contrast MRI images of the aortic valve registered in an en face view at the sinotubular junction were

obtained. Fig 4 shows example MRI videos in all encodings: raw anatomical images (CINE); magnitude (MAG);

and velocity encoded (VENC) [22]. See Supplementary Movies 1-6 for video examples. In MAG and VENC series,

pixel intensity directly maps to velocity of blood flow. This is performed by exploiting the difference in phase of

the transverse magnetism of protons within blood when flowing parallel to a gradient magnetic field, where the

phase difference is proportional to velocity. CINE images encode anatomical information without capturing blood

flow. All raw phase contrast MRI sequences are 30 frames, 12-bit grayscale color, and 192 x 192 pixels.

Studies using the UK Biobank are exempt from approval by the Stanford University School of Medicine

Institutional Review Board as the data is de-identified and publicly available. Informed consent for use of health

information and imaging was performed by the UK Biobank organization at the time of participant enrollment. The

UK Biobank ethics committee administered the consent and regulatory compliance for all research participants [23].

The collection, distribution, and use of UK Biobank data for non-commercial research purposes is compliant with

all relevant regulations including European Union General Data Protection Regulation.

MRI preprocessing

All MRIs were preprocessed to: (1) localize the aortic valve to a 32x32 crop image size; and (2) align all image

frames by peak blood flow in the cardiac cycle. Since the MAG series directly captures blood flow —and the aorta

typically has the most blood flow—both of these steps are straightforward using standard threshold-based image

processing techniques when the series is localized to a cross-sectional plane at the sinotubular junction. Selecting

the pixel region with maximum standard deviation across all frames localized the aorta, and selecting the frame

with maximum z-score identified peak blood flow. See Fig. 5 and Supplementary Methods for implementation

details. Both heuristics were very accurate (>95% as evaluated on the development set) and selecting a ±7 frame

window around the peak frame fpeak captured 99.5% of all pixel variation for the aorta. All three MRI sequences

were aligned to this peak before classification.
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Fig 4. Example MRI sequence data for BAV and TAV subjects. (a) Uncropped MRI frames for CINE,
MAG, and VENC series in an oblique coronal view of the thorax centered upon an en face view of the aortic valve
at sinotubular junction (red boxes). (b) 15-frame subsequence of a phase-contrast MRI for all series, with peak
frame outlined in blue. MAG frames at peak flow for 12 patients, broken down by class: (c) bicuspid aortic valve
(BAV) and (d) tricuspid aortic valve (TAV).
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Fig 5. Aorta localization. (a) Uncropped MAG series MRI frame, showing normalized, per pixel standard
deviation. (b) Green box is a zoom of the heart region and the red box corresponds to the aorta – the highest
weighted pixel area in the image. (c) Per-frame min/max z-scores for all 4,239 MRI sequences in the weak
training set, where most variation occurs in the first 15 frames.

Gold standard annotations

Gold standard labels were created for 412 patients (12,360 individual MRI frames), with each patient labeled as

bicuspid aortic valve (BAV) or tricuspid aortic valve (TAV), i.e., having two versus the normal three aortic valve
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leaflets. We focus our analysis on BAV as it is the easiest malformation to identify from this MRI view. Total

annotations included: a development set (100 TAV and 6 BAV patients) for writing labeling functions; a validation

set (208 TAV and 8 BAV patients) for model hyperparameter tuning; and a held-out test set 87 TAV and 3 BAV

patients) for final evaluation. The development set was selected via chart review of administrative codes (ICD9,

ICD10, or OPCS-4) consistent with BAV and followed by manual annotation. The validation and test sets were

sampled at random with uniform probability from all 14,328 MRI sequences to capture the BAV class distribution

expected at test time. Development and validation set MRIs were annotated by a single cardiologist (JRP). All

test set MRIs were annotated by 3 cardiologists (JRP, HC, SM) and final labels were assigned based on a majority

vote across annotators. For inter-annotator agreement on the test set, Fleiss’s Kappa statistic was 0.354. This

reflects a fair level of agreement amongst annotators given the difficulty of the task [24,25]. Test data was withheld

during all aspects of model development and used solely for the final model evaluation.

Weak supervision

There is considerable research on using indirect or weak supervision to train machine learning models for image and

natural language tasks without relying entirely on manually labeled data [9,26,27]. One longstanding approach

is distant supervision [28, 29], where indirect sources of labels are used to to generate noisy training instances

from unlabeled data. For example, in the ChestX-ray8 dataset [30] disorder labels were extracted from clinical

assessments found in radiology reports. Unfortunately, we often lack access to indirect labeling resources or,

as in the case of BAV, the class of interest itself may be rare and underdiagnosed in existing medical records.

Another strategy is to generate noisy labels via crowdsourcing [31,32], which in some medical imaging tasks can

perform as well as trained experts [33,34]. In practice, however, crowdsourcing is logistically difficult when working

with protected health information such as MRIs. A significant challenge in all weakly supervised approaches is

correcting for label noise, which can negatively impact end model performance. Noise is commonly addressed

using rule-based and generative modeling strategies for estimating the accuracy of label sources [35,36].

In this work, we use the recently proposed data programming [9] method, a generalization of distant supervision

that uses a factor graph-based model to learn both the unobserved accuracies of labeling sources and statistical

dependencies between those sources [11,12]. In this approach, source accuracy and dependencies are estimated

without requiring labeled data, enabling the use of weaker forms of supervision to generate training data, such

as using noisy heuristics from clinical experts. For example, in BAV patients the phase-contrast imaging of flow

through the aortic valve has a distinct ellipse or asymmetrical triangle appearance compared to the more circular

aorta in TAV patients. This is the reasoning a human might apply when directly examining an MRI. In data

programming these types of broad, often imperfect domain insights are encoded into functions that vote on the

May 2, 2019 13/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/339630doi: bioRxiv preprint 

https://doi.org/10.1101/339630
http://creativecommons.org/licenses/by/4.0/


potential class label of unlabeled data points. This allows us to weakly supervise tasks where indirect label sources,

such as patient notes with assessments of BAV, are not available.

The idea of encoding domain insights is formalized as labeling functions —black box functions which vote on

unlabeled data points. Labeling function output is used to learn a probabilistic label model of the underlying

annotation process, where each labeling function is weighted by its estimated accuracy to generate probabilistic

training labels yi ∈ [0, 1]. These probabilistically labeled data are then used to train an off-the-shelf discriminative

model such as a deep neural network. The only restriction on labeling functions is that they vote correctly with

probability better than random chance. In images, labeling functions are defined over a set of domain features or

primitives, semantic abstractions over raw pixel data that enable experts to more easily encode domain heuristics.

Primitives encompass a wide range of abstractions, from simple shape features to complex semantic objects such

as anatomical segmentation masks. Critically, the final discriminative model learns features from the original

MRI sequence, rather than the restricted space of primitives used by labeling functions. This allows the model to

generalize beyond the heuristics encoded in labeling functions.

Patient MRIs are represented as a collection of m frames X = {x1, ..., xm}, where each frame xi is a 32x32

image with MAG, CINE, and VENC encodings mapped to color channels. Each frame is modeled as an unlabeled

data point xi and latent random variable yi ∈ {−1, 1}, corresponding to the true (unobserved) frame label.

Supervision is provided as a set of n labeling functions λ1, ..., λn that define a mapping λj : xi → Λij where

Λi1, ...,Λin is the vector of labeling function votes for sample i. In binary classification, Λij is in the domain

{−1, 0, 1}, i.e., {false, abstain, true}, resulting in a label matrix Λ ∈ {−1, 0, 1}m×n.

The relationship between unobserved labels y and the label matrix Λ is modeled using a factor graph [37].

We learn a probabilistic model that best explains Λ, i.e., the matrix observed by applying labeling functions to

unlabeled data. When labeling function outputs are conditionally independent given the true label, this model

consists of n accuracy factors between λ1, ..., λn and y

φAccj (Λi, yi) := yiΛij (1)

pθ(Λ,Y) ∝ exp

(
m∑
i=1

n∑
j=1

θAccj φAccj (Λi, yi)

)
(2)

where Y := yi, ..., ym, our true labels. The model’s weights θ are estimated by minimizing the negative log

likelihood of pθ(Λ) using contrastive divergence [38]. Optimization is done using standard stochastic gradient

descent with Gibbs sampling for gradient estimation.

In many settings, we encounter statistical dependencies among labeling functions. These dependencies are
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included in the model by defining additional factors

pθ(Λ,Y) ∝ exp

(
m∑
i=1

∑
t∈T

∑
s∈St

θtsφ
t
s(Λi, yi)

)
(3)

where t ∈ T is a dependency type and and St are the labeling functions that participate in t. These dependencies

may be specified manually if known or learned from unlabeled data.

Automatically learning dependencies from unlabeled data is important in weakly supervised imaging tasks

where labeling functions interact with a small set of primitives and have higher order dependency structure. For

example, a labeling function defined using the ratio of area and perimeter has dependencies with separate labeling

functions for area and perimeter. By expressing supervision using a small space of primitives, we can rely on the

Coral method [11] to statically analyze labeling function source code and automatically infer complex dependencies

among labeling functions based on which primitives they use as input.

The final weak supervision pipeline requires two inputs: (1) primitive feature matrix; and (2) observed label

matrix Λ. For generating Λ, we take each patient’s frame sequence x̄i = {x1i, ...x30i} and apply labeling functions

to a window of t frames {x(fpeak−t/2)i, ..., x(fpeak+t/2)i} centered on fpeak , i.e., the frame mapping to peak blood

flow. Here t = 6 performed best in our label model experiments. The output of the label model is a set of per

frame probabilistic labels {y1, ..., y(t×N)} where N is the number of patients. To compute a single, per patient

probabilistic label, ȳi, we assign the mean probability of all t patient frames if mean({y1i, ..., yti}) > 0.9 and the

minimum probability if min({y1i, ..., yti}) < 0.5. Patient MRIs that did not meet these thresholds ( 7% 304/4543)

were removed from the final weak label set. The final weakly labeled training set consists of each 30 frame MRI

sequence and a single probabilistic label per-patient : X̂ = {x̄i, ..., x̄N} and Ŷ = {ȳi, ..., ȳN}.

Primitives are generated using existing models or methods for extracting features from image data. In our

setting, we restricted primitives to unsupervised shape statistics and pixel intensity features provided by off-the-

shelf image analysis tools such as scikit-image [39]. Primitives are generated using a binarized mask of the aortic

valve for each frame in a patient’s MAG series. Since the label model accounts for noise in labeling functions

and primitives, we can use unsupervised thresholding techniques such as Otsu’s method [40] to generate binary

masks. All masks were used to compute primitives for: (1) area; (2) perimeter; (3) eccentricity (a [0,1) measure

comparing the mask shape to an ellipse, where 0 indicates a perfect circle); (4) pixel intensity (the mean pixel

value for the entire mask); and (5) ratio (the ratio of area over perimeter squared). Since the size of the heart and

anatomical structures correlate strongly with patient sex, we normalized these features by two population means

stratified by sex in the unlabeled set.

We designed 5 labeling functions using the primitives described above. For model simplicity, labeling functions

were restricted to using threshold-based, frame-level information for voting. All labeling function thresholds were

May 2, 2019 15/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/339630doi: bioRxiv preprint 

https://doi.org/10.1101/339630
http://creativecommons.org/licenses/by/4.0/


selected manually using distributional statistics computed over all primitives for the expert-labeled development set.

See Supplementary Figure 2 for the complete development set used for labeling function design and Supplementary

Table 1 for labeling function implementations. The final weak supervision pipeline is shown in Fig 6.

Label Model

Binary Threshold Masks

Pixel Data

Area

Perimeter

Eccentricity

Intensity

Ratio (Area/Perimeter2)

1) EXTRACT PRIMITIVES & APPLY LABELING FUNCTIONS

Primitive Feature Matrix

1.32

0.12 0.92 1.02 0.32

0.420.013.20
Discriminative 

Model

2) GENERATE TRAINING DATA

1 LF_area(x)

2 LF_eccentricity(x)

3 LF_perimeter(x)

4 LF_intensity(x)

5 LF_ratio(x)

3) TRAIN DEEP 
LEARNING MODEL

Probabilistic  
Training Labels

y1 = 0.031

y2 = 0.935

y3 = 0.995

y
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WEAK SUPERVISION

1

3
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4

5

Fig 6. Weak supervision workflow. Pipeline for probabilistic training label generation based on user-defined
primitives and labeling functions. Primitives and labeling functions (step 1) are used to weakly supervise the BAV
classification task and programmatically generate probabilistic training data from large collections of unlabeled
MRI sequences (step 2), which are then used to train a noise-aware deep learning classification model (step 3).

The discriminative model classifies BAV/TAV status using t contiguous MRI frames (5 ≤ t ≤ 30, where t is a

hyperparameter) and a single probabilistic label per patient. This model consists of two components: a frame

encoder for learning frame-level features and a sequence encoder for combining individual frames into a single

feature vector. For the frame encoder, we use a Dense Convolutional Network (DenseNet) [41] with 40 layers and

a growth rate of 12, pretrained on 50,000 images from CIFAR-10 [42]. We tested two other common pretrained

image neural networks (VGG16 [43], ResNet-50 [44]), but found that a DenseNet40-12 model performed best

overall, aligning with previous reports [41]. The DenseNet architecture takes advantage of low-level feature maps

at all layers, making it well-suited for medical imaging applications where low-level features (e.g., edge detectors)

often carry substantial explanatory power.

For the sequence encoder, we used a Bidirectional Long Short-term Memory (LSTM) [45] sequence model with

soft attention [46] to combine all MRI frame features. The soft attention layer optimizes the weighted mean of

frame features, allowing the network to automatically give more weight to the most informative frames in an MRI

sequence. We explored simpler feature pooling architectures (e.g, mean/max pooling), but each of these methods

was outperformed by the LSTM in our experiments. The final hybrid CNN-LSTM architecture aligns with recent

methods for state-of-the-art video classification [47,48] and 3D medical imaging [49].

The CNN-LSTM model is trained using noise-aware binary cross entropy loss L:

ŵ = argminw
1

N

N∑
i=1

Ey∼Ŷ [L(w, xi, y)] (4)
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This is analogous to standard supervised learning loss, except we are now minimizing the expected value with

respect to Ŷ [9]. This loss enables the discriminative model to take advantage the more informative probabilistic

labels produced by the label model, i.e., training instances with higher probability have more impact on the

learned model. Fig 7 shows the complete discriminative model pipeline.

1) INPUT MAG SEQUENCES 2) FRAME ENCODER 3) SEQUENCE ENCODER
Attention

Semb

4) CLASSIFICATION

LSTM

fx1

fx2

fxW

… TAV

BAV
0.97

0.89    

DenseNet
40-12

yi    { x1   …    xW }( ),

…

Fig 7. Deep neural network for MRI sequence classification. Each MRI frame is encoded by the
DenseNet into a feature vector fxi. These frame features are fed in sequentially to the LSTM sequence encoder,
which uses a soft attention layer to learn a weighted mean embedding of all frames Semb. This forms the final
feature vector used for binary classification

Training and hyperparameter tuning

The development set was used to write all labeling functions and the validation set was used for all model

hyperparameter tuning. All models were evaluated with and without data augmentation. Data augmentation

is used in deep learning models to increase training set sizes and encode known invariances into the final model

by creating transformed copies of existing samples. For example, BAV/TAV status does not change under

translation, so generating additional shifted MRI training images does not change the class label, but does improve

final classification performance. We used a combination of crops and affine transformations commonly used by

state-of-the-art image classifiers [50]. We tested models using all 3 MRI series (CINE, MAG, VENC with a single

series per channel) and models using only the MAG series. The MAG series performed best, so we only report

those results here.

Hyperparameters were tuned for L2 penalty, dropout, learning rate, and the feature vector size of our last

hidden layer before classification. Augmentation hyperparameters were tuned to determine final translation,

rotation, and scaling ranges. All models use validation-based early stopping with F1 score as the stopping criterion.

The probability threshold for classification was tuned using the validation set for each run to address known

calibration issues when using deep learning models [51]. Architectures were tuned using a random grid search over

10 models for non-augmented data and 24 for augmented data. See Supplementary Table 2 for full parameter grid

settings.
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Evaluation metrics

Classification models were evaluated using positive predictive value (precision), sensitivity (recall), F1 score (i.e.,

the harmonic mean of precision and recall), and area under the ROC curve (AUROC). Due to the extreme class

imbalance of this task we also report discounted cumulative gain (DCG) to capture the overall ranking quality

of model predictions [52]. Each BAV or TAV case was assigned a relevance weight r of 1 or 0, respectively, and

test set patients were ranked by their predicted probabilities. DCG is computed as
∑p
i

ri
log2(i+1) where p is the

total number of instances and i is the corresponding rank. This score is normalized by the DCG score of a perfect

ranking (i.e., all true BAV cases in the top ranked results) to compute normalized DCG (NDCG) in the range

[0.0,1.0]. Higher NDCG scores indicate that the model does a better job of ranking BAV cases higher than TAV

cases. All scores were computed using test set data, using the best performing models found during grid search,

and reported as the mean and 95% confidence intervals of 5 different random model weight initializations.

For labeling functions, we report two additional metrics: coverage (Eq. 5) a measure of how many data points

a labeling function votes {−1, 1} on; and conflict (Eq. 6) the percentage of data points where a labeling function

disagrees with one or more other labeling functions.

coverageλj
=

1

N

N∑
i=1

1(λj(xi) ∈ {−1, 1}) (5)

conflictλj =
1

N

N∑
i=1

1(

λn∑
k 6=j

1(λj(xi) ∈ {−1, 1} ∧ λj(xi) 6= λk(xi))) > 0 (6)

Model evaluation with clinical outcomes data

To construct a real-world validation strategy dependent upon the accuracy of image classification but completely

independent of the imaging data input, we used model-derived classifications (TAV vs. BAV) as a predictor of

validated cardiovascular outcomes using standard epidemiological methods. For 9,230 patients with prospectively

obtained MRI imaging who were excluded from any aspect of model construction, validation, or testing we

performed an ensemble classification with the best performing CNN-LSTM model.

For evaluation we assembled a standard composite outcome of major adverse cardiovascular events (MACE).

Phenotypes for MACE were inclusive of the first occurrence of coronary artery disease (myocardial infarction,

percutaneous coronary intervention, coronary artery bypass grafting), ischemic stroke (inclusive of transient

ischemic attack), heart failure, or atrial fibrillation. These were defined using ICD-9, ICD-10, and OPCS-4 codes

from available hospital encounter, death registry, and self-reported survey data of all 500,000 participants of the

May 2, 2019 18/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/339630doi: bioRxiv preprint 

https://doi.org/10.1101/339630
http://creativecommons.org/licenses/by/4.0/


UK Biobank at enrollment similar to previously reported methods [53].

Starting 10 years prior to enrollment in the study, median follow up time for the participants with MRI data

included in the analysis was 19 years with a maximum of 22 years. For survival analysis, we employed the “survival”

and “survminer” packages in R version 3.4.3, using aortic valve classification as the predictor and time-to-MACE

as the outcome, with model evaluation by a simple log-rank test.

To verify the accuracy of the CNN-LSTM’s predicted labels, we generated 2 subsets of our model’s predictions

for manual review: (1) 36 randomly chosen MRI sequences (18 TAV and 18 BAV patients); and (3) 100 positive

BAV predictions, binned into quartiles by predicted probability. All MRIs were reviewed and labeled by a single

annotator (JRP). The output of the last hidden layer was visualized using a t-distributed stochastic neighbor

embedding (t-SNE) [54] plot to assist error analysis.

Related Work

In medical imaging, weak supervision refers to a broad range of techniques using limited, indirect, or noisy

labels. Multiple instance learning (MIL) is one common weak supervision approach in medical images [55]. MIL

approaches assume a label is defined over a bag of unlabeled instances, such as an image-level label being used to

supervise a segmentation task. Xu et al. [56] simultaneously performed binary classification and segmentation

for histopathology images using a variant of MIL, where image-level labels are used to supervise both image

classification and a segmentation subtask. ChestX-ray8 [30] was used in Li et al. [57] to jointly perform classification

and localization using a small number of weakly labeled examples. Patient radiology reports and other medical

record data are frequently used to generate noisy labels for imaging tasks [30,58–60].

Weak supervision shares similarities with semi-supervised learning [61], which enables training models using

a small labeled dataset combined with large, unlabeled data. The primary difference is how the structure of

unlabeled data is specified in the model. In semi-supervised learning, we make smoothness assumptions and

extract insights on structure directly from unlabeled data using task-agnostic properties such as distance metrics

and entropy constraints [62]. Weak supervision, in contrast, relies on directly injecting domain knowledge into

the model to incorporate the underlying structure of unlabeled data. In many cases, these sources of domain

knowledge are readily available in existing knowledge bases, indirectly-labeled data like patient notes, or weak

classification models and heuristics.

May 2, 2019 19/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/339630doi: bioRxiv preprint 

https://doi.org/10.1101/339630
http://creativecommons.org/licenses/by/4.0/


Data Availability

All primary data that support the findings of this study are publicly available from the UK Biobank organization

by application for academic non-commercial use https://www.ukbiobank.ac.uk/using-the-resource/. All

remaining data contained in the manuscript will be made available from the corresponding author upon reasonable

request.

Code Availability

All code used in this study was written in Python v2.7. Deep learning models were implemented using PyTorch

v3.1. Preprocessing code, deep learning implementations, experimental scripts, and trained BAV classifica-

tions models are all open source and available at: https://github.com/HazyResearch/ukb-cardiac-mri DOI

10.5281/zenodo.2654330
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quickly. In Advances in Neural Information Processing Systems, 3567–3575 (2016).

10. Ratner, A. et al. Snorkel: Rapid training data creation with weak supervision. Proceedings of the VLDB

Endowment 11, 269–282 (2017).

May 2, 2019 21/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/339630doi: bioRxiv preprint 

https://doi.org/10.1101/339630
http://creativecommons.org/licenses/by/4.0/


11. Varma, P. et al. Inferring generative model structure with static analysis. Adv. Neural Inf. Process. Syst.

30, 239–249 (2017).
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