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Abstract  55 
Anopheles (An.) mosquitoes contain bacteria that can influence Plasmodium parasites. Wolbachia, a 56 
common insect endosymbiont, has historically been considered absent from Anopheles but has 57 
recently been found in An. gambiae populations. Here, we assessed a range of Anopheles species 58 
from five malaria-endemic countries for Wolbachia and Plasmodium infection. Strikingly, we found 59 
Wolbachia infections in An. coluzzii, An. gambiae s.s, An. arabiensis, An. moucheti and An. species 60 
‘A’ increasing the number of Anopheles species known to be naturally infected by this endosymbiont. 61 
Molecular analysis suggests the presence of phylogenetically diverse novel strains, while qPCR and 62 
16S rRNA sequencing indicates that Wolbachia is the dominant member of the microbiota in An. 63 
moucheti and An. species ‘A’.  We found no evidence of Wolbachia/Asaia co-infections, and presence 64 
of these endosymbionts did not have significant effects on malaria prevalence.  We discuss the 65 
importance of novel Wolbachia strains in Anopheles and potential implications for disease control.  66 
 67 
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Introduction 95 
Malaria is transmitted to humans through inoculation of Plasmodium (P.) sporozoites during the 96 
infectious bite of an infected female Anopheles (An.) mosquito.  The genus Anopheles consists of 475 97 
formally recognised species with ~40 vector species/species complexes responsible for the 98 
transmission of malaria at a level of public health concern [1].  During the mosquito infection cycle, 99 
Plasmodium parasites encounter a variety of resident microbiota both in the mosquito midgut and 100 
other tissues.  Numerous studies have shown that certain species of bacteria can inhibit Plasmodium 101 
development [2–4].  For example, Enterobacter bacteria that reside in the Anopheles midgut can 102 
inhibit the development of Plasmodium parasites prior to their invasion of the midgut epithelium [5,6].  103 
Wolbachia endosymbiotic bacteria are estimated to naturally infect ~40% of insect species [7] 104 
including mosquito vector species that are responsible for transmission of human diseases such as 105 
Culex (Cx.) quinquefasciatus [8–10] and Aedes (Ae.) albopictus [11,12]. Although Wolbachia strains 106 
have been shown to have variable effects on arboviral infections in their native mosquito hosts [13–107 
15], transinfected Wolbachia strains have been considered for mosquito biocontrol strategies, due to 108 
a variety of synergistic phenotypic effects.  Transinfected strains in Ae. aegypti and Ae. albopictus 109 
provide strong inhibitory effects on arboviruses, with maternal transmission and cytoplasmic 110 
incompatibility enabling introduced strains to spread through populations [16–22].   Open releases of 111 
Wolbachia-transinfected Ae. aegypti populations have demonstrated the ability of the wMel Wolbachia 112 
strain to invade wild populations [23] and provide strong inhibitory effects on viruses from field 113 
populations [24],  with releases currently occurring in arbovirus endemic countries such as Indonesia, 114 
Vietnam, Brazil and Colombia (https://www.worldmosquitoprogram.org).  115 
 116 
The prevalence of Wolbachia in Anopheles species has not been extensively studied, with most 117 
studies focused in Asia using classical PCR-based screening, and up until 2014 there has been no 118 
evidence of resident strains in mosquitoes from this genus [25–29]. Furthermore, significant efforts to 119 
establish artificially-infected lines were, up until recently, also unsuccessful [30].  Somatic, transient 120 
infections of the Wolbachia strains wMelPop and wAlbB in An. gambiae were shown to significantly 121 
inhibit P. falciparum [31] but the interference phenotype is variable with other Wolbachia strain-122 
parasite combinations [32–34].  A stable line was established in An. stephensi, a vector of malaria in 123 
southern Asia, using the wAlbB strain and this was also shown to confer resistance to P. falciparum 124 
infection [35].  One potential reason postulated for the absence of Wolbachia in Anopheles species 125 
was thought to be due to the presence of other endosymbiotic bacteria, particularly from the genus 126 
Asaia [36].  This acetic acid bacterium is stably associated with several Anopheles species and is 127 
often the dominant species in the mosquito microbiota [37].  In laboratory studies, Asaia has been 128 
shown to impede the vertical transmission of Wolbachia in Anopheles [36] and was shown to have a 129 
negative correlation with Wolbachia in mosquito reproductive tissues [38].   130 
 131 
Recently, resident Wolbachia strains have been discovered in the An. gambiae s.l. complex, which 132 
consists of multiple morphologically indistinguishable species including several major malaria vector 133 
species.  Wolbachia strains (collectively named wAnga) were found in An. gambiae s.l. populations in 134 
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Burkina Faso [39] and Mali [40], suggesting that Wolbachia may be more abundant in the An. 135 
gambiae complex across Sub-Saharan Africa.  Globally, there is a large variety of Anopheles vector 136 
species (~70) that have the capacity to transmit malaria [41] and could potentially contain resident 137 
Wolbachia strains. Additionally, this number of malaria vector species may be an underestimate given 138 
that recent studies using molecular barcoding have also revealed a larger diversity of Anopheles 139 
species than would have be identified using morphological identification alone [42,43].   140 
 141 
In this study, we collected Anopheles mosquitoes from five malaria-endemic countries; Ghana, 142 
Democratic Republic of the Congo (DRC), Guinea, Uganda and Madagascar, from 2013-2017. Wild-143 
caught adult female Anopheles were screened for P. falciparum malaria parasites, Wolbachia and 144 
Asaia bacteria.  In total, we analysed mosquitoes from 17 Anopheles species that are known malaria 145 
vectors or implicated in transmission, and some unidentified species, discovering five species of 146 
Anopheles with resident Wolbachia strains; An. coluzzii from Ghana, An. gambiae s.s., An. 147 
arabiensis, An. moucheti and Anopheles species ‘A’ from DRC.  Using Wolbachia gene sequencing 148 
we show that the resident strains in these malaria vectors are diverse, novel strains and qPCR and 149 
16S rRNA amplicon sequencing data suggests that the strains in An. moucheti and An. species ‘A’ 150 
are higher density infections, compared to the strains found in the An. gambiae s.l. complex. We 151 
found no evidence for either Wolbachia-Asaia co-infections, or for either endosymbiont having any 152 
significant effect on the prevalence of malaria in wild mosquito populations.  153 
 154 
Results  155 
 156 
Mosquito species and resident Wolbachia strains. Anopheles species composition varied 157 
depending on country and mosquito collection sites (Table 1).  We detected Wolbachia in An. coluzzii 158 
(previously named M molecular form) mosquitoes from Ghana (prevalence of 4% - termed wAnga-159 
Ghana) and An. gambiae s.s. (previously named S molecular form) from all six collection sites in DRC 160 
(prevalence range of 8-24%) in addition to a single infected An. arabiensis from Kalemie in DRC 161 
(Figure 1, Table 1).  The molecular phylogeny of the ITS2 gene of Anopheles gambiae s.l. complex 162 
individuals (including both Wolbachia-infected and uninfected individuals analysed in our study) 163 
confirmed molecular species identifications made using species-specific PCR assays (Figure 2). 164 
Novel resident Wolbachia infections were detected in two additional Anopheles species from DRC; 165 
An. moucheti (termed wAnM) from Mikalayi, and An. species A (termed wAnsA) from Katana.  166 
Additionally, we screened adult female mosquitoes of An. species A (collected as larvae and adults) 167 
from Lwiro, a village near Katana in DRC, and detected Wolbachia in 30/33 (91%), indicating this 168 
resident wAnsA strain has a high infection prevalence in populations in this region.  The molecular 169 
phylogeny of the ITS2 gene revealed Wolbachia-infected individuals from Lwiro and Katana are the 170 
same An. species A (Figure 3) previously collected in Eastern Zambia [43] and Western Kenya [44]. 171 
All ITS2 sequences were deposited in GenBank (accession numbers MH598414 – MH598445) 172 
(Supplementary Table 1). 173 
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Wolbachia strain typing. Phylogenetic analysis of the 16S rRNA gene demonstrated that the 16S 174 
sequences for these strains cluster with other Supergroup B strains such as wPip (99-100% 175 
nucleotide identity) (Figure 4a).  When compared to the resident Wolbachia strains in An. gambiae 176 
s.l. populations from Mali [40] and Burkina Faso [39], wAnga-Ghana is more closely related to the 177 
Supergroup B strain of wAnga from Burkina Faso.  Although a resident strain was detected in An. 178 
gambiae s.s. and a single An. arabiensis from DRC through amplification of 16S rRNA fragments 179 
using two independent PCR assays [40,45], we were unable to obtain 16S sequences of sufficient 180 
quality to allow further analysis.  The Wolbachia surface protein (wsp) gene has been evolving at a 181 
faster rate and provides more informative strain phylogenies [46].  As expected, however, and similar 182 
to Wolbachia-infected An. gambiae s.l. from Burkina Faso [39] and Mali [40], a fragment of the wsp 183 
gene was not amplified from Wolbachia-positive samples from An. gambiae s.s, An. arabiensis and 184 
An. coluzzii.  Similarly, no wsp gene fragment amplification occurred from wAnM-infected An. 185 
moucheti.  However, wsp sequences were obtained from both Wolbachia-infected individuals of An. 186 
species A from Katana.  We also analysed the wsp sequences of 22 specimens of An. species A from 187 
Lwiro (near Katana) and found identical sequences to the two individuals from Katana. Phylogenetic 188 
analysis of the wsp sequences obtained for the wAnsA strain, for both individuals from Katana 189 
(wAnsA wsp DRC-KAT1, wAnsA wsp DRC-KAT2) and three representative individuals from Lwiro 190 
(wAnsA wsp DRC-LWI1, wAnsA wsp DRC-LWI2, wAnsA wsp DRC-LWI3) indicates wAnsA is most 191 
closely related to Wolbachia strains of Supergroup B (such as wPip, wAlbB, wMa and wNo) which is 192 
consistent with 16S rRNA phylogeny. However, the improved phylogenetic resolution provided by wsp 193 
indicates they cluster separately (Figure 4b). Typing of the wAnsA wsp nucleotide sequences 194 
highlighted that there were no exact matches to wsp alleles currently in the Wolbachia MLST 195 
database (https://pubmlst.org/wolbachia/) (Table 2).  All Wolbachia 16S and wsp sequences were 196 
deposited into GenBank (accession numbers MH605275 – MH605285) (Supplementary Table 2). 197 

Multilocus sequence typing (MLST) was undertaken to provide more accurate strain phylogenies. This 198 
was done for the novel Wolbachia strains wAnM and wAnsA in addition to the resident wAnga-Ghana 199 
strain in An. coluzzii from Ghana.  We were unable to amplify any of the five MLST genes from 200 
Wolbachia-infected An. gambiae s.s. and An. arabiensis from DRC (likely due to low infection 201 
densities).  New alleles for all five MLST gene loci (sequences differed from those currently present in 202 
the MLST database) confirm the diversity of these novel Wolbachia strains (Table 2). The phylogeny 203 
of these three novel strains based on concatenated sequences of all five MLST gene loci confirms 204 
they cluster within Supergroup B (Figure 5a).  This also demonstrates the novelty as comparison with 205 
a wide range of strains (including all isolates highlighted through partial matching during typing of 206 
each locus) shows these strains are distinct from currently available sequences (Figure 5a, Table 2). 207 
The concatenated phylogeny indicates that wAnM is most closely related to a Hemiptera strain: 208 
Isolate number 1616 found in Bemisia tabaci in Uganda, and a Coleoptera strain: Isolate number 20 209 
found in Tribolium confusum. Concatenation of the MLST loci also indicates wAnsA is closest to a 210 
group containing various Lepidoptera and Hymenoptera strains from multiple countries in Asia, 211 
Europe and America, as well as two mosquito strains: Isolate numbers 1830 and 1831, found in 212 
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Aedes cinereus and Coquillettidia richiardii in Russia.  This highlights the lack of concordance 213 
between Wolbachia strain phylogeny and their insect hosts across diverse geographical regions.  We 214 
also found evidence of potential strain variants in wAnsA through variable MLST gene fragment 215 
amplification and resulting closest-match allele numbers.  A second wAnsA-infected sample, An. sp. 216 
A/1 (W+) DRC-KAT2, only amplified hcpA and coxA gene fragments and although identical 217 
sequences were obtained for wsp (Figure 4b) and hcpA, genetic diversity was seen in the coxA 218 
sequences, with typing revealing a different, but still novel allele for the coxA sequence from this 219 
individual (wAnsA(2) coxA DRC-KAT2) (Figure 5b).  MLST gene fragment amplification was also 220 
variable for wAnga-Ghana-infected An. coluzzii, requiring two individuals to generate the five MLST 221 
gene sequences, and for the hcpA locus, more degenerate primers (hcpA_F3/hcpA_R3) were 222 
required to generate sequence of sufficient quality for analysis.  This is likely due to the low density of 223 
this strain potentially influencing the ability to successfully amplify all MLST genes, in addition to the 224 
possibility of genetic variation in primer binding regions. Despite the sequences generated for this 225 
strain producing exact matches with alleles in the database for each of the five gene loci, the resultant 226 
allelic profile, and therefore strain type, did not produce a match, showing this wAnga-Ghana strain is 227 
also a novel strain type. The closest matches to the wAnga-Ghana allelic profile were with strains 228 
from two Lepidopteran species: Isolate number 609 found in Fabriciana adippe from Russia, and 229 
Isolate number 658 found in Pammene fasciana from Greece, but each of these only produced a 230 
match for 3 out of the 5 loci. The concatenated phylogeny for this strain (Figure 5a) indicates that 231 
across the 5 MLST loci, wAnga-Ghana is actually most closely related to a Lepidopteran strain found 232 
in Thersamonia thersamon in Russia (Isolate number 132).  The phylogeny of Wolbachia strains 233 
based on the coxA gene (Figure 5b) highlights the genetic diversity of both the wAnsA strain variants 234 
and also wAnga-Ghana compared to the wAnga-Mali strain [40]; coxA gene sequences are not 235 
available for wAnga strains from Burkina Faso [39]. All Wolbachia MLST sequences were deposited 236 
into GenBank (accession numbers MH605286 – MH605305) (Supplementary Table 3). 237 
 238 
Resident strain densities and relative abundance. The relative densities of Wolbachia strains were 239 
estimated using qPCR targeting the ftsZ [47] and 16S rRNA [40] genes.  ftsZ and 16S rRNA qPCR 240 
analysis indicated the amount of Wolbachia detected in wAnsA-infected and wAnM-infected females 241 
was approximately 1000-fold higher (Ct values 20-22) than Wolbachia-infected An. gambiae s.s., An. 242 
arabiensis and wAnga-Ghana-infected An. coluzzii (Ct values 30-33).  To account for variation in 243 
mosquito body size and DNA extraction efficiency, we compared the total amount of DNA for 244 
Wolbachia-infected mosquito extracts and conversely, we found less total DNA in the wAnsA-infected 245 
extract (1.36 ng/µL) and the An. moucheti (wAnM-infected) extract (5.85 ng/µL) compared to the 246 
mean of 6.64 +/- 2.33 ng/µL for wAnga-Ghana-infected An. coluzzii.  To estimate the relative 247 
abundance of resident Wolbachia strains in comparison to other bacterial species, we sequenced the 248 
bacterial microbiome using 16S rRNA amplicon sequencing on Wolbachia-infected individuals. We 249 
found wAnsA, wAnsA(2) and wAnM Wolbachia strains were the dominant operational taxonomic units 250 
(OTUs) of these mosquito species (Figure 6).  In contrast, the lower density infection wAnga-Ghana 251 
strain represented only ~10% of the OTUs within the microbiome.   252 
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P. falciparum, Wolbachia and Asaia prevalence.  The prevalence of P. falciparum in female 253 
mosquitoes was extremely variable across countries and collection locations (Figure 1, Table 1) with 254 
very high prevalence recorded in An. gambiae s.s. from villages close to Boke (52%) and Faranah 255 
(44%) in Guinea. Despite the collection of other Anopheles species in Guinea, An. gambiae s.s. was 256 
the only species to have detectable malaria infections.  In contrast, malaria was detected in multiple 257 
major vector species from DRC, including An. gambiae s.s, An. arabiensis and An. funestus s.s.  A 258 
high prevalence of P. falciparum was also detected in An. gambiae s.s. from Uganda for both 259 
collection years; 19% for 2013 and 36% for 2014.  In contrast, no P. falciparum infections were 260 
detected in any of the An. coluzzii or An. melas collected in Ghana.  In Madagascar, P. falciparum 261 
was detected in only two species; An. gambiae s.s. and An. rufipes.  We compared the overall P. 262 
falciparum infection rates in An. gambiae s.s. mosquitoes collected across all locations from DRC to 263 
determine if there was any correlation with the presence of the low density wAnga-DRC Wolbachia 264 
resident strain. Overall, of the 128 mosquitoes collected, only 1.56% (n=2) had detectable Wolbachia-265 
Plasmodium co-infections compared to 10.16% (n=13) where we only detected Wolbachia.  A further 266 
11.72% (n=15) were only PCR-positive for P. falciparum.  As expected, for the vast majority of 267 
mosquitoes (76.56%, n=98) we found no evidence of Wolbachia or P. falciparum present, resulting in 268 
no correlation across all samples (Fisher’s exact post hoc test on unnormalized data, two-tailed, 269 
P=0.999).  Interestingly, one An. species ‘A’ female from Katana was infected with P. falciparum.   270 
 271 
For all Wolbachia-infected females collected in our study (including An. coluzzii from Ghana and novel 272 
resident strains in An. moucheti and An. species A), we did not detect the presence of Asaia.  No 273 
resident Wolbachia strain infections were detected in Anopheles mosquitoes from Guinea, Uganda or 274 
Madagascar.  However, high Asaia and malaria prevalence rates were present in Anopheles 275 
mosquitoes from Uganda and Guinea (including multiple species in all four sites in Guinea).  We 276 
compared the overall P. falciparum infection rates in An. gambiae s.s. collected across all locations 277 
from Guinea, with and without Asaia bacteria, and found no overall correlation (Fisher’s exact post 278 
hoc test on unnormalized data, two-tailed, P=0.4902).  There was also no overall correlation between 279 
Asaia and P. falciparum infections in An. gambiae s.s. from Uganda for both 2013 (Fisher’s exact post 280 
hoc test on unnormalized data, two-tailed, P=0.601) and 2014 (Fisher’s exact post hoc test on 281 
unnormalized data, two-tailed, P=0.282).   282 
 283 
Asaia can be environmentally acquired at all life stages but can also have the potential to be vertically 284 
and horizontally transmitted between individual mosquitoes. Therefore, we performed 16S 285 
microbiome analysis on a sub-sample of Asaia-infected An. gambiae s.s. from Kissidougou (Guinea), 286 
a location in which high levels of Asaia were detected by qPCR (mean Asaia Ct = 17.84 +/- 2.27).  287 
Asaia in these individuals is the dominant bacterial species present (Figure 7a) but in Uganda we 288 
detected much lower levels of Asaia (qPCR mean Ct = 33.33 +/- 0.19) and this was reflected in Asaia 289 
not being a dominant species (Figure 7b). The alpha and beta diversity of An. gambiae s.s. from 290 
Kissidougou, Guinea and Butemba, Uganda shows much more overall diversity in the microbiome for 291 
Uganda individuals (supplementary figure S1).  Interestingly, 2/5 of these individuals from 292 
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Kissidougou (Guinea) were P. falciparum-infected compared to 3/5 individuals from Uganda.  To 293 
determine if the presence of Asaia had a quantifiable effect on the level of P. falciparum detected, we 294 
normalized P. falciparum Ct values from qPCR (supplementary figure S2a) and compared gene 295 
ratios for An. gambiae s.s. mosquitoes from Guinea, with or without Asaia (supplementary figure 296 
S2b).   Statistical analysis using student’s t-tests revealed no significant difference between 297 
normalized P. falciparum gene ratios (p= 0.51, df =59).   Larger variation of Ct values was seen for 298 
Asaia (supplementary figure S2c) suggesting the bacterial densities in individual mosquitoes were 299 
more variable than P. falciparum parasite infection levels.    300 
 301 
Discussion  302 
Malaria transmission in Sub-Saharan Africa is highly dependent on the local Anopheles vector 303 
species but the primary vector complexes recognised are An. gambiae s.l., An. funestus s.l. An. nili 304 
s.l. and An. moucheti  s.l. [41,48].  An. gambiae s.s. and An. coluzzii sibling species are considered 305 
the most important malaria vectors in Sub-Saharan Africa and recent studies indicate that An. coluzzii 306 
extends further north, and closer to the coast than An. gambiae s.s. within west Africa [49]. In our 307 
study, high malaria prevalence rates in An. gambiae s.s. across Guinea would be consistent with high 308 
malaria parasite prevalence (measured by rapid diagnostic tests) in Guéckédou prefecture, and the 309 
overall national malaria prevalence estimated to be 44% in 2013 [50].  However, malaria prevalence 310 
has decreased in the past few years with an overall prevalence across Guinea estimated at 15% for 311 
2016. Although our P. falciparum infection prevalence rates were also high in DRC, recent studies 312 
have shown comparable levels of infection with 35% of An. gambiae s.l. mosquitoes infected from 313 
Kinshasa [51].  We detected P. falciparum in An. gambiae s.s, An. arabiensis, An. funestus s.s. and 314 
An. species A from DRC.   Morphological differences have been widely used for identification of 315 
malaria vectors but species complexes (such as An. gambiae s.l. and An. funestus s.l.) require 316 
species-diagnostic PCR assays. Historically, malaria entomology studies in Africa have focused 317 
predominantly on species from these complexes, likely due to the fact that mosquitoes from these 318 
complexes dominate the collections [43].  In our study, we used ITS2 sequencing to confirm 319 
secondary vector species that were P. falciparum-infected given the difficulties of morphological 320 
identification and recent studies demonstrating the inaccuracy of diagnostic species PCR-based 321 
molecular identification [52].  Our study is the first to report the detection of P. falciparum in An. 322 
rufipes from Madagascar; previously this species was considered a vector of Plasmodium species of 323 
non-human origin and has only very recently been implicated in human malaria transmission [53]. 324 
However, detection of P. falciparum parasites in whole body mosquitoes does not confirm that the 325 
species plays a significant role in transmission.  Detection could represent infected bloodmeal stages 326 
or oocysts present in the midgut wall so further studies are warranted to determine this species ability 327 
to transmit human malaria parasites.  328 
 329 
The mosquito microbiota can modulate the mosquito immune response and bacteria present in wild 330 
Anopheles populations can influence malaria vector competence [4,5].  Endosymbiotic Wolbachia 331 
bacteria are particularly widespread through insect populations but they were commonly thought to be 332 
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absent from Anopheles mosquitoes. However, the recent discovery of Wolbachia strains in the An. 333 
gambiae s.l. complex in Burkina Faso and Mali [39,40] in addition to our study showing infection in 334 
Anopheles from Ghana and DRC, suggest resident strains could be widespread across Sub-Saharan 335 
Africa.  The discovery of resident strains in Burkina Faso resulted from sequencing of the 16S rRNA 336 
gene identifying Wolbachia sequences rather than screening using Wolbachia-specific genes [39]. 337 
Intriguingly, Wolbachia infections in these mosquitoes could not be detected using conventional PCR 338 
targeting the wsp gene. As the wsp gene has often been used in previous studies to detect strains in 339 
Anopheles species [25,27], this could explain why resident strains in the An. gambiae s.l. complex 340 
have gone undetected until very recently.  Recent similar methods using 16S rRNA amplicon 341 
sequencing to determine the overall microbiota in wild mosquito populations has provided evidence 342 
for Wolbachia infections in An. gambiae in additional villages in Burkina Faso [54] and Anopheles 343 
species collected in Illinois, USA [55].  Our study describing resident Wolbachia strains in numerous 344 
species of Anopheles malaria vectors also highlights the potential for Wolbachia to be influencing 345 
malaria transmission, as postulated by previous studies [39,40,56].  Although no significant correlation 346 
was present for malaria and Wolbachia prevalence in the 128 An. gambiae s.s. individuals from DRC, 347 
we only detected co-infections in two individuals compared to 13 and 15 individuals infected only with 348 
Wolbachia or P. falciparum respectively. As the majority (77%) of samples had neither detectable 349 
Wolbachia resident strains or P. falciparum, a larger sample size would be needed to determine if 350 
there is a correlation, as shown previously in both Burkina Faso [56] and Mali [40].  The infection 351 
prevalence of resident Wolbachia strains in An. coluzzii from Ghana (4%) and An. gambiae s.s. from 352 
the DRC was variable but low (8-24%), consistent with infection prevalence in Burkina Faso (11%) 353 
[39] but much lower than those reported in Mali (60-80%) [40] where infection was associated with 354 
reduced prevalence and intensity of sporozoite infection in field-collected females.   355 
 356 
The discovery of a resident Wolbachia strain in An. moucheti, a highly anthropophilic and efficient 357 
malaria vector found in the forested areas of western and central Africa [41], suggests further studies 358 
are warranted that utilize large sample sizes to examine the influence of the wAnM Wolbachia strain 359 
on Plasmodium infection dynamics in this malaria vector.  An. moucheti is often the most abundant 360 
vector, breeding in slow moving streams and rivers, contributing to year round malaria transmission in 361 
these regions [57,58].  This species has also been implicated as a main bridge vector species in the 362 
transmission of ape Plasmodium malaria in Gabon [59].  There is thought to be high genetic diversity 363 
in An. moucheti populations [60,61] which may either influence the prevalence of Wolbachia resident 364 
strains or Wolbachia could be contributing to genetic diversity through its effect on host reproduction.   365 
A novel Wolbachia strain in An. species ‘A’, present at high infection frequencies in Lwiro (close to 366 
Katana in DRC), also suggests more Anopheles species, including unidentified and potentially new 367 
species, could be infected with this widespread endosymbiotic bacterium.  An. species A should be 368 
further investigated to determine if this species is a potential malaria vector given our study 369 
demonstrated P. falciparum infection in one of two individuals screened and ELISA-positive samples 370 
of this species were reported from the Western Highlands of Kenya [62].   371 
 372 
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The variability of Wolbachia prevalence rates in An. gambiae s.l. complex from locations within DRC 373 
and Ghana and previous studies in Burkina Faso [39] and Mali [40] suggest the environment is one 374 
factor that influences the presence or absence of resident strains.   In our study we found no evidence 375 
of Wolbachia-Asaia co-infections across all countries, supporting laboratory studies that have shown 376 
these two bacterial endosymbionts demonstrate competitive exclusion in Anopheles species [36,38].  377 
We also found that Asaia infection densities (whole body mosquitoes) were variable and location 378 
dependent which would correlate with this bacterium being environmentally acquired at all life stages, 379 
but also having the potential for both vertical and horizontal transmission [37].  Significant variations in 380 
overall Asaia prevalence and density across different Anopheles species and locations in our study 381 
would also correlate with our data indicating no evidence of an association with P. falciparum 382 
prevalence in both Guinea and Uganda populations.  Further studies are needed to determine the 383 
complex interaction between these two bacterial endosymbionts and malaria in diverse Anopheles 384 
malaria vector species. Horizontal transfer of Wolbachia strains between species (even over large 385 
phylogenetic differences) has shaped the evolutionary history of this endosymbiont in insects and 386 
there is evidence for loss of infection in host lineages over evolutionary time [63].  Our results showing 387 
a new strain present in An. coluzzii from Ghana (phylogenetically different to strains present in An. 388 
gambiae s.l. mosquitoes from both Burkina Faso and Mali), strain variants observed in An. species A, 389 
and the concatenated grouping of the novel Anopheles strains with strains found in different Orders of 390 
insects, support the lack of congruence between insect host and Wolbachia phylogenetic trees [64].   391 
 392 
Our qPCR and 16S microbiome analysis indicates the densities of wAnM and wAnsA strains are 393 
significantly higher than resident Wolbachia strains in An. gambiae s.l. However, caution must be 394 
taken as we were only able to analyse selected individuals and larger collections of wild populations 395 
would be required to confirm these results. Native Wolbachia strains dominating the microbiome of 396 
An. species A and An. moucheti is consistent with other studies of resident strains in mosquitoes 397 
showing Wolbachia 16S rRNA gene amplicons vastly outnumber sequences from other bacteria in 398 
Ae. albopictus and Cx. quinquefasciatus [65,66].  The discovery of novel Wolbachia strains provides 399 
the rationale to undertake vector competence experiments to determine what effect these strains are 400 
having on malaria transmission.  The tissue tropism of novel Wolbachia strains in malaria vectors will 401 
be particularly important to characterise given this will determine if these endosymbiotic bacteria are 402 
proximal to malaria parasites within the mosquito.  It would also be important to determine the 403 
additional phenotypic effects novel resident Wolbachia strains have on their mosquito hosts. Some 404 
Wolbachia strains induce a reproductive phenotype termed cytoplasmic incompatibility (CI) that 405 
results in inviable offspring when an uninfected female mates with a Wolbachia-infected male.  In 406 
contrast, Wolbachia-infected females produce viable progeny when they mate with both infected and 407 
uninfected male mosquitoes.  This reproductive advantage over uninfected females allows Wolbachia 408 
to spread within mosquito populations.   409 
 410 
Wolbachia has been the focus of recent biocontrol strategies in which Wolbachia strains transferred 411 
into naïve mosquito species provide strong inhibitory effects on arboviruses [19,20,67–70] and 412 
malaria parasites [31,35].  The discovery of two novel Wolbachia strains in Anopheles mosquitoes, 413 
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potentially present at much higher density than resident strains in the An. gambiae s.l. complex, also 414 
suggests the potential for these strains to be transinfected into other Anopheles species to produce 415 
inhibitory effects on Plasmodium parasites.  Wolbachia transinfection success is partly attributed to 416 
the relatedness of donor and recipient host so the transfer of high density Wolbachia strains between 417 
Anopheles species may result in stable infections (or co-infections) that have strong inhibitory effects 418 
on Plasmodium development. Finally, if the resident strain present in An. moucheti is at low infection 419 
frequencies in wild populations, an alternative strategy known as the incompatible insect technique 420 
(IIT) could be implemented where Wolbachia-infected males are released to suppress the wild 421 
populations through CI (reviewed by [22]). In summary, the important discovery of diverse novel 422 
Wolbachia strains in Anopheles species will help our understanding of how Wolbachia strains can 423 
potentially impact malaria transmission, through natural associations or being used as candidate 424 
strains for transinfection to create stable infections in other species.  425 
 426 
Materials and Methods.  427 
 428 
Study sites & collection methods. Anopheles adult mosquitoes were collected from five malaria 429 
endemic countries in Sub-Saharan Africa; Guinea, Democratic Republic of the Congo (DRC), Ghana, 430 
Uganda and Madagascar between 2013 and 2017 (Figure 1). Human landing catches, CDC light 431 
traps and pyrethrum spray catches were undertaken between April 2014 – February 2015 in 10 432 
villages near four cities in Guinea; Foulayah (10.144633, -10.749717) and Balayani (10.1325, -433 
10.7443) near Faranah; Djoumaya (10.836317, -14.2481) and Kaboye Amaraya (10.93435, -434 
14.36995) near Boke; Tongbekoro (9.294295, -10.147953), Keredou (9.208919, -10.069525), and 435 
Gbangbadou (9.274363, -9.998639) near Kissidougou; and Makonon (10.291124, -9.363358), 436 
Balandou (10.407669, -9.219096), and Dalabani (10.463692, -9.451904) near Kankan. Human 437 
landing catches and pyrethrum spray catches were undertaken between January – September 2015 438 
in seven sites of the DRC; Kinshasa (-4.415881, 15.412188), Mikalayi (-6.024184, 22.318251), 439 
Kisangani (0.516350, 25.221176), Katana (-2.225129, 28.831604), Kalemie (-5.919054, 29.186572), 440 
and Kapolowe (-10.939802, 26.952970).  We also analysed a subset from collections obtained from 441 
Lwiro (-2.244097, 28.815232), a village near Katana, collected between in September – October  442 
2015.  A combination of CDC light traps, pyrethrum spray catches and human landing catches were 443 
undertaken in Butemba, Kyankwanzi District in mid-western Uganda (1.1068444, 31.5910085) in 444 
August and September 2013 and June 2014.  CDC light trap catches were undertaken in May 2017 in 445 
Dogo in Ada, Greater Accra, Ghana (5.874861111, 0.560611111).  In Madagascar, sampling was 446 
undertaken in June 2016 at four sites: Anivorano Nord, located in the Northern domain, (-447 
12.7645000, 49.2386944), Ambomiharina, Western domain, (-16.3672778, 46.9928889), Antafia, 448 
Western domain, (-17.0271667, 46.7671389) and Ambohimarina, Central domain, (-449 
18.3329444, 47.1092500).  Trapping consisted of CDC light traps and a net trap baited with Zebu 450 
(local species of cattle) to attract zoophilic species [71].   451 
 452 
 453 
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DNA extraction and species identification. DNA was extracted from individual whole mosquitoes or 454 
abdomens using QIAGEN DNeasy Blood and Tissue Kits according to manufacturer’s instructions.  455 
DNA extracts were eluted in a final volume of 100 μL and stored at –20°C. Species identification was 456 
initially undertaken using morphological keys followed by diagnostic species-specific PCR assays to 457 
distinguish between the morphologically indistinguishable sibling mosquito species of the An. 458 
gambiae [72–74] and An. funestus complexes [75].  To determine species identification for samples of 459 
interest and samples that could not be identified by species-specific PCR, Sanger sequences were 460 
generated from ITS2 PCR products [76].  461 
 462 
Detection of P. falciparum and Asaia. Detection of P. falciparum malaria was undertaken using 463 
qPCR targeting an 120-bp sequence of the P. falciparum cytochrome c oxidase subunit 1 (Cox1) 464 
mitochondrial gene [77] as preliminary trials revealed this was the optimal method for both sensitivity 465 
and specificity.  Positive controls from gDNA extracted from a cultured P. falciparum-infected blood 466 
sample (parasitaemia of ~10%) were serially diluted to determine the threshold limit of detection, in 467 
addition to the inclusion no template controls (NTCs).  Asaia detection was undertaken targeting the 468 
16S rRNA gene [78,79].  Ct values for both P. falciparum and Asaia assays in selected An. gambiae 469 
extracts were normalized to Ct values for a single copy An. gambiae rps17 housekeeping gene 470 
(accession no. AGAP004887 on www.vectorbase.org) [80,81].   As Ct values are inversely related to 471 
the amount of amplified DNA, a higher target gene Ct: host gene Ct ratio represented a lower 472 
estimated infection level. qPCR reactions were prepared using 5 µL of FastStart SYBR Green Master 473 
mix (Roche Diagnostics), a final concentration of 1µM of each primer, 1 µL of PCR grade water and 2 474 
µL template DNA, to a final reaction volume of 10 µL.   Prepared reactions were run on a Roche 475 
LightCycler® 96 System and amplification was followed by a dissociation curve (95˚C for 10 seconds, 476 
65˚C for 60 seconds and 97˚C for 1 second) to ensure the correct target sequence was being 477 
amplified. PCR results were analysed using the LightCycler® 96 software (Roche Diagnostics). A 478 
sub-selection of PCR products from each assay was sequenced to confirm correct amplification of the 479 
target gene fragment.  480 
 481 
Wolbachia detection. Wolbachia detection was first undertaken targeting three conserved Wolbachia 482 
genes previously shown to amplify a wide diversity of strains; 16S rDNA gene [40,45], Wolbachia 483 
surface protein (wsp) gene [46] and FtsZ cell cycle gene [82].   DNA extracted from a Drosophila 484 
melanogaster fly (infected with the wMel strain of Wolbachia) was used a positive control, in addition 485 
to no template controls (NTCs).  16S rDNA [45] and wsp [46] gene PCR reactions were carried out in 486 
a Bio-Rad T100 Thermal Cycler using standard cycling conditions and PCR products were separated 487 
and visualised using 2% E-Gel EX agarose gels (Invitrogen) with SYBR safe and an Invitrogen E-Gel 488 
iBase Real-Time Transilluminator.  FtsZ [47] and 16S rDNA [40] gene real time PCR reactions were 489 
prepared using 5 µL of FastStart SYBR Green Master mix (Roche Diagnostics), a final concentration 490 
of 1µM of each primer, 1 µL of PCR grade water and 2 µL template DNA, to a final reaction volume of 491 
10 µL. Prepared reactions were run on a Roche LightCycler® 96 System for 15 minutes at 95˚C, 492 
followed by 40 cycles of 95˚C for 15 seconds and 58˚C for 30 seconds. Amplification was followed by 493 
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a dissociation curve (95˚C for 10 seconds, 65˚C for 60 seconds and 97˚C for 1 second) to ensure the 494 
correct target sequence was being amplified. PCR results were analysed using the LightCycler® 96 495 
software (Roche Diagnostics).  To estimate Wolbachia densities across multiple Anopheles mosquito 496 
species, ftsZ and 16S qPCR Ct values were compared to total dsDNA extracted measured using an 497 
Invitrogen Qubit 4 fluorometer.   A serial dilution series of a known Wolbachia-infected mosquito DNA 498 
extract was used to correlate Ct values and amount of amplified target product.   499 

Wolbachia MLST. Multilocus sequence typing (MLST) was undertaken to characterize Wolbachia 500 
strains using the sequences of five conserved genes as molecular markers to genotype each strain. 501 
In brief, 450-500 base pair fragments of the gatB, coxA, hcpA, ftsZ and fbpA Wolbachia genes were 502 
amplified from individual Wolbachia-infected mosquitoes using previously optimised protocols [83].  A 503 
Cx. pipiens gDNA extraction (previously shown to be infected with the wPip strain of Wolbachia) was 504 
used a positive control for each PCR run, in addition to no template controls (NTCs).   If no 505 
amplification was detected using standard primers, further PCR analysis was undertaken using 506 
degenerate primers [83].  PCR products were separated and visualised using 2% E-Gel EX agarose 507 
gels (Invitrogen) with SYBR safe and an Invitrogen E-Gel iBase Real-Time Transilluminator.  PCR 508 
products were submitted to Source BioScience (Source BioScience Plc, Nottingham, UK) for PCR 509 
reaction clean-up, followed by Sanger sequencing to generate both forward and reverse reads. 510 
Sequencing analysis was carried out in MEGA7 [84] as follows. Both chromatograms (forward and 511 
reverse traces) from each sample was manually checked, edited, and trimmed as required, followed 512 
by alignment by ClustalW and checking to produce consensus sequences. Consensus sequences 513 
were used to perform nucleotide BLAST (NCBI) database queries, and searches against the 514 
Wolbachia MLST database (http://pubmlst.org/wolbachia) [85].  If a sequence produced an exact 515 
match in the MLST database we assigned the appropriate allele number, otherwise the closest 516 
matches and number of differences were noted. The Sanger sequencing traces from the wsp gene 517 
were also treated in the same way and analysed alongside the MLST gene locus scheme, as an 518 
additional marker for strain typing  519 

Phylogenetic analysis. Alignments were constructed in MEGA7 by ClustalW to include all relevant 520 
and available sequences highlighted through searches on the BLAST and Wolbachia MLST 521 
databases. Maximum Likelihood phylogenetic trees were constructed from Sanger sequences as 522 
follows. The evolutionary history was inferred by using the Maximum Likelihood method based on the 523 
Tamura-Nei model [86].  The tree with the highest log likelihood in each case is shown. The 524 
percentage of trees in which the associated taxa clustered together is shown next to the branches. 525 
Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and 526 
BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite 527 
Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The 528 
trees are drawn to scale, with branch lengths measured in the number of substitutions per site. Codon 529 
positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data 530 
were eliminated. The phylogeny test was by Bootstrap method with 1000 replications. Evolutionary 531 
analyses were conducted in MEGA7 [84]. 532 
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Microbiome Analysis. The microbiomes of selected individual Anopheles were analysed using 533 
barcoded high-throughput amplicon sequencing of the bacterial 16S rRNA gene.   Sequencing 534 
libraries for each isolate were generated using universal 16S rRNA V3-V4 region primers [87] in 535 
accordance with Illumina 16S rRNA metagenomic sequencing library protocols. The samples were 536 
barcoded for multiplexing using Nextera XT Index Kit v2. Sequencing was performed on an Illumina 537 
MiSeq instrument using a MiSeq Reagent Kit v2 (500-cycles). Quality control and taxonomical 538 
assignment of the resultant reads were performed using CLC Genomics Workbench 8.0.1 Microbial 539 
Genomics Module (http://www.clcbio.com). Low quality reads containing nucleotides with quality 540 
threshold below 0.05 (using the modified Richard Mott algorithm), as well as reads with two or more 541 
unknown nucleotides were removed from analysis. Additionally reads were trimmed to remove 542 
sequenced Nextera adapters. Reference based OTU picking was performed using the SILVA SSU 543 
v128 97% database [88]. Sequences present in more than one copy but not clustered to the database 544 
were then placed into de novo OTUs (97% similarity) and aligned against the reference database with 545 
80% similarity threshold to assign the “closest” taxonomical name where possible. Chimeras were 546 
removed from the dataset if the absolute crossover cost was 3 using a k-mer size of 6. Alpha diversity 547 
was measured using Shannon entropy (OTU level). 548 

Statistical analysis. Fisher’s exact post hoc test in Graphpad Prism 7 was used to compare infection 549 
rates. Normalised qPCR Ct ratios were compared using unpaired t-tests in GraphPad Prism 7. 550 
 551 
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Figure legends  873 

Figure 1. Locations of Anopheles species collections (including Wolbachia-infected species) 874 
and P. falciparum malaria prevalence rates in mosquitoes (across all species for each 875 
location).  A) Overall map showing the five malaria-endemic countries where mosquito collections 876 
were undertaken.  B) High malaria prevalence rates in Guinea, and Wolbachia-infected An. coluzzii 877 
from Ghana (no P. falciparum detected). C) Wolbachia strains in An. gambiae s.s., An. arabiensis, An. 878 
species A and An. moucheti from DRC and variable P. falciparum prevalence rate in DRC and 879 
Uganda.  D) Low P. falciparum infection rates in Madagascar and no evidence of resident Wolbachia 880 
strains. (W+; Wolbachia detected in this species). 881 
 882 
Figure 2. Maximum Likelihood molecular phylogenetic analysis of Anopheles gambiae 883 
complex ITS2 sequences from field-collected mosquitoes. The tree with the highest log likelihood 884 
(-785.65) is shown. The tree is drawn to scale, with branch lengths measured in the number of 885 
substitutions per site. The analysis involved 42 nucleotide sequences. There were a total of 475 886 
positions in the final dataset. DRC = Democratic Republic of the Congo (red): KAL = Kalemie, MIK = 887 
Mikalayi, KIN = Kinshasa, KAT = Katana. GHA = Ghana (blue): DOG = Dogo. GUI = Guinea (green): 888 
KSK = Kissidougou. MAD = Madagascar (purple): ANT = Antafia. UGA = Uganda (maroon): BUT = 889 
Butemba. (W+; individual was Wolbachia positive, W-; individual was Wolbachia negative). 890 
 891 
Figure 3.  Maximum Likelihood molecular phylogenetic analysis of Anopheles ITS2 sequences 892 
from field-collected mosquitoes outside of the An. gambiae s.l. complex. The tree with the 893 
highest log likelihood (-3084.12) is shown. The tree is drawn to scale, with branch lengths measured 894 
in the number of substitutions per site. The analysis involved 118 nucleotide sequences. There were a 895 
total of 156 positions in the final dataset. DRC = Democratic Republic of the Congo (red): KAT = 896 
Katana, LWI = Lwiro, MIK = Mikalayi. GUI = Guinea (green): FAR = Faranah, KAN = Kankan, KSK = 897 
Kissidougou. MAD = Madagascar (purple): AMB = Ambomiharina. (W+; individual was Wolbachia 898 
positive, W-; individual was Wolbachia negative). 899 
 900 
Figure 4.  Resident Wolbachia strain phylogenetic analysis using 16S rRNA and wsp genes. A) 901 
Maximum Likelihood molecular phylogenetic analysis of the 16S rRNA gene for resident strains in An. 902 
coluzzii (wAnga-Ghana; blue), An. moucheti (wAnM; green) and An. species A (wAnsA; red). The tree 903 
with the highest log likelihood (-660.03) is shown. The tree is drawn to scale, with branch lengths 904 
measured in the number of substitutions per site. The analysis involved 17 nucleotide sequences. 905 
There were a total of 333 positions in the final dataset. Accession numbers of additional sequences 906 
obtained from GenBank are shown, including wPip (navy blue), wAnga-Mali (purple) and wAnga-907 
Burkina Faso strains (maroon). B) Maximum Likelihood molecular phylogenetic analysis of the wsp 908 
gene for wAnsA-infected representative individuals from the DRC (red). (KAT = Katana, LWI = Lwiro.) 909 
The tree with the highest log likelihood (-3663.41) is shown. The tree is drawn to scale, with branch 910 
lengths measured in the number of substitutions per site. The analysis involved 83 nucleotide 911 
sequences. There were a total of 443 positions in the final dataset. Reference numbers of additional 912 
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sequences obtained from the MLST database (IsoN = Isolate number) or GenBank (accession 913 
number) are shown. Strains isolated from mosquitoes are highlighted in navy blue. 914 
 915 
Figure 5. Wolbachia MLST phylogenetic analysis of resident Wolbachia strains in An. coluzzii, 916 
An. moucheti and An. species A. A) Maximum Likelihood molecular phylogenetic analysis from 917 
concatenation of all five MLST gene loci for resident Wolbachia strains from An. coluzzii (wAnga-918 
Ghana; blue), An. moucheti (wAnM; green) and An. species A (wAnsA; red). The tree with the highest 919 
log likelihood (-10606.13) is shown and drawn to scale, with branch lengths measured in the number 920 
of substitutions per site. The analysis involved 94 nucleotide sequences. There were a total of 2067 921 
positions in the final dataset. Concatenated sequence data from Wolbachia strains downloaded from 922 
MLST database for comparison shown with isolate numbers in brackets (IsoN). Wolbachia strains 923 
isolated from mosquito species highlighted in navy blue, bold. Strains isolated from other Dipteran 924 
species are shown in navy blue, from Coleoptera in olive green, from Hemiptera in purple, from 925 
Hymenoptera in teal blue, from Lepidoptera in maroon and from other, or unknown orders in black.  926 
B). Maximum Likelihood molecular phylogenetic analysis for coxA gene locus for resident Wolbachia 927 
strains from An. coluzzii (wAnga-Ghana; blue), An. moucheti (wAnM; green) and An. species A 928 
(wAnsA and wAnsA(2); red). The tree with the highest log likelihood (-1921.11) is shown and drawn to 929 
scale, with branch lengths measured in the number of substitutions per site. The analysis involved 84 930 
nucleotide sequences. There were a total of 402 positions in the final dataset.  Sequence data for the 931 
coxA locus from Wolbachia strains downloaded from MLST database for comparison shown in black 932 
and navy blue with isolate numbers (IsoN) from MLST database shown in brackets. Wolbachia strains 933 
isolated from mosquito species highlighted in navy blue. GenBank sequence for wAnga-Mali coxA 934 
shown in maroon with accession number. 935 
 936 
Figure 6.  The relative abundance of resident Wolbachia strains in Anopheles.  Bacterial genus 937 
level taxonomy was assigned to OTUs clustered with a 97% cut-off using the SILVA SSU v128 97% 938 
database, and individual genera comprising less than 1% of total abundance was merged into 939 
“Others”. 940 
 941 
Figure 7. The relative abundance of bacteria in An. gambiae s.s. comparing two locations with 942 
contrasting Asaia infection densities.  Bacterial genus level taxonomy was assigned to OTUs 943 
clustered with a 97% cut-off using the SILVA SSU v128 97% database, and individual genera 944 
comprising less than 1% of total abundance was merged into “Others”.   945 
 946 

Supplementary Figure S1. Alpha and beta diversity of An. gambiae s.s. from Kissidougou, 947 
Guinea and Butemba, Uganda.  A) Alpha diversity using the Shannon diversity index shows the 948 
relative abundance of bacterial genera.  B) To identify dissimilarities in the bacterial community 949 
structure between the microbiome, principal coordinates analysis (PCoA) was performed based on a 950 
Bray-Curtis dissimilarity matrix based on 97% clustered OTUs. 951 
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Supplementary Figure S2.  Prevalence of the bacterial endosymbiont Asaia and malaria 952 
parasites in An. gambiae s.s. mosquitoes from Guinea. A) Normalised P. falciparum: An. gambiae 953 
gene Ct ratio for mosquitoes that are infected with malaria and +/- Asaia bacteria. B)  P. falciparum 954 
and Asaia infection rates (%) in 152 An. gambiae s.s. females. C) Box and whisker plot of Ct values 955 
for detection of Asaia and P. falciparum malaria showing more variable levels of Asaia detected.  956 
 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 
 975 
 976 
 977 
 978 
 979 
 980 
 981 
 982 
 983 
 984 
 985 
 986 
 987 
 988 
 989 
 990 
 991 
 992 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/338434doi: bioRxiv preprint 

https://doi.org/10.1101/338434
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Table 1. Anopheles mosquito species collected from locations within five malaria-endemic countries 993 
and P. falciparum, Wolbachia and Asaia prevalence rates.  Species in different locations infected with 994 
Wolbachia are in bold. *Adult individuals from Lwiro (Katana), DRC were collected as both larvae and 995 
adults so have been excluded from P. falciparum and Asaia prevalence analysis.  996 
 997 

Country Location Species Individuals  
Infection prevalence (%) 

P. falciparum Wolbachia Asaia 

Guinea 

Faranah 
An. gambiae s.s.  48 43.8 0.0 50.0 
An. arabiensis 7 0.0 0.0 100.0 
An. nili 9 0.0 0.0 100.0 

Kissidougou  An. gambiae s.s.  44 18.2 0.0 100.0 
An. species O 1 0.0 0.0 100.0 

Boke An. gambiae s.s.  21 52.4 0.0 28.6 

Kankan An. gambiae s.s.  48 38.1 0.0 56.3 
An. sp. unknown  1 0.0 0.0 0.0 

DRC  

Mikalayi 
An. gambiae s.s.  16 29.4 11.8 11.8 
An. moucheti 1 0.0 100.0 0.0 
An. funestus s.s. 13 30.8 0.0 15.4 

Kisangani An. gambiae s.s.  25 12.0 8.0 20.0 
An. arabiensis 4 25.0 0.0 0.0 

Katana 
An. gambiae s.s. 23 8.7 8.7 4.4 
An. funestus s.s.  5 0.0 0.0 0.0 
An. species A 2 50.0 100.0 0.0 

Lwiro (Katana) An. species A* 33 N/A 90.1 N/A 

Kapolowe  An. gambiae s.s.  9 11.1 11.1 0.0 
An. funestus s.s. 5 20.0 0.0 0.0 

Kalemie An. gambiae s.s.  28 7.1 21.4 3.6 
An. arabiensis 2 0.0 50.0 0.0 

Kinshasa  An. gambiae s.s.  27 22.2 14.8 3.7 
An. funestus s.s. 2 50.0 0.0 0.0 

Ghana Dogo An. coluzzii 286 0.0 4.2 32.9 
An. melas 1 0.0 0.0 100.00 

Uganda 
Butemba (2013) An. gambiae s.s. 57 19.3 0.0 80.7 

Butemba (2014) An. gambiae s.s.  135 36.3 0.0 48.1 
An. arabiensis 1 0.0 0.0 0.0 

Madagascar 

Anivorano Nord  

An. funestus  8 0.0 0.0 25.0 
An. gambiae s.s.  3 0.0 0.0 33.3 
An. arabiensis 2 0.0 0.0 100.0 
An. mascarensis 38 0.0 0.0 39.5 
An. maculipalpis 9 0.0 0.0 11.1 
An. coustani 22 0.0 0.0 27.3 
An. rufipes 11 0.0 0.0 27.3 

Ambomiharina 

An. funestus 12 0.0 0.0 83.3 
An. pharoensis 7 0.0 0.0 42.9 
An. rufipes 19 10.5 0.0 68.4 
An. maculipalpis 9 0.0 0.0 0.0 
An. gambiae s.s.  8 0.0 0.0 0.0 
An. coustani 24 0.0 0.0 25.0 
An. squamosus 10 0.0 0.0 20.0 
An. mascarensis 2 0.0 0.0 50.0 

Antafia  

An. gambiae s.s.  11 27.3 0.0 45.5 
An. pauliani 2 0.0 0.0 50.0 
An. rufipes 2 0.0 0.0 50.0 
An. mascarensis 2 0.0 0.0 0.0 

Ambohimarina  

An. funestus 1 0.0 0.0 0.0 
An. gambiae s.s.  1 0.0 0.0 0.0 
An. arabiensis 2 0.0 0.0 0.0 
An. rufipes 7 0.0 0.0 42.9 
An. coustani 18 0.0 0.0 11.1 
An. maculipalpis 8 0.0 0.0 12.5 
An. squamosus 52 0.0 0.0 3.9 
An. mascarensis 11 0.0 0.0 0.0 

 998 
 999 
 1000 
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Table 2. Novel resident Wolbachia strain wsp and MLST gene allelic profiles.  Exact matches to 1001 
existing alleles present in the database are shown in bold, novel alleles are denoted by the allele 1002 
number of the closest match and shown in red (number of single nucleotide differences to the closest 1003 
match). *alternative degenerate primers (set 3) used to generate sequence.  1004 
 1005 

Mosquito species Wolbachia strain 
Wolbachia gene allele  

wsp  gatB coxA hcpA ftsZ fbpA 

An. species A wAnsA 152 (34) 140 (4) 122 (16)  6 (7) 7 (1) 10 (1) 

An. species A wAnsA(2) 152 (34) - 36 (1) 6 (7)  - - 

An. moucheti wAnM - 9 (2) 11 (1) 74 (3) 7 (2) 7 (12) 

An. coluzzii wAnga-Ghana - 9 64 3* 177 4 

 1006 

Supplementary Table 1. Additional sample details and ITS2 GenBank accession numbers. 1007 

Location Species Sample ID Wolbachia 

status 

ITS2 accession 

number 

Guinea: Kissidougou Anopheles sp. O/15 GUI-KSK1 W- MH598414 

Guinea: Kissidougou Anopheles gambiae s.s. GUI-KSK2 W- MH598415 

Guinea: Faranah Anopheles nili GUI-FAR1 W- MH598416 

Guinea: Faranah Anopheles nili GUI-FAR2 W- MH598417 

Guinea: Kankan Anopheles sp. unknown GUI-KAN1 W- MH598418 

DRC: Lwiro Anopheles sp. A/1 DRC-LWI1 W+ MH598419 

DRC: Lwiro Anopheles sp. A/1 DRC-LWI2 W+ MH598420 

DRC: Lwiro Anopheles sp. A/1 DRC-LWI3 W+ MH598421 

DRC: Katana Anopheles sp. A/1 DRC-KAT1 W+ MH598422 

DRC: Katana Anopheles sp. A/1 DRC-KAT2 W+ MH598423 

DRC: Mikalayi Anopheles moucheti DRC-MIK1 W+ MH598424 

DRC: Kinshasa Anopheles gambiae s.s. DRC-KIN1 W+ MH598425 

DRC: Mikalayi Anopheles gambiae s.s. DRC-MIK2 W+ MH598426 

DRC: Kalemie Anopheles gambiae s.s. DRC-KAL1 W+ MH598427 

DRC: Kalemie Anopheles arabiensis DRC-KAL2 W+ MH598428 

DRC: Katana Anopheles gambiae s.s. DRC-KAT3 W- MH598429 

Ghana: Dogo Anopheles coluzzii GHA-DOG1 W+ MH598430 

Ghana: Dogo Anopheles coluzzii GHA-DOG2 W+ MH598431 

Ghana: Dogo Anopheles coluzzii GHA-DOG3 W+ MH598432 

Ghana: Dogo Anopheles coluzzii GHA-DOG4 W- MH598433 

Ghana: Dogo Anopheles coluzzii GHA-DOG5 W- MH598434 

Ghana: Dogo Anopheles melas GHA-DOG6 W- MH598435 
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Uganda: Butemba Anopheles gambiae s.s. UGA-BUT1 W- MH598436 

Uganda: Butemba Anopheles gambiae s.s. UGA-BUT2 W- MH598437 

Uganda: Butemba Anopheles gambiae s.s. UGA-BUT3 W- MH598438 

Uganda: Butemba Anopheles gambiae s.s. UGA-BUT4 W- MH598439 

Uganda: Butemba Anopheles arabiensis UGA-BUT5 W- MH598440 

Madagascar: Antafia Anopheles gambiae s.s. MAD-ANT1 W- MH598441 

Madagascar: Antafia Anopheles gambiae s.s. MAD-ANT2 W- MH598442 

Madagascar: Antafia Anopheles gambiae s.s. MAD-ANT3 W- MH598443 

Madagascar: Ambomiharina Anopheles rufipes MAD-AMB1 W- MH598444 

Madagascar: Ambomiharina Anopheles rufipes MAD-AMB2 W- MH598445 

 1008 

Supplementary Table 2. Wolbachia 16S and wsp GenBank accession numbers 1009 

Sample ID Strain 16S wsp 

DRC-LWI1 wAnsA MH605275 MH605281 

DRC-LWI2 wAnsA MH605276 MH605282 

DRC-LWI3 wAnsA MH605277 MH605283 

DRC-KAT1 wAnsA - MH605284 

DRC-KAT2 wAnsA(2) - MH605285 

DRC-MIK1 wAnM MH605278 - 

GHA-DOG1  wAnga-Ghana MH605279 - 

GHA-DOG2 wAnga-Ghana MH605280 - 

 1010 

Supplementary Table 3. Wolbachia MLST gene GenBank accession numbers 1011 

Sample ID Strain gatB coxA hcpA ftsZ fbpA 

DRC-LWI1 wAnsA MH605286 MH605290 MH605295 MH605299 MH605302 

DRC-KAT1 wAnsA MH605287 MH605291 - - MH605303 

DRC-KAT2 wAnsA(2) - MH605292 MH605296 - - 

DRC-MIK1 wAnM MH605288 MH605293 MH605297 MH605300 MH605304 

GHA-DOG1  wAnga-Ghana MH605289 MH605294 - MH605301 MH605305 

GHA-DOG2 wAnga-Ghana - - MH605298 - - 

1012 
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Figure 1  

1013 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6  
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Figure 7 
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Supplementary Figure S1 
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Supplementary Figure S2 
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