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Abstract 

Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms 

bovine leukocytes into disseminating tumors that cause a disease called tropical 

theileriosis. Using RNA sequencing we identified bovine genes, whose transcription is 

perturbed during Theileria-induced transformation to define the transcriptional atlas of 

transformed virulent versus attenuated (dampened dissemination) macrophages and 

transformed B cells. Dataset comparisons highlighted a small set of novel genes 

associated with Theileria-transformed leukocyte dissemination and the roles of Granzyme 

A (GZMA) and RAS guanyl-releasing protein 1 (RASGRP1) confirmed by CRISPR/Cas9-

mediated down-regulation of their expression. Knockdown of both GZMA and RASGRP1 

in attenuated macrophages led to a regain in their dissemination in Rag2/γC mice 

confirming in vivo both GZMA and RASGRP1 as novel dissemination suppressors. 
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INTRODUCTION  

Theileria annulata is a tick-transmitted apicomplexan parasite that infects and 

transforms bovine leukocytes into disseminating tumors that cause a widespread disease 

called tropical theileriosis. In countries endemic for tropical theileriosis live attenuated 

vaccines are produced by long-term passage of virulent, transformed macrophages that 

following multiple passages (circa 300) in the laboratory loose the lethal disseminating 

phenotype, thus allowing them to vaccinate and transiently protect animals against 

disease (1). Amazingly the fully transformed state can be completely reversed by drug-

induced parasite death making Theileria-infected leukocytes a powerful cellular model to 

identify genes regulating cellular transformation (2). This parasite-based reversible model 

of leukocyte transformation has been exploited to show how a secreted peptidyl-prolyl 

isomerase (PIN1) by interacting with the ubiquitin ligase FBW7 stabilizes c-Jun (3), how 

SMYD3 is a key regulator of MMP-9 transcription (4), and how c-Jun NH2-terminal 

kinase/c-Jun signaling promotes survival and dissemination of B cells transformed by 

Theileria (5). In addition to being reversible, loss of dissemination of live attenuated 

vaccines offers the opportunity to search for novel regulators of tumor dissemination, 

rather than survival and immortalization. For example, we exploited the Ode T. annulata 

attenuated vaccine to highlight the role that TGF-β2 (transforming growth factor) plays in 

dissemination, since exogenous TGF-β2-stimulation of attenuated macrophages led to a 

regain in the virulent dissemination phenotype (6). In virulent macrophages high levels of 

secreted TGF-β2 induce Grb2 to recruit PI3-K to TGF-RII activating JNK/AP-1-signaling 

and promoting tumor dissemination (7). By contrast, in attenuated macrophages loss of 

TGF-β2 production ablates expression of COX2 and EP4 leading to a drop in cyclic AMP 

(cAMP) levels and reduced activation of protein kinase A (PKA) and EPAC (8). 
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Epigenetics also contributes to Theileria-induced leukocyte transformation (9). 

OncomiR addiction has been described as being generated by a miR-155 feedback loop 

in T. annulata-transformed B cells (10). RNA from transformed B cells was used to screen 

a miRNA microarray and 6 miRs were found to be downregulated upon drug-induced 

parasite death including miR-155. Infection-induced miR-155 ablated DET leading to 

stabilization of c-Jun to drive expression of BIC transcripts harboring miR-155 (10). 

Specific deep RNA-seq generated miRomes for non-infected B cells, T. annulata-

transformed B cells and virulent and attenuated macrophages (11). The logic being that 

Theileria-induced macrophage transformation activated oncogenes and ablated tumor 

suppressors, while in attenuated, non-disseminating macrophages, oncogene 

transcription is ablated and tumor suppressor expression increased. miR-126-5p was 

identified by these criteria, since its infection-induced upregulation suppressed JNK-

Interacting Protein (JIP) liberating JNK to translocate to the nucleus and phosphorylate c-

Jun, and miR-126-5p loss in attenuated macrophages led to a regain in JIP expression 

that retained JNK1 in the cytosol so dampening c-Jun phosphorylation and hence mmp9 

transcription (11). Therefore, changes in miR-126-5p levels contribute to both virulent 

hyper-dissemination and attenuated dissemination of T. annulata-transformed 

macrophages. 

 

RNA extracted from T. annulata-transformed B cells was used to screen bovine 

microarrays and infection reconfigured B cell gene expression (12). As Theileria-induced 

transformation constitutively activates transcription factors such as NF-κB, c-Myc and AP-

1, reviewed in (13, 14) alterations in gene expression identified some of the pathways 

related leukocyte transformation (15). Nonetheless, a systematic and genome scale 

transcriptional comparison of B cells and macrophages transformed T. annulata has been 

lacking. With the availability of next generation sequencing technologies (RNA-seq), it is 
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possible to obtain an unbiased and comprehensive catalogue of gene expression and an 

understanding of their perturbations due to T. annaulata-mediated leukocyte 

transformation. In this study, RNA-seq was used to define the transcriptional landscapes 

of two T. annulata-transformed B-cell lines and the virulent T. annulata-transformed 

macrophage line as well as the Ode attenuated live vaccine directly derived from it. 

Bioinformatic comparisons of the transcriptional landscapes at high stringency identified 

four candidate genes as potential players in the dissemination of virulent T. annulata-

transformed macrophages. We provide functional evidence that both GZMA and RAGRP1 

are novel suppressors of tumor dissemination. 
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Materials and Methods 

Cell lines 

The BL3 (16), TBL3, BL20 (17), TBL20 (18) B lymphocytes and Ode macrophages (19) 

were cultured in RPMI 1640 medium supplemented with 2 mM of L-glutamine (Lonza, 

catalogue number 12-702F) and 10 mM Hepes (Lonza, catalogue number 17-737E), 10 % 

heat-inactivated FBS (Gibco, catalogue number 10082147), 100 units/ml of Penicillin and 

100 ug/ml of streptomycin (Lonza, catalogue number 17-602E) and 10mM b-

mercaptoethanol (Sigma-Aldrich, catalogue number M6250) for BL3/TBL3 and 

BL20/TBL20. The virulent (Vir) hyper-disseminating Ode cell line was used at low 

passage (53-71), while its attenuated (Att) poorly disseminating vaccine counterpart 

corresponded to passages 309-317. All cell lines were incubated at 37°C with 5% CO2. 

RNA extraction 

Cells were seeded in 3 biological replicates at a density of 2.5x105 cell/ml. RNA extraction 

was performed using the PureLink RNA Mini Kit (Life technologies, catalogue number 

12183018A) following the manufacturer’s instructions. Briefly, cells were pelleted, lysed 

and homogenized using a 21-gauge needle, then 70% ethanol was added to the cell 

lysates and the samples were loaded on spin cartridges to bind RNA. After 3 washes, 

RNA was eluted in RNase-free water. The quality of extracted RNA was verified using a 

Bioanalyzer 2100 and quantification carried using Qubit (Invitrogen, catalogue number 

Q10210). 

Library preparation and sequencing  

Strand-specific RNA-sequencing (ssRNA-seq) libraries were prepared using the illumina 

Truseq Stranded mRNA Sample Preparation Kit (illumina, catalogue number RS-122-

2101) following the manufacturer’s instructions. Briefly, 1ug of total RNA was used to 

purify mRNA using poly-T oligo-attached magnetic beads. mRNA was then fragmented 
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and cDNA was synthesized using SuperScript III reverse transcriptase (Thermofisher, 

catalogue number 18080044), followed by adenylation on the 3’ end, barcoding and 

adapter ligation. The adapter ligated cDNA fragments were then enriched and cleaned 

with Agencourt Ampure XP beads (Agencourt, catalogue number A63880). Libraries 

validation was conducted using the 1000 DNA kit on 2100 Bioanalyzer (Agilent 

Technologies, catalogue number 5067-1504) and quantified using qubit (Thermofisher, 

catalogue number Q32850). ssRNA libraries were sequenced on Illumina Hiseq2000. The 

sequenced reads were mapped to the Bos taurus genome Btau 4.6.1. The quality of the 

sequenced libraries is shown in supplementary figure S1. 

Sequencing data analysis 

The quality of sequence reads and other parameters were checked using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The raw RNA-seq reads 

were processed for adaptor trimming by Trimmomatic (20). The strand-specific reads 

were mapped on to Bovine genome (bosTau7; Btau_4.6.1; GCF_000003205.5) using 

Tophat2 (-g 1 --library-type fr-firststrand) (21). The samples with respective replicates 

were analyzed further for differential gene expression by three different tools, baySeq 

(22), DESeq2 (fitType ="local") (23) and CuffDiff2 (24) with default parameters unless 

mentioned specifically. The count values for DESeq2 and baySeq were calculated from 

BAM files using HTSeq-count tool (25). The transcriptome quality plots were generated by 

cummeRbund package (v2.14.0) in R 

(http://bioconductor.org/packages/release/bioc/html/cummeRbund.html). 

Identification of differentially expressed genes after infection and attenuation by 

comparative transcriptome analysis  

The transcriptome data was analyzed with baySeq (22), DESeq2  (23) and CuffDiff2 (24).   

A gene was considered as a differentially expressed gene (DEG) if it has a padj<0.05 and 

a fold change (FC)>2. The final list of DEGs contained genes commonly differentially 
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expressed in CuffDiff2, DESeq2 and baySeq. This approach minimalizes the total number 

of DEGs for further analysis and allows stringent selection of the most significant and 

reproducible DEGs.  

qRT-PCR 

Total RNA was reverse transcribed using the High Capacity cDNA Reverse Transcription 

Kit (Applied biosystems, catalogue number 4368814) as follows: 2 μg of total RNA, 2 μL 

of RT buffer, 0.8μL of 100mM dNTP mix, 2.0μL of 10X random primers, 1μL of 

MultiScribe reverse transcriptase and Nuclease-free water to a final volume of 20 μL. The 

reaction was incubated 10 min at 25°C, 2 h at 37°C then the enzyme inactivated at 85°C 

for 5 min. Real time PCR was performed in a 10μL reaction containing 20-30 ng cDNA 

template, 5 μL 2X Fast SYBR Green Master Mix and 500 nM of forward and reverse 

primers. The reaction was run on the 7500 HT Fast Real-Time PCR System (Applied 

Biosystems). GAPDH was used as a housekeeping gene and the results were analyzed 

by the 2−∆∆CT method (26). The error bars represent the SEM of 3 biological replicates. 

Primers were designed and assessed for secondary structures using the Primer Express 

Software v3.0. The primers of all genes are listed in Table S3.   

Transfection 

Macrophages were transfected by electroporation using the Nucleofector system (Amaxa 

Biosystems). A total of 5 × 105 cells were suspended in 100 μl of Nucleofector V solution 

mix (Lonza, VCA-1003) with 2 μg of GZMA and RASGRP1 CRISPR/Cas9 plasmids and 

subjected to electroporation using the cell line-specific program T-O17. After transfection, 

cells were suspended in fresh complete medium and incubated at 37°C with 5% CO2 for 

24 to 48 h. 
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Western blotting 

Cells were harvested and extracted by RIPA lysis buffer supplemented with the 

PhosSTOP phosphatase inhibitor cocktail tablets (Roche, catalogue number 

04906845001) and Complete mini EDTA free protease inhibitor cocktail tablets (Roche, 

catalogue number 05 892 970 001). Protein concentration was determined by the 

Bradford protein assay. Cell lysates were subjected to Western blot analysis using 

conventional SDS/PAGE and protein transfer to nitrocellulose filters (Protran, Whatman, 

catalogue number GE10600006). The membrane was blocked by 5% non-fat milk-TBST 

for 2 h at room temperature. Antibodies used in immunoblotting were as follows: mouse 

monoclonal antibody anti-GZMA1 (Santa Cruz Biotechnologies, catalogue number sc-

33692) and rabbit polyclonal antibody anti-GAPDH (Merck Millipore, catalogue number 

ABS16). After washing, proteins were visualized with ECL western blotting detection 

reagents (Thermo Scientific, catalogue number 32106) on X-ray films. The GAPDH level 

was used as a loading control throughout all experiments. 

Matrigel chamber assay 

The invasive capacity of Ode macrophages was assessed in vitro using matrigel migration 

chambers, as described in (5). The CultureCoat Medium basement membrane extract 

(BME) 96-wells cell invasion assay was performed according to Culturex instructions 

(Trevigen, catalog number 3482-096-K). After 24 h of incubation at 37°C, each well of the 

top chamber was washed once in buffer. The top chamber was placed back onto the 

receiver plate. One hundred microliters of cell dissociation solution-Calcein AM was added 

to the bottom chamber of each well, and the mixtures were incubated at 37°C for 1 h with 

fluorescently labeled cells to dissociate the cells from the membrane before reading at 

485-nm excitation and 520-nm emission wavelengths, using the same parameters as 

those used for the standard curve. 
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Soft agar colony forming assay: 

A two-layer soft agar culture system was used. Cell counts were performed by ImageJ 

software. A total of 2,500 cells were plated in a volume of 1.5 ml (0.7% bacto Agar+2× 

RPMI 20% Fetal bovine Serum) over 1.5 ml base layer (1% bacto agar +2× RPMI 20% 

Fetal bovine Serum) in 6-well plates. Cultures were incubated in humidified 37°C 

incubators with an atmosphere of 5% CO2 in air, and control plates were monitored for 

growth using a microscope. At the time of maximum colony formation (10 days in 

culture), final colony numbers were counted after fixation with 0.005% Cristal Violet. The 

error bars in figure 3 represent SD values. 

Intracellular levels of hydrogen peroxide (H2O2) 

Cells were seeded at 1x105 cell/well in a 96 well plate and incubated in complete medium 

for 18 h prior to the assay. Cells were then washed with PBS and incubated with 100 μL 

of 5 M H2-DCFDA in PBS (Molecular Probes, catalogue number D399). H2O2 levels were 

assayed on a fusion spectrofluorimeter (PackardBell) by spectrofluorimetry at 485 and 

530nm excitation and emission wavelengths respectively.  

In vivo mouse studies and quantification of Theileria annulata-transformed 

macrophages load in mouse tissues  

T. annualata-infected macrophage cell lines (Virulent Ode passage 53, attenuated Ode 

passage 309, attenuated Ode transfected with RASGRP1 CRISPR/Cas9 knock out 

plasmid and attenuated Ode transfected with GZMA CRISPR/Cas9 knock out plasmid) 

were injected into four groups of five Rag2γC immunodeficient mice (27) that were equally 

distributed on the basis of age and sex in each group. The injection site was disinfected 

with ethanol and one million cells (in 200 µl PBS) were injected under the skin after gentle 

shaking of the insulin syringe. The mice were kept for 3 weeks and then they were 

sacrificed humanely and dissected. Six internal organs including heart, lung, spleen, 
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mesentery, left kidney and liver were taken and stored in 500 µl PBS in Eppendorf tubes 

at -20°C. The tissues were subjected to genomic DNA extraction using the QIAmp DNA 

mini kit (Qiagen, catalogue number 51304). DNA concentrations were measured by 

Nanodrop™ 1000 spectrophotometer (Thermo Fischer scientific) and before each 

quantitative PCR reaction samples were diluted to give a DNA concentration of 0.5 ng/µl. 

Absolute copy numbers of a single copy T. annulata gene (ama-1, TA02980) that is 

representative of T. annulata-infected macrophage load in each tissue were estimated by 

the method described in (28), with some modifications. Ama-1 was cloned into pJET 

1.2/blunt cloning vector using CloneJET PCR Cloning Kit (Thermo scientific, catalogue 

number K1232). The cloned plasmid was amplified in DH5-Alpha cells and purified with 

QIAfilter™ Plasmid Maxi Kit (Qiagen, catalogue number 12243). Plasmid concentration 

was measured using Qubit (Thermofisher, catalogue number catalogue number Q32850). 

The primers for cloning were: forward 5’-GGAGCTAACTCTGACCCTTCG-3’and reverse 

5’-CCAAAGTAGGCCAATACGGC-3’. Quantitative PCR primers were: forward 5’-

GACCGATTTCATGGCAAAGT-3’and reverse 5’-TTGGGGTCATGATGGGTTAT-3’. 

Ethics statement 

The protocol (12-26) was approved by the ethics committee for animal experimentation at 

the University of Paris-Descartes (CEEA34.GL.03312). The university ethics committee is 

registered with the French National Ethics Committee for Animal Experimentation that 

itself is registered with the European Ethics Committee for Animal Experimentation. The 

right to perform the mice experiments was obtained from the French National Service for 

the Protection of Animal Health and satisfied the animal welfare conditions defined by 

laws (R214-87 to R214-122 and R215-10) and GL was responsible for all 

experimentation, as he holds the French National Animal Experimentation permit with the 

authorisation number (B-75-1249). 
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RESULTS  

Differentially expressed bovine genes in T. annulata-transformed leukocytes  

The infection and full transformation of BL20 and BL3 cell lines with T. annulata 

caused profound transcriptional changes, as previously reported for infected BL20 cells 

(12). Transcriptional changes between virulent compared to attenuated Ode macrophages 

are less profound, likely because the macrophages are isogenic and only appear to differ 

in dissemination potential (Fig. 1 a). 

To identify bovine genes whose transcription is perturbed by transformation and 

attenuation of dissemination of T. annulata-transformed leukocytes we concentrated on 

the most differentially expressed genes (DEGs) (Fig. 1 b, Table S1). Many of these genes 

are annotated as being implicated in cellular proliferation and metastasis. Amongst the top 

five-upregulated transcripts in TBL20 is MMP9 (matrix metallopeptidase 9), a gene highly 

expressed in different cancer types and linked to metastasis and angiogenesis (29). WC1-

8 is the third most up-regulated gene in TBL20 lymphocytes and has been described as 

being also upregulated in ovarian carcinoma cells (30). The most down-regulated 

transcripts in TBL20 cells include LAIR1 (leukocyte associated immunoglobulin like 

receptor 1) and VPREB (pre-B lymphocyte 1). LAIR1 is a strong inhibitor of natural killer 

cell-mediated cytotoxicity and an inhibitory receptor, which down-regulates B lymphocyte 

immunoglobulin and cytokine production (31). Down-regulation of LAIR-1 was not 

unexpected, as its loss of expression is observed during B cell proliferation (32). ZBTB32 

(zinc finger and BTB domain containing 32), IL21R (interleukin 21 receptor), and MMP9 

are also among the top five up-regulated transcripts in TBL3 lymphocytes. The five most 

down-regulated transcripts in TBL3 cells are KRT6C (keratin 6C), MATK (megakaryocyte-

associated tyrosine kinase), IGSF9B (immunoglobulin superfamily member 9B), A2M 

(alpha-2-macroglobulin) and H2AFY2 (H2A histone family, member Y2). The biological 

functions of these genes include inhibition of cell growth and proliferation (33), repression 
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of DNA transcription (34) and inhibition of cell	adhesion	and	migration	(35), functions that 

are often dampened to allow continuous proliferation and survival of transformed cells. We 

confirmed by qRT-PCR differential expression of 21 randomly selected genes from the 

BL20/TBL20 and BL3/TBL3 RNA-seq datasets (Fig. 1 c).  

 

Identification of key genes potentially involved in Theileria-mediated macrophage 

dissemination 

The most down-regulated transcripts in attenuated Ode macrophages are SKAP2 

(src kinase associated phosphoprotein 2), a gene known to promote tumor metastasis 

through the regulation of podosome formation in macrophages (36) and NRP2 that 

regulates tumor progression by promoting TGF-β1 signaling (37). Down-regulation of 

these genes correlates with decreased dissemination of attenuated macrophages, as 

previously we have described loss of TGF-β2 signaling as being associated with 

decreased dissemination (6). By contrast, the most highly up-regulated transcripts include 

SEPP1 (selenoprotein P) and PTPRT (protein tyrosine phosphatase, receptor type T) and 

PTPRT has been previously described as a tumor suppressor gene (38, 39). Taken 

together the identity of the most strongly up- and down-regulated genes argues that our 

differential transcription screen could identify novel genes regulating transformed 

macrophage dissemination.  

To define the genes likely playing an important role in the transformation and 

dissemination, we compared genes differentially expressed (DE) in TBL20, TBL3 and 

Attenuated Ode macrophages. We assumed that the genes most likely to play a key role 

in both are those inversely DE in transformation and attenuation of dissemination, i.e. 

upregulated after infection and down-regulated upon attenuation, and vice versa. This 

approach identified four genes that likely play key roles in the dissemination of Theileria-
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transformed leukocytes (Fig. 2 a). 

 

Figure 1: Differentially expressed genes in TBL20, TBL3 and Att Ode leukocytes. (a) 
Histogram showing the number of up- (dark grey) and down- (light grey) regulated genes 
in all 3 datasets. The area-proportional Venn diagrams represents the intersection 
between the lists of DEGs from CuffDiff2 (24) (green), DESeq2 (23) (black) and baySeq 
(blue) (22). The intersection between the 3 pipelines reflects the number of up- and down-
regulated genes. The list of DEGs is listed in table S2. (b) Circos (40) plot showing the top 
10 up- and down-regulated DEGs in BL20/TBL20 (brown), BL3/TBL3 (pink) and Att/Vir 
Ode (yellow). The circular heatmap represents the FC of the top DE genes in 
TBL20/TBL20, BL3/TBL3 and Att/Vir Ode in the outer, middle and inner rings, 
respectively, where green reflects the level of up-regulation and red down-regulation. (c) 
qRT-PCR confirmation of randomly selected genes in TBL20 and TBL3. The reactions 
were set in 3 biological replicates and the fold change calculating with the   2ΔΔct method. 
The error bars represent SEM. 
 

The genes are MMP9, SEPP1, GZMA and RASGRP1 and their biological functions have 

been implicated in metastasis and cell invasion (29), selenium transport (41), peptide 
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cleavage by immune cells (42) and regulation of B cell-development and homeostasis and 

differentiation (43), respectively (Table 1). Differential expression of these genes was 

confirmed by qRT-PCR (Fig. 2 b). We focused on GZMA, RASGRP1 and SEPP1, as the 

role of MMP9 in metastasis/dissemination is well established including in Theileria-

transformed macrophages (4, 44, 45). CRISPR/Cas9-mediated loss of SEPP1 in 

attenuated macrophages resulted in a lethal phenotype highlighting its importance in 

transformed macrophage survival, rather than dissemination, and so was not 

characterized further. 

	
Figure 2: Inversely DEGs in TBL20, TBL3 and Att Ode leukocytes. (a) Venn diagrams 
illustrating the genes inversely DE in TBL20, TBL3 and Att Ode. (b) qRT-PCR 
confirmation of DEGs potentially playing key roles in leukocyte transformation and 
dissemination. The reactions were set in 3 biological replicates and the fold-change 
calculated with the 2ΔΔct method. The error bars represent SEM. 
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Table 1: Biological functions of DEGs potentially playing key roles in leukocyte 

transformation and dissemination 

	

Gene 
symbol 

Log2 FC 
(TBL20) 

Adj p 
value 

Log2 
FC 

(TBL3) 

Adj p 
value 

Log2 
FC  

(ATT) 

Adj p 
value 

Biological 
functions Reference 

MMP9 8.87 0 8.29 0 -2.13 5.14 
E-94 

Metastasis 
formation, cancer 

cells invasion 
(29) 

SEPP1 -3.95 8.74 
E-174 -1.54 3.75 

E-248 2.63 1.01 
E-140 

Transports 
selenoprotein. 

Tumor suppressor 
(46), (47) 

GZMA -2.87 1.45 
E-05 -2.25 1.97 

E-41 1.02 9.14 
E-21 

Plays a role in 
killing pathogen 

infected cells and 
cancer cells 

(42) 

RASGRP1 -3.55 0 -1.78 1.97 
E-41 1.2 2.15 

E-15 

Required for 
correct functioning 
of lymphocytes in 
chronic infections 

(43) 

	
 

Ablation of GZMA and RASGRP1 by CRISPR/Cas9 knockdown 

To gain insight into the implication of GZMA and RASGRP1 in dissemination of T. 

annulata-transformed Ode macrophages, we knocked down their expression by 

CRISPR/Cas9 and confirmed that this led to decreased mRNA expression before testing 

poorly disseminating attenuated macrophages for a regain in dissemination phenotype in 

matrigel traversal assays (Fig. 3b). This indicated that GZMA and RASGRP1 have the 

potential to function as suppressors of tumor dissemination. Knockdown of RASGRP1 

also led to a regain in the ability of attenuated macrophages to form colonies in soft agar 

(Fig.3c). Taken together it indicates that GZMA and RASGRP1 have the potential to 

function as tumor suppressors. 
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Figure 3: colony formation in soft agar. (a) qRT-PCR confirmation of GZMA (top panel) 
and RASGRP1 (bottom panel) knockdown. b) Matrigel chamber assay showing a regain 
in matrigel traversal after RASGRP1 and GZMA knockdown. c) Increased colony 
formation in soft agar following RASGRP1 knockdown. Non-transfected virulent 
disseminating macrophages indicated by V and non-transfected poorly disseminating 
attenuated macrophages by A.  Error bars represent SD. *** and ### represent p<0.001 
compared to Virulent and Attenuated Ode macrophages, respectively. 
 

GZMA and RASGRP1 dampen in vivo dissemination of Ode macrophages  

Similar to metastatic tumor cells T. annulata-transformed leukocytes also disseminate in 

immuno-deficient mice to distant organs and form proliferative foci (48). Dissemination of 

Theileria-transformed leukocytes has been previously attributed to increased production of 

matrix metaloproteinases (MMPs) (44, 49, 50). However, as GZMA and RASGRP1 

knockdown lead to a regain in matrigel traversal we used Rag2γC immunodeficient mice 

to test a regain in dissemination in vivo. The CRISPR/Cas9-induced drop in expression of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2018. ; https://doi.org/10.1101/338160doi: bioRxiv preprint 

https://doi.org/10.1101/338160
http://creativecommons.org/licenses/by-nc-nd/4.0/


GZMA and RASGRP1 gave rise to an increase in the number of Theileria-containing 

tumors in heart, lung and mesentery, while knockdown of RASGRP1 increased the 

number of tumors in the liver (Fig. 4). Thus, loss of RASGRP1 and GZMA expression led 

to a regain in the invasive capacity of T. annulata-transformed macrophages into these 

organs. 

 

Figure 4: Effect of GZMA and RASGRP1 knockdown on transformed macrophage 
dissemination in vivo. Panels represent the copy number of the single copy T. annulata 
gene (ama-1, TA02980) in six internal organs: heart, lung, spleen, mesentery, left kidney 
and liver. Transformed macrophages were infected into five Rag2γC immunodeficient 
mice and plotted values represent the mean of obtained T. annulata-specific ama1 gene 
copy number and error bars represent SD. 
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DISCUSSION  

In this study we provide a holistic view of the transcriptional landscape of two T. annulata-

transformed B cell lines, TBL20 and TBL3, and the virulent versus attenuated  

macrophage Ode vaccine line. In order to find commonly transcriptionally perturbed genes 

the different datasets were compared using three independent pipelines that identified 

four genes as potential regulators of tumor dissemination. In addition to MMP9 we 

identified three other genes (SEPP1, GZMA and RASGRP1) as potentially having a role in 

dissemination. SEPP1 is a major selenoprotein involved in selenium transport and 

defense against oxidative stress (46). Attenuated macrophages did not survive 

CRISPR/Cas9-knockdown of SEPP1 implying that death might be due to a failure to 

control excessive oxidative stress, since attenuated macrophages display high levels of 

H2O2 output (46). SEPP1 is downregulated in colorectal cancer and SNPs in the SEPP1 

gene are linked to increased prostate cancer and adenoma risk (51-53). Decreased 

SEPP1 levels induce stem cell characteristics, proliferation, oxidative stress, DNA 

damage, and modulation of WNT signaling (54). Given the ability of T. annulata infection 

to transform leukocytes the transcriptional down-regulation of SEPP1 in TBL20 and TBL3 

B cells correlates with the known functions of SEPP1. 

RASGRP1 functions as an oncogene in many types of cancer; reviewed in (55). However, 

being a branch point for a diversity of signal transduction cascades that control cellular 

behavior, RASGRP1-activated Ras family proteins possess both pro- and anti-oncogenic 

properties, depending on the downstream effector pathway and cellular context; reviewed 

in (56). Interestingly, all members of the RASGRP gene family (RASGRP1-4) are 

significantly downregulated in TBL20 and TBL3, with the exception of RASGRP3 that is 

upregulated in TBL3. Therefore, precisely how individual RASGRPs function in T. 

annulata-transformed B cells is difficult to discern. 
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GZMA is a serine protease that contributes to killing tumors and pathogen-infected cells 

via a caspase-independent pathway (42). GZMA-deficient mice are more susceptible to 

viral (57, 58) and filarial infections (59) implying that its upregulation might be part of an 

anti-parasite defense mechanism by attenuated macrophages. GZMA expression induces 

reactive oxygen species (ROS) (60) and attenuated macrophages are known to be more 

oxidatively stressed than virulent macrophages (61). Indeed, H2O2 output was reduced in 

attenuated macrophages following CRISPR/Cas9-mediated GZMA knockdown (Fig S2).  

MMP9, SEPP1, RASGRP1 and GZMA were differentially expressed by both transformed 

B cells and macrophages reflecting the central role their altered expression plays in 

Theileria-induced leukocyte immortalization and dissemination. Importantly, both GZMA 

and RASGRP1 expression is repressed by TGF-β (62, 63), and a role for this cytokine in 

regulating dissemination of Theileria-transformed macrophages is well established (6-8). 

Thus, one way TGF-β promotes dissemination could be via repression of GZMA and 

RASGRP1 transcription. As RASGRP1-deficient CD8 T cells exhibit markedly reduced 

expression of GZMB (7) the CRISPR/Cas9-mediated loss of RASGRP1 described here 

could perhaps provoke a drop in GZMA expression rendering attenuated macrophages 

doubly deficient. This could underpin the more pronounced regain in dissemination that 

occurs upon ablating RasGRP1 compared to GZMA.  

Finally, GZMA can cleave APEX1 (apurinic/apyrimidinic endodeoxyribonuclease 1) after 

Lys31 and destroys its oxidative repair functions and APEX1 is involved in NK-cell-

mediated killing via GZMA (60, 64). APEX1 prevents oxidative stress by negatively 

regulating Rac1/GTPase activity (65) and suppresses the activation of PARP1 during the 

repair of oxidative DNA damage (66). Analysis of our deep RNA-seq data revealed that 

APEX1 is significantly downregulated in attenuated macrophages and taken together, it 

suggests that TGF-β2 by regulating a GZMA/RASGRP1/APEX1 pathway could modulate 
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tumor redox balance dissemination. 
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Supplementary figure legends 

 

Figure S1: Sequencing quality of all samples.  

(a) Clustering of all samples. (b) Density plot representing FPKM distribution of all 

samples. The sample names reflect the sample types and three replicates were used for 

each sample type. 

 

Figure S2:  Effect of GZMA knockdown on H2O2 output. 

H2O2 levels of Vir, Att and Att Ode after CRISPR/Cas9-mediated GZMA knockdown. Error 

bars represent SD. 

 

Table S1: Top 5 up- and down-regulated DEGs in infected and attenuated cell lines. 

For details on the methods used to generate this list, please see in the Materials and 

Methods section. 

Table S2: List of DEGs in infected and attenuated cell lines. 

For details on the methods used to generate this list, please see in the Materials and 

Methods section. 

Table S3: List of primers used for qRT-PCR  
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