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Abstract 

Background 

The antibiotic resistant genes (ARGs) have been emerging as one of the top global issue 

s in both medical and environmental fields. The metagenomic analysis has been widely 

adopted in ARG-related studies, revealing a universal presence of ARGs in diverse 

environments from medical settings to natural habitats, even in drinking water and 

ancient permafrost. With the tremendous resources of accessible metagenomic datasets, 

it would be feasible and beneficial to construct a global profile of antibiotic resistome 

as a guidance of its phylogenetic and ecological distribution. And such information 

should be shared by an open webpage to avoid the unnecessary repeat of data 

processing and the bias caused by incompatible search method. 

Results 

Two dataset collections, the Whole Genome Database (WGD, 54,718 complete and 

draft bacterial genomes) and the Metagenomic Database (MGD, 854 metagenomic 

datasets of 7 eco-types), were downloaded and analyzed using a standard method of 

ARG online analysis platform (ARGs-OAP v1.0). The representativeness of WGD 

and MGD was evaluated to have a comprehensive coverage of ARGs in bacterial 

genomes and metagenomes. Besides, an ARGs online searching platform (ARGs-OSP, 

http://args-osp.herokuapp.com/) was developed in this study to make the data 
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accessible to other researchers via the search and download functionality. Finally, 

flexible usage of the ARGs-OAP was demonstrated by evaluating the co-occurrence 

of class 1 integrases and total ARGs across different environments. 

Conclusions 

The ARGs-OSP is presented in this study as the valuable sources and references for 

future studies with versatile research interests, meanwhile avoiding unnecessary 

re-computations and re-analysis. 
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Antibiotic resistant genes; whole genome analysis; metagenomic analysis; global 

antimicrobial resistant profile; class 1 integrases. 
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Background 

 

Due to the intensive usage of the human and veterinary antibiotics, the antibiotic 

resistant genes (ARGs) are emerging in almost all environments as one of the top global 

concerns. Recently, through high-throughput sequencing and metagenomic analysis, 

the ARG profiles have been investigated in diverse habitats, especially the 

anthropogenic environments of human microbiome [1-6], animal microbiome [7-10] 

and WWTPs [11-13]. ARGs, especially clinically relevant ones [14-18], have been 

spreading from the anthropogenic habitats to the natural eco-systems [19], mainly 

contributed by WWTPs, pharmaceutical manufacturing plants, hospitals, and 

husbandry facilities [13, 20-23]. Universal presence of various ARGs has been 

revealed in all kinds of natural ecosystems by many metagenomic studies 

investigating the samples of sediment [23-25], soil [26-28], surface water [29-31], 

marine water [27] and even ancient permafrost [32-34]. The identification of ARGs in 

drinking water [35] and human food [36, 37] further reveals the potential of their direct 

exposure to human health. With the growing attention to the environmental issue of 

antibiotic resistance dissemination all over the world, ARG-related studies have 

gained momentum, and are covering all kinds of habitats. All these metagenomic 
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datasets are valuable and accessible sources to construct a global profile of antibiotic 

resistome. 

 

Despite the recent increase in aforementioned metagenomic datasets, the approaches 

of the identification and annotation of ARGs varied in different researches regarding 

the searching methods, searching criteria, the reference databases and the units in the 

quantification. This makes direct inter-sample comparison infeasible. For example, 

the ARG profiles were evaluated to have significant difference of up to 5-20 fold [38] 

when using the domain-based searching method of Hidden Markov Model (HMM) 

[39] against the similarity-based searching approaches of BLAST [40], USEARCH 

[41] and DIAMOND [42]. Another major obstacle for the parallel comparison was the 

use of different reference databases. Even for the top two highly-cited ARG databases, 

the Comprehensive Antibiotic Resistance Database (CARD; 

http://arpcard.mcmaster.ca) [43] and Antibiotic Resistant Database (ARDB) [44], bias 

could be raised during comparison because they only share a small portion of reference 

sequences [45]. Recently, a widely-applied and well-curated ARG database named the 

Structured ARG reference database (SARG; http://smile.hku.hk/SARGs) [38, 45], was 

constructed by integrating both the CARD and ARDB, which was selected as a 

standard database in this study. The metagenomic datasets from diverse habitats should 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 4, 2018. ; https://doi.org/10.1101/337675doi: bioRxiv preprint 

https://doi.org/10.1101/337675


be re-analyzed using a standardized pipeline for ARG identification and annotation, 

from which the ecological distribution of ARGs could be comprehensively drawn. 

 

Although metagenomic analysis could uncover the distribution and abundance of 

ARGs in a habitat, the information it can provide is limited. Further information 

describing the host, the mobility and the gene arrangement of ARGs is critical and 

necessary to investigate the frontier scientific questions about the origin, the evolution, 

the spreading and the co-selection of ARGs in different environments. This problem 

can be partially alleviated through the use of assembled metagenomes and nanopore 

sequencing techniques , but such studies are still limited to only a few environmental 

samples [35]. On the contrary, such details can be provided with precision and certainty 

through analyzing the collection of bacterial whole genomes. It was demonstrated by 

some previous researches [46, 47] via mining the co-occurrence patterns of ARGs and 

metal resistant genes (MGEs) in the collection of bacterial complete genomes. To 

construct a global profile of ARGs, the integration of whole genomes and metagenomes 

is a promising attempt. 

 

Many public databases publish the information in a well-organized way for the 

convenient search and download by the user ends, such as the IMG/VR 
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(https://img.jgi.doe.gov/vr/) [48]. However, to the best of our knowledge, such 

application was not introduced to the field of ARG research, especially to provide 

information on the phylogenetic and ecological distribution of antimicrobial resistance. 

Moreover, the processing of the big datasets of whole genomes and metagenomes is 

time- and resource- consuming, and is unnecessary repeated by individual researchers 

all over the world. In this study, a global profile of ARGs is constructed by a standard 

pipeline and is presented in the form of an online searching platform for ARGs 

(ARGs-OSP, http://args-osp.herokuapp.com/), serving as a valuable resource for future 

studies. 

 

Data and Webpage Description 

 

To construct a global ARG profile covering the information of their phylogenetic and 

ecological distribution, the ARGs were identified and quantified by searching two 

collections of bacterial whole genomes and metagenomes using a standard pipeline, the 

ARGs online analysis platform (ARGs-OAP v1.0) [45]. The occurrence and abundance 

of ARGs were summarized and organized with the metadata information into 

mothertables, which were published on the ARGs-OSP 

(http://args-osp.herokuapp.com/). On ARGs-OSP, search and download functionality 
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was designed for users to retrieve the occurrence of ARGs in different taxonomy and 

the abundance of ARGs in different habitats. The availability and convenience of this 

platform could meet the requirements of versatile research interests, such as: the current 

host range of some specific resistant genes on the bacterial phylogenetic tree, the 

dissemination of some specific resistant genes in both the natural and anthropogenic 

habitats, the antibiotic resistome currently detected in some specific taxa or specific 

environments, and the comparison of the ARG profiles of a local sample to the global 

profile. Through data sharing, ARGs-OSP is expected to motivate and facilitate future 

studies into mining new information and knowledge from the combined data, without 

making repeated efforts in dataset processing. 

 

Methods 

 

Two collection of datasets 

 

The Whole Genome Database (WGD) containing 54,718 bacterial genomes (7,770 

complete genomes and 46,948 draft genomes with medium and high quality of more 

than 50% completeness [49]) was downloaded from the NCBI genome database [50] 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria, 
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ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt) (on July 8, 

2017), as summarized in Table S1. The potential pathogenicity of bacterial genomes 

was obtained by matching their taxonomic information with a published database 

covering the taxonomy of currently recognized human bacterial pathogens [51] (Table 

S1). If either one of the taxonomic annotations of genus, species or strain level was 

matched to the human pathogen list, the genome was labeled as a potential human 

pathogen [10, 52].  

 

The Metagenome Database (MGD) totaling 854 metagenomic datasets were 

downloaded from NCBI SRA database [50] and MG-RAST[53], which were all 

generated through Illumina shotgun sequencing. The habitat information of the 

metadata of all samples was manually organized to categorize them into totally 25 

eco-subtypes of 7 eco-types by integrating the guidance of previous studies [54, 55], 

covering both the natural environments (water, sediment, soil, and permafrost) and the 

anthropogenic environments (WWTPs, animal feces, and human feces). Thus, this 

collection of MGD is expected to represent a wide and comprehensive ecological 

diversity. The quality control of raw reads was conducted with Fastx-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit) with the minimum quality score of Q20 

within at least 90% of bases, resulting in in the total number of clean reads varied 
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from 0.1 million to 91 million. All raw reads were trimmed equally to the length of 

100bp to allow more accurate inter-sample comparison. 

 

Identification and annotation of the ARGs and intI1 gene 

 

All the coding sequences (CDS) of WGD were extracted from the genbank files to be 

searched against SARG [45] and the class 1 integrases (intI1) database (manuscript 

under review). Those CDS meeting the criteria of e-value 1e-5, 90% amino acid (aa) 

identity over 80% aa hit-ratio against the SARG, and e-value 1e-3, 80% aa identity 

over 50% aa hit-ratio against the intI1 database, were annotated as the ARGs and intI1 

genes, respectively. The ARGs and intI1 genes in MGD were also investigated by 

these two databases. An effective and time-saving searching process was conducted 

by two-step sequence-based methods, first through usearch v8.0.1623_i86linux64 [41] 

and followed by BLASTX 2.2.28+ [40]. The abundance of the ARGs and intI1 genes 

was calculated and transformed to different units of ppm, copy per 16S and copy per 

cell. Furthermore, the abundance of each unit was specifically calculated under 

different combination of searching criteria (e-value, identity and hit-length). 

ARGs-OSP provides 60 combinations of searching criteria for each abundance unit, 

that is, totally 180 mothertables for more flexible usage by future studies. The cutoff 
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used in previous studies [7, 45] (manuscript under review) for metagenomes was 

e-value 1e-7, 80% aa identity over 75% aa hit-length of the SARG and the intI1 

database, which was adopted in this study as a standard cutoff for further analysis. 

Also, the standard abundance unit for the ARGs and intI1 genes in MGD was set as 

copy per cell, which was comparable to copy per genome in WGD. 

 

Mothertable analysis and visualization 

 

The mothertables were organized by combining the ARG profile with the 

phylogenetic and ecological information, via self-written Python 2.7.6 and R scripts 

using R 3.3.2[56] (packages’dplyr’,’ggalt’,’ggthemes’, ‘ggplot2’, and ‘plyr’) and 

Python 2.7 (https://www.python.org/). The rarefaction curves[57] of WGD (based on 

each genome) and MGD (based on each raw read) were conducted by randomly 

subsampling the genomes or raw reads without replacement [58, 59], that is, each 

genome or raw read was sampled only once. The step of the raw read number for the 

entire MGD and for each eco-type was set at the total number of raw reads (for each 

dataset) divided by 10,000, which ensured that each rarefaction curve was plotted 

with 10,000 points. All the networks were visualized with Cytoscape 3.3.0 [60] in 

Tree or Hierarchic layout or with R 3.3.2[56] (package ‘ggplot2’). 
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Results and Discussions 

 

The representativeness and coverage of WGD and MGD 

 

In WGD, 54,718 bacterial genomes were downloaded from the NCBI genome 

database in total [50], covering 32 bacterial phyla, 162 classes, 299 orders, 643 

families, 1,986 genera, and 3,654 species, without counting the unclassified taxonomy 

(Fig 1a and Table S1). Approximately 88.9% of the bacterial genomes were derived 

from phyla of Proteobacteria, Firmicutes, and Actinobacteria, indicating that the 

WGD might be biased by the over sequencing of some specific taxa, especially those 

taxa of medical importance. To avoid such bias, individual genomes of the same 

species were merged together, resulting in a curated percentage of 23.6% bacterial 

species obtained from these three dominant phyla. Still, some genera displayed high 

prevalence of pathogenic species, such as Klebsiella (57.1%), Enterobacter (55.6%), 

and Escherichia (25.0%), compared to the average 8.6% of pathogenic species within 

Bacteria. 
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The MGD collected in this study covered a wild range and diversity of both the 

anthropogenic (WWTPs, animal feces and human feces) and natural (water, sediment, 

soil, and permafrost) habitats (Fig 1b and Table S2). The classification of the 

ecosystems was manually conducted based on a two-tier hierarchical classification 

system[61]. For a more comprehensive analysis and specific detailed comparison, 

each habitat (eco-type) was further classified into 3-5 eco-subtypes, except for the 

natural permafrost habitat category. The datasets in MGD are both geographically and 

ecologically distinct, collecting across different countries and continents, together to 

draw a global map. 

 

Rarefaction curves [57] are adopted to evaluate the representativeness and coverage 

of these two datasets about the ARGs in the bacterial life tree and in the environments. 

The rarefaction curve for WGD was plotted by the consecutive addition of one 

random genome extracted from the collection of 54,718 bacterial genomes. The 

number of unique ARGs (not detected in those genomes previously added into the 

pool) provided by the new genome was counted. After the inclusion of the last 

genome, the rarefaction curve for WGD gradually reached a plateau of 2,625 unique 

ARGs (Fig S1a). Additional inclusion of new bacterial genomes in the future was 

expected to contribute a mild increase of 1 novel ARG per 170 genomes (minimum 
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number of new genomes), indicating the representativeness of the current collection 

of bacterial whole genomes. 

 

Similarly, for MGD, all the raw reads from 854 samples were pooled together to 

construct a rarefaction curve. The raw reads were randomly selected from the entire 

MGD pool one by one, to be evaluated against the SARG (as described in the section 

of methods). The total number of unique ARGs was added by one if the reference 

ARG assigned to this raw read was not identified previously. It seemed that after 

sampling 1.6E+10 raw reads from the entire MGD pool, the rarefaction curve 

illustrated a trend of a flat slope, and finally reached a plateau of 3,821 unique ARGs 

with the inclusion of all 2.4E+10 raw reads. It was predicted that one novel ARG 

could be expected with an extra sample of at least 1.4E+8 raw reads, also 

demonstrating the representativeness of the current collection of metagenomic 

datasets. Besides, the coverage of the MGD to the ARGs harbored by individual 

habitats was specifically evaluated by drawing the rarefaction curves for each 

eco-type. Generally speaking, the rarefaction curves for the anthropogenic habitats of 

animal feces, human feces and WWTPs tend to have reached their plateaus of 2,951, 

2,815, and 3,131 unique ARGs (Fig S2), respectively. In contrast, the rarefaction 

curves were still growing gently for the natural environments of water (2,514 ARGs), 
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permafrost (1,897 ARGs), soil (1,618 ARGs), and sediment (1,181 ARGs) after fully 

sampling all the raw reads. However, when calculating the new raw reads required to 

obtain one novel ARG, it was suggested that the current MGD had a higher 

representativeness to the habitats of WWTP (8.7E+7), human feces (2.4E+7), natural 

sediment (2.1E+7) than the habitats of animal feces (8.2E+6), natural water (4.2E+6), 

natural permafrost (3.8E+6), and natural soil (1.2E+6). The disagreement between 

two observations could be caused by the different patterns of the richness and density 

of the antibiotic resistome within 7 habitats. For example, the first inclusion of 

1.0E+8 raw reads contributed to an average increase of 1,182 unique ARGs in the 

anthropogenic environments, which almost double the results (601 unique ARGs) of 

the natural environments. Another example was that at the level of 7.9E+8 raw reads 

(the lowest sampling depth), the anthropogenic environments recovered 2,250 unique 

ARGs while only 1,421 unique ARGs were detected in the natural environments. 

These two observations indicated the higher richness and higher density of antibiotic 

resistance in those anthropogenic habitats. 

 

Overall, both current versions of WGD and MGD were evaluated to have high 

representativeness of the antibiotic resistance in the bacterial life tree and in the 
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environments. However, additional sampling is expected to enrich the ARG profiles in 

individual natural habitats, especially the categories of water, permafrost, and soil. 

 

ARGs-OSP (antibiotic resistant genes-online searching platform) 

 

The ARGs-OSP provides the search and download functionality of the occurrence and 

abundance of the ARGs and intI1 genes retrieved by a global investigation in this study. 

The mothertables were separated into two Modules for the WGD and MGD, where the 

information of the hosts and the habitats can be specifically offered. In order to 

facilitate the diverse requirements of future studies, the identification and 

quantification of the target genes can be constrained by the customized cutoff selected 

by the users, including the identity, hit-length or hit-ratio, and e-value. Without any 

input, the ARGs-OSP returns the results of all target genes detected in all whole 

genomes or metagenomes, applying the default search cutoff described in the section of 

the methods. In each Module, three classes of inquiry factors are listed at the top middle 

panel, including the ARGs (“Sequence”, “Subtype” and “Type”), the host information 

(“Genome”, “Accession”, “Organism”, “Assembly_level”, “Phylum”, “Class”, 

“Order”, “Family”, “Genus”, “Species”, “Strain”, and “Pathogen”) for Module 1, 
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the habitat information (“Accession”, “Eco-subtype” and “Eco-type”) for Module 2, 

and the searching criteria (“Identity”, “Hit-length” or “Hit-ratio” and “E-value”). 

 

In Module 1 (Fig 2), the ARGs can be viewed and searched in all the whole genomes 

under a given cutoff, and all the details about their host taxa were summarized based on 

the annotation in GenBank and NCBI genome database. This functionality would be 

extremely beneficial for those research interests into the occurrence of ARGs in some 

specific bacterial lineages or the phylogenetic distribution of some specific ARGs. To 

meet versatile demands at the user end, the host information supports the details of the 

taxonomy information (from phylum level to strain level), the accession number 

(“Genome” for genbank assembly accession and “Accession” genbank sequence 

accession number), the status of the genomes (“Assembly_level” referring to the 

genome completeness), and the potential pathogenicity (“Pathogen”), which can all be 

set to filter the search results simultaneously. The searching criteria in Module 1 were 

transformed into aa-based “Identity” and “Hit-ratio” against the reference SARG, and 

the “Hit-ratio” referred to the percentage of hit-length to the reference length. Without 

imputing any searching criteria, ARGs-OSP will output all the inquiries that meet the 

default cutoff (≥ 90% aa identity, ≥ 80% aa hit-ratio and ≤ e-value 1e-5). The 

allowance of searching criteria is defined in the range of 50%-100% aa identity, 
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50%-100% aa hit-ratio and e-value smaller than 1.0E-1. For more comprehensive 

downstream analysis by the user end, the complete output table can be easily 

downloaded as a local file. 

 

Module 2 (Fig 3) was constructed by investigating the ARGs in the collection of 

metagenomes under different combinations of cutoff, combined with the habitat 

information of each metagenomic dataset. This functionality would be extremely 

helpful for users inquiring the abundance of some specific ARGs in all the 

environments or the habitats of their interests, or for users to compare the ARG profile 

of local samples to a global collection. For reliable parallel comparison, users are 

recommended to process the ARG identification and annotation using the ARGs-OAP 

v1.0 [38, 45], which is compatible to the ARGs-OSP. In details, the habitat information 

covered the “Accession” (run accession number of NCBI SRA or MG-RAST 

databases), “Eco-subtype” and “Eco-type”, which was classified and curated manually. 

The searching criteria in Module 2 were also based on the aa “Identity” and 

“Hit-length” against the reference databases. The default criteria was set as ≥ 80% aa 

identity, ≥ 75% aa hit-ratio and ≤ e-value 1e-7, for empty cutoff input. The cutoff 

range allowed for searching is defined for the aa identity (60%, 70%, 80%, 90%, and 

100%), aa hit-length (50%, 75%, and 100%) and e-value (1.0E-6, 1.0E-7, 1.0E-8, 
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1.0E-9). However, compared to the identity, the hit-length and e-value were evaluated 

to have little influence on the ARG profile [45]. Since all the metagenomic datasets 

were trimmed into a standard read length of 100bp, the aa hit-length of 50%, 75% and 

100% was expressed in the form of 17aa, 25aa and 33aa. As mentioned before, three 

abundance units (copy per cell, copy per 16S and ppm)[45] are provided for the flexible 

comparison at the user end, which could be easily switched by the buttons at the top left 

panel of output mothertable. A bottom panel is designed to customize the table layout 

and turn the pages. 

 

A global profile of antibiotic resistome 

 

In this study, a global profile of antibiotic resistome was constructed and presented by 

integrating the phylogenetic and ecological distribution of ARGs from both WGD and 

WGD. In WGD, 2,625 ARGs (764 genotypes and 22 phenotypes) were detected in 

809 bacterial species from 13 phyla. Within all the ARG-carrying species, 26.8% were 

identified as pathogenic species, which were almost 3 times the prevalence of 

pathogenic species in the WGD. This observation indicated that ARGs could be 

selected by the ecological fittings provided with strong selection force of 

anthropogenic pollution [62-66], where human pathogens are universally present. 
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Among all the phenotypes, the multidrug (the occurrence of 29.4%), beta-lactam 

(15.5%), aminoglycoside (10.5%) and tetracycline (8.7%) were universally detected 

in bacterial species, which was consistent with a previous study investigating 2,500 

complete genomes [47]. The ARG genotypes of tetA, tetM, acrB, aph(3’)-I, aadA, 

mdtK, TolC, and class A beta-lactamase resistant to tetracycline, aminoglycoside, 

multidrug and beta-lactam were frequently identified in 1.5% of bacterial species, 

covering a wide spectrum of taxonomy lineage and possessing more than 50% 

prevalence in human pathogens. These ARGs have successfully invaded across the 

phylogenetic barrier of the bacterial phylum level, especially into human microbiome, 

which should raise substantial alarm in both the medical and environmental fields. 

 

3,821 ARGs from 993 subtypes/genotypes and 24 types/phenotypes were identified in 

diverse environments of the MGD in total. Even though the anthropogenic 

environments were illustrated to have ARGs of higher density and richness than the 

natural environments (Fig S2), after normalizing against the bacterial cell number in 

each sample, the abundance of total ARGs showed no significant difference (less than 

10 folds) among the 7 eco-types (Fig S3). This observation suggested that those 

divergences of the density and richness of antibiotic resistant profiles could be caused 
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by the density and richness of the microbial community among different eco-types, 

while the resistant level within the bacterial cells seemed to be quite stable. 

 

Generally speaking, ARGs are widely distributed in almost all natural and 

anthropogenic habitats with the average abundance varying from 5.1E-2 copy per cell 

to 6.7E-1 copy per cell. It was not surprising since antibiotic resistance is originally 

harbored by natural microorganisms and most antibiotics used nowadays are produced 

by natural antibiotic producers [19]. The animal feces harbored the highest abundance 

of ARGs (6.7E-1 copy per cell) under the strong selective pressure of over-dosing 

antibiotics [67-69], which may promote the dissemination of ARGs [70]. The other 

two anthropogenic environments, the human feces and WWTPs, displayed similar 

level of ARGs of 3.7E-1 and 1.7E-1 copy per cell. It was notable that high abundance 

of ARGs was hosted by the microbial communities in the natural environments of 

permafrost (6.1E-1 copy per cell) and soil (2.6E-1 copy per cell), even denser than the 

WWTPs as the hotspot of ARGs [13, 22]. Within the soil eco-type, the eco-subtype of 

rural soil could be contaminated by the agricultural usage of animal manure, the other 

three soil eco-subtypes of city, amazon catchment and prairie displayed equivalent 

level of antibiotic resistant. A relative low level of ARGs was detected in the natural 

water (1.0E-1 copy per cell) and sediment (6.7E-2 copy per cell), while two obvious 
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trends of heterogeneous and homogeneous distribution were respectively observed in 

the water and soil eco-types. 

 

To make the results comparable to previous studies, the abundance of ARGs was 

transformed into the units of copy per 16S and ppm, and provided on the ARGs-OSP. 

Most habitats exhibited similar resistance level compared to previous studies [7, 54, 

71] except for a much higher detection of ARGs in soil (2.6E-1 copy per 16S) and 

surface water (1.0E-1 copy per 16S) compared with the abundances of 2.0E-2 to 

9.0E-3 copy per 16S and 2.0E-2 to 8.0E-3 copy per 16S, respectively. This difference 

could be contributed by the heterogeneity within the soil environments and 

divergence within the surface water environments, and a large sample size with 

multiple eco-subtypes in this study would help construct a more comprehensive and 

representative global profile. 

 

Besides the abundance of total ARGs, the antibiotic resistome of different habitats 

also displayed their divergence regarding to their composition and diversity. Instead 

of directly counting the unique reference sequences detected in one eco-type, ARGs 

conducting the same resistant mechanisms were classified into one genotype. The 

sediment environment harbored a deficient collection of 281 ARG genotypes, 
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accounting for less than 30% of the global profile. Approximately 50% of the global 

resistant profile was recovered in the soil (404 genotypes), permafrost (513 genotypes) 

and human feces (604 genotypes). The animal feces, water and WWTP environments 

provided a rich pool of antibiotic resistance, covering 714, 722 and 761 genotypes, 

respectively. Those genotypes that have long been the focus of ARG-related 

researches were found to be widespread and abundant in all 7 eco-types, including 

aminoglycoside resistance gene aph(3)-I, the beta-lactam resistant gene TEM, 

sulfonamide resistance genes of sul1 and sul2, MLS resistant genes of macA, macB, 

tetracycline resistant genes of tetA and tetM, multidrug resistant genes of acrA and 

acrB, and vancomycin resistant gene vanA [14, 54, 72]. Overall, the anthropogenic 

pollution appeared to have a weak influence on the total antibiotic resistant level 

within the bacterial cell, but may cast a relatively strong impact on the diversity and 

density of the antibiotic resistome within the habitat. 

 

Co-occurrence of the ARGs and intI1 genes: a demonstration of ARGs-OSP 

 

The intI1 genes were considered as a potential indicator for anthropogenic pollution 

[73] because of its high abundance and universal occurrence in human-related 

environments, such as wastewater treatment plants and animal feces [74, 75]. 
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Previous studies on the correlation between intI1 genes and human pollution mainly 

focused on three directions: 1) intI1 genes tended to have high abundance in 

human-related environments, and cannot be effectively removed from WWTPs 

[76-78]; 2) the co-selection of intI1 genes with ARGs, metal resistant genes (MRGs) 

and disinfectant resistant genes [79-81]; 3) the abundance of intI1 genes increases 

with anthropogenic pollution, such as heavy metal, disinfectants, antibiotics, and 

pesticides [82-84]. Besides, some ARGs (sul1, sul2 and tetM) were evaluated to have 

strong and positive correlation with intI1 genes in polluted sediment samples [85]. 

However, the co-occurrence of the intI1 genes and ARGs was not comprehensively 

evaluated before. Moreover, this co-occurrence could be casually caused by their 

co-selection by the same selective pressure or by physically linked on the same 

transposons and plasmids, and thus resulted in quite inconsistent relationship. 

 

To evaluate whether the intI1 genes could be an indicator for the anthropogenic 

pollutant of total ARGs and in which habitats there could be a strong correlation, the 

mothertables of ARGs and intI1 genes were downloaded from ARGs-OSP. The 

abundances of the total ARGs and total intI1 genes were summed up for each sample, 

and the samples were pooled into 7 eco-types. The second question was raised in this 

study that if the intI1 genes were a weak proxy for total ARGs, which subgroup of 
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ARGs could be indicated by the intI1 genes? One subgroup of 107 ARGs found on 

class 1 integrons in WGD (manuscript under review) was proposed as a potential 

target. 

 

Overall, the correlation of intI1 genes to two groups of ARGs (total ARGs and ARGs 

on class 1 integrons) in 7 habitats showed that higher abundance of ARGs 

corresponding to higher abundance of intI1 genes (Table 1). However, it was 

interesting to find that high abundance of total ARGs was detected in many samples, 

while no intI1 gene was identified (light blue nodes in Fig 4). This indicated that intI1 

genes were not a universal marker for the presence of ARGs, not even for the 

anthropogenic environments where intI1 gene was absent in a large portion of animal 

fecal and human fecal samples. This observation was also supported by the 

co-occurrence of intI1 genes and ARGs in the WGD, where intI1 genes were highly 

conserved in the class of Gammaproteobacteria (red nodes in Fig 5). Nevertheless, 

the ARGs were discovered to be widely distributed across different classes (light blue 

nodes in Fig 5), and the antibiotic resistance carried by those bacterial species outside 

the spectrum of Gammaproteobacteria were not likely to be indicated by the intI1 

genes. 
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Besides an overall picturing of their correlation, the linear regressions were fitted to 

the intI1 genes and total ARGs in 7 eco-types, which displayed week linear relation 

with the R
2
 varied from 0.03-0.47 (Table S1). Here, to avoid the biased caused by 

sequencing depth, samples with no presence of intI1 gene were not considered during 

assessment. The low R
2
 of WWTP (0.03), soil (0.06) and permafrost (0.08), indicated 

that the intI1 genes had a poor linear relationship to the total ARGs in these habitats 

and their role as an indicator should be treated with caution. Moreover, 7 habitats 

were found to comply with different linear relations, regarding to their slopes of 0.53 

to 2.10. The anthropogenic environments were expected to have higher slope of linear 

relations because of higher level of anthropogenic pollution, while this trend was not 

clear in this study. Thus, the correlation between intI1 and the total ARGs was both 

weak (in terms of R
2
) and inconsistent (in terms of slopes) for different environments. 

 

The intI1 genes were fit with better linear relationships (in terms of R
2
) to the 

subgroup of ARGs on class 1 integrons in all habitats except for the sediment (Table 1 

and Fig S4). The intI1 genes could be proposed as a good indicator for ARGs on class 

1 integrons, especially for animal feces (R
2
 of 0.75). Even though, this relationship 

may only be applied to samples in soil, water, human feces and animal feces (R
2
 ≥ 

0.35), and the linear relationship should also be specifically tuned for each habitat. 
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Conclusions 

 

In this study, a global profile of the antibiotic resistome was constructed by integrating 

two big datasets of the WGD (54,718 bacterial genomes) and MGD (854 metagenomes 

of 7 habitats). Both the WGD and MGD were evaluated to have good 

representativeness and comprehensive coverage of ARGs in bacterial genomes and 

metagenomes, serving as the fundamental bases to investigate the phylogenetic and 

ecological distribution of antibiotic resistance. Moreover, all ARGs were identified and 

quantified using a standardized pipeline for reliable parallel comparison. Most 

importantly, a user-friendly and well-organized online searching platform, the 

ARGs-OSP, was designed to publish all the mothertables obtained in this study, 

making the data easily accessible for other researchers. The ARGs-OSP can serves as 

valuable sources and references for future studies with versatile research interests, 

while avoiding unnecessary re-computations. Finally, the potential of the ARGs-OSP 

was demonstrated by evaluating whether the intI1 genes could be a good proxy for the 

anthropogenic pollution of ARGs by investigating their co-occurrence.  
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The major limitation of this study lies in the two datasets of WGD and MGD. The 

WGD could be biased by over-sequencing those bacterial species of research interest 

and medical importance, which may not represent all the environmental microbes. For 

the MGD, the current sampling scheme mainly focused on the representative eco-types, 

and the extreme environments were not included in this version. Besides, the 

availability of qualified samples was limited for some important environments, such as 

air. However, with the rapid development and decreasing cost of sequencing techniques, 

datasets of high quality and massive quantity is promising for the expansion of WGD 

and MGD. Further updates of ARGs-OSP is expected to be enhanced responding to the 

continuously growing number of bacterial genomes and environmental metagenomes 

in public database. Also, more flexible search and visualization functionality will be 

continuously complemented in future versions of ARGs-OSP, for more convenient and 

versatile usage.  
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Fig.1. Overview of the Whole Genome Database (WGD) and Metagenome Database (MGD). (a) The 

phylogenetic relationship of all 54,718 bacterial genomes of 45 phyla in WGD and the occurrence of ARGs 

(blue nodes) and Rank I ARGs (red nodes). The pathogenic strains were indicated by purple edges. (b) The 

global map of metagenomic datasets in MGD. The size of the datasets (nodes) was proportional to the 

number of samples and the color was differentiated by the eco-type. 
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Fig 2. The layout of the ARGs-OSP Whole Genomes.  
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Fig 3. The layout of the ARGs-OSP Metagenomes.  
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Fig 4. The ecological co-occurrence of class 1 integrases and total ARGs in 7 eco-types. 
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Fig 5. The phylogenetic co-occurrence of class 1 integrases and total ARGs in bacterial life tree. 
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Fig S1. The rarefaction curves of the unique ARGs in the Whole Genome Database (WGD, each genome) 

and Metagenome Database (MGD, each raw read), constructed by randomly subsampling without 

replacement.  
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Fig S2. The rarefaction curves of the unique ARGs constructed specifically for 7 eco-types of Metagenome 

Database (MGD, each raw read) by randomly subsampling without replacement. 
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Fig S3. The ecological distribution and abundance (copy per cell) of total ARGs in 25 eco-subtypes.
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Fig S4. The co-occurrence of class 1 integrases and a subgroup of ARGs that were discovered on class 1 

integrons in 7 eco-types, fitted by linear regression (R
2
). 
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Table 1. The linear regression relations of the abundance of intI1 genes to the abundance of total ARGs 

(Total) and 107 ARGs detected on the class 1 integrons (Class I). 

 

 

 

Eco-type 

R
2
 Slope 

intI1-Total intI1-Class I intI1-Total intI1-Class I 

Natural_Permafrost (144) 0.08 0.09 0.69 0.28 

Natural_Sediment (33) 0.37 0.21 2.00 0.39 

Natural_Soil (52) 0.06 0.44 0.53 0.61 

Natural_Water (146) 0.34 0.35 0.83 0.64 

WWTP (69) 0.03 0.22 0.62 0.95 

Fecal_Animal (110) 0.47 0.75 2.10 1.10 

Fecal_Human (300) 0.30 0.35 1.40 0.63 

All (854) 0.04 0.35 0.40 0.65 
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