
 
Broad geographic sampling reveals predictable and pervasive seasonal adaptation in 
Drosophila 
 
Heather E. Machado1,2 *‡, Alan O. Bergland1,3 *‡, Ryan Taylor1, Susanne Tilk1, Emily Behrman4, 
Kelly Dyer5, Daniel K. Fabian6, Thomas Flatt6, Josefa González7, Talia L. Karasov8, Iryna 
Kozeretska9, Brian P. Lazzaro10, Thomas JS Merritt11, John E. Pool12, Katherine O’Brien4, 
Subhash Rajpurohit4, Paula R. Roy12, Stephen W. Schaeffer14, Svitlana Serga9, Paul 
Schmidt4°‡, Dmitri Petrov1°‡ 
 

* equal contribution 
° equal contribution 
‡ to whom correspondence should be addressed: heather.machado@sanger.ac.uk, 
aob2x@virginia.edu, schmidtp@sas.upenn.edu, dpetrov@stanford.edu 
 
1 Department of Biology, Stanford University, Stanford, CA  
2 Wellcome Sanger Institute, Cambridge, UK 
3 Department of Biology, University of Virginia, Charlottesville, VA 
4 Department of Biology, University of Pennsylvania, Philadelphia, PA 
5 Department of Genetics, University of Georgia, Athens, GA 30602 
6 Institute of Population Genetics, Vetmeduni Vienna, A-1210 Vienna, Austria 
7 Institute of Evolutionary Biology, CSIC- Universitat Pompeu Fabra, Barcelona, Spain 
8 Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA 
9 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine  
10 Department of Entomology, Cornell University, Ithaca, NY, 14853 
11 Department of Chemistry & Biochemistry, Laurentian University, Sudbury, ON, Canada  
12 Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 
13 Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 
14 Department of Biology, The Pennsylvania State University, University Park, PA 
 
 

Abstract  
Local adaptation in response to spatially varying selection pressures is widely recognized as a 
ubiquitous feature for many organisms. In contrast, our understanding of local adaptation to 
temporally varying selection pressures is limited. To advance our understanding of local 
adaptation to temporally varying selection pressures, we studied genomic signatures of 
seasonal adaptation in Drosophila melanogaster. We generated whole-genome estimates of 
allele frequencies from flies sampled during the spring and fall from 15 localities. We show that 
seasonal adaptation is a general feature fly populations and that the direction of seasonal 
adaptation can be predicted by weather conditions in the weeks prior to sampling. We find that 
seasonal changes in allele frequency are mirrored by spatial variation in allele frequency and 
that seasonal adaptation affects allele frequencies at ~1.0-2.5% of polymorphisms genome-
wide. Our work demonstrates that seasonal adaptation is a major evolutionary force affecting D. 
melanogaster populations living in temperate environments. 
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Introduction  

Organisms living in temperate environments experience dramatic changes in selection pressure 
across the seasons. Long-lived individuals, as well as species with a limited number of 
generations per year, exhibit plastic physiological and behavioral strategies that enable them to 
survive the unfavorable season and exploit the favorable one (Denlinger 2003; Kostál 2006); 
this is the classical form of seasonal adaptation (Tauber et al. 1986). In contrast, for short lived 
organisms with multiple generations per year, seasonally varying selection can maintain fitness 
related genetic variation if some genotypes have high fitness in one season but not another 
(Gillespie 1973). In these organisms, a distinct form of seasonal adaptation occurs when the 
frequency of alternate genotypes changes in response to seasonal fluctuations in the 
environment. 
 
Seasonal adaptation can therefore be seen as a form of local adaptation. However, when 
compared to other forms of local adaptation (Ewing 1979), seasonal adaptation has been 
considered by some to be uncommon and, when present, unlikely to result in long-term 
balancing selection (Hedrick 2006). Classic quantitative genetic theory suggests that an optimal, 
plastic genotype will eventually dominate a population that is exposed to periodically changing 
environments, particularly when certain environmental cues are reliable indicators of changes in 
selection pressure(Levins 1968; Via & Lande 1985). Predictions from traditional population 
genetic models have suggested that periodically changing environments will lead to the rapid 
loss of seasonally favored ecotypes as slight changes in selection pressure from one year to 
another eventually push allele frequencies at causal alleles to fixation (Hedrick 1976). 
 
Recent theoretical models have called these classical predictions into question. For instance, a 
quantitative genetic model by Botero et al. (Botero et al. 2015) shows that plasticity is unlikely to 
become a predominant feature of populations living in seasonally fluctuating environments when 
populations undergo more than three generations per season. Additionally, a population genetic 
model by Wittmann et al (Wittmann et al. 2017) has demonstrated that seasonally varying 
selection can maintain fitness related genetic variation at many loci throughout the genome 
when the seasonally favored allele is dominant. These recent models, along with others that 
highlight the importance of population cycles (Bertram & Masel 2017) as well as overlapping 
generations and age structure (Ellner 1996; Ellner & Sasaki 1996; Ellner & Nelson G Hairston 
2015; Bertram & Masel 2017), suggest that seasonal adaptation could be an important feature 
of short-lived, multivoltine organisms with highly age-structured populations (Behrman et al. 
2015), such as Drosophila.  
 
In drosophilids there is abundant evidence of seasonal adaptation. Seasonal adaptation was 
first observed in D. pseudoobscura by Dobzhansky and colleagues (Dobzhansky 1948) by 
tracking allele frequencies of inversions over seasons. Recent studies of other flies in the 
obscura group have demonstrated similar seasonal shifts of inversion frequencies and have 
linked these seasonal shifts to acute thermal stress (Rodríguez-Trelles et al. 2013). In 
Drosophila melanogaster, multiple lines of evidence from phenotypic and genetic analysis 
demonstrate the presence of seasonal adaptation. When reared in a common laboratory 
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environment, D. melanogaster collected in the spring show higher stress tolerance (Behrman et 
al. 2015), greater propensity to enter diapause (Schmidt & Conde 2009), increased innate 
immune function (Behrman et al. 2018), and modulated cuticular hydrocarbon profiles 
(Rajpurohit et al. 2017) compared to flies collected in the fall. Rapid adaptation over seasonal 
time scales in these and related phenotypes have also been observed in laboratory (Schmidt & 
Conde 2009) and field based mesocosm experiments (Rajpurohit et al. 2017). Genome-wide 
analysis identified that a large number of common polymorphisms change in frequency over 
seasonal time scales in one mid-latitude orchard (Bergland et al. 2014), and allele frequency 
change among seasons has also been observed using candidate gene approaches (Cogni et al. 
2014). In several cases, these adaptively oscillating polymorphisms have been linked to 
seasonally varying phenotypes (Paaby et al. 2014; Behrman et al. 2018).  
 
Despite ample evidence of seasonal adaptation in D. melanogaster, we have a limited 
understanding of the predictability of allele frequency changes that arise as a consequence of 
seasonal adaptation and the fraction of polymorphisms genome-wide whose allele frequencies 
are affected by seasonal adaptation. Furthermore, it is unclear how these patterns of seasonal 
adaptation vary over spatial gradients, and how spatially vs. temporally varying selection 
pressures may interact to shape patterns of genetic variation across the genome. To gain 
insight into these basic questions, it is necessary to have widespread and coordinated sampling 
efforts at multiple scales; this is one goal of the two Drosophila population genomics consortia 
DrosRTEC (presented here) and DrosEU (Kapun et al. 2018). Here, we focus on seasonal 
adaptation and estimate allele frequencies genome-wide from D. melanogaster collected in the 
spring and fall at 15 localities in North America and Europe. First, we highlight the genomic 
signal of seasonal adaptation by examining the general patterns of allele frequency change 
throughout the genome. Next, using a cross validation approach, we show that allele frequency 
changes between seasons are predictable when taking into account weather in the weeks 
immediately prior to sample collection. We demonstrate that aspects of latitudinal variation in 
allele frequency mirror seasonal fluctuations in allele frequency, even when seasonal and clinal 
samples were collected on different continents or longitudinal extremes of North America. 
Finally, using a simulation approach, we show that seasonally varying selection affects allele 
frequency changes between seasons at more than 1.0 - 2.5% of all common polymorphisms 
with cumulative seasonal selection coefficients of 10 - 20% per season. Taken together, our 
work demonstrates that seasonal adaptation is a general feature of D. melanogaster 
populations and has subtle but pervasive effects on patterns of allele frequency genome-wide. 
 
 
 

Results 
Fly samples and sequence data. We assembled 72 samples of D. melanogaster collected from 
23 localities in North America and Europe (Supplemental Table 1, Supplemental Figure 1) each 
containing pooled DNA sequencing from multiple individual flies. For 15 sampling localities, flies 
were sampled in the spring and fall over the course of one to six years (Figure 1A). We refer to 
unique sampling localities or sampling years within a locality as a population. Fly samples were 
collected through the collaborative effort of the Drosophila Real Time Evolution (DrosRTEC) 
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consortium and in parallel with similar efforts throughout Europe by the DrosEU consortium 
(Kapun et al. 2018). 
 
We divided the full set of samples into three subsets (Figure 1B). The first subset (hereafter the 
‘clinal’ set) of samples was used to examine patterns of clinal variation along the East Coast of 
North America and consists of four populations sampled in the spring. The second subset 
(hereafter ‘Core20’) is composed of 20 populations consisting of one spring and one fall sample. 
Populations in the Core20 set are drawn from localities in North America and Europe and we 
use at most two years of sampling from any one locality. Samples in the Core20 set are used in 
our basic analyses of seasonal adaptation. The third subset (hereafter ‘ValidationSet’) is 
composed of four populations with one spring and one fall sample. Populations in the 
ValidationSet are drawn from localities where there are more than two years of sampling. The 
‘ValidationSet’ is used as a part of our cross-validation analysis.  
 
Analyses presented here use a total of 51 samples. Data from the remaining samples, including 
those that do not constitute paired spring/fall samples, are not included in our analyses here but 
nonetheless form a part of our larger community-based sampling and resequencing effort and 
are deposited with the rest of the data. For each sample, we resequenced pools of ~75 
individuals (range 27-164) to an average of 94x coverage (range 22-220, Supplemental Table 
1). All raw sequence data have been deposited to SRA (BioProject Accession #PRJNA308584) 
and a VCF file with allele frequencies from all populations is available on DataDryad 
(ACCESSION # TBD). 
 
After filtering, pooled resequencing identified 774,651 common autosomal SNPs which we use 
in the present analysis (see Materials and methods for details on mapping and filtering criteria). 
To gain insight into basic patterns of differentiation among our samples, we performed a 
principal component analysis across all samples. Samples cluster by population and geography 
(Figure 1C) with the principal component 1 separating European, North American West Coast 
and East Coast populations while principal component 2 separating the Eastern North America 
samples by latitude (linear regression p = 3*10-15, R2=0.84). No principal component is 
associated with season following correction for multiple testing. 
 

Basic genomic signals of seasonal adaptation. To identify a basic signature of seasonal 
adaptation, we assessed the per-SNP change in allele frequency between spring and fall 
among the Core20 set of populations. To perform this test, we used a generalized linear model, 
regressing allele frequency at each SNP on season (spring or fall) with population specific 
intercepts and binomial sampling variance. Our estimate of the sampling variance takes into 
account the number of flies sampled and per-site read depth (i.e., effective coverage 
(Kolaczkowski et al. 2011; Feder et al. 2012; Bergland et al. 2014; Machado et al. 2016)). The 
genome-wide, observed distribution of ‘seasonal’ p-values from this model is not uniform and 
there is a pronounced excess of SNPs with low p-values (Figure 2A).  
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The excess of SNPs with low p-values could be a signature of seasonal adaptation or could be 
a consequence of an incorrect and inflated precision of allele frequency estimates 
(Supplemental Figure 2) (Machado et al. 2016). To resolve whether the genome-wide excess of 
SNPs with low p-values reflects seasonal adaptation or statistical artifact, we performed a 
permutation test. In our permutation procedure, we randomly shuffled the season label within 
populations 100 times and refit the generalized linear model. Note that these permutations 
retain all of the features of the data except for the seasonal labels within populations, and the 
test is thus robust to any violations of the GLM model assumptions. In addition, we note that our 
permutation test is conservative, as many permutations necessarily retain much of the seasonal 
structure among populations. Thus, it is not surprising that all of the permutations are also 
enriched for low p-values. Still, we find an excess of low p-values in the observed distribution 
compared even to the conservative permutations (Figure 2A), with a greater proportion of SNPs 
with p<0.001 than 98% of permutations. Our permutation analysis thus suggests that the 
genome-wide excess of SNPs with low p-values contains a signal of seasonal adaptation.  
 
We examined general patterns of allele frequency change at the top 1% most seasonally 
variable SNPs identified from the linear models. We find that the mean allele frequency change 
between spring and fall at these seasonal SNPs is 4-8%, increasing as a function of initial allele 
frequency (Figure 2B). These new estimates of allele frequency change are smaller than those 
previously reported from a single orchard (~20%, Bergland et al (2014)).  Bergland et al (2014) 
examined the top ~1500 seasonally variable SNPs as opposed to the top ~7500 examined here. 
However, the average allele frequency change of the top 1500 seasonally variable SNPs 
identified here is only ~9%. The more modest change in allele frequency between spring and 
fall that we observe here compared to Bergland et al (2014) is possibly caused by an increased 
power to detect smaller changes in allele frequency and a reduction of the Beavis effect (Xu 
2003), resulting from the larger sample presented in this study. In addition, the broad 
geographic spread of the populations, the concomitantly large variation in environmental 
parameters, and our focus on the SNPs showing consistent fluctuations across all populations is 
likely to reduce the magnitude of the detected fluctuations.  
 
The top 1% most seasonally variable SNPs identified here are significantly enriched for 
seasonal SNPs identified by Bergland et al (2014) relative to control SNPs matched for several 
genomic characteristics (log2 odds ratio = 1.19, p < 0.001; see Materials and methods). Two 
populations are shared between those included in the Core20 and those analyzed in Bergland 
et al (2014) and these shared populations could drive the signal of enrichment that we observe. 
Accordingly, we identified the top 1% most seasonally variable SNPs from a model fit with 18 of 
the Core20 populations that do not overlap with those used in the earlier Bergland et al 2014 
study. These top SNPs identified here with 18 populations are marginally enriched for those 
identified by Bergland et al (2014) relative to control SNPs (log2 odds ratio ± SD = 0.59 ± 0.37, p 
= 0.0512). 
 
One expectation of rapid changes in allele frequency at seasonally varying SNPs is a localized 
signal of linked selection. To assess the extent of such linked selection, we calculated the 
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average, between season FST  surrounding each of the top 1% most seasonally variable SNPs. 
FST is indeed elevated surrounding these SNPs but decays to background levels rapidly, on 
average by 200bp (Figure 2C). The localized signal of linked selection coupled with the broad 
distribution of seasonally variable SNPs (see below, ‘Clustering’) suggests that seasonal 
adaptation affects neutral genetic variation genome-wide. 
 
We further tested whether the seasonally varying polymorphisms that we identify here are 
enriched among different functional annotation classes. The top 1% most seasonally varying 
polymorphisms are not significantly enriched for any functional class that we tested, although 
there is a suggestive enrichment of non-synonymous sites relative to synonymous sites as 
compared to matched control polymorphisms (Supplemental Figure 3). The top 5% of 
seasonally varying polymorphisms are significantly enriched for non-synonymous sites as 
compared to matched control polymorphisms (enrichment = 8%, 95% CI = 2-14% p=0.01). The 
ratio of non-synonymous to synonymous polymorphisms among the top 5% of seasonal SNPs 
is also higher than that for matched controls (enrichment = 7%, 95% CI = 1 − 15%, p=0.03). We 
found no significant enrichment or under-enrichment for intergenic regions, introns, UTR's, or 
coding regions.  
 
Predictability of seasonal adaptation among populations. The genome-wide signature of 
seasonal adaptation that we observe indicates that there are consistent changes in allele 
frequencies between seasons, broadly defined, among populations sampled across multiple 
years, and localities separated by thousands of miles (Figure 1B). A high degree of 
concordance in allele frequency change suggests a model wherein seasonal adaptation is, to at 
least some extent, predictable. To explicitly test this model, we performed a leave-one-out cross 
validation analysis. In this analysis, we sequentially removed each of the 20 paired spring-fall 
populations within the Core20 set and re-identified seasonally variable SNPs among the 
remaining 19 populations using a generalized linear model (hereafter, the ‘discovery sets’). We 
identified seasonally variable SNPs from the dropped, 20th, population using a Fisher’s exact 
test with allele counts corrected for double binomial sampling as above. We then tested if allele 
frequencies changed in the same direction (i.e., concordant allele frequency change) for SNPs 
that show a significant allele frequency change in both the 19 population model and the single 
population model across a range of significance thresholds. For each population, we calculated 
a concordance score. This score is based on the relationship between the joint significance 
threshold for the two models and the proportion of SNPs (genome-wide, or per chromosome) 
below that threshold that change in a concordant fashion between spring and fall (see Materials 
and Methods for more details). Note that populations with a positive concordance score are 
those in which the concordance score is greater than 50% over the bulk of the genome or 
chromosome. In this cross validation analysis, we also calculated the enrichment of 
polymorphisms that are identified as seasonal in each single population model and the 
corresponding 19-population model, regardless of whether allele frequencies changed in a 
concordant fashion. 
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Our cross validation analysis yielded several basic results. First, we find that there is only a 
modest enrichment genome-wide of polymorphisms that are identified as seasonally variable in 
the single population model and their corresponding discovery sets (Supplemental Figure 4). 
Nonetheless, we find that the majority of populations show positive genome-wide predictability 
(Figure 3A). For populations that show the strongest positive genome-wide concordance, the 
concordance rate reaches ~65% (range 52-69%) among the ~50 (range 35-150) SNPs with the 
most stringent joint significance threshold. Intriguingly, we found that four of the 20 populations 
had negative genome-wide predictability (Benton Harbor, Michigan 2014; Lancaster, 
Massachusetts 2012; Topeka, Kansas 2014; and Esparto, California 2012) . For these 
populations, the strength of negative predictability was, in general, as strong as those 
populations with positive predictability. The sign and magnitude of predictability scores varies 
among chromosomes, although the genome-wide score is correlated with the per-chromosome 
scores, particularly for chromosome arms 2L and 2R (Supplemental Figure 5).  
 
We sought to explain why some populations display negative genome-wide predictability. We 
hypothesized that populations with negative genome-wide predictability scores were exposed to 
warm springs or cool falls prior to our sampling. To test this hypothesis, we calculated the 
number of days three weeks prior to spring sampling when maximum temperatures fell above a 
specified upper thermal limit and the number of cool days in the three weeks prior to fall 
sampling when minimum temperatures fell below a lower limit. The use of a three-week window 
is somewhat arbitrary but we do note that this duration corresponds to one to two generations 
and the general period from egg to peak adult reproduction (Schmidt et al. 2005; Bergland et al. 
2012). Thus, a three week window is a biologically meaningful time window. We did not attempt 
to optimize models based on the duration of the time-window because we have a relatively 
limited number of populations pairs. We tested spring and fall thermal limits ranging from 0°C to 
40°C. For each combination of spring and fall thermal limits, we regressed genome-wide 
concordance scores on the number of days above and below the thermal limits and recorded 
the R2 of each model. We calculated the null distribution of R2 values by permuting the genome-
wide predictability scores with the number of days above and below each thermal limit 
(n=10,000). For each permutation, we recorded the maximum R2  and used the distribution of R2 
values as a null distribution to identify which thermal limits are more strongly correlated with 
genome-wide predictability scores than expected by chance. We found that the number of days 
prior to sampling in the spring above ca. 35°C (32-37°C) and number of days in the fall below 
ca. 5°C (0-10°C) is significantly correlated with genome-wide predictability scores of the 20 
populations (Fig. 3B; p < 0.05).  
 
These best fit models predict that populations experiencing warm temperatures prior to the 
spring sample or cool temperatures prior to the fall sample will have negative genome-wide 
predictability scores (Supplemental Figure 6A). Spring and fall fly samples were collected over a 
relatively broad time window (Figure 1A) and so it is possible that the aberrant populations with 
negative predictability were collected relatively late in the season and are more representative 
of fly populations sampled from the summer or winter. However, genome-wide predictability 
scores are not correlated with spring or fall collection date (p = 0.6 and 0.9, respectively) or  
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cumulative growing degrees (p = 0.5, 0.86), latitude (p = 0.9), or the difference in cumulative 
growing degree days between spring and fall (p = 0.46). The genome-wide concordance score 
thus appears to be more related to the specific temperature patterns we identified in the spring 
and the fall. 
  
We tested the predictive power of our thermal limit model by applying it to seasonal allele 
frequency changes of the four populations in the ValidationSet (Figure 1B). To generate 
genome-wide predictability scores for these populations, we assessed concordance rates 
between seasonally variable SNPs identified in each of the ValidationSet populations with 
seasonally variable SNPs identified among the Core20 set (see Materials and methods for 
details). We find that populations in the ValidationSet show a similar variability of genome-wide 
concordance scores as those estimated in the cross validation analysis of the Core20 set and 
that several populations also appear to be flipped (Linvilla, Pennsylvania – 2012; Cross Plains, 
Wisconsin – 2013). Next, we used the parameters from the best fit thermal models derived from 
the Core20 set to predict genome-wide concordance scores of the ValidationSet populations. 
We find that these predicted genome-wide concordance values are positively correlated with the 
observed genome-wide concordance score of the ValidationSet populations (Pearson’s r = 0.29; 
Figure 3D). While this correlation of four points is not significantly different from zero (p = 0.7), 
we nonetheless find that the magnitude of this correlation is greater than 68.8% of the best-fit 
permuted models. Taken together with the cross validation analysis of the Core20 set, we 
conclude that coarse-grained temperature data of the weeks prior to sampling is sufficient to 
predict some of the seasonal changes in allele frequencies genome-wide. Our conclusion is 
consistent with previous results in other drosophilids (Rodríguez-Trelles et al. 2013) which 
demonstrate that short term changes in temperature, either directly or indirectly, elicits dramatic 
changes in allele frequencies in the wild and in the laboratory. 
 
The flipped model. In the analysis presented above, we have used the time of year that flies 
were collected to designate season. However, our predictability analysis suggests that the 
designation of season based on time of year may not completely reflect the recent selective 
history of the populations that we sampled. We therefore reasoned that our ability to detect 
seasonally variable polymorphisms, along with our ability to assess general signals of seasonal 
adaptation, will be improved if we flipped the season label of the populations that show negative 
genome-wide concordance scores. 
  
To evaluate this idea, we flipped the season label for the four populations with negative 
genome-wide predictability (Figure 3A) and calculated seasonal p-values using a GLM 
(hereafter, the ‘flipped model’). As expected, the genome-wide distribution of p-values from the 
flipped model is more heavily enriched for low p-values than the original model. Similarly, there 
are more SNPs with p<0.001 than 100% of 200 permutations for the flipped model, whereas for 
the original model there are more SNPs with p<0.001 than 98% of the permutations 
(Supplemental Figure 7). Of course, the increased number of highly seasonal sites in the flipped 
model as compared to the original model is a foregone conclusion.  
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To provide a more independent assessment of whether flipping the seasonal label for these four 
populations improves signals of seasonal adaptation we re-ran other analyses presented above. 
First, we examined concordance between the top seasonally varying SNPs identified here, 
using the flipped model, with seasonal SNPs identified in Bergland et al (2014). We carried out 
this analysis using 18 of the Core20 populations that do not overlap with Bergland et al (2014; 
hereafter ‘reduced Core20’). Note, the shared Pennsylvania populations were not among those 
populations with season labels altered in our ‘flipped model.’ The enrichment for the reduced, 
flipped Core20 model (log2OR ± SD = 1.02 ± 0.39; pperm < 6e-4) is substantially better than for 
the reduced, original model (log2OR ± SD = 0.59 ± 0.37; pperm = 0.0512).  
 
We examined whether strongly seasonally variable SNPs identified in the flipped model are 
enriched for any functional elements. Enrichment levels for seasonal SNPs identified with the 
flipped model are qualitatively similar to those from the original model, described above 
(Supplemental Figure 3).  
 
We re-ran our predictability analysis with the ValidationSet populations. In this re-analysis, we 
calculated the genome-wide concordance rate for each ValidationSet population, using the 
flipped, Core20 model as our discovery set. This reanalysis generally increased the magnitude 
of genome-wide concordance scores but did not modify their sign (Supplemental Figure 7). 
Next, we used the parameters from the best fit thermal models derived from the (original) 
Core20 set to predict our re-estimated genome-wide concordance scores (see the Materials and 
methods for a detailed justification of this approach). We find improved predictions of the 
genome-wide concordance scores made through the use of the flipped version of the Core20 
analysis (‘flipped model’ Pearson’s r = 0.53 ‘original model’: Pearson’s r = 0.29). For analyses 
using the ‘flipped model’, the correlation coefficient between estimated and observed genome-
wide predictability scores are better than 84.5% of the best-fit permuted models (64-95% across 
the range of best fit thermal limit models). In contrast, the observed, best-fit correlation 
coefficients for the ‘original model’ are only better than 68.8% of the best-fit permuted models 
(range 54.8 - 89%).  
 
Taken together, we conclude that there is some support for the idea that the flipped model 
generates a higher confidence set of seasonally varying SNPs. For the remainder of our 
analyses, presented below, we used seasonal SNPs identified by both the original and flipped 
models. In the results that follow, we find that the use of the flipped model generally increases 
the strength of the signals that we observe.  
 
Spatial differentiation parallels signatures of seasonal adaptation. Next, we sought to assess 
whether seasonal adaptation reflects spatial patterns of genetic variation across the east coast 
of North America. Accordingly, we tested for enrichment and parallelism between SNPs that 
fluctuate seasonally and those that vary in frequency across the East Coast latitudinal cline. To 
identify clinally varying polymorphisms we fit a generalized linear model, regressing allele 
frequency on latitude using the clinal set of populations (described above). We re-identified 
seasonally varying SNPs using 18 of the Core20 populations to avoid a shared collection locale 
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with the clinal set (see Supplemental Table 1). Seasonally varying SNPs were identified among 
these 18 populations using both the ‘original’ and ‘flipped’ seasonal labels.   
 
Our initial analysis of seasonal and clinal variation yielded two basic results. First, we find that 
there is an enrichment of SNPs that are both seasonal and clinal, regardless of parallelism, 
across a range of significance thresholds relative to matched controls for both the flipped and 
original models (Supplemental Figure 8). The enrichment increases with increasingly stringent 
seasonal and clinal significance thresholds (Supplemental Figure 8).  Rates of enrichment 
among the most significantly seasonal and clinal sites are higher in the ‘original’ model than in 
the ‘flipped’ model, however at moderate significance levels enrichment rates are higher for the 
flipped model. Although there is a significant enrichment of seasonal and clinal polymorphisms 
under either model, we point out that the number of clinal polymorphisms that are seasonal is 
numerically small and only represents a modest fraction of clinally varying polymorphisms. For 
examples, under the ‘original’ model, for the top 1% of clinal SNPs (7739 SNPs), 0.015% (115) 
are in the top 1% of seasonal sites (expected 0.010%). This represents a 37% enrichment over 
controls and 50% over the theoretical expectation of 0.01. Thus, the majority of clinal 
polymorphisms are not seasonal, and vice-a-versa. The mild enrichment that we observe here 
is consistent with the non-significant, but slightly positive, enrichment reported by Bergland et al 
(2014). 
 
Second, we tested whether SNPs that are clinal and seasonal below a range of significance 
thresholds change in allele frequency in a parallel fashion. We define parallel changes in allele 
frequency across time and space to correspond to the situation when the high frequency allele 
in the ‘spring’ is the same as the high frequency allele in the northern US as well as high 
frequency ‘fall’ alleles being found predominantly in the southern US. We find that the rate of 
parallelism increases with increasingly stringent seasonal and clinal significance thresholds 
(Figure 4A). Parallel changes in allele frequency between seasons and clines is similar to 
previously published genome-wide and locus specific results (Cogni et al. 2014; Bergland et al. 
2014; Kapun et al. 2016). Parallelism rates are higher when assessing seasonal variation using 
the ‘flipped’ model as compared to when we use the ‘original model’. The increase in parallelism 
rates using the flipped model can be taken as strong, and orthogonal, evidence that the flipped 
model generates a higher confidence set of seasonal SNPs. 
 
Parallel changes in phenotype and genotype in temperate environments could be influenced by 
seasonal migration of southern flies into northern locales through the growing season. Seasonal 
migration would not necessarily invalidate our conclusion of seasonal adaptation because one 
would still need to invoke a model of selection on a resident, overwintering population for allele 
frequencies to oscillate from year to year. Nonetheless, we sought to test whether seasonal 
migration strongly influences the signal of seasonal adaptation by identifying seasonal SNPs 
using populations that are geographically and genetically isolated from the East Coast (Campo 
et al. 2013; Bergland et al. 2015). We assessed seasonal changes in allele frequency 
separately for Californian (n=3) and European (n=3) populations using the GLM approach, 
employing both the ‘original’ and ‘flipped’ seasonal labels, and tested for parallelism with 
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polymorphisms that vary along the East Coast of North America. We found a strong signal of 
parallelism between seasonal and latitudinal variation in both the California and the Europe 
comparisons (Figure 4B, 4D). For the Californian populations, parallelism was greater for the 
‘flipped model’ than for the ‘original model’ (Figure 4D). These results suggest that parallel 
changes in allele frequency between seasons and across the latitudinal cline is not exclusively 
driven by seasonal migration in the spring from neighboring southern populations. Thus, the 
identified seasonal SNPs are not merely those that mark local clines along the east coast of 
North America 
 
The strength and genomic extent of seasonal adaptation. Our results suggest that seasonal 
adaptation is driven, at least in part, by predictable changes in allele frequency at 
polymorphisms spread throughout the genome. Accordingly, we sought to quantify the fraction 
of polymorphisms whose frequencies are affected, both directly and indirectly, by seasonal 
adaptation and to estimate the average strength of seasonally varying selection.  
 
To robustly estimate the strength and extent of seasonally varying selection, we developed a 
semi-parametric test statistic based on the per-population change in allele frequency among 
seasons. In this method, we first calculated the per-population change in allele frequency for 
each SNP using two one-tailed Fisher’s exact tests. Specifically, first we test whether the SNP 
increases in frequency from spring to fall and then we test whether it decreases in frequency 
from spring to fall. Next, we rank normalized both one-tailed p-values for each SNP relative to 
other SNPs with similar sequencing depth and allele frequency. Finally, we combined the one-
tailed, rank-normalized p-values for each SNP using Fisher’s Method (Fisher 1925), producing 
two χ2 distributions representing the magnitude and concordance of allele frequency change 
among populations. Our method is limited in power by the number of SNPs used for rank 
normalization (median 277 per bin). However, our method is robust to an inflation in sampling 
precision, in contrast to the GLM method (Supplemental Figure 2). We performed these 
analyses using the seasonal labels from the ‘original’ and ‘flipped’ models. The genome-wide 
distribution of χ2 statistics was also calculated for 5000 permuted datasets wherein spring and 
fall labels were randomly flipped within populations. Consistent with our analysis of seasonal 
changes in allele frequency using generalized linear models, we find an excess of 
polymorphisms with elevated signals of consistent seasonal allele frequency change relative to 
the null expectation of no allele frequency change using nominal p-values as well as relative to 
the permuted datasets (Figure 5AB). The excess of seasonally varying polymorphisms relative 
to permutations was greater for the ‘flipped model’ (p < 0.002) than for the ‘original model’ (p = 
0.018), as expected. 
 
We estimated the fraction of the genome affected by seasonal adaptation and the average 
strength of seasonal selection. To estimate these parameters, we compared the observed 
distributions of χ2 statistics from both the ‘flipped’ and ‘original’ models to simulations where  
a fraction of polymorphisms was randomly selected to change in frequency between seasons 
with a given selection coefficient (see Materials and methods for more detail). Using an ABC-
style approach, we identified which parameter estimates were most likely to produce the 
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observed genome-wide distribution of χ2 statistics. The model we employ for the ABC analysis 
assumes one generation of selection per season and assumes that every site in the genome 
changes in frequency independently and is subject to the same strength of selection. Note that 
this model is appropriate here as we aim to estimate the proportion of both causal and linked 
SNPs that change in frequency due to seasonal selection and not just the proportion of causal 
sites. We find a ridge of best fit parameters, with a trade-off between the strength of selection 
and the proportion of sites under selection (Figure 5CD). Our simulations suggest that the 
frequency of at least 2.5% of common polymorphisms in the fly genome are affected by 
seasonal adaptation of the strength of ~20% per season under the flipped model, or 1% with 
strength of selection of 10% per season for the original model. The estimated strength of 
selection and fraction of the genome affected by seasonally varying selection are greater for the 
‘flipped model’ than the ‘original model,’ as expected (Figure 5CD). In order to assess whether 
and to what extent our estimates are confounded by clustering of seasonally varying 
polymorphisms, we performed the same analyses using datasets of subsampled polymorphisms 
every 1Kb and 5Kb (Supplemental Figure 9). We found no substantial shift in our parameter 
estimates across subsampled datasets (mean of 100 samples).  
 
The distribution of seasonally variable SNPs throughout the genome. Analyses presented above 
suggest that seasonal adaptation affects patterns of allele frequency genome-wide. Accordingly, 
we characterized several aspects of the genomic distribution of seasonally varying 
polymorphisms. 
 
First, we examined seasonal changes in the frequency of the major, cosmopolitan inversions 
that segregate in wild D. melanogaster populations. We estimated inversion frequency from 
pooled allele frequency data by calculating the average frequency of SNPs previously identified 
as being closely linked to these inversions (Kapun et al. 2014). With the exception of In(2L)t, we 
find that most inversions are rare in the populations that we examined, typically segregating at 
less than 15% frequency in most populations (Supplemental Figure 10). Using a simple sign 
test, we find that no inversion consistently changed in frequency using season labels as defined 
in either the ‘original or the ‘flipped’ model. We note that In(2R)Ns is higher frequency in the fall 
compared to the spring in a quarter of the Core20 populations (pbinomial-test = 0.048; Bonferroni 
adjusted p = 0.28), reflecting previously reported signals of seasonal change (Kapun et al. 
2016). However, In(2R)Ns segregates at a much lower frequency than many of the most 
strongly seasonal SNPs, and seasonal changes at it are relatively mild compared to other 
seasonally varying polymorphisms. We conclude that inversions are not the exclusive drivers of 
seasonal adaptation in D. melanogaster, although we cannot rule out their role in contributing to 
seasonal adaptation.  
 
To determine if seasonally variable SNPs are non-randomly distributed, we examined the 
abundance of the top 1% of seasonally variable SNPs as defined by the GLM model (n=7,748) 
among bins of 100 consecutive SNPs (average bin size of 12Kb). We compared the observed 
distribution of seasonal SNPs per bin to the nominal expectation based on binomial sampling, 
as well as to the empirical distribution of matched control SNPs (Figure 6A). We found 
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significant over-dispersion in the distribution of seasonal SNPs per bin compared to both the 
theoretical and the matched control distributions (KS test p<10-16), indicating that seasonal 
SNPs are more clustered than expected. We cannot determine to what extent this clustering is 
due to linkage of the causal SNPs to neighboring SNPs or to the clustering of causal seasonal 
variants. The distribution of control polymorphisms was indistinguishable from the binomial 
expectation (KS test p=1). 
 
Although seasonally variable SNPs are non-randomly distributed throughout the genome, they 
are nonetheless broadly distributed. To further quantify the distribution of seasonally variable 
SNPs, we calculated the probability of observing at least one of the top 1% most seasonally 
variable SNPs among 1000 randomly selected genomic windows ranging in size from 100bp to 
100Kb. We find that seasonally variable SNPs are distributed among all autosomes but are 
enriched on chromosome 2L (Figure 6B). Across the window sizes tested, the probability of 
observing at least one highly seasonal SNP in any given window is less than expected by 
chance given a Poisson distribution, consistent with clustering on both large and small genomic 
scales (Figure 6B). Nonetheless, the observed clustering is modest considering that there is a 
>75% chance of identifying a seasonally variable SNP in any randomly selected 50Kb window 
(Figure 6B). The general signal of overdispersion is similar for both the ‘flipped’ and ‘original’ 
models (Figure 6A,B) and consistent with similar patterns previously observed in Bergland et al 
(2014). The broad genomic distribution and large number of seasonally variable SNPs suggests 
that seasonal adaptation is highly polygenic.  
 
We performed a sliding-window analysis to identify regions of the genome with an excess of 
seasonally varying polymorphisms. We found approximately 40 regions of the genome with a 
significant excess of seasonally varying polymorphisms. The locations of these regions change 
substantially between the ‘original’ and ‘flipped’ models (Figure 6C). For simplicity, we focus the 
remainder of our analysis here on the regions identified using the ‘flipped’ model. Regions of the 
genome enriched for seasonally variable SNPs are enriched on both arms of chromosome 2 
and deficient along chromosome 3 (χ2 = 22.9, p = 4e-5). Intriguingly, one of 40 most seasonally 
variable regions identified with the ‘flipped model’ contains the genes Tep2 and Tep3 which we 
have previously associated with seasonal variation in immune function in flies (Behrman et al. 
2018). The Tep2/3 region contains 11 of the top seasonally variable SNPs, ranking this region 
among the top 0.1% genomic windows. The genomic window surrounding couch-potato (cpo), a 
seasonally variable gene (Cogni et al. 2014) found to be associated with diapause (Schmidt et 
al. 2008), has 7 of the top seasonally variable SNPs ranking it among the top 1% of windows 
genome-wide. Note that the enrichment of seasonal SNPs surrounding cpo is not significant 
after conservative, multiple testing correction (padjusted = 1) which would be appropriate for de 
novo discovery of such regions. If we treat cpo as the true seasonal locus, this result implies 
that we lack power to discover many many causal genes involved in seasonal adaptation. There 
was no excess of seasonal SNPs surrounding the insulin receptor (InR), wherein seasonally 
variable indels and SNPs had been previously reported(Paaby et al. 2014). 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2018. ; https://doi.org/10.1101/337543doi: bioRxiv preprint 

https://doi.org/10.1101/337543
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gene-ontology analysis (Huang et al. 2009a; b) of the ~330 genes within the 40 regions of 
significant excess of seasonal polymorphisms did not identify any significant enrichment for 
different biological processes, cellular components, or molecular function following multiple 
testing correction. However, we find that genes associated with several molecular function 
categories including inositol metabolism and phosphorylation are marginally enriched following 
multiple testing correction (padjusted < 0.08). This result is prima facie consistent with a role of 
inositol related compounds in drosophilid overwintering and cold-tolerance (Vesala et al. 2012). 
However, extreme caution (Pavlidis et al. 2012) should be taken when interpreting this result as 
it is driven by a set of three, closely linked genes (CG17026, CG17028, CG17029). 
 
 

Discussion 
Herein, we have studied the genomic signatures of seasonal adaptation in the fruit fly, D. 
melanogaster. Our work focused on addressing the basic questions of whether seasonal 
adaptation is general, predictable, and pervasive. Rigorously addressing these questions 
requires accurate allele frequency estimates (Zhu et al. 2012) genome-wide from paired spring-
fall samples collected across a large portion of D. melanogaster’s range. Generating such 
samples can be prohibitively expensive and time-consuming for a single lab and therefore we 
formed a consortium, DrosRTEC, to facilitate seasonal sampling across broad spatial scales 
(Figure 1). Our consortium’s work is mirrored by similar efforts to assess the patterns of spatial 
differentiation throughout Europe by the DrosEU consortium (Kapun et al. 2018). 
 
Our survey of allele frequency changes between spring and fall among over 20 populations 
demonstrates that seasonal adaptation, defined here as a form of local adaptation, is a general 
feature of D. melanogaster living in temperate locales. Previous analyses of seasonal changes 
in allele frequency in D. melanogaster have focused on a single mid-latitude population (Linvilla, 
Pennsylvania; (Cogni et al. 2014; Bergland et al. 2014)). The generality of that work is 
necessarily limited because it is restricted to a single locale. By demonstrating consistent 
seasonal changes in allele frequencies among multiple populations (Figure 2A), we argue here 
suggests that seasonal adaptation is a general phenomenon of temperate D. melanogaster 
populations, and not restricted to a single orchard, biogeographic region, or continent. 
Consequently, we suggest that some aspects of natural selection vary between seasons 
consistently across a large portion of D. melanogaster’s range and there is some common 
genetic basis for seasonal adaptation. 
 
Although we identified consistent patterns of evolution between spring to fall, our work highlights 
the intrinsic difficulty of the very definition of spring and fall. In general, we define spring as the 
time of year close to when D. melanogaster first becomes locally abundant. Fall is the time that 
is close to the end of the growing season, prior to the seasonal collapse, but not extirpation 
(Ives 1970; Shpak et al. 2010; Bergland et al. 2014; Machado et al. 2016), of D. melanogaster 
populations. The fact that we detect abundant parallel changes in allele frequency among 
seasons using this sampling scheme (Figure 2A, Figure 3A) suggests that for a large number of 
populations, there is a biological meaning to spring and fall defined this way. While we find clear 
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evidence that many samples show consistent changes in allele frequency between spring and 
fall (Figure 3AC), other populations show strong signals of reversed allele frequency change. 
For these populations, the data looks as if the spring and fall labels are switched (Figure 3AC). 
These ‘flipped’ populations are geographically dispersed (California, Kansas, Michigan, and 
Massachussetts) with samples collected over two non-consecutive years (2012, 2014). We do 
not believe it is likely that the labels were flipped as a result of sample handling. Rather, we 
provide evidence consistent with the model that idiosyncratic aspects of the environment prior to 
sampling drove opposing allele frequency changes in these populations. Notably, an ecological 
model that we built using information about local temperature extremes allowed us to predict the 
sign and magnitude of allele frequency changes genome-wide with relatively high accuracy 
(Figure 3D, Supplemental Figure 7B) for additional populations, which would not be likely had 
the labels were in fact switched during sample handling. 
 
There are several implications of our predictability analysis. The first, and most general, is that 
relatively fine-scaled variation in selection pressures, on the order of generation time, can 
promote rapid adaptive evolution and drive observable fluctuations in allele frequency. Finely 
scaled (sensu (Levene)) variation in selection pressures is generally thought to lead to the 
adaptive evolution of phenotypic plasticity (Via & Lande 1985). Flies clearly exhibit extensive 
plastic responses to a variety of environmental factors (David et al. 1997; Bergland et al. 2008), 
many of which vary across seasonal time scales, and these plastic responses could conceivably 
account for population persistence and growth across seasons. Indeed, behavioral and 
physiological changes (phenotypic plasticity) account for population persistence overwinter in a 
variety of other organisms. Why, then, is seasonal adaptation, defined here as allele frequency 
change over seasonal time-scales, such a prominent feature of temperate fly populations? One 
possibility is that many aspects of plasticity are relatively costly (Schou et al. 2015), or that the 
environment is fundamentally unpredictable, thus promoting the existence of alternate 
genotypes that are favored in one season and not another.  
 
We argue that our results are consistent with polygenic response to rapid changes in selection 
pressure. Our simulations show that the overall, genome-wide, signal is consistent with 
seasonal adaptation affecting allele frequencies at ~2.5% of common polymorphisms genome-
wide and changing allele frequencies by upwards of 10% between spring and fall. Note that the 
strength of selection reported here is lower than in Bergland et al (2014) but we are also looking 
specifically at parallel changes across a much larger portion of the species range. To the extent 
that some SNPs shift only in some populations this would tend to lower the estimate of strength 
of consistent selection.  
 
The analysis of the top seasonal SNPs reveals interesting patterns. As before (Bergland et al. 
2014) seasonally variable SNPs are spread throughout the genome, with some overdispersion. 
We see little enrichment in terms of classic annotations for nucleotide function (Supplemental 
Figure 3), suggesting perhaps that many of the seasonal SNPs that we identify are regulatory in 
nature and/or only tightly linked to the truly causal genetic variants. In addition, we provide 
evidence that some of top seasonally variable SNPs also vary across a latitudinal cline, often in 
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a parallel fashion (Figure 4), however note that most clinal SNPs do not show seasonal 
fluctuations. The mirroring of seasonal and clinal variation provides an independent confirmation 
that our analysis likely picked a high proportion of causal seasonal SNPs. These SNPs will 
provide a rich substrate for functional analysis.  
 
Our work demonstrates that seasonal adaptation is a pervasive process taking place across a 
large fraction of D. melanogaster’s range. The results are tantalizing but full understanding of 
the system will require additional sampling across seasons as well as from close and broadly 
distributed locales across the whole geographic range. Broad scale sampling will enable us to 
identify other aspects of the environment that elicit rapid adaptive evolution and further quantify 
the fraction of polymorphisms in the genome that underly rapid adaptation. Broad sampling can 
be coupled with additional work using controlled population cages that expose the flies to the 
seasonal environments while minimizing migration, and functional work to try to understand the 
molecular effects of individual SNPs and variants. 
 
 
 
 

Materials and methods 

Population sampling and sequence data. We assembled 72 samples of D. melanogaster, 60 
representing newly collected and sequenced samples and 26 representing previously published 
samples (Bergland et al. 2014; Kapun et al. 2016). Locations, collection dates, number of 
individuals sampled, and depth of sequencing for all samples are listed in Supplemental Table 
1. For each sample, members of the Drosophila Real-Time Evolution Consortium collected an 
average of 75 flies using direct aspiration from substrate, netting, or trapping with banana and 
yeast bait. We extracted DNA by first pooling all individuals from a sample, grinding the tissue 
together in extraction buffer, and using a lithium chloride - potassium acetate extraction protocol 
(see Bergland et al 2014 for details on buffers and solutions). We prepared sequencing libraries 
using a modified Illumina protocol and Illumina TrueSeq adapters. Paired-end 125bp libraries 
were sequenced to an average of 94x coverage either at the Stanford Sequencing Service 
Center on a Illumina HiSeq 2000, or at the Stanford Functional Genomics facility on an Illumina 
HiSeq 4000.  
 
The following sequence data processing was performed on both the new and the previously 
published data. We trimmed low-quality 3’ and 5’ read ends (sequence quality < 20) using the 
program cutadapt v1.8.1 (Martin 2011). We mapped the raw reads to the D. melanogaster 
genome v5.5 (and for D. simulans genome v2.01, flybase.org) using bwa v0.7.12 mem 
algorithms, with default parameters (Li & Durbin 2009), and used the program SAMtools v1.2 for 
bam file manipulation (functions index, sort, and mpileup) (Li et al. 2009). We used the program 
picard v2.0.1 to remove PCR duplicates (http://picard.sourceforge.net) and the program GATK 
v3.2-2 for indel realignment (McKenna et al. 2010). Due to the phenotypic similarity of the 
species D. melanogaster and D. simulans, we tested for D. simulans contamination by 
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competitively mapping to both genomes. Reads that mapped better to the D. simulans were 
removed from the analysis. Any samples with greater than 5% of reads mapping preferentially 
to D. simulans was omitted from the dataset (see Supplemental Table 1). The average 
proportion of reads mapping preferentially to D. simulans was less than 1%. We called SNPs 
and indels using the program VarScan v2.3.8 using a p-value of 0.05, minimum variant 
frequency of 0.005, minimum average quality of 20, and minimum coverage of 10 (Koboldt et al. 
2012). We filtered out SNPs within 10bp of an indel (they are more likely to be spurious), 
variants in repetitive regions (identified by RepeatMasker and downloaded from the UCSC 
Genome browser), SNPs with a median frequency of less than 1% across populations, regions 
with low recombination rates (~0 cM/Mb; Comeron et al. 2012), and nucleotides with more than 
two alleles. Because we sequenced only male individuals, the X chromosome had lower 
coverage and was not used in our analysis. After filtering, we had a total of 1,763,522 
autosomal SNPs. This set was further filtered to include only SNPs found polymorphic in all 
samples, resulting in 774,651 SNPs that represent the core set used in our analyses. 
 
To asses seasonal variation we analyzed population genomic sequence data from 20 spring 
and 20 fall samples (‘Core20’). These samples represent a subset of the sequenced samples. 
We used samples that had both a spring and a fall samples taken from the same locality in the 
same year. We also used a maximum of two years of samples for a given locality to prevent the 
analysis from being dominated by characteristics of a single population. When there was more 
than two years of samples for a given population, we chose to use the two years with the 
earliest spring collection time. This decision was made on the assumption that the earlier spring 
collection would better represent allele frequencies following overwintering selection. This left 20 
paired spring/fall samples, taken from 12 North American localities spread across 6 years and 3 
European localities across 2 years (Supplemental Table 1). The localities and years of sampling 
are as follows: Esparto, California 2012 and 2013; Tuolumne, California 2013; Lancaster, 
Massachusetts 2012 and 2014; Linvilla, Pennsylvania 2010 and 2011; Ithaca, New York 2012; 
Cross Plains, Wisconsin 2012 and 2014; Athens, Georgia 2014; Charlottesville, Virginia 2014 
and 2015, State College, Pennsylvania 2014; Topeka, Kansas 2014; Sudbury, Ontario, Canada 
2015; Benton Harbor, Michigan 2014, Barcelona, Spain 2012; Gross-Enzersdorf, Vienna 2012; 
Odesa, Ukraine 2013. The five sets of paired spring/fall samples that were not included in the 
Core20 set were used for cross-validation (‘ValidationSet’: Linvilla, Pennsylvania 2009, 2012, 
2014, 2015, Cross Plains, Wisconsin 2013). For comparison of seasonal with latitudinal 
variation, we used sequence data from four spring samples along the east coast of the United 
States (Homestead, Florida 2010; Hahia, Georgia 2008; Eutawville, South Carolina 2010, 
Linvilla, Pennsylvania 2009).  
 

Seasonal sites. We identified seasonal sites using two separate methods, a general linear 
regression model (GLM) and a rank p-value Fisher’s method. All statistical analyses were 
performed in R v3.1.0 (R Core Team 2014). To perform the GLM we used the glm function with 
binomial error, weighted by the “effective coverage” (Nc)- a measure of the number of 
chromosomes sampled, adjusted by the read depth: 
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Nc = (1/N + 1/R)-1 

 
where N is the number of chromosomes in the pool and R is the read depth at that site 
(Kolaczkowski et al. 2011; Feder et al. 2012; Bergland et al. 2014; Machado et al. 2016). This 
adjusts for the additional error introduced by sampling of the pool at the time of sequencing. The 
seasonal GLM is a regression of allele frequency by season (e.g., spring versus fall): 
 

yi = season + population + ei 

 
where yi is the allele frequency at the ith SNP, and ei is the binomial error at the ith SNP. 
Although the GLM is a powerful test, the binomial error assumption is likely an underestimate of 
the pool-seq error (Machado et al. 2016). Therefore, we use the results of this test as a 
seasonal outlier test, rather than an absolute measure of the deviation from genome-wide null 
expectation of no allele frequency change between seasons.  
 

Genomic characteristics of seasonal SNPs. We assessed the uniformity of the genomic 
distribution of highly seasonal SNPs by comparing the observed dataset to that of matched 
controls and theoretical null distributions. For this analysis we looked at the top 1% most 
seasonal SNPs, as assessed by GLM p-value (n=7,748). We first measured the number of 
seasonal SNPs per bin 100 SNP bin (average of 1 SNP per bin) and compared this distribution 
to that of the mean of 100 sets of matched controls to the expectation from a binomial 
distribution. A distribution that is more strongly peaked around 1 than expected is an 
underdispersed genomic distribution of seasonal SNPs (more evenly distributed than expected) 
whereas a distribution less strongly peaked around 1 is overdispersed and indicates clustering 
of seasonal SNPs. We assessed the similarity of two distributions using a Kolmogorov-Smirnov 
(KS) test, where a low p-value indicates significantly different distributions. We also assessed 
this distribution across genomic length scales. We calculated the probability of observing at 
least one highly seasonal SNP among 1000 randomly selected genomic windows ranging in 
size from 100bp to 100Kb. We compared this to the expected probability given a Poisson 
distribution.  
 

Matched controls. With the assumption that the majority of the genome is not seasonal, we can 
use matched genomic controls as neutral references. We matched each SNP identified as 
significantly seasonal (at a range p-values) to another SNP, matched for chromosome, effective 
coverage, median spring allele frequency, inversion status either within or outside of the major 
inversions In(2L)t, In(2R)NS, In(3L)P, In(3R)K, In(3R)Mo, and In(3R)P, and recombination rate. 
We used the same D. melanogaster inversion breakpoints used in Corbett-Detig & Hartl 2012 
and the recombination rates from Comeron et al. 2012. We randomly sampled 100 of the 
possible matches per SNP (excluding the focal SNP) to produce 100 matched control sets. Any 
SNPs with fewer than 10 possible matches were discarded from the matched control analyses. 
We defined 95% confidence intervals from the matched controls as the 3rd and 98th ranked 
values for the quantity being tested (e.g., percent concordance or proportion of genic classes). 
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Predictability analysis. To test the general predictability of seasonal change in our dataset, we 
performed a leave-one-out cross validation analysis. In this analysis, we performed seasonal 
regressions for subsets of the data, dropping one paired sample and comparing it to a seasonal 
test of the remaining 19. We then measured the percent concordance of spring/fall allele 
frequency change, defined as the proportion of SNPs that agree in the direction of allele 
frequency change and sign of regression coefficient. This was performed 20 times, once for 
each paired sample.  

 

To estimate genome-wide (or chromosome specific) concordance scores, we calculated the rate 
of change of the concordance score as a function of quantile threshold. To estimate this rate, 
we used the generalized linear model with binomial error, 

concordance = quantile + e, 

where ‘concordance’ was the fraction of SNPs falling below the quantile threshold that changed 
in frequency in a concordance fashion and e is the binomial error with weights corresponding to 
the total number of SNPs falling below that threshold. Thus, the genome-wide (or chromosome 
specific) concordance score is heavily influenced by concordance rates of higher quantiles 
because that is where the bulk of SNPs reside. 
 
To test whether heterogeneity in genome-wide concordance scores can be explained by 
aspects of weather, we obtained climate data (daily minimum and maximum temperatures) from 
the Global Historical Climatology Network-Daily Database {Menne:INOJh_Os}. We matched 
each locality to a weather station based on geographic distance. Three of the collections did not 
have precise collection dates for one or both seasonal collections (Linvilla, Pennsylvania 2010, 
2011), or were not associated with any climate data from the GHCND database (Odesa, 
Ukraine). These populations were removed from our weather model analysis. 
 

Latitudinal cline concordance. To identify SNPs that changed consistently in allele frequency 
with latitude (clinal), we first identified SNPs that varied in allele frequency along a 
14.4°latitudinal transect along the east coast of the United States. We used one spring sample 
from each of the following populations (identified as “Region_City_Year"): PA_li_2011 (39.9°N), 
SC_eu_2010 (33.4°N), GA_ha_2008 (30.1°N), and FL_ho_2010 (25.5°N). We regressed allele 
frequency with population latitude in a general linear model (glm: R v3.1.0), using a binomial 
error model and weights proportional to the effective coverage (Nc): 
 

yi = latitude + ei 

 
where yi is the allele frequency at the ith SNP, and ei is the binomial error given the ith at the 
SNP. This type of regression is particularly appropriate for the analysis of clinal variation of 
allele frequencies, as it takes into account precision (number of chromosomes sampled per 
population) and the curve-linear behavior at low allele frequencies. 
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We then tested the concordance in allele frequency change by season with the allele 
frequency change by latitude. We performed three separate seasonal regressions (see above) 
for comparison with the latitudinal regression: spring verses fall for the 18 non-Pennsylvania 
paired samples, spring versus fall for the three California paired samples, and spring versus fall 
for the three Europe paired samples. With the removal of the Pennsylvania samples, none of 
these three seasonal regressions contained samples from any of the four populations used for 
the latitudinal regression. Taking sets of increasingly clinal and increasingly seasonal SNPs, we 
assessed the proportion of sites that both increase in frequency from spring to fall and increase 
in frequency from north to south or that decrease in frequency from spring to fall and decrease 
in frequency from north to south. We compared this concordance with the concordance of 100 
matched controls. 
 
The strength and genomic extent of seasonal adaptation. To test for an enrichment of 
seasonally varying sites above neutrality and to estimate the proportion and selection coefficient 
of seasonally varying sites, we designed a “rank p-value Fisher’s method” test. In this test, we 
calculated a per-SNP p-value for a single spring/fall population comparison using a Fisher’s 
exact test. Then, p-values for either a spring to fall increase in allele frequency or spring to fall 
decrease in allele frequency (i.e., each tail tested separately) were ranked among all other 
SNPs with the same total number of reads and same total number of alternate reads. The 
proportional rank of each SNP becomes its new p-value, providing uniform sets of p-values 
across the genome. These rank p-value calculations were made for each of the 20 CoreSet 
populations, separately. We then combine ranked p-values using Fisher’s method for each 
SNP, taking two times the negative log sum of the p-values across the 20 spring/fall 
comparisons (each tail tested separately). The null distribution for this statistic is a Chi-squared 
distribution with degrees of freedom equal to 40 (two times the number of comparisons). 

We estimated the proportion of sites under selection and the selection strength using 
simulated datasets of neutral and selected sites. To simulate neutral SNPs we used the 
observed spring allele frequency for a given SNP in a given paired sample as the “true” allele 
frequency and performed a binomial draw of the size equal to the spring and of the fall samples. 
This was done across all SNPs for each paired sample, producing a neutral dataset the same 
size as the observed dataset, with the same allele frequency distributions as the observed data. 
This neutral dataset will not necessarily reflect the same sampling error as observed in nature 
from spring to fall, and as this is not known it cannot be accurately modeled. However, as our 
rank p-value Fisher’s method relies only on the rank within a paired sample, and the 
consistency of the rank across paired samples, there is no way for there to be an artificially 
inflated seasonal signal due to incorrectly estimated sampling error (as there can be for a 
regression p-value). 

Selected sites were drawn from the same spring allele frequencies and read depths as the 
neutral sites, with the exception that the fall allele frequency was drawn from a new seasonal 
selection allele frequency: 
 

AFfall = AFspring + AFspring * (1-AFspring) * ssf 
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where AF is the allele frequency and ssf is the cumulative “seasonal selection coefficient” from 
the spring to the fall sample. We use this cumulative ssf since the true number of generations 
between the spring and fall samples is not known. We simulated datasets with seasonal 
selection coefficients ranging from 0.01 to 0.5, and proportions of sites under selection ranging 
from 0.001 to 0.1. 

We calculated a “seasonal Fst” for each SNP by taking the median of the spring/fall Fst (Weir 
& Cockerham 1984, equations 1:4) values across paired samples. We performed a principal 
components analysis of allele frequency per SNP per sample using the prcomp function in R 
(frequency data scaled by SNP). 
 
Seasonal changes in inversion frequencies. To test whether large cosmopolitan inversions 
change in frequency between spring and fall we calculated the average frequency of SNPs that 
are closely linked to inversion karyotype (Kapun et al. 2014).  
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Figure 1. A) Distribution of collection times during the spring (red) and fall (blue) in relation to 
latitude. B) Sampling localities for the primary seasonal analysis (‘Core20’: green), the cross-
validation analysis (‘ValidationSet’: blue) and the latitudinal cline analysis (‘Cline’: red), 
distributed across North America and Europe. Numbers represent the number of years of 
spring/fall comparisons at that locality. C) Principal components analysis of SNP allele 
frequencies per sample. Circles are placed around samples from three geographic regions: 
Europe (EU), California (CA) and Eastern North America (East NA).  
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Figure 2 
 

 
 
Figure 2.  Genomic characteristic of seasonal variants. A) P-value distribution of per-SNP 
seasonal regressions (red line) and permutations (grey lines). P-value bins are of size 0.001, 
with a corresponding expected uniform distribution at 0.001 (dashed line). B) Average spring/fall 
allele frequency change for each of the top 1% of seasonally varying SNPs (red) and non-
seasonal, matched control SNPs (black), as a function of spring allele frequency. Lines 
represent a moving average across SNPs with a given spring allele frequency. C) Spring/fall 
genetic differentiation (Fst) at highly seasonal SNPs (distance = 0) and for SNPs with increasing 
distance from a seasonal SNP. Also plotted is the mean (black) and 96% confidence interval 
(grey area) of 100 matched controls.  
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Figure 3 
 

 
 
Figure 3. Predictability of seasonal adaptation and the thermal limit model. A) The fraction of 
concordant allele frequency changes from the leave-one-out cross validation analysis of the 
Core20 populations. Each line represents one population, colored by the inferred genome-wide 
predictability score. B) Model fits (r2) from the thermal limit models. Black points represent 
models that fit the observed variation in genome-wide predictability scores better than 95% of 
permutations. C) Genome-wide predictability scores from the ValidationSet of populations in 
relation to the Core20 model. D) The best thermal limit models from the Core20 analysis predict 
genome-wide predictability scores of the ValidationSet (diamonds). 
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Figure 4 

 
 
 
Figure 4. Seasonal and latitudinal allele frequency concordance (spring is matched to north). 
A,C) Percent enrichment in the number of SNPs significant in both the latitudinal and seasonal 
regressions (compared to the median of 100 matched controls), for the original (A) and flipped 
(C) datasets. All non-white hues represent a significant enrichment compared to matched 
controls. B,D) Seasonal/latitudinal concordance for all 18 samples (red, blue), 3 California 
samples (CA: purple), and the 3 Europe samples (EU: green), for the original (B) and flipped (D) 
datasets. Purple and green areas are the 96% confidence intervals of 100 matched control 
datasets for CA and EU, respectively. Latitudinal regression: spring FL_ho, SC_eu, GA_ha, 
PA_li. Seasonal regression: all 18 paired samples from populations not used in the latitudinal 
regression (omitted PA_li 2010 and 2011). 
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Figure 5 

 
 
Figure 5. The rank P-value fisher's method enrichment of seasonal SNPs. A) The proportion of 
sites and (C) the cumulative distribution of sites observed minus expected across X2 test 
statistic values. Plotted is the observed distribution (red), the distribution for the ‘flipped’ dataset 
(blue), permutations (grey), and the neutral expectation (dashed). B,D) Parameter estimates 
(selection coefficient and proportion of SNPs under selection) from simulated datasets for B) the 
original analysis and D) the ‘flipped’ analysis.  
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Figure 6 

 
 
Figure 6. Genomic distribution of seasonal SNPs. (A) Genomic over-dispersion of seasonal 
SNPs, plotted as the distribution of the number of seasonal sites (quantile: 0.01) per 100 SNP 
window. The observed distribution (red) is over-disbursed compared to both the theoretical 
distribution (dark grey) and that of matched controls (light grey). Error bars are 2 standard 
deviations. B) Genomic over-dispersion of seasonal SNPs, plotted as the proportion of windows 
with at least one seasonal SNP, with increasing window size (bp). The observed proportion 
(solid line) and expected theoretical proportion (dashed line) is plotted for each chromosome 
arm. C) sliding window analysis of regions with high densities of seasonal SNPs. 
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Supplemental Figures 
 

 
 
Supplemental Figure 1. Sampling localities for all samples collected, regardless of use in the 
present analysis. Sizes of circles reflect number of samples per locality. 
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Supplemental Figure 2. The effect of artificial increases of sample size on the CoreSet 
seasonal analysis using A,C) the rank Fisher’s method and B,D) the GLM analyses. Top row: 
sample size inflated by a fixed amount. Bottom row: sample size inflated by a Poisson sampled 
amount. Shown is the proportion of SNPs in each bin (solid lines) compared with the null 
expectation (dashed line). Black: original dataset. Dark grey: 10 reads added to each sample 
(same allele frequencies). Light grey: 100 reads added to each sample (same allele 
frequencies).  
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Supplemental Figure 3. Enrichment of genic classes for A) the top 1% and B) top 5% of 
seasonal sites for the original analysis, and C) the top 1% and D) top 5% for the flipped 
analysis. 
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Supplemental Figure 4. The enrichment of shared seasonal sites from the leave-one-out cross 
validation analysis of the Core20 populations. Each line represents one population, colored by 
the inferred genome-wide predictability score.  
 
     

 
Supplemental Figure 5. Predictability of seasonal adaptation, by chromosome. The fraction of 
concordant allele frequency changes from the leave-one-out cross validation analysis of the 
Core20 populations. Each line represents one population, colored by the inferred genome-wide 
predictability score. 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2018. ; https://doi.org/10.1101/337543doi: bioRxiv preprint 

https://doi.org/10.1101/337543
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Supplemental Figure 6. Additional plots related to the predictability analysis. A) Surface plot of 
the best fit thermal model from the leave-one-out cross validation analysis; color scheme 
matches color legend in C & D; points are colored with their observed genome-wide 
concordance score. B) Pearson’s correlation coefficient between the ValidationSet’s obseved 
genome-wide concordance score and their predicted scores for the best-fit permuted models 
(null) versus obseved scores generated from the original Core20 model versus the flipped 
Core20 model. C) Genome-wide concordance scores from the ValidationSet of populations in 
relation to the flipped Core20 model. D) The best thermal limit models from the Core20 analysis 
predict genome-wide concordance scores of the ValidationSet (diamonds). 
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Supplemental Figure 7.  Genomic characteristic of seasonal variants for the flipped dataset. A) 
P-value distribution of per-SNP seasonal regressions (blue and red lines), permutations (grey 
lines). P-value bins are of size 0.001, with a corresponding expected uniform distribution at 
0.001 (dashed line). B) Average spring/fall allele frequency change for each of the top 1% of 
seasonally varying SNPs (blue and red) and non-seasonal, matched control SNPs (black), as a 
function of spring allele frequency. Lines represent a moving average across SNPs with a given 
spring allele frequency. C) Spring/fall genetic differentiation (Fst) at highly seasonal SNPs 
(distance = 0) and with distance (bp). Also plotted is the mean (black) and 96% confidence 
interval (grey area) of 100 matched controls.  
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Supplemental Figure 8. The enrichment of SNPs found to be both seasonal and latitudinal, 
regardless of concordance, as a function of P-value quantile thresholds. Darker hues indicate a 
greater proportion of concordant SNPs. The percent enrichment is calculated percent increase 
in SNPs at a joint quantile threshold over matched controls. A,C) Original dataset. B,D) Flipped 
dataset. A,B) All values, regardless of a significant enrichment. C,D) Only values greater than 
95% of controls (otherwise, colored white). 
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Supplemental Figure 9. Fisher’s method ABC with subsampling. A,D) No subsampling. B,E) 
Sampling one SNP per 1Kb. C,F) Sampling one SNP per 5Kb. Top row: original dataset. Bottom 
row: flipped dataset. 
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Supplemental Figure 10. Inversion frequencies. Each datapoint is a separate population. 
Numbers are the fraction of populations where spring is greater than fall. A) Original dataset. B) 
Flipped dataset. 
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