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Abstract

Most genes are composed of multiple domains, with a common evolutionary his-
tory, that typically perform a specific function in the resulting protein. As witnessed
by many studies of key gene families, it is important to understand how domains
have been duplicated, lost, transferred between genes, and rearranged. Analogously
to the case of evolutionary events affecting entire genes, these domain events have
large consequences for phylogenetic reconstruction and, in addition, they create
considerable obstacles for gene sequence alignment algorithms, a prerequisite for
phylogenetic reconstruction.

We introduce the DomainDLRS model, a hierarchical, generative probabilistic
model containing three levels corresponding to species, genes, and domains, respec-
tively. From a dated species tree, a gene tree is generated according to the DL model,
which is a birth-death model generalized to occur in a dated tree. Then, from the
dated gene tree, a pre-specified number of dated domain trees are generated using
the DL model and the molecular clock is relaxed, effectively converting edge times
to edge lengths. Finally, for each domain tree and its lengths, domain sequences are
generated for the leaves based on a selected model of sequence evolution.

For this model, we present a MCMC-based inference framework called Do-
mainDLRS that takes a dated species tree together with a multiple sequence align-
ment for each domain family as input and outputs an estimated posterior distribu-
tion over reconciled gene and domain trees. By requiring aligned domains rather
than genes, our framework evades the problem of aligning full-length genes that
have been exposed to domain duplications, in particular non-tandem domain dupli-
cations. We show that DomainDLRS performs better than MrBayes on synthetic
data and that it outperforms MrBayes on biological data. We analyse several zinc-
finger genes and show that most domain duplications have been tandem duplica-
tions, some involving two or more domains, but non-tandem duplications have also
been common.
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1 Introduction
The main evolutionary events that affects gene evolution include speciation, gene dupli-
cation, gene loss, incomplete lineage sorting, and lateral gene transfer. During the last
10-15 years, considerable attention has been given to how such events induce an interplay
between gene and species evolution and, in particular, its consequences for phylogenetic
reconstruction. This trend has inspired considerable method development culminating in
probabilistic species tree-aware methods for gene tree reconstruction and methods for si-
multaneous reconstruction of gene trees and species trees [1, 2, 3]. Complicating the issue
further, most genes are composed of multiple domains, each a segment of contiguous nu-
cleotides with a common evolutionary history that typically performs a specific function
in the resulting protein (although also structure-based definitions of domains are com-
mon). As shown by many studies of key gene families such as PRDM9, ZNF91, and Reelin
[4, 5, 6], domains can be also be an appropriate organizational units in evolutionary anal-
yses, e.g., it is important to understand how they have been duplicated, lost, transferred
between genes, and rearranged. Similar to the case of evolutionary events affecting en-
tire genes, these domain events have large consequences for phylogenetic reconstruction.
In addition, they create considerable obstacles for gene sequence alignment algorithms,
which constitute a prerequisite for phylogenetic reconstruction. Since domains are key
functional units, an improved capacity to reconstruct the evolutionary history of domains
and relating it to that of the hosting genes as well as species, will facilitate increasingly
advanced evolutionary studies of gene and domain function, in particular by correlating
evolutionary changes with metabolic, physiological, and morphological changes. Unfor-
tunately, in contrast to methods for analyzing gene evolution, major advancements of
methods for domain evolution studies have been scarce.

The majority of all proteins (66% in unicelluar organisms and more than 80% in meta-
zoa) are multi-domain proteins [7] that have particular evolutionary as well as functional
importance. These proteins perform many important functions including binding, cat-
alytic, and signaling activities, making domains an essential concept also in construction
and studies of regulatory, structural, and signaling networks. One interesting example is
the zinc-finger gene family C2H2-ZNF, which mostly encodes DNA binding proteins that
regulate gene expression by binding to DNA via an array of zinc finger domains [8]. This
is the largest gene family among the human transcription factors, in fact constituting
approximately a quarter of those.

The KRAB domain-containing C2H2-ZNF subfamily, KRAB-ZNF, which with a few
exceptions represses the expression of target genes, has a striking number of lineage-
specific expansions as well as domain duplications among primates [9], suggesting a
major role for KRAB-ZNF family in regulatory evolution. Nowick et al [10] identified
KRAB-ZNF genes as markedly over-represented among genes with significant differential
expression in human and chimpanzee brain, thereby implicating the KRAB-ZNF family
in human brain evolution. Considerable interest has also been devoted to the role of
KRAB-ZNF genes in suppressing endogenous retroelements, i.e., endogenous retroviruses
and nonretroviral retrotransposons [11]. This aspect of KRAB-ZNF functionality is statis-
tically supported by a correlation between the emergence of new endogenous LTR (Long
Terminal Repeat) elements and tandem duplications of ZNF genes [12]. The identity of
the ZNF genes suppressing endogenous retroelements is largely unknown, but a recent
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study revealed that ZNF91 and ZNF93 from the KRAB-ZNF family have evolved to re-
press SINE-VNTR-Alus and long interspersed nuclear elements, which are two currently
active human endogenous retrotransposons [5]. Although these evolutionary scenarios
may appear entirely unrelated, they have been connected, for instance by the hypothesis
that many KRAB-ZNFs evolved as repressors of endogenous retroelements, but was later
been co-opted by the regulatory machinery and regulate genes in regions that used to
host endogenous retroelements [12].

Goodman et al. [13] pioneered gene-species tree comparisons by introducing the most
parsimonious reconciliation (MPR). MPR maps each gene tree vertex to either a species
tree vertex, in which case it represents a speciation, or to a species tree edge, in which
case it represents a duplication, in a way that minimizes the number of duplications.
This classical paper by Goodman et al. on reconciling gene trees and species trees can
be seen as the starting point for the development of models and methods capturing gene
and domain evolution. Goodman et al. introduced reconciliations in order to explain
how a gene family, represented by a gene tree, has evolved through gene duplications
and losses relative to the associated species tree. Later extensions of this line of work
gave rise to parsimony methods allowing also lateral gene transfers [14]. There are today
also MPR methods directly targeting domain evolution. The straightforward domain
architecture (DA) models have mainly been used to study domain distributions across
gene and genomes. Many of the parsimony-based tools for gene and species evolution
may equally well be used to study domain evolution relative to that of the associated
gene family. In a recent effort to extend parsimony-based methods to also be applicable
to domain analyses, Stolzer et al. introduce a method that reconciles a domain tree
with a gene tree that has previously been reconciled with a species tree, under either the
duplication-loss or duplication-transfer-loss model [15].

Recently, also integrated probabilistic models have been proposed for gene evolution
combining sequence evolution under a relaxed molecular clock with gene duplication and
loss, or even gene duplication, gene loss and lateral gene transfer [16, 1, 17]. Building on
these integrated probabilistic models, so-called species tree-aware gene tree reconstruc-
tion methods that, apart from gene sequences, take advantage of a species tree, have been
proposed and shown to perform superiorly [1, 2] to earlier methods. Åkerborg et al. [1]
presented an MCMC-based Bayesian analysis framework, DLRS, that can be used to
estimate the posterior distribution over gene trees. More precisely, the DLRS model in-
corporates submodels for gene tree evolution, sequence evolution and a relaxed molecular
clock to define a posterior over gene trees given a species tree and the observed multiple
sequence alignment. These approaches can, in addition to from being used to obtain more
reliable gene trees and reconciliations, also incorporate what traditionally have been more
down-stream analysis in order to obtain, e.g., improved orthology analysis methods, that
takes advantage of the gene sequences directly, i.e., not merely when constructing the
gene tree [18, 19]. Here we extend the DLRS model to also capture domain evolution.

2 The DomainDLRS Model
The DomainDLRS model is a hierarchical, generative probabilistic model containing three
levels corresponding to species, genes, and domains, respectively. As the model is de-
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scribed below, a dated species tree TS, tS is given rather than generated by the model,
but it is easy to extend this version so also a species tree is generated, e.g., using a birth-
death process. The model is detailed below, but can briefly be described as follows. From
a dated species tree, a gene tree TG is generated according to the DL model; this also
induces a dating of the vertices of the gene tree. Then, separate independent applications
of the DL model is used to generate a pre-specified number of dated domain trees from
the dated gene tree. For each domain tree, the R model is used to relax the molecular
clock and effectively converts edge times to edge length. Finally, for each domain tree
and its lengths domain sequences are generated for the leaves of based on a model of
sequence evolution M (i.e., the user’s model of choice, any standard model of sequence
evolution can be used).

Figure 1: Illustration of the DomainDLRS Model and its submodels. a) A dated species
tree TS, tS is given and a gene tree TG, in blue color, is generated according to the
Duplication-Loss model. b) From the dated gene tree TG, tG, a pre-specified number of
dated domain trees {TDi

, tDi
}i∈[r] are generated, also using the Duplication-Loss model. c)

The molecular clock is relaxed using a rate model, yielding lengths {lDi
}i∈[r]. d) Finally,

for each domain tree and its lengths TDi
, lDi

, domain sequences are generated for the
leaves of TDi

according to a model of sequence evolution.

The Duplication-Loss (DL) model [20] is a birth-death model generalized to occur in
a dated tree and describes how a dated guest tree TG, tG evolves inside a dated host tree
TH, tH. A linear birth-death process with birth rate δ and death rate µ is used to model
duplications and losses over any edge e of TH. The process starts with a single gene
lineage at the edge predating the root of TH and evolves towards the leaves of TH . Each
time a gene lineage reaches a host tree vertex x, it splits into two independent lineages;

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 2, 2018. ; https://doi.org/10.1101/336453doi: bioRxiv preprint 

https://doi.org/10.1101/336453


each evolving down a distinct outgoing edge of x. This process continues recursively until
it reaches the leaves of TH. Any vertex of TG lacking descendants that reached a leaf of
TH is pruned and any binary vertex that this creates is suppressed, i.e., it is removed and
its two former neighbours are made adjacent. In summary, the process results in (i) a
binary guest tree TG, (ii) a mapping of the leaves of the guest tree TG to the leaves of the
host tree TH, and, since the events of the process generating this tree actually takes place
in time, (iii) a dating tG of the guest tree that specifies when a vertex was generated,
which together with (i) and (ii) also imply on which host tree edge this happened.

The Rate (R) model [1] is parameterized by a mean m and variance ν and transform
the dated, and hence ultrametric, domain trees into length-equipped trees, which typically
are non-ultrametric. This is done by, for each edge, perturbing the time associated with
the edge to obtain an edge length, which corresponds to the expected number of point
mutations over the edge. More specifically, for each edge, an edge length is obtained
by taking the product of the edge time and an edge specific rate sampled i.i.d. from a
gamma distribution with mean m and variance ν.

The formal description of the full DomainDLRS model, generating the dated gene
tree, the dated domain trees, and the domain sequences, is as follows: First, a dated gene
tree TG, tG is generated according to the DL model parameterized by the dated host tree
TS, tS, duplication rate δG, and loss rate µG. Second, for each i ∈ [r], a dated domain
tree TDi

, tDi
is generated according to the DL model parameterized by the dated host

tree TG, tG, duplication rate δDi
, and loss rate µDi

. Third, for each i ∈ [r], an edge length
lDi

function generated according the R model parameterized by mDi
and νDi

. Finally, for
each i ∈ [r], a multiple sequence alignment and a mapping from its rows to the leaves of
TDi

is generated according to M parametrized by TDi
and other possible parameters of

M .
The DomainDLRS model is, consequently, parameterized by a dated species tree

TS, tS, a model of sequence evolution M , and

θ = {〈δD1 , µD1 ,mD1 , νD1〉, . . . , 〈δDr , µDr ,mDr , νDr〉, 〈δG, µG〉},

where, for i ∈ [r], δDi
, µDi

,mDi
, and νDi

, is the duplication rate, loss rate, R model mean,
and the R model variation, respectively, for domain i, and δG, µG the gene duplication
and loss rate, respectively. This is the parameterization used in our analyses. However,
we note that, in many cases, it is reasonable, considering to the limited data size, to base
an inference on the uniform-domain-rate DomainDLRS model, in which all the domain
families have the same rates for the Duplication-Loss as well as the Rate model, i.e., for
some δD, µD,mD, and vD, for each i ∈ [r],

δDi
= δD, µDi

= µD,mDi
= mD, νDi

= νD.

It would be possible to include the domain order in the model and even operations,
such as inversions, that rearrange this order. However, focusing on only domain dupli-
cations, domain losses, and sequence evolution, allows us to evaluate our result based on
how well the result fits the extant domain order. However, when generating synthetic
data, we do consider two models that also capture how the domain order evolve over the
gene tree: (1) the random model that insert a newly created domain duplicate into a
random position and (2) the tandem model that always inserts a new domain next to the
original copy.
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3 Overview of the DomainDLRS-PrIME framework
The three layers of trees in our probabilistic model, i.e., species, gene, and domain trees,
render it more complex than earlier models, such as [1, 2, 3]. In order to address the
increased complexity, we follow [2] and restrict our attention to most parsimonious recon-
ciliations, thereby effectively giving a probabilistic interpretation to those. Moreover, we
introduce a novel technique to sample datings of the vertices that MPR place on edges
of a host tree, i.e., either the species tree or the gene tree. This technique allows us to
first sample a dating of the gene tree using the dated species tree as host tree and, then,
sample a dating for each of the domain trees, now using the dated gene tree as host tree.
In contrast to [2], we do not only perform hill climbing over the trees, but investigate
three different search strategies: (1) a Grouped Independent Metropolis-Hasting (GIMH)
approach [21, 22], where the likelihood of a combination of a gene tree and domain trees
is estimated by the average likelihood across a number of sampled datings, (2) a heuristic
version of the GIMH, hGIMH, where the likelihood of sampled datings are improved us-
ing hill climbing, and (3) a pure hill climbing approach, where hill climbing is performed
over all parameters of the model, with the objective of finding a maximum likelihood
solution.

The GIMH is a MCMCmethod that was introduced in [21] and later further explained,
as well as generalized to the pseudo-marginal approach [22]. The hallmark of GIMH is
that the likelihood of a state is estimated by sampling and the estimate is not updated
as long as the state remains the current state. Surprisingly, in contrast to the strategy
where likelihood of the current state is reestimated whenever a comparison with the
likelihood of a new proposed state is made, the GIMH is guaranteed to converge to the
stationary distribution targeted by the Metropolis-Hasting’s ratio used. Although our
heuristic version of the GIMH, hGIMH, is not guaranteed to converge to the targeted
distribution, it performs superior on synthetic data when evaluated based on how often
the estimated MAP tree equals the true tree. It is also superior to the pure hill climbing,
which actually is better that the GIMH, see figure 2, below. For this reason, the hGIMH
sampler is selected to be our DomainDLRS method.

The input of the hGIMH sampler, as well as the two other methods, is a dated species
tree 〈TS, ts〉, where TS is the actual tree and ts the dating of its vertices, and a multiple
sequence alignment for each domain family, i.e., different multiple sequence alignments
for different domain families and with a number of rows that may vary across domain
families. It also requires a labelling of each gene with the species in which it is found as
well as a labelling of each domain with the gene in which it is found. Let TG denote a
gene tree and let the i:th domain tree be denoted by TDi

and its edge lengths by lDi
. Let

θ denote additional parameters of the model, such as the parameters of M and the rate
parameters. A state in our sampler is a tuple

σ = 〈TG, TD1 , lD1 , . . . , TDr , lDr , θ〉.
When in current state σ and the new state σ′ is proposed, the sampler’s MH ratio is given
by

p(D|σ′)p(σ′|TS, tS)q(σ|σ′)

p(D|σ)p(σ|TS, tS)q(σ′|σ)
,

where q(·|·) is the proposal distribution. The proposal distribution, which is mostly
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composed of standard proposal distributions, as well as how to compute proposal prob-
abilities q(·|·) are described in Supplementary material. Moreover, the probability of the
data p(D|σ) can easily be computed using Felsenstein’s so-called pruning algorithm [23].
So, the main technical difficulty involved in computing the MH ratio consist of evaluating
p(σ|TS, tS): the probability of the gene tree and the length equipped domain trees, given
the dated species tree; a task performed by sampling datings and applying a hill climbing
approach.

Our strategy builds on a two-layered sampling approach to estimate p(σ|TS, tS). First,
notice that a dating tG is either incompatible with the dating tS or the datings imply a
reconcilation of TG and TS. Let M be of set of datings tG that together with tS imply the
MPR of TG and TS. A dating tG is sampled from M according to the unique distribution
over M that is proportional to p(tG|TG, TS, tS, θ). Second, for each domain tree TDi

, a
dating tDi

is sampled analogously, that is, (1) letMi be of set of datings tDi
that together

with tG imply the MPR of tDi
and TG and (2) sample a dating tDi

from Mi according to
the unique distribution over Mi that is proportional to p(tDi

|TD,TG, tG, θ). The datings,
tG and tDr for each domain family r, obtained from these two steps yields the estimate

p(σ|TS, tS, θ) ≈ Ψ1(σ;TS, tS) =
(∏r

r′=1 P (lDr′
|tDr′

, θ)p(TDr′
|TG, tG, θ)

)
P (TG|TS, tS, θ),

where P (TG|TS, tS, θ) and p(TDr′
|TG, tG, θ) are the probabilities of TG and TDr′

, respec-
tively, according to the DL process and P (lDr′

|tDr′
, θ) is the probability of the rates

induces by lDr′
and tDr′

. To obtain improved estimates of p(σ|TS, tS, θ), we use averag-
ing over multiple samples as well as hill-climbing techniques. The details of the the two
sampling steps are described in Supplementary information Section ?? andSection ??.

4 Results
In this section, the performance of DomainDLRS on synthetic as well as biological data
is evaluated as well as compared with that of a more conventional two-step approach,
MrBayesMPR, described below.

4.1 MrBayes-MPR

We will below compare the performance of DomainDLRS with a method we call MrBayes-
MPR, which formalize, what could be called, the ’standard’ approach of independent
reconstruction of domain trees, followed by computation of MPR between domain tree and
gene tree. We use MrBayes to estimate the posterior distribution of domain trees and gene
trees. The domain trees are estimated from aligned sequence data from the individual
domains and gene trees are estimated from the full gene alignments. Consequently, it
is reasonable to expect that, for MrBayes, the accuracy achieved when reconstructing
gene trees gene from data generated under the tandem model should be better than that
achieved when data is generated from the random model. In contrast, DomainDLRS
is oblivious to the choice between the random and the tandem model, since it relies on
aligned domains and is insensitive to the order in which those appear in a gene. For
MrBayes-MPR, we use MPR to reconcile the MAP domain tree with the gene tree.
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4.2 Synthetic data analysis

The accuracies of our methods as well as that of MrBayes-MPR were evaluated on semi-
synthetic data, derived from three gene families ZNF91, ZNF468, and ZNF679. We
first estimated the posterior distribution over the parameters of the DomainDLRS model
using hGIMH and then, based on the MAP parameters obtained, generated three sets
of synthetic gene families here referred to as SZNF91, SZNF468, and SZNF679, each
containing 100 synthetic gene families. The accuracy of each inference method was then
evaluated based on how well the true synthetic domain trees and the true synthetic gene
trees were reconstructed. For domain trees, the evaluation was concerned with both the
accuracy of domain duplication identification and Robinson-Fould (RF) distance between
the reconstructed domain tree and the true domain tree.
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Figure 2: The Robinson Foulds (RF) distance distributions on synthetic data for our three
candidate methods. The first panel, from the top, shows the RF distance distribution of
GIMH, the second panel shows RF distance distribution of hGIMH, and the third panel
shows the RF distance distribution of the Hill Climbing method. It is clear that hGIMH
performs better than the other two methods.

We first evaluated our three DomainDLRS methods, Hill Climbing, hGIMH, and
GIMH, based on how well they reconstructed the true synthetic trees in the SZNF91 data
set. The result, shown in Figure 2, shows that the hGIMH method performed clearly
best, dispaying the lowest RF distance distribution. Of the remaining two methods, Hill
climbing performed slightly better than GIMH. For this reason, hGIMH is the method
that below will be compared with DLRS and MrBayes and we will, henceforth, refer to
it simply as DomainDLRS.
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Figure 3: Accuracy and duplication-loss scores of DomainDLRS and MrBayes-MPR over
synthetic datasets of SZNF91, SZNF468, SZNF679. a) The bar chart shows the sensitivity
and specificity of domain duplication events labelled by DomainDLRS and MrBayes-MPR
methods for synthetic datasets. b) The second bar chart shows the duplication and loss
scores of DomainDLRS and MrBayesMPR.

Secondly, we compared DomainDLRS to MrBayes-MPR to evaulate their relative
performance. For the three synthetic data sets, both the specificity and sensitivity are
clearly better for DomainDLRS than for MrBayesMPR, approximately improving both
statistics substantially, in several cases by a factor of approximately two, Figure 3(a).
DomainDLRS also performs substantially better when comparing the RF distances, Fig-
ure 4. DomainDLRS clearly performs superior to MrBayesMPR. It is also interesting to
note that MrBayes has an alarmingly high loss score, Figure 3(b)

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 2, 2018. ; https://doi.org/10.1101/336453doi: bioRxiv preprint 

https://doi.org/10.1101/336453


0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

S
Z

N
F

4
6

8
S

Z
N

F
6

7
9

S
Z

N
F

9
1

0 2 4
RF Distance

F
re

q
u

e
n

cy

Method

DomainDLRS

MrBayes (Tandem Model)

MrBayes (Random Model)

(a)

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

S
Z

N
F

4
6

8
S

Z
N

F
6

7
9

S
Z

N
F

9
1

0 50 100
RF Distance

F
re

q
u

e
n

cy Method

DomainDLRS

MrBayes

(b)

Figure 4: Distribution of Robinson Foulds (RF) distances of inferred gene and domain
trees over synthetic datasets of SZNF91, SZNF468, SZNF679. a) A comparison of RF
distance distribution of gene tree inferred by DomainDLRS and MrBayes, respectively, to
the true gene trees. For MrBayes, we distinguish between data generated under the ran-
dom and the tandem model to capture the expected performance difference. b) The bar
chart shows the comparison of RF distance distribution of domain tree inferred by Do-
mainDLRS and MrBayes based on the synthetic true domain trees for SZNF91, SZNF468,
SZNF679 datasets.

We then evaluated the ability to reconstruct the gene tree – which is considerably
smaller than the domain trees, so the RF distance is most often 0 or 2. To construct gene
input data for MrBayes, we concatenated the generated domain sequences according to
a domain order. This domain order was generated according to two different models; for
each new copy generated by a domain duplication, the random model selected a random
insertion point in the currently existing domain order, while the tandem model inserted it
next the original domain. Notice that DomainDLRS takes individual domain sequences
as input and ignores domain order. It turns out that MrBayes performs very poorly for
data generated according to the random domain order model (Fig. 4). In contrast, the
performance of MrBayes is very good for data generated according to the tandem domain
order model, in fact, almost as good as for DomainDLRS.

4.3 Biological data analysis

We applied our framework to the Zinc Finger gene families ZNF91, ZNF468, ZNF558,
ZNF611, ZNF679, and ZNF764 in four primate species, Macaca mulatta, Pongo abelii,
Pan troglodytes and Homo sapiens. These families are both methodologically challenging
as well as biologically interesting because, in each family, the number of Zinc Finger
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domains varies across its members, a phenomena which which is likely to be caused by
domain duplication and loss. Some of these families have also been exposed to recent
primate-specific gene duplications. We present the results from the comparison between
DomainDLRS and MrBayesMPR, first on gene tree level, before focusing on domain tree
level.

4.3.1 Gene evolution

For four of the gene families (ZNF468, ZNF679, ZNF764/747 and ZNF91) DomainDLRS
and MrBayesMPR reconstruct the same gene tree, while for the remaining two (ZNF611/600
and ZNF558/557) the two methods disagree. For ZNF611/600, DomainDLRS indicates
that the Macaque ZNF611 gene is not the sister to the other primate ZNF611, but is
instead the product of an ancient gene duplication (Supplementary Fig. ??). This is
consistent with the well supported domain tree, where a number of shared domain dupli-
cations supports the closer relationship between the ZNF611 and the hominid ZNF600
subtrees (Supplementary Fig. ??). This shows how taking individual domain evolu-
tion into account can improve our understanding of gene family evolution. Also for the
ZNF558/557 gene family, the gene tree estimate from MrBayesMPR differs from that
from DomainDLRS (Supplementary Fig. ??), and again the latter is corroborated by a
well-supported domain tree (Supplementary Fig. ??). Here, the MrBayesMPR gene tree
is probably affected by a long branch attraction between Macaque ZNF557 and Pongo
ZNF558 genes together with erroneous rooting of the gene tree. Notice that MrBayes
reconstructs an unrooted gene tree, which need to be rooted by some external criterion.
Here, this rooting is performed using Notung, which attempts to find the rooting that
minimizes the number of duplications and losses. However, branch length information
from the sequence data is not used, adding another level of ignored uncertainty infor-
mation to the final MPR. In contrast, rooting of the gene tree is an integrated part of
DomainDLRS and different rootings are evaluated by their probablility under the Do-
mainDLRS model, hence, making use of all available information. As the gene trees
reconstructed by DomainDLRS appears to be more correct we will, to enhance compari-
son of domain evolution, use the Domain DLRS domain trees as the (host) gene tree for
the MrBayesMPR method when analyzing domain evolution.

4.3.2 KRAB domain evolution

In almost all gene families, the evolution of the KRAB domain, follows the gene tree
exactly. The exception is ZNF611/600, in which the KRAB domain is lost from two of
the gene paralogs in all species. However, these two losses correspond to two separate
loss events in a domain tree that otherwise is congruent with the gene tree.
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Figure 5: The reconciliation of KRAB domain tree of ZNF611 family with the gene tree
inferred by DomainDLRS.

4.3.3 ZNF domain evolution

Recent and ancient duplications Our framework provides datings of the domain
tree vertices and we will, for enhancement of results description , distinguish between
recent and ancient domain duplications (and consequently also between recent and ancient
domain tree vertices/edges), where we define ancient as older than the root vertex of the
gene tree. We investigated the posterior probability distributions for ancient and recent
domain tree edges in our ZNF domain families (Fig. 6). Interestingly, in the DomainDLRS
and in particular the MrBayesMPR results, there is a substantial enrichment for low
posterior probabilities among ancient edges. In fact (1) many ancient edges have low
posterior probabilities, on average 34% of the ancient vertices in the DomainDLRS results
have a posterior probability < 0.8, but the corresponding figure for mRBayesMPR is
as high as 56% and (2) for DomainDLRS on average 1.6% recent edges have posterior
probability < 0.8, but the corresponding figures for mRBayesMPR is as high as 21%.
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Figure 6: Clade posterior probability cumulative frequency distribution of recent(red) and
ancient (blue) vertices for (a) DomainDLRS and (b) MrBayes-MPR over all biological
datasets.

A possible explanation for this are the constraints implied by the gene tree for events
occurring above and below its root, respectively. For recent domain vertices, below the
root, the gene tree topology provides rather fine-grained constraints on the timing of
domain events, which therefore can be robustly estimated. In contrast, the single edge
leading to the root provides much less time constraints and the reconstruction of the
time of ancient domain tree vertices (which may be considerably older than than the
root) is inheritantly much harder, in practice requiring additional sampling of taxa/genes
to break up the root edge. Because of this, we will mostly focus on recent domain tree
edges in our discussion of the present results.
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Figure 7: Clade posterior probability cumulative raw counts distribution of DomainDLRS
(red) and MrBayes (blue) for each biological datasets.

4.3.4 Robustness

For all ZNF-domain families, it is clear that the DomainDLRS results provides a clearer
and more well-supported picture of the domain evolution than do MrBayesMPR. Firstly,
MrBayesMPRDomainDLRS has considerable higher support for all vertices, and in partic-
ular for recent vertices (Fig. 7). While the cumulative count distribution of DomainDLRS
posterior clade probabilities, for almost all domain families, is strongly peaked at pos-
terior probability 1.0, with only very few or no vertices at lower posterior probabilities
(this is most pronounced for recent vertices), MrBayesMPR displays more flattened dis-
tributions with a large fraction of vertices at lower posterior probabilities. The effect can
clearly be seen in the reconciled MAP trees for ZNF764 (Fig. 8), which have relatively
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few domains, as well as few domain events , where DomainDLRS gives an extremely clear
view of the very well supported domain tree, while MrBayesMPR produces a much more
weakly supported domain tree that reconciles badly with the gene tree (Fig. 7). However,
it is also evident, also in more complex reconciled MAP trees (Supplementary Figs. ??–
??), for which DomainDLRS consistently provides better supported domain tree vertics
(Fig. 7 and Supplementary Tables ??–??).
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Figure 8: The most parsimonious reconciliation of domain tree with gene tree for gene
families ZNF764 inferred by DomainDLRS (a) and MrBayes (b).

Secondly, DomainDLRS provides much more clear and convincing picture of domain
evolution and particularly of recent domain evolution (Supplementary Figs. ??–??).

In general, DomainDLRS manage to explain more domain vertices as implied by, and
coinciding with, gene tree vertices (henceforth referred to as domain bifurcations), and
thereby requiring substantially less number of domain duplications and domain losses
compared to MrBayes-MPR (Fig. 9).
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total number of vertices of the domain tree in all mentioned biological datasets.
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(b)

Figure 10: Reconciliation heat maps of ZNF679 Zinc-Finger domain trees inferred by a)
DomainDLRS and b) MrBayes-MPR. It shows a reconciliation between a domain and a
gene tree with domain tree leaves ordered as the domains occur in the genes and each
domain tree edge coloured according to its posterior probability.
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Thirdly, for all domain families, MrBayes-MPR predicts more nodes as ancient com-
pared to DomainDLRS (Supplementary Table ??). This is a well-known indication of a
reconciliation of an incorrect tree (in this case the domain tree) [24]; given the enrich-
ment of low clade support for MrBayes, the MrBayes domain tree is very likely to contain
weakly supported topology incongruences with the gene tree, such that MPR forces do-
main vertices to be placed higher up in the tree (Fig. 10(b)). Because the MrBayes
domain tree reconstruction and MPR are performed as two separate steps, the MrBayes
posterior clade probabilities are not considered in the MPR, resulting in ’false’ ancient
nodes. DomainDLRS, on the other hand, which integrates tree reconstruction and rec-
onciliation, balances probabilities obtained from sequence evolution and DL models and
provides a more robust result. Moreover, as discussed above for gene tree recnstruction,
in DomainDLRS the rooting of the domain tree is integrated into the analysis, while Mr-
BayesMPR, by design, must rely on a some external rooting method. This is obviously
an advantage of DomainDLRS, as an erroneous rooting of the domain tree will conflate
the problem of surplus ancient vertices.

Lastly, DomainDLRS provides ancestral genes with more realistic domain contents
(Supplementary Tables ??–??). For example, in MrBayes reconciliation of ZNF91, the
gene in the least common ancestor (LCA) of human and Old-World monkeys had 59
Zinc-Finger domains (Supplementary Table ??). This is far more than the 34 domains
that is the maximum number of Zinc-Finger domains in any of the extant genes in the
family (implying that 109 domain losses have occurred, Supplementary Table ??) For
DomainDLRS, the number of Zinc-Finger domains in the LCA is 23 and the number of
losses 0 (Supplementary Table ??). This pattern is consistent for all ZNF gene families.

Domain order Notice that when reconstructing domain trees, DomainDLRS (or MrBayes-
MPR) does not take advantage of domain order information. However, domain order
information within the gene can be used to evaluate the realism of the reconstructed
domain trees. We have used a parsimony-based algorithm to draw the reconciled trees.
The algoritm greedily orders domain lineages on internal vertices with the objective of
minimizing the number of crossing domain tree edges given the known domain orders in
extant genes (Figs. 8, 10 and Supplementary Figs. ??). In the reconciled trees, domain
shuffling events (and also duplications) can be seen as crossing-over of lineages. The
result is not guaranteed to be perfect, and can often be improved manually (e.g., 11(a)),
but allows a rough estimate of domain shuffling events in the genes evolution. Focusing
here on the DomainDLRS results, we see that overall few domain shuffling events are
predicted; the exception is domain-rich ZNF91 family, where domain shuffling appears to
have occurred in the ancestor of Homo and Pan and in the Pong and Macaca lineages. It
is clear, for all gene families, that the domain order implied by DomainDLRS reconcili-
ations for inner vertices are more consistent with the domain order in extant genes than
those of MrBayesMPR.

Segmental duplications Inspection of the reconciled trees and the inferred gene or-
dering also allows us to study the relative numbers of single and segmental duplications.
Using a rough definition, requiring that segmental duplications (1) occur on the same
edge, (2) can occur at the same time (a vertex and its ancestor cannot be in the same
segmental duplicaiton), and (3) is consistent with the inferred domain ordering without
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requiring too many structural mutations, we estimated the number of single and seg-
mental duplications (Table 1). While there are approximately the same number of single
and segmental duplications, the number of domains affected by segmental duplications is
naturally higher than the number of domains affected by single duplicatins.

Table 1: Estimated number of segmental duplications from the DomainDLRS analyses
of the biological datasets.

Domain Family single segmental no dups covered by each segmental
ZNF91 3 4 6;2;2;2
ZNF468 1 2 3;2
ZNF558 1 0 0
ZNF611 2 2 2;2
ZNF679 1 1 2
ZNF764 1 0 0

4.4 A case study: ZNF91

The ZNF91 family appears to have emerged in the LCA of humans and Old-World mon-
keys and published phylogenetic analyses indicate that it have undergone dramatic struc-
tural changes, including the addition of seven Zinc Fingers domains in the LCA of humans
and chimpanzees, through segmental duplication [5]. Moreover, the study of Jacobs et
al. [5] also suggested that the ZNF91 evolution is driven by an evolutionary arms race
with retrotransposons. Their phylogenetic analysis of the ZNF91 family was based on
the assumption that Zinc-Finger domains 7-12 in the human, chimpanzee, and gorilla
genes has been created by a segmental duplication of domains 18-23 in the ancestor of
these species (the hominine ancestor) causing the human, chimpanzee and gorilla to have
substantially more Zinc-finger domain than the other species involved in their analysis.
Additionally, they assumed, based on perceived similarity between Zinc-finger 6 and 7
in human, that these two domains are the result of a more recent than their proposed
segmental duplication.

However, because DomainDLRS directly models the evolution of the individual zinc
finger in ZNF91, it allows show that the assumption underlying their analysis is incorrect
as well as provide a more refined analysis, in general. It follows from our DomainDLRS
analysis (Fig. 11) that the segmental duplication event occurring in the hominine ances-
tor actually created Zinc-Finger domain 4 and domains 6-10 from domain 16-21 (while
we have not sampled Gorilla here, this event is likely to correspond to the segmental
duplication event of Jacobs et al.). This means that the ancestor of human zinc finger
domains 6 and 7 predates the root of the hominine tree in our analysis and, thus, there
is no support for a recent duplication producing these domains. Moreover, domain 4
appears to be the result of a domain duplication followed by a domain loss. In fact, the
ancestral domain order can be read directly from the reconciled domain tree in Figure 11.
In summary, DomainDLRS directly provides the ancestral domain content, and combined
with an algorithm for inferring domain order at internal vertices, constitutes a powerful
tool for evolutionary genomics studies such as the one by Jacobs et al. [5].
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(a)

Figure 11: Reconciliation heat maps of ZNF91 Zinc-Finger domain trees inferred by
DomainDLRS. It shows a reconciliation between the domain and the gene tree with
domain tree leaves ordered as the domains occur in the genes and each domain tree edge
coloured according to its posterior probability. Domain ordering on internal nodes have
been improved manually.

5 Discussion
We have presented a hierarchical model of domain evolution including a nested version
of the Duplication-Loss process, with three levels of trees, which describes how a gene
tree evolves inside a species tree and how several domain trees evolves inside this gene
tree. We have also presented and evaluated the three inference frameworks for this model
and concluded that among these DomainDLRS, a heuristic version of a GIMH algorithm,
performs best. Our inference framework takes a dated species tree and aligned domain
families as input and provides a posterior over tuples of each containing a dated gene tree
reconciled with the species tree and dated domain trees reconciled with the gene tree.

Our framework provides several advantages compared to the traditional approach,
where tree reconstruction and reconciliation are performed independently. Firstly, taking
aligned domain sequences rather than gene sequences as input, constitute a tremendous
advantage for gene tree reconstruction. From a technical viewpoint, direct alignment of
genes that have undergone multiple, and in many cases non-tandem, domain duplications
is a hard unsolved computational problem. This problem is here completely evaded.
Secondly, simultaneous modeling of tree reconstruction and tree reconciliation balances
probabilities obtained from sequence evolution and duplication-loss models and, thereby,
gives more stable and accurate pictures of domain (and gene) evolution. Thirdly, our
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integrated framework also provides rooting of both the gene and domain trees.
We compared DomainDLRS with MrBayesMPR, a method that combines a MrBayes

inference of a domain trees and a MPR reconciliation of the domain tree and a gene tree.
It is clear, both from our analyses on synthetic data and on biological data from several
zinc-finger gene families in primates, that DomainDLRS provides much better gene and
domain tree reconstruction than MrBayesMPR.

In the analyses of synthetic data, DomainDLRS clearly performs better than Mr-
BayesMPR both in terms of sensitivity, specificity, and similarity, in terms of RF distance,
of the reconstructed trees to the known domain and gene trees. It may at first sight seem
possible to argue that, at least for the synthetic SZNF91 families, the RF distance might
be too high to render the biological analysis in Section 4.3 entirely trustworthy. The bio-
logical analysis, however, stand out as robust in its own right, see Section 4.3. One reason
for the relatively lesser performance in the synthetic case may be that for the biological
data a fairly high number of DomainDLRS duplications precedes the root and are of
less significance, while for the synthetic data the domain duplications appear everywhere
and all of them can be considered to be equally important. We also generated synthetic
gene data under two different models for domain duplication either with random or with
tandem insertion of the new copy in the gene. We show that MrBayesMPR clearly per-
forms worse under the random model than under the tandem model (DomainDLRS is
not affected). The analyses of biological data in reveal that the appropriate model lies
somewhere in between these two extremes, although closer to the tandem than the ran-
dom domain order model. It is natural to conclude that DomainDLRS is the preferable
alternative.

Also on biological data, DomainDLRS clearly outperforms than MrBayesMPR by
providing more robust (gene and) domain trees (i.e., with better posterior clade proba-
bilities), clearer and more convincing predictions of domain evolution (both in terms of
the number and the position of duplication loss events), and better reconstructions of
ancestral genes in terms of domain content.

In particular, our framework gives a reliable analysis of the recent evolution, i.e., of
the events succeeding the root of the gene tree, of the zinc-finger families we consider.
From our analysis, it appear that single and segmental duplications of zinc-finger domains
are more or less equally frequent and, hence, that more domains are affected by segmental
duplications.

We make a note that the reconciliation of ancient evolution, that is, events occurring
prior the root of the gene tree, is an hard problem, regardless of method; its solution rather
lies in breaking up the root edge by additional sampling to provide more constraints for
the reconciliation. However, it is also well-known that with erroneous tree-reconstruction,
reconciliations will tend to predict an over-abundance of ancient evolutionary events. It
is clear from our results that, while this is a major problem woth MrBAyes+MPR, it is
nearly non-existant from DomainDLRS.

It has earlier been observed that, when applied to domains, the posterior distribution
inferred by MrBayes typically is too flat to allow proper conclusions [15] and we show
that DomainDLRS solves this problem. DomainDLRS clade support values display a dis-
tribution much more centered around higher support values compared to MrBayesMPR.

Our framework does not take advantage of the order in which the domains occur in
the genes, which make it possible to evaluate performance on biological data based on
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a parsimony criterion for domain reordering across the ancestral vertices. DomainDLRS
provides a much more parsimonious reconstruction of domain order, with fewer and more
reasonable changes in domain order, than MrBayesMPR.

Our results clearly show that it is possible and in many cases preferable to analyse the
evolution of domains and evade aligning genes when analysing gene families that have
been exposed to domain duplications. Our model does not include domain swapping
events, i.e., transfer of a domain from one gene to another contemporary gene, which
would render it possible to analyse a larger set of multi domain proteins. Although it is
easy to formulate a model that it includes domain swapping, e.g., following models for
lateral gene transfer [25], devising an efficient associated inference framework currently
constitutes a substantial challenge.

6 Methods

6.1 DomainDLRS

Each hyper-parameter in θ, i.e., duplication-loss rates and mean, variance of the rate
model, is assigned a uniform prior over [0, α], where α is sufficiently high. For δ and µ
we used α = 10 and for m and v we used α = 1000. We here used the same substitution
model, i.e. JC69, for all domains in the analyses of biological and synthetic dataset.

The DomainDLRs software has not yet included the automatized convergence testing
to estimate the number of samples (iterations) needed for convergence. We tested the
convergence of DomainDLRS by running the pilot run on biological datasets. We ran
DomainDLRS mcmc chains for 1 million iterations with every 100th iterations sampled.
In case of large domain families such as ZNF91, we considered 2 million iteration to be
sufficient for thier convergence.

For convergence analysis, we used R software package CODA [26]. To test that
our unnormalized model density has been converged we used Heidelberger and Welch’s
convergence diagnostic from coda package.

The Heidelberger and Welch’s convergence test is applied on resulting single chain
from DomainDLRS to test its stationarity. The null hypothesis that the sampled values
are drawn from a stationary distribution, is tested by Cramer-von-Mises statistic. The
test has been applied successively first to whole chain, then after disacrding first 10%,
20%, ... , of the chain until either the null hypothesis is accepted for given level of
significance, or 50% of the chain has been discarded and failed to pass the stationarity.
More detail can be found web page of CODA pacakge [26].

In all most all of the Zinc-Finger families pilot mcmc run, the chain has passed
the Heidelberger and Welch’s convergence test with 95% significance test. The traces
of unnormalized model densities are given in mcmc_post_analysis folder (as part of
supplementary material).

6.2 MrBayesMPR

The MrBayesMPR method formalizes the standard approach of independent reconstruc-
tion of domain trees, followed by computation of MPR between domain tree and a given
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gene tree. Briefly, MrBayes is used to estimate a domain tree from the domain multi-
alignment. For the MPR, we then use Notung (version 2.6) [27], which reconcile the
domain tree to the genetree and simultaneouly root domain tree to minimize duplication
and loss events. We also use the MrBayesMPR method to reconcile gene trees with the
species tree.

6.3 Synthetic data generation

We generated three sets of synthetic gene families under the DomainDLRS model, each
containing 100 synthetic gene families, here referred to as, SZNF91, SZNF468, and
SZNF679, based on the MAP parameters obtained in the DomainDLRS analyses of the
gene families ZNF91, ZNF468, and ZNF679, respectively, see Section 6.4. The parame-
ters are described in Supplementary Table ??. For the synthetic data, the GenPhyloData
software package [28] was used to generate dated and length equipped trees; the Seq-Gen
program, from [29], was used to generated the sequence data from the length equipped
domain trees. The species tree from Nowick et. al. [30] consisting of 4 species, i.e., Hu-
man, Chimpanzee, Orangutan, and Rhesus Macaque, was used in the in the generation,
as well as the subsequent analysis. In the case of the mono-copy gene family ZNF91, for
which the gene is likely to coincide with the species tree, we also used the species tree as
gene tree when generating the domain trees for SZNF91.

The output from each generation comprises a gene tree, a domain tree, reconciliations
between the species tree and the gene tree gene and between the domain tree and the
gene tree, respectively, and a multiple sequence alignment of the domain sequences. To
enable a comparison of the accuracy of our method’s gene tree inference with that of
MrBayesMPR, also gene alignments were generated. For this purpose, domain sequences
were concatenated according to a randommodel as well as a tandemmodel. In the random
model, gene alignment data were constructed by concatenating zinc finger domains placed
in random order; notice though that a single KRAB domain was always placed first, in
agreement with the biological datasets. In the tandem model, the zinc finger domains
were ordered according to a post-order traversal of the respective domain tree.

6.4 Biological Data

We applied DomainDLRS and MrBayes-MPR to experimental data from the following
families, ZNF91, ZNF558/557, ZNF468/28, ZNF679/716, ZNF611/600, and ZNF764/747.
The sequence data was obtained from publications or downloaded from the databases
NCBI, Ensembl, and the KRAB associated Zinc-Finger catalogue [31], the latter avail-
able at http://znf.igb.uiuc.edu/ (for accession details, see Supplementary Table S2). The
domain coordinates were identified based on protein sequence, using the SMART domain
profile database [32], and then used to extract the DNA sequences of domains for our
analysis. The multiple sequence alignment program Muscle [33] was used, with default
parameter setting, to align the domain sequences. Muscle was also used to align gene
sequences for the MrBayesMPR gene tree reconstruction; for gene sequences, sequence
regions not belonging to a domain were removed. For of each domain family, the source,
the gene identifiers, and the domain information are specified in SuppementaryTable ??.
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6.5 Reconciliation heatmaps

A reconciliation heat map is an visualization of a reconciled MAP guest tree, inside the
host tree, with a color coding of edges vertices indicating the posterior probability of
the corresponding clades. All reconciliation heatmaps were created using an in-house
extension of the PrIMETV software [34], that uses a parsimony-based algorithm to re-
construct domain order at internal gene tree vertices. The algorithm algorithm greedily
orders domain vertices to minimize domain rearrangements, and is not guaranteed to give
the optimal solution, but rather a rough estimate of domain shuflling event.
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