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Abstract (max 250 words) 

Aging is accompanied by the functional decline of tissues. However, a systematic study of 

epigenomic and transcriptomic changes across tissues during aging is missing. Here we generated 

chromatin maps and transcriptomes from 4 tissues and one cell type from young, middle-age, and old 

mice, yielding 143 high-quality datasets. We focused specifically on chromatin marks linked to gene 

expression regulation and cell identity: histone H3 trimethylation at lysine 4 (H3K4me3), a mark 

enriched at promoters, and histone H3 acetylation at lysine 27 (H3K27ac), a mark enriched at active 

enhancers. Epigenomic and transcriptomic landscapes could easily distinguish between ages, and 

machine learning analysis showed that specific epigenomic states could predict transcriptional changes 

during aging. Analysis of datasets from all tissues identified recurrent age-related chromatin and 

transcriptional changes in key processes, including the upregulation of immune system response 

pathways such as the interferon signaling pathway. The upregulation of interferon response pathway 

with age was accompanied by increased transcription of various endogenous retroviral sequences. 

Pathways deregulated during mouse aging across tissues, notably innate immune pathways, were also 

deregulated with aging in other vertebrate species – African turquoise killifish, rat, and humans – 

indicating common signatures of age across species. To date, our dataset represents the largest multi-

tissue epigenomic and transcriptomic dataset for vertebrate aging. This resource identifies chromatin and 

transcriptional states that are characteristic of youthful tissues, which could be leveraged to restore 

aspects of youthful functionality to old tissues. 
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Introduction 

The functional decline of organs and tissues is a hallmark of aging, and it is accompanied by 

changes in gene expression and chromatin modifications across cell types and tissues (Benayoun et al. 

2015; Booth and Brunet 2016; Pal and Tyler 2016; Sen et al. 2016). Aging is the primary risk factor for 

a variety of chronic diseases, including neurodegeneration, cardiovascular disease, diabetes, 

osteoporosis, and cancer. Several conserved pathways are deregulated during aging, defining hallmarks 

or pillars of aging (Lopez-Otin et al. 2013; Kennedy et al. 2014). One such hallmark is the accumulation 

of epigenetic alterations, defined in this context as changes to gene regulation by chromatin 

modifications. Perturbation in chromatin modifying enzymes can extend lifespan in invertebrate models 

(Benayoun et al. 2015; Pal and Tyler 2016; Sen et al. 2016), suggesting that loss of chromatin 

homeostasis may drive aspects of aging. Chromatin marks are relatively stable and can even persist 

through cell division (Kouskouti and Talianidis 2005).Therefore, sustained alterations to the chromatin 

landscape may mediate, at least in part, the propagation of age-associated functional decline.  

Changes in chromatin marks (e.g. DNA methylation, histone modifications) have been observed 

throughout life in multiple species and tissues (Benayoun et al. 2015; Booth and Brunet 2016; Pal and 

Tyler 2016; Sen et al. 2016). However, most of this knowledge has relied on DNA methylation or global 

assessments of histone modification changes (e.g. mass spectrometry, western-blot, or immunostaining) 

rather than locus-specific evaluation (e.g. ChIP-seq) (Horvath 2013; Benayoun et al. 2015; Wagner 

2017). Several genome-wide studies have interrogated locus-specific changes in histone modifications, 

chromatin states, as well as changes in gene expression in several cell and tissue types with mammalian 

aging (e.g. adult stem cells, liver, pancreatic beta-cells, neurons, T cells) (Rodwell et al. 2004; Cheung et 

al. 2010; Liu et al. 2013; Shulha et al. 2013; Bochkis et al. 2014; Sun et al. 2014; Avrahami et al. 2015; 

White et al. 2015; Zheng et al. 2015; Moskowitz et al. 2017; Stegeman and Weake 2017; Ucar et al. 
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2017; Nativio et al. 2018). However, while these studies have provided important insights into genome-

wide chromatin and transcriptome remodeling with age, they have remained restricted to specific cell 

types and/or a mark. Thus, whether general rules and patterns govern age-related chromatin and 

transcriptional changes – and how they are linked –across tissues, cell types, and organisms remains 

largely unknown.  

 Here, we investigate genome-wide changes to transcription and chromatin during aging in 

mouse, focusing on chromatin marks linked to transcriptional activation and cell identity: H3K4me3, a 

mark of active/poised promoters (Heintzman et al. 2007), and H3K27ac, a mark of active enhancers 

(Heintzman et al. 2007). We generated epigenomic and transcriptomic maps of the heart, liver, 

cerebellum, olfactory bulb and primary cultures of neural stem cells (NSCs) throughout mouse lifespan 

(youth, middle age, and old age), a resource comprising in total 143 high-quality datasets. Our analysis 

identified age-related remodeling of both transcriptional and chromatin landscapes across tissues. Using 

machine-learning models, we identify chromatin-level predictors of transcriptional remodeling with age. 

We observe a recurrent upregulation of interferon-related signaling pathways at the chromatin and 

transcriptional levels, which is concomitant with the transcriptional upregulation of transposable 

elements and endogenous retroviruses with aging. Finally, we test conservation of these age-related 

changes across vertebrate species. This resource identifies conserved epigenomic and transcriptional 

signatures during vertebrate aging, the understanding of which will be critical to restore old tissues to a 

more youthful and healthy state. 
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Results 

A genome-wide epigenomic and transcriptomic landscape of in four tissues and one cell type 

during mouse aging 

To understand how chromatin and transcriptional profiles change across multiple tissues during 

aging, we collected tissues and cells from C57BL/6 male mice at 3 different time points throughout their 

life: youth [3 months], middle age [12 months] and old age [29 months]. We focused on a subset of 

tissues (i.e. heart, liver, cerebellum, olfactory bulb) that are known to display age-related functional 

decline (Enwere et al. 2004; Sussman and Anversa 2004; Zhang et al. 2010; Shioi and Inuzuka 2012; 

Mobley et al. 2014; Delire et al. 2016), and that are clearly anatomically defined. We also derived 

primary cultures of neural stem and progenitor (NSCs) from these young, middle-aged, and old mice. 

For each tissue or cell culture from all 3 ages, we generated transcriptomic maps (RNA-seq) and 

epigenomic maps (ChIP-seq of total Histone 3 distribution [H3] for normalization, trimethylation of 

Histone 3 at lysine 4 [H3K4me3], and acetylation of Histone 3 at lysine 27 [H3K27ac]), yielding a total 

of 143 high-quality datasets (Figure 1A-B, S1A; Supplementary Table S1). We chose H3K4me3 and 

H3K27ac because both chromatin marks are associated to ‘active chromatin’ because spread of both 

marks have been associated with information about cell identity and specific transcriptional states. 

Indeed, H3K4me3 is preferentially enriched at active promoters and H3K27ac is preferentially enriched 

at active enhancers (Heintzman et al. 2007). In addition to H3K4me3 intensity (i.e. ChIP-seq signal per 

base pair), broad H3K4me3 domains mark genes that are important for cell identity and function 

(Bernstein et al. 2006; Benayoun et al. 2014; Chen et al. 2015) and exhibit increased transcriptional 

levels (Chen et al. 2015) and consistency (Benayoun et al. 2014). In addition to H3K27ac intensity, large 

clusters of H3K27ac-enriched enhancers, known as Super Enhancers (Hnisz et al. 2013) or Stretch 

Enhancers (Parker et al. 2013), mark enhancers of genes that are cell- or tissue-specific and highly 
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Figure 1: A genome-wide epigenomic and transcriptomic landscape of in four tissues and one cell type during mouse 

aging. 

 (A) Experimental data setup. Also see Supplementary Table S1. (B) Example UCSC genome browser region showing 

tracks of generated datasets in cerebellum tissue. (C-F) Multidimensional Scaling analysis results across datasets based on 

RNA expression (C), H3K4me3 peak intensity (D), H3K4me3 peak breadth (E), or H3K27ac peak intensity at all peaks (F). 
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transcribed in that specific cell or tissue. Importantly, ChIP datasets for the H3K4me3 and H3K27ac 

histone mark were normalized to paired total Histone H3 ChIP-seq data, to account for potential changes 

in local nucleosome landscape with age. Whenever possible, tissues from age-matched mice were 

examined by a trained histopathologist to record age-related changes and account for any irregularities 

in the samples (Figure S1B). 

To visualize the degrees of similarity of our genomic samples, we used Multidimensional scaling 

(MDS) (Chen and Meltzer 2005). MDS allows the projection of high-dimensionality ‘omics’ data on a 

set number of dimensions to facilitate visualization of data similarities (Chen and Meltzer 2005). MDS 

analysis on RNA, H3K4me3 intensity, H3K4me3 breadth, H3K27ac intensity, or H3K27ac breadth 

revealed that, as expected, the main source of sample separation corresponds to the nature of the tissue, 

regardless of the age of the animal (Figure 1E-F, S1D-E). Principle component analysis (PCA), another 

dimensionality reduction method (Ringner 2008), yielded very similar results when extracting the first 2 

components (Figure S1F-G). Thus, we used MDS analysis for all subsequent analyses. Our results are 

consistent with the fact that RNA profiles, H3K4me3 and H3K27ac are associated with cell identity 

(Hnisz et al. 2013; Benayoun et al. 2014; Wagner et al. 2016), and indicate that overall tissue and cell 

identities remain quite stable during aging. 

To understand how age impacts the global epigenomic and transcriptomic landscapes in each 

tissue or cell type, we performed MDS one tissue/cell type at a time (Figure 2A-J, S2A-O). 

Interestingly, in all tissues and for all features (RNA, H3K4me3 intensity and breadth, H3K27ac 

intensity and breadth), there was a clear progressive separation based on the age of the samples of 

origin, with the young samples clustering closer to the middle-age samples, and further away from the 

old samples (Figure 2A-J, S2A-O). For primary NSC cultures, there was also a clear separation with 

age for H3K4me3 intensity, H3K4me3 breadth, and H3K27ac Super Enhancers (Figure S2F, S2I, and 
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Figure 2: Separation of samples across tissues and cell types as a function of age.  

Multidimensional Scaling analysis results across samples derived from specific tissues, Liver and Cerebellum, based on 

RNA expression (A-B), H3K4me3 peak intensity (C-D), H3K4me3 peak breadth (E-F), H3K27ac peak intensity (all peaks: 

G-H; Super Enhancers only: I-J). 
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S2O). However, the transcriptome and H3K27ac intensity of NSCs (Figure S2C and S2L) did not 

separate well with respect to age, possibly because of technical noise. Together, these results indicate 

that genome-wide RNA and features of H3K4me3 and H3K27ac deposition can distinguish between 

ages in different tissues and cells.  

 

Machine-learning reveals that age-related epigenomic changes can predict transcriptional changes 

To understand how age-related changes in the epigenome predict age-related transcriptional 

changes, we leveraged the power of machine-learning (Figures 3, S3). Using four types of algorithms 

(i.e. neural networks [NNET], support vector machines [SVM], gradient boosting [GBM] and random 

forests [RF]), we trained machine learning models to discriminate between transcriptional changes with 

age (upregulated, downregulated, or unchanged gene expression during aging) (Figure 3A). As potential 

predictors for the models, we used, for each gene, specific features from chromatin datasets generated 

for this study (e.g. amount of H3K4me3 signal at the promoter, change of H3K4me3 breadth awith age; 

see methods), from mouse ENCODE ChIP-seq datasets in heart, liver, cerebellum and olfactory bulb in 

young mice (e.g. Pol2, CTCF, H3K27me3, H3K4me1) (Shen et al. 2012; Yue et al. 2014) 

(Supplementary Table S2), and from the underlying DNA sequence (e.g. %CpG in promoter, exon 

number, etc.) [See methods for details on all used features]. Because absolute gene expression levels 

could influence the ability to call differential gene expression (Oshlack and Wakefield 2009), we also 

included, as a potential predictor, the average expression level of the genes in the young samples, 

expressed in FPKM (fragments per read per million).   

 All four machine learning models assigned genes to the correct transcriptional change with age 

(e.g. upregulation, etc.) 66-79% of the time on average, significantly above that of a random 

classification (50%) (Supplementary Table S3, Figure 3B-C). Models derived using tree-based 
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Figure 3: Machine-learning analysis reveals that changes in enhancer score and H3K4me3 domain breadth with age 

can predict transcriptional aging.  

(A) Scheme of the 3-class machine learning pipeline. Nnet: neural network, svm: support vector machine, rf: random forest, 

gbm: gradient boosting machine. (B-C) Balanced classification accuracy over the 3-classes (i.e. upregulated, downregulated, 

and unchanged genes) cross tissues for Random Forest models (B) or Gradient Boosting models (C). The accuracy of the 

model trained in a specific tissue on the same tissue (e.g. the liver-trained model on liver data) is measured using held-out 

validation data, and for cross-tissue validation, the entire data of the tested tissue was used. ‘Random’ accuracy is displayed 

to illustrate the accuracy of a meaningless model (~50%). All tests were significantly more accurate than random. The 

robustness of the prediction is supported by the fact that samples for RNA and chromatin profiling were collected from 

independent mice at 2 independent times (Supplementary Table S1). Balanced accuracy across the 3-classes is reported. 

(D-E) Feature importance from Random Forest models (D; Gini score and mean decrease in accuracy) or Gradient Boosting 

models (E; Gini score). High values indicate important predictors. Also see analysis of 2-class models (i.e. upregulated vs. 

downregulated genes) in Figure S3. Note that 2-class models, though containing less biological information, outperformed 

3-class models, which is consistent with the increased complexity of a classification problem with the number of classes to 

discriminate.  

Figure 3

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

Enhancer score in young
H3K4me1 promoter intensity in young
Pol2 promoter intensity in young
H3K4me3 promoter intensity in young
% CpG in promoter
Maximum H3K4me3 breadth in young
H3K4me3 breadth quantile age change
RNA FPKM in young
DNAseI promoter intensity in young
Enhancer score age change Gini

●

●

●
●

25
50
75
100

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

H3K4me1 promoter intensity in young
Pol2 promoter intensity in young
H3K4me3 breadth quantile age change
H3K4me3 breadth quantile in young
Maximum H3K4me3 breadth in young
RNA FPKM in young
% CpG in promoter
Enhancer score age change
H3K4me3 promoter intensity in young
DNAseI promoter intensity in young Gini

●

●

●
●

25
50
75
100

A
Genes

Model accuracy 

Important predictors 

Features

Machine-learning algorithms
(nnet, svm, rf, gbm)

Dynamic predictors
(Chromatin changes with age)

Static predictors
(Regulatory context in 
young healthy tissue)

Models

Up with age

Down with age

Scheme of 3-class classifcation pipeline

Unchanged with age

Cl
as

se
s

Balanced classification accuracy across tissues  (3-class RF) Balanced classification accuracy across tissues  (3-class GBM)B C

Liver

Heart

Cerebellum

Olfactory bulb

Te
st

in
g 

da
ta

Liver

Heart

Cerebellum

Olfactory bulb

Te
st

in
g 

da
ta50%

60%
70%
80%
90%

100%

M
ea

ni
ng

fu
l

m
od

el
s

Hea
rt

Liv
er

Cere
be

llum

Olfa
cto

ry 
bu

lb

Training data

Hea
rt

Liv
er

Cere
be

llum

Olfa
cto

ry 
bu

lb

Training data

Top 10 most important predictors (3-class RF) Top 10 most important predictors (3-class GBM)D E

0
1
2
3
4
5

M
ea

n 
de

cr
ea

se
 in

 a
cc

ur
ac

y

Hea
rt

Liv
er

Cere
be

llum

Olfa
cto

ry 
bu

lb
Hea

rt
Liv

er

Cere
be

llum

Olfa
cto

ry 
bu

lb

random

perfect

50%
60%
70%
80%
90%

100%

M
ea

ni
ng

fu
l

m
od

el
s

random

perfect

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/336172doi: bioRxiv preprint 

https://doi.org/10.1101/336172
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

algorithms (i.e. GBM and RF) performed slightly better than the other models (69-79% vs. 66-76%) 

(Supplementary Table S3). The accuracy was similar whether validation was performed within or 

across tissues (Supplementary Table S3, Figure 3B-C). These results support the idea that epigenomic 

remodeling is associated with transcriptional remodeling during aging. These observations also suggest 

that genes that are dysregulated with age share common epigenomic signatures even if they are found at 

different loci in different tissues. Interestingly, important predictors of age-related transcriptional 

changes in all tissues were dynamic changes in enhancer score (i.e. change in the amount of H3K27ac 

detected at enhancers during aging) and dynamic changes in the breadth of the associated H3K4me3 

domains with aging (Figure 3D-E, S3D-E). Other predictors of the transcriptional status of genes during 

aging were static, describing the young chromatin context (e.g. promoter accessibility by DNAseI, 

H3K4me3 promoter intensity or H3K4me3 domain breadth) (Figure 3D-E). To note, we cannot fully 

exclude that this finding may result from incomplete accounting for gene expression levels differences, 

as H3K4me3 and promoter accessibility have been associated to higher expression levels (Consortium 

2012). Nevertheless, this observation raises the intriguing possibility that the chromatin context of a 

gene in a youthful context might predict at least in part change in expression of that gene with age, 

perhaps because active loci are impacted by accumulated stresses and injuries throughout life.  

Together, these data indicate that chromatin states can predict age-dependent changes in 

transcription. 

 

Immune response pathways are robustly upregulated during mouse aging 

We next asked which genes or pathways were significantly deregulated with age across tissues 

(Figure 4, S4). At the transcriptional level, we identified only 16 upregulated genes (and 0 

downregulated) with aging in all tissues, when each tissue was assessed separately (FDR < 5%; Figure 
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Figure 4: Age-misregulated pathways reveal the activation of an innate immune signature. 

(A-B) Venn diagram for the overlap of significantly upregulated (A) or downregulated (B) genes with aging in each tissue 

called by DESeq2 at FDR < 5%. (C-F) Functional enrichments using the minimum hypergeometric [mHG] test at for 

differential RNA expression (C-D), for differential H3K4me3 intensity (E), for H3K4me3 breadth (F) and for differential 

H3K27ac intensity (G). Enriched pathways were plotted if 4 out of the 6 tests (RNA) or 3 out of the 5 tests (chromatin 

marks) were significant (FDR < 5%). (H) Heatmap of expression for repetitive elements with significant differential 

expression with aging (TE-transcript quantification and DESeq2 statistical test at FDR < 5%). 
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 9 

4A). These genes encode complement and coagulation factors (i.e. C1qa, C1qc, C4) and several 

interferon-response related proteins (i.e. GBP6, GBP10, IFI27l1, IFI44, IFIT3, IFITM3), as well as a 

protein known to play a key role in leukocyte transendothelial migration (i.e. ITGB2) (Guan et al. 2015). 

Though the observed overlap is small, these results suggest that a common response to aging across 

tissues could be linked to an immune response.  

To explore this hypothesis further, we leveraged the statistical power of the whole dataset and 

performed an analysis of age-related transcriptional changes using all tissues and ages combined, but 

including tissue of origin as a covariate. This analysis identified 945 genes showing tissue-independent 

age-related change, with 771 genes upregulated and 174 genes downregulated with age at FDR < 5% 

(Figure S4F; Supplementary Table S4). Consistently, among these 771 upregulated genes were 14 of 

the 16 genes commonly upregulated using the analysis in each tissue (see Figure 4A). Since it enables a 

more general view of our RNA-seq data, we include this global analysis in addition to tissue-specific 

analysis for functional enrichment analyses below (labeled “tissue-independent aging”).  

For H3K4me3 and H3K27ac chromatin marks, we did not find any recurrently misregulated 

epigenomic loci across tissues at FDR < 5%, which is compatible with the tissue-specific nature of 

regulatory elements, where the same genes can have different enhancers or alternative promoters in 

different tissues where they are expressed. However, it cannot be excluded that this difference could 

result from different sensitivity of the read-out to changes in chromatin vs. tramscriptome 

measurements, including because of potential changes in cell composition (see below). 

Next, we investigated whether we could identify recurrently misregulated pathways and gene 

sets with age across tissues (Figure 4C-G, S4G-I). Rank statistics analysis identified several pathways 

that were recurrently deregulated with aging, not only at the transcriptome level, but also at the level of 

chromatin modifications (Figure 4C, 4E-G, S4G-I). Down-regulated pathways included pathways 
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 10 

related to mitochondrial dysfunction (e.g. ‘oxidative phosphorylation’, ‘TCA cycle’), compatible with 

previous work using RNA microarrays in mouse and human tissues (Zahn et al. 2006; Zahn et al. 2007). 

Upregulated pathways included protein homeostasis (e.g. ‘lysosome’, ‘ribosome’) or immune signaling 

pathways (e.g. ‘Inflammatory response’, ‘Interferon alpha response’, ‘Interferon gamma response’, 

‘Chemokine signaling pathway’) (Figure 4C, 4E-G, S4G-I), which is consistent with previous 

observations in a number of aging tissues (Stegeman and Weake 2017), such as choroid plexus tissue 

(Baruch et al. 2014) or kidney (Rodwell et al. 2004; O'Brown et al. 2015). Complement and 

coagulation-related pathways were also significantly upregulated across tissues and cell types (Figures 

4C, S4G). However, the strongest signal came from the interferon alpha and gamma response pathways, 

which were significantly induced across aged tissues at the transcriptional and chromatin levels (Figure 

4C, 4E-G, S4G-I). Notably, we confirmed the transcriptional activation of the interferon response by 

Ingenuity Pathway Analysis (e.g. IFNG, IFNB1, IFNAR; Supplementary Table S5A). While this age-

related inflammatory response has been observed at the transcriptional level across many studies 

(Stegeman and Weake 2017), this is the first time this is observed at the transcriptional and chromatin 

levels.  

Interferon response activation can stem from (i) a response to exogenous viral infection, (ii) 

reactivation of endogenous transposable elements (TEs) with aging (De Cecco et al. 2013; Wood and 

Helfand 2013), and/or (iii) more generally, aberrant cytosolic DNA detection by the Cyclic GMP-AMP 

synthase pathway (i.e. cGAS) (Sun et al. 2013; West et al. 2015). Since both old and young mice were 

kept in SPF facilities at Charles River and at Stanford, and were documented to not have viral infection 

upon routine testing, we queried TE expression in the different tissues during aging using our RNA-seq 

datasets. Increased activity of TEs has been reported with aging in several species (i.e. worm, mouse, 

humans) and cell types (Maxwell et al. 2011; De Cecco et al. 2013; Wood and Helfand 2013; Van Meter 
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et al. 2014). Using the ‘TE-transcript’ and HOMER repeats pipelines, we identified repetitive elements 

whose transcription levels are significantly changed with aging (Figure 4H; Supplementary Table 

S6A-E). Consistently with previous reports, the majority of elements with changed transcriptional levels 

were upregulated during aging (Figure 4H). Moreover, most significantly upregulated elements 

belonged to endogenous retrovirus (ERV) families (Figure 4H). 

The interferon signaling pathway upregulation is also compatible with the significant 

upregulation of the KEGG 2017 ‘cytosolic DNA-sensing pathway’ genes, which corresponds to cGAS 

activation (Figure S4C). The cGAS pathway has been found to be upregulated in senescent cells due to 

aberrant cytoplasmic chromatin (Dou et al. 2017) and in response to deficient mitochondrial DNA – a 

known consequence of aging (West et al. 2015). Thus, activation of the cGAS pathway by endogenous 

DNA may play a role in the age-related increase in the interferon response.  

Consistent with functional pathway enrichment results, targets genes of pro-inflammatory 

transcription factors IRF8 and TCF3 were significantly upregulated (Figure 4D). Consistently, targets of 

pro-inflammatory transcription factors IRF3, IRF5 and IRF7 were signitifantly induced across tissues 

according to Ingenuity Pathway Analysis (Supplementary Table S5A). FOXO targets were also 

significantly upregulated with aging (Figure 4D). As FOXO factors are known to be pro-longevity 

genes (Martins et al. 2016) and to modulate innate immunity (Seiler et al. 2013), this upregulation may 

result from a compensatory mechanism and could contribute to the upregulation of the innate immune 

response with aging. In addition, Myc targets were also upregulated (Figure 4D), consistent with Myc’s 

reported pro-aging effects (Hofmann et al. 2015). Finally, targets of the RNA binding protein TARDBP 

(also known as TDP-43) were significantly downregulated with aging across tissues (Figure 4D). 

Mutations in human TARDBP/TDP-43 are involved in the pathogenesis of amyotrophic lateral sclerosis 

(ALS) and frontotemporal dementia (FTD) (Scotter et al. 2015), and TDP-43 has been suggested to play 
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a role in retrovirus suppression by host cells (Ou et al. 1995) and in microglia activation (Zhao et al. 

2015). Together, these results suggesting that dysregulation of targets of several transcription factors and 

RNA binding proteins could also be a key player in the upregulation of innate immune response 

pathways with aging. 

Finally, we asked if the transcriptional increase in immune pathways in tissues over the course of 

aging could result from the transcriptome of infiltrated immune cells  (Rodwell et al. 2004; Lumeng et 

al. 2011; Pinto et al. 2014; O'Brown et al. 2015). Using CIBERSORT to perform computational 

deconvolution of aging tissue RNA-seq datasets (Newman et al. 2015), no significant change could be 

detected in the proportions of predicted inflammatory cell signatures (Figure S5 and Supplementary 

Table S7). However, expression levels of known immune markers revealed were slightly upregulated 

with age (Figure S5F-G). Thus, at least a portion of the observed inflammatory response with age might 

be due to a low, but increased, amount of infiltrated immune cells in old tissues.  

Conservation of mouse age-regulated transcriptional trends across vertebrate model organisms 

To investigate whether the age-related changes observed across mouse tissues were conserved in 

other vertebrate species, we used publicly available aging transcriptome datasets in other species, 

including rat (Yu et al. 2014), human (Mele et al. 2015), and the naturally short-lived African turquoise 

killifish (Baumgart et al. 2014; Baumgart et al. 2016). We identified rat, human and turquoise killifish 

orthologs for each mouse gene that was significantly deregulated with aging. Notably, the interferon 

alpha and gamma response pathways were also significantly misregulated during aging in rat, human, 

and turquoise killifish samples (Figure 5A, S6A). In addition, we also determined the 

transcriptional trajectory with aging of genes orthologous to the genes changes with aging in mouse 

tissues (Figure 5B, S6B). In general, similar aging trajectories (i.e. upregulation with age or 

downregulation with age) were 
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observed for the same genes in similar tissues across vertebrate species (Figure 5B, S6B). These 

trajectories were overall less strongly conserved in the GTEx human data, perhaps because other factors 

(e.g. environmental differences, presence of specific diseases) may overshadow aging differences in 

human tissues. Indeed, when accounting for body mass index and metabolic disease-status in an 

independent human liver microarray dataset (GSE61260) (Horvath et al. 2014), gene expression 

trajectories with aging were more similar between mouse and human (Figure S6C-D). Collectively, 

these data indicate that core signatures of innate immune responses are consistently upregulated with 

aging across species. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/336172doi: bioRxiv preprint 

https://doi.org/10.1101/336172
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Age-related transcriptional deregulation from mouse are overall conserved across vertebrate species.+ 

(A) Functional enrichments using the mHG test at for differential RNA expression with aging in mouse, rat, human and

African turquoise killifish samples. The mouse data is a subset of the panel shown in Figure 4C and is plotted as a 

comparison point. (B) Log2 Fold Change per unit of time during aging for genes orthologous to differentially expressed 

mouse genes in this study in rat, human and African turquoise killifish samples [see methods]. The mouse data is plotted 

for comparison. Significance in on sample one-sided Wilcoxon test the fold changes and 0 (i.e. no change with age). Only 

data from males is plotted here. Data with the contribution of female samples (when available) is in Figure S6A. 
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Discussion 

To understand the effect of aging on genomic regulation and chromatin identity with aging, we 

have generated transcriptomic and epigenomic maps in young, middle-aged, and old mice from a variety 

of tissues and cells known to show functional decline with aging (i.e. heart, liver, cerebellum, olfactory 

bulb and cultured primary NSCs). To our knowledge, this dataset represents the largest epigenomic and 

transcriptomic dataset for mammalian aging to date and will serve as a resource for the aging 

community. Thanks to the inclusion of a middle-age time point, we find that progressive changes 

accumulate throughout mouse lifespan not only at the transcriptional level, but also at the level of 

several chromatin features. The progressive accumulation of remodeling of histone modifications with 

aging is reminiscent of the DNA methylation clock paradigm (Horvath 2013; Cole et al. 2017; Quach et 

al. 2017; Stubbs et al. 2017; Wang et al. 2017). Thus, the existence of these progressive changes is 

compatible with the existence of chromatin modification clocks. Additional time points and individuals 

will be required to build such clocks and compare their performance to that of the well-established DNA 

methylation clock. The potential functional interaction between these different levels of molecular 

clocks could provide important insights on the regulation of cellular and organismal aging.  

 

Machine learning as a powerful tool to study aging epigenomics  

By leveraging the power of machine-learning, we show that observed age-related epigenomic 

remodeling is predictive of age-related transcriptional changes. This is consistent with the ‘histone code 

hypothesis’, whereby the chromatin context may direct transcriptional outputs (Jenuwein and Allis 

2001), and supports the idea that the rules that govern the relationship between the chromatin landscape 

and transcriptional outputs are generally preserved throughout life. To note, these models cannot be used 

to provide clues about the flow of information between chromatin and transcriptional changes. Thus, we 
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cannot exclude that age-related transcriptional changes may precede observed chromatin changes. 

However, our models do indicate that the changes at the chromatin and transcription are to some degree 

coordinated, and that the breakdown of gene regulation levels is a complex occurrence. Important 

identified predictors of the relationship between transcriptional and chromatin aging may present 

interesting entry point for future mechanistic studies of aging epigenomics. 

 

Innate immune pathways are broadly induced during aging across tissues and species 

Our analyses reveal that immune pathways are upregulated with aging across tissues and species. 

This increase in immune activity in the absence of exogenous pathogens is consistent with the 

importance of the concept of inflamm-aging (Xia et al. 2016). Notably, we find that the interferon 

response pathways, both alpha and gamma, are recurrently and robustly activated with aging across 

vertebrate tissues. Although interferon signaling is traditionally associated with the response to viral 

infection, the interferon pathway can also be induced in response mitochondrial DNA stress and 

cytosolic DNA detection (Sun et al. 2013; West et al. 2015), including the reactivation of endogenous 

transposable elements (De Cecco et al. 2013; Wood and Helfand 2013). Accordingly, our analyses find 

evidence for induction of cytosolic DNA-sensing pathway genes, as well as a significant transcriptional 

upregulation of several families of endogenous transposable elements (TEs). Many TEs can retain key 

viral characteristics, including the ability to replicate, to form viral particles and to potentially trigger 

host immune responses (Kassiotis and Stoye 2016). Thus, our results are compatible with the intriguing 

possibility that the global increase in innate immunity signals across tissues during aging might be 

mediated, at least partly, through the detection of endogenous aberrant DNA or reactivated endogenous 

retroviral particles. In addition, the impact of infiltrated immune cells will need further studies, in 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/336172doi: bioRxiv preprint 

https://doi.org/10.1101/336172
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

particular at single cell level, in order to disentangle the relative contribution of infiltrated immune cells 

and endogenous detection of aberrant DNA. 

 

A resource for the study of aging genomics 

To date, this dataset is one of the largest existing aging multi-omics datasets and could be 

integrated to future studies with additional marks. It is one of the rare cases with a middle-aged point, in 

addition to a young and old time-points, which helps understand epigenomic and transcriptomic aging as 

trajectories rather than end-point results. The transcriptomic arm of our dataset is consistent with the 

wealth of other published transcriptional aging datasets using microarrays and RNA-seq technologies 

(Stegeman and Weake 2017), with an increase in inflammation, stress responses and a decrease in 

mitochondria function. Several studies have started to interrogate genome-wide chromatin remodeling 

with vertebrate aging (Cheung et al. 2010; Liu et al. 2013; Shulha et al. 2013; Bochkis et al. 2014; Sun 

et al. 2014; Avrahami et al. 2015; Zheng et al. 2015; Moskowitz et al. 2017; Ucar et al. 2017), with 

concomitant changes in the transcriptional landscape. However, the combination of cross-tissue 

assessment (i.e. heart, liver, cerebellum, olfactory bulb and cultured primary NSCs), multiple chromatin 

feature profiling (i.e. total H3, H3K4me3 and H3K27ac) and though youth, middle and old age is 

unique, and enabled us to conduct an integrated study of conserved and coordinated genomic 

misregulation with aging. To note, our datasets have primarily focused on histone modifications 

associated with active/accessible chromatin. However, other features of chromatin, including 

heterochromatin, are also likely to play important roles in epigenome remodeling during aging and could 

bring important insights. Finally, we have generated these profiles only in males thus far. Future work 

will need to assess the impact of sex-dimorphism, as well as diverse genetic background, in the 

regulation of transcriptional and chromatin aging. Further mining of this dataset by the community 
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should help identify candidate regulators that affect age-dependent dysfunction across multiple tissues in 

vertebrates.  
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Methods 

Mouse husbandry 

All animals were treated and housed in accordance to the Guide for Care and Use of Laboratory 

Animals. All experimental procedures were approved by Stanford’s Administrative Panel on Laboratory 

Animal Care (APLAC) and were in accordance with institutional and national guidelines. Male 

C57BL/6 mice at different ages (3, 12 and 29 months) were obtained from the National Institute on 

Aging (NIA) colony at Charles Rivers, which is an SPF facility, and were acclimated at the SPF animal 

facility at Stanford University for 1-2 week before processing. All animals were euthanized between 10-

12am for tissue harvesting or NSCs isolation. No animals were censored. 

 

Tissue dissection and histopathology 

For our aging ‘omics’ studies, we selected the heart, liver, cerebellum, olfactory bulb, as well as 

primary NSCs cultures derived from the Subventricular Zone (SVZ) because (i) these tissues and cells 

are known to display age-related functional decline (Enwere et al. 2004; Sussman and Anversa 2004; 

Zhang et al. 2010; Shioi and Inuzuka 2012; Mobley et al. 2014; Delire et al. 2016) and (ii) the tissues are 

all clearly defined anatomically, which guarantees reproducible isolation across animals of different 

ages and minimizes the risk that observed differences comes from dissection differences. For the heart, 

we dissected the ventricle tissue for chromatin and RNA extraction. For the liver, the top-most lobe was 

harvested for chromatin and RNA extraction. The complete anatomical structure of the cerebellum and 

olfactory bulb (both sides) were used for chromatin and RNA extraction. Detailed information for each 

sample are reported in Supplementary Table S1. 
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 Heart and liver tissue were harvested for histopathology evaluation in parallel to RNA-seq 

profiling. Tissues samples were processed as described previously (Harel et al. 2015). Briefly, tissues 

were collected into ice cold PBS, washed, then fixed for 24h in Bouin’s solution at room temperature. 

The following day, tissues were rinsed in PBS and paraffin-embedded using standard procedures. 

Sections of 5 µm were stained with hematoxylin and eosin (HE) and Mason’s trichrome for 

histopathologic analysis. All tissues were reviewed by a board-certified veterinary anatomic pathologist 

who was blinded to animal identification (K.C.). Microscopically, cross-sectional areas of the liver and 

heart were qualitatively evaluated for age-related histopathologic lesions from 3 months old (n=3), 12 

months old (n=3) and 29 months old (n=3) C57BL/6 male mice. Liver tissues were specifically 

evaluated for hepatic capsule contour, perivascular lymphoid aggregates, hepatocellular atrophy, 

extramedullary hematopoiesis (foci of myeloid and erythroid precursor cells), anisocytosis (variation in 

hepatocellular size), anisokaryosis (variation in hepatic nuclear size), bile duct proliferation, fibrosis, 

sinusoidal cellularity, and the presence of Ito cells (i.e. major resident cell type involved in liver fibrosis, 

also known as hepatic stellate cells). Because of dissection of parts of the tissue for RNA-seq analysis, 

representative histologic sections of all heart chambers (i.e. left and right atria, left and right ventricles), 

valves, and vessels could not be consistently obtained for all mice. Thus, comparisons could not be 

drawn between specific heart chambers. Based on tissue availability, heart samples were evaluated for 

age-related pathology including myocardial fibrosis, myocardial degeneration (i.e. loss of cross 

striations, vacuolization, necrosis), myocardial inflammation, lymphoid aggregates, mineralization, and 

atrial thrombosis.  

Livers of 3 months old mice were characterized by smooth hepatic capsules and rare scattered 

foci of extramedullary hematopoiesis (Figure S1B). Normal lobar architecture and sinusoidal 

organization of the liver were evident, with evenly spaced centrilobular and portal regions. At 12 months 
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of age, in addition to rare foci of extramedullary hematopoiesis, small perivascular lymphoid aggregates 

were identified in the liver. Slight anisocytosis and anisokaryosis were also observed across hepatocytes 

at 12 months of age. By 29 months of age, foci of extramedullary hematopoiesis and perivascular 

lymphoid aggregates were increased in number and size in the liver. Undulation of the hepatic capsule 

was evident and was considered a direct result of hepatic cord atrophy. Anisocytosis and anisokaryosis 

were more pronounced in 29 month-old mice than in 12 months old mice. Additional histologic findings 

that were present only in the livers from 29 months old mice included occasional bile duct hyperplasia, 

increased sinusoidal cellularity (notably for Kupffer cells), increased numbers of lipid-rich Ito cells, and 

rare sinusoidal fibrosis (Figure S1B). Overall, no observable histologic differences were identified 

between available heart samples from 3 months, 12 months, and 29 months old mice. Occasionally, 

small foci of myocardial degeneration (characterized by loss of myofiber cross-striation and 

vacuolization) were noted across all age groups. Surprisingly, hemangiosarcoma (an endothelial cell 

neoplasm) was noted within the left ventricle of one mouse within the 29-month old cohort. The tumor 

comprised ill-defined and infiltrative vascular channels lined by variably plump neoplastic endothelial 

cells. Lymphatic dilation and perivascular edema were noted adjacent to the neoplasm in the heart and 

were thus considered sequelae to tumor formation, rather than an age-related manifestation. The 

corresponding RNA-seq sample did not encompass the tumor, which is compatible with the absence of 

gross outlier behavior in the RNA-seq analysis. Since the whole cerebella and olfactory bulb samples 

were used to extract RNA, the histological status of these tissues could not be assessed in our cohorts.  

 

Primary NSC cell culture 

NSCs were isolated from 3 months, 12 months, and 29 months old male C57BL/6 mice from the 

NIA aging colony at Charles River as previously described (Renault et al. 2009; Webb et al. 2013). 
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Briefly, the subventricular zone (SVZ) was finely microdissected and chopped into ice-cold PBS. 

Microdissected SVZs from 5 age-matched mice were pooled from each age group to make a single 

culture. Tissue chunks were digested by 10 min incubation 14 U/mL Papain (Worthington) at 37oC. 

Following mechanical trituration, cells were purified by a 22% Percoll (GE Healthcare) gradient. NSCs 

were plated at a density of <105 cells/cm2 as non-adherent spheres in NSC growth media (i.e. Neurobasal 

A medium [Life technologies] medium supplemented with 1% penicillin/streptomycin/glutamine [Life 

technologies], 2% B27 supplement [Life technologies] and 20 ng/mL each of FGF2 [Peprotec] and EGF 

[Peprotec]).  Cultures from all ages were plated at the same density to minimize differences in 

autocrine/paracrine signaling. Cells were passaged using Accutase enzyme (Stem Cell Technologies, 

07920). All datasets were generated on cells grown as non-adherent spheres that had been disassociated 

the day prior, replated as a suspension culture and collected at the end of passages 2-3 (14 days of 

culture). 

NSCs cultures derived from 3m, 12m and 29m old animals were assessed at the end of passages 

1 and 3 (Figure S1C). This analysis revealed that there were significantly fewer NSCs in 29m cultures 

compared to 3m cultures at passage 1, although this difference seemed to have been erased by passage 3 

(Figure S1C). 

  

Tissue isolation and chromatin preparation 

ChIP experiments on different tissues were performed as follows: olfactory bulbs were 

microdissected from 3 months, 12 months, and 29 months old males C57BL/6 mice (NIA colony at 

Charles Rivers) and weighed (Supplementary Table S1). Olfactory bulbs were pooled from 4-8 mice 

of the same age per biological replicate. Cerebella were dissected, weighed, and pooled from 2 mice of 

the same age per biological replicate. The entire upper left lobe of the liver was dissected and weighed 
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from an individual mouse and was used for a single biological replicate. Following removal of blood 

and aorta, the heart ventricles from an individual mouse were dissected and weighed from an individual 

mouse and served as a single biological replicate. All tissue samples were finely minced with a fresh 

razor blade, then resuspended in ice-cold PBS. Following mincing, tissues were crosslinked via addition 

of 1% formaldehyde for 15min at room temperature and quenched by the addition of 0.125M glycine for 

5min at room temperature. ChIP experiments on mouse primary NSC cultures were performed as 

previously described (Benayoun et al. 2014). Briefly, NSCs neurospheres (passages 2-3) 

(Supplementary Table S1) were dissociated 16-18 hours prior to collection. Cells were crosslinked at a 

density of 100,000 cells per mL in ice cold PBS with 1% formaldehyde for 9min at room temperature, 

and the crosslinking reaction was quenched with 0.125M glycine for 5min at room temperature. 

For tissues and cells, after the quenching step, all crosslinked samples were washed three times 

with 1X PBS containing protease inhibitors cocktail (Roche). Samples were then snap frozen in liquid 

nitrogen, and preserved at -80oC as dry cell or tissue pellets until the day of the IP. On the day of the IP, 

samples were resuspended in 1mL of SDS lysis buffer (50 mM Tris-Hcl pH7.5, 10 mM EDTA, 1% SDS 

in PBS at pH7.4) containing protease inhibitors cocktail (Roche). Chromatin was sheared with a Vibra-

Cell Sonicator VC130 (Sonics) 8 times [tissues] or 7 times [cells] for 30 seconds at 60% amplitude with 

probe model CV188, and then diluted 1:5 fold in RIPA buffer (1% NP-40, 0.5% Sodium deoxycholate 

in PBS, pH 7.4) containing protease inhibitors cocktail (Roche).  

 

Chromatin quantification and immunoprecipitation 

 For liver, heart, and cerebellum, chromatin content was measured and equalized for all ages to 

enable fair comparison across samples of a tissue. To measure the chromatin content of sonicated 

samples, samples were incubated with 0.2 µg/mL RnaseA (Life Technologies) for 1h at 37oC and 0.2 
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mg/mL Proteinase K (Life Technologies) for for 1h at 55oC, and crosslinks were reversed by incubation 

at 80oC for 2 hours. DNA was precipitated by the addition of 0.1 volume 3M sodium acetate, 2µg 

glycoblue (Life Technologies), and 2.5 volumes of 100% ethanol. The resulting DNA concentration was 

quantified by Nanodrop technology.  

We used 20µg of chromatin for the H3 ChIPs, 50µg for the H3K4me3 ChIPs, and respectively 

70µg (heart) or 100µg (liver and cerebellum) for the H3K27ac ChIPs. For the olfactory bulb, chromatin 

from approximately 30mg of tissue was used for immunoprecipitation with anti-H3 antibody, and 60mg 

was used for immunoprecipitation with anti H3K4me3 and H3K27ac antibodies. For adult NSCs, we 

used chromatin from ~250,000 cells for the H3 ChIP, ~750,000 cells for the H3K4me3 ChIP, and 

~1,000,000 for the H3K27ac ChIP. ChIP was performed as previously described (Webb et al. 2013; 

Benayoun et al. 2014). The corresponding amount of chromatin diluted in RIPA buffer containing 

protease inhibitors cocktail (Roche) [see above] was incubated overnight at 4oC with the following 

antibodies: 5µg H3K4me3 antibody (Active Motif #39159, lot #1609004), 5µg Histone H3 (Abcam 

#1791 lot #GR178101-1), and 7µg H3K27ac (Active motif #39133, lot #1613007). 

 

Next-generation sequencing ChIP library generation 

 For olfactory bulb libraries and the first set of NSCs libraries, libraries were generated with the 

Illumina Tru-Seq kit (#IP-202-1012) according to the manufacturer instructions. Briefly, repaired and 

adapter ligated DNA was size selected in range of 250-400bp and PCR amplified for 16 (H3), 17 

(H3K4me3) and 18-19 (H3K27ac) cycles. Because the Illumina Tru-Seq kit became backordered during 

the course of this study, we generated libraries using the NEBNext DNA library prep kit (E6040L) for 

the liver, heart, cerebellum, and the second set of H3 and H3K4me3 NSCs libraries, according to the 

manufacturer instructions. Repaired and adapter ligated DNA was size selected in range of 250-400bp 
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using agarose gel electrophoresis and PCR amplified for 14 (H3), 16-17 (H3K4me3) or 17-18 

(H3K27ac) cycles. Library quality was assessed using the Agilent 2100 Bioanalyzer (Agilent 

Technologies). Single-end 101bp reads were generated on Illumina HiSeq2000 machines, and 

subsequently analyzed with our standardized ChIP-seq data analysis pipeline [see below]. 

 

S2 cell culture for ChIP normalization control 

 We explored the use of spike-in for ChIP normalization in some of our samples. Indeed, ChIP-

seq from spiked-in chromatin from a different species (e.g. Drosophila) (termed ChIP-Rx for ChIP with 

reference exogenous genome (ChIP-Rx) has been shown to allow genome-wide quantitative 

comparisons of histone modification status across cell populations (Orlando et al. 2014). For example, 

the fraction of histone modification ChIP-seq reads (e.g. H3K4me3) corresponding to the species of 

interest (e.g. mouse) compared to the exogenous control (e.g. Drosophila) can be used to detect global 

differences in the amount of that histone modification between conditions of interest (e.g. aging). As 

several studies suggested that global levels of total histone proteins or specific histone modifications 

may change with aging (Feser et al. 2010; O'Sullivan et al. 2010; Liu et al. 2013), we thought that ChIP-

Rx could be helpful to account for this potential change. 

To this end, Drosophila S2 cells were grown at 25°C in Schneider’s media (Invitrogen) with 

10% heat inactivated fetal bovine serum and 1% penicillin/streptomycin/glutamine (Invitrogen).  Cells 

were crosslinked at a density of 1-2x106 cells/ml in 1X PBS with 1% formaldehyde for 8min at room 

temperature, and the reaction was quenched with 0.125M glycine for 5min at room temperature. Next, 

107 S2 cells were sonicated 7 times for 30s at 60% amplitude in 1mL of SDS lysis buffer (50 mM Tris-

Hcl pH7.5, 10 mM EDTA, 1% SDS in PBS pH7.4) containing protease inhibitors cocktail (Roche) using 

a Vibra-Cell Sonicator VC130. The S2 chromatin was added to heart, liver, and cerebellum tissues at a 
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ratio of 1:120µg of chromatin. For the second set of NSCs ChIPs, S2 chromatin was added at a ratio of 

1:4 cell ratio. ChIP was performed using the combination of probed tissue chromatin and S2 chromatin 

(Orlando et al. 2014). The first set of NSCs ChIPs and the Olfactory bulb ChIPs were performed, before 

the authors became aware of the possibility to perform ChIP-rx.  

However, we found that too few reads per spiked sample mapped to the Drosophila genome dm3 

in our libraries (<50,000 on average), which may explain why there was more variation n observed 

percentages of Drosophila reads between samples of the same age than between ages. For this reason, 

we did not end up using the S2 chromatin mappings to normalize our data in the processing pipeline. 

However, these reads are present in the ChIP and could be used for re-analysis.  

 

ChIP-Seq data processing 

For ChIP-seq data processing, 101 bp reads were trimmed using Trimgalore v0.3.1 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to retain high-quality bases with phred 

score of greater than 15. The trimming command was: Trim_galore -q 15 --stringency 3 --length 36 --

phred33 data_file.fastq. Reads were mapped to the mm9 mouse genome assembly using bowtie version 

0.12.7 (Langmead et al. 2009). PCR duplicates were removed using FIXSeq (fixseq-e2cc14f19764) 

(Hashimoto et al. 2014), which accounts for overdispersed per-base read count distributions using a 

nonparametric method which was shown to substantially improve the performance and precision of 

ChIP-seq analysis compared with existing alternatives (Hashimoto et al. 2014). Regions of significant 

enrichment were determined using MACS2 v2.0.8 (Zhang et al. 2008) using the --broad option to enable 

wider regions of enrichment to be detected. The ‘--keep-dup=all’ option was used to supersede MACS2 

basic duplicate removal method since the FIXSeq method had already been applied. Total H3 ChIP-seq 

samples were used to determine the local background of H3 modification ChIP-seq datasets. Significant 
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ChIP peaks of interest were annotated to the gene with the closest transcription start site in the mm9 

assembly using the HOMER suite (Heinz et al. 2010).  

 

H3K4me3 breadth remodeling analysis 

To compare changes in the breadth of H3K4me3 domains, we improved upon our previously 

developed pipeline to computationally adjust samples such that that the signal to noise ratio across all 

peaks is equalized between samples (Benayoun et al. 2014). We first created a reference peakset for all 

comparative analyses using pooled QC reads from all ages and replicates, and MACS2 (v2.08) as a peak 

calling software as highlighted above (hereafter referred to as ‘metapeaks’). To match the signal-to-

noise ratios across all aging samples, we then down-sampled reads separately in each H3K4me3 ChIP-

seq biological sample to match the coverage histogram across all samples over the metapeaks intervals, 

similar to (Benayoun et al. 2014). This procedure matches the “height” of the peaks from the peak 

caller’s point of view. The appropriate down-sampling rate that allows the coverage histogram of higher 

sensitivity H3K4me3 ChIP-seq samples to be equal or lower than that of the lowest sensitivity 

H3K4me3 ChIP-seq sample was determined by minimizing the p-value of Kolmogorov-Smirnov test 

(comparison to the sample with lowest H3K4me3 ChIP-seq sensitivity). In addition, to limit the effect of 

variations in input sample depth, we also matched the effective depth of H3 input samples to that of the 

lowest available sample. Final H3K4me3 domain breadth calls per samples were performed by using 

MACS2.08 with the same parameters as above. IntersectBed (BedTools-2.16.1) (Quinlan and Hall 2010) 

was used to estimate the length coverage of the sample peaks over the reference metapeaks. The goal of 

this pipeline is to increase the likelyhood that called gains/losses of breadth result from a change in 

breadth of the enriched region, and not simply from an underlying difference in H3K4me3 intensity. 
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Differential breadth was then estimated using the ‘DESeq2’ R package (DESeq2 1.6.3) (Love et al. 

2014).  

 

Dimensionality reduction techniques for data exploration 

To perform Multidimensional Scaling (MDS) analysis, we used a distance based on spearman 

rank correlation value (1-rho) between samples, which was then provided  to the core R command 

‘cmdscale’. Principal component analysis (PCA) was performed using the core R command ‘prcomp’. 

Dimensionality reduction techniques were applied to log2 transformed ‘DESeq2’ VST normalized 

values. 

 

H3K4me3 and H3K27ac intensity remodeling analysis 

Similar to above, we created a reference peak sets for all comparative analyses using pooled QC 

reads from all ages and replicates, and MACS2 (v2.08) as a peak calling software as highlighted above 

(hereafter referred to as ‘metapeaks’). Intensity signals for histone H3 modifications normalized to the 

local H3 occupancy were obtained using the ‘Diffbind’ R package (Diffbind v1.12.3) (Ross-Innes et al. 

2012). Normalized intensities were then used to estimate differential intensities as a function of age 

using the ‘DESeq2’ R package (DESeq2 v1.6.3) (Love et al. 2014).  

 

Differential nucleosome calling using total H3 ChIP-seq 

To compare changes in the local H3 deposition landscape, we used DANPOS v2.2 (Chen et al. 

2013) and DiNUP v1.3 (Fu et al. 2012) nucleosome-calling softwares. For higher confidence results, we 

considered nucleosomes to be significantly remodeled if the position were called differential by 

DANPOS (p < 1x10-15) and DiNUP (FDR < 0.05) following the same direction (i.e. increased vs. 
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decreased signal). Consistently with a previously published MNase study on mouse aging liver tissue 

(Bochkis et al. 2014), we found that significant nucleosome remodeling with chronological aging seems 

to be restricted to a limited number of loci. Based on our observations and previously published reports, 

it is possible that decreased nucleosome occupancy may only be a cell-type or context specific effect of 

aging. Differential nucleosome calls were used as features in our machine learning models [see below]. 

 

Cell and tissue isolation for RNA isolation 

For RNA isolation, we used a new cohort of aging male C57BL/6 mice (same ages than the 

ChIP-seq cohort), and RNA-seq datasets were generated at a later time than the ChIP-seq datasets (see 

Supplementary Table S1). 

For RNA extraction on tissues: olfactory bulbs were microdissected from 3 months, 12 months, 

and 29 months old males C57BL/6 mice and weighed, and tissues from 2 independent mice of the same 

age were pooled per biological replicate. Cerebellum samples were similarly dissected, weighed, and 

samples from 2 mice of the same age were pooled per biological replicate. For the liver, the leftmost part 

of upper left lobe of the liver was dissected and weighed from an individual mouse and was used for a 

single biological replicate. For the heart, following removal of blood, the bottom-most part of heart 

ventricles from an individual mouse were dissected, weighed and used as a single biological replicate. 

All tissue samples were flash-frozen in liquid nitrogen until further processing. Tissues were 

resuspended in 600µL of RLT buffer (RNAeasy plus mini kit, Qiagen) supplemented with 2-

mercaptoethanol as recommended by manufacturer, then homogenized on Lysing Matrix D 2mL tubes 

(MP Biomedicals) on a FastPrep-24 machine (MP Biomedicals) with a speed setting of 6. Heart tissue 

was homogenized for 4 times 30 seconds, and all other tissues were homogenized for 40 seconds. 
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Subsequent RNA extraction was performed using the RNAeasy plus mini kit (Qiagen) following the 

manufacturer’s instructions.  

Primary NSC neurospheres (passages 2-3) were dissociated 16-18 hours prior to collection and 

seeded in 12-well plates. Cells were spun down and collected in RLT buffer (RNAeasy plus mini kit, 

Qiagen) supplemented with 2-mercaptoethanol as recommended by manufacturer. 

 

RNA-seq library preparation 

 1µg of total RNA was combined to 2µL of a 1:100 dilution of ERCC RNA Spike-in mix 

(Thermo-Fisher scientific) in nuclease-free water, as recommended by the manufacturer. The resulting 

mix was then subjected to rRNA depletion using the NEBNext rRNA Depletion Kit (New England 

Bioloabs), according to the manufacturer’s protocol. Strand specific RNA-seq libraries were then 

constructed using the SMARTer® Stranded RNA-Seq Kit (Clontech # 634836), according to the 

manufacturer’s protocol. Paired-end 75bp reads were generated on the Illumina NetxSeq 500 platform, 

and subsequently analyzed with a standardized RNA-seq data analysis pipeline (described below). 

 

RNA-seq analysis pipeline 

Paired-end 75bp reads were trimmed using Trimgalore v0.3.1 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to retain high-quality bases with phred 

score of greater than 15 and a remaining length > 35bp. Read pairs were then mapped to the UCSC mm9 

genome build using STAR v2.4.0j (Dobin et al. 2013). Read counts were assigned to genes using the 

featureCounts functionality of ‘subread’ (subread-1.4.5-p1) (Liao et al. 2014). Read counts were 

imported into R to estimate differential gene expression as a function of age using the ‘DESeq2’ R 

package (DESeq2 1.6.3) (Love et al. 2014).  
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To map repetitive element expression, we used the TE-transcript 1.5.1 software (Jin et al. 2015), 

with mm9 repeat masker data downloaded from the UCSC table browser. Read counts were imported 

into R to estimate differential gene expression as a function of age using the ‘DESeq2’ R package 

(DESeq2 1.6.3) (Love et al. 2014). We also used the ‘analyzeRepeats.pl’ functionality of the HOMER 

software (Heinz et al. 2010). In that specific case, read counts were imported into R to estimate 

differential gene expression as a function of age using the ‘DESeq2’ R package (DESeq2 1.16.1) (Love 

et al. 2014). 

 

Machine-Learning analysis 

Machine-learning models were built for each tissue. No models were built in the NSCs since no 

gene was found to be significantly dysregulated by RNA-seq. We built classification models in each 

tissue independently using 4 different classification algorithms as implemented through R package 

‘caret’ (caret v.6.0-47). Classification algorithms for neural nets (NNET; ‘pcaNNet’) are directly 

implemented in the ‘caret’ package. Auxiliary R packages were used with ‘caret’ to implement random 

forests (RF; ‘randomForest’ v.4.6-12), gradient boosting (GBM; ‘gbm’ v.2.1.1) and radial support vector 

machines (SVM; kernlab v.0.9-25). ‘Caret’ was allowed to optimize final model parameters on the 

training data using 10-fold cross validation. Accuracies, sensitivities and specificities for all classifiers 

in their cognate tissue were estimated using a test set of randomly held out 1/3 of the data obtained using 

the ‘createDataPartition’ function in ‘caret’ package (Supplementary Table S3). Feature importance 

estimation was only done using random forests and gradient-boosted trees since other algorithms do not 

natively allow for it. The Gini score for feature importance was computed by ‘caret’ for each feature in 

the GBM and RF models. 
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For each expressed gene in each tissue, we extracted two types of ‘features’: (i) dynamic 

features, which encode changes to the chromatin landscape with age, and (ii) static features, which 

reflect the status of the chromatin and transcriptional landscape in young healthy animals. For dynamic 

features, we included: number of H3 nucleosomes with increased occupancy between 3 and 29m, 

number of H3 nucleosomes with decreased occupancy between 3 and 29m, maximum log2 fold change 

in H3 occupancy between 3 and 29m, slope of H3K4me3 intensity change at annotated promoter with 

aging, slope of H3K27ac intensity change at annotated promoter with aging, slope of H3K4me3 breadth 

quantile change at annotated promoter with aging, and slope of H3K27ac intensity at stitched enhancers 

with aging (i.e. Enhancer score).  

For static features using the data we generated, we included the enhancer presence and type (i.e. 

None, Typical or Super), the distance of the closest Super Enhancer to the transcriptional start site of the 

gene, the broad H3K4me3 domain status (i.e. None, Typical or Broad), the H3K4me3 breadth quantile 

in the young sample, the breadth of the broadest H3K4me3 domain associated to gene in the young 

sample, the average promoter intensity for H3K4me3 and H3K27ac in the young samples (promoters 

defined as -300bp;+300bp with regards to the transcriptional start sites defined in mm9 build, 

downloaded from the UCSC genome browser on 2016/1/21), the Enhancer score in the young sample 

(as defined in (Hnisz et al. 2013)). In addition, we took advantage of the mouse ENCODE datasets 

(Shen et al. 2012; Yue et al. 2014) in the same tissues (heart, liver, cerebellum and olfactory bulb) in 2 

months old mice to select additional potentially informative features (see complete list of datasets 

Supplementary Table S2A). Using the H3K4me1 and H3K27me3 ENCODE ChIP-seq datasets, we 

collected the average promoter intensity for these marks (same promoter definition as above). In 

addition, we intersected our young H3K4me3 ChIP-seq datasets to the H3K27me3 peaks to identify 

whether a gene had a potentially bivalent domain (i.e. with overlapping H3K27me3 and H3K4me3 
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peaks) (Bernstein et al. 2006) in the young animals or not. Using the Pol2 ChIP-seq datasets, we 

included the number of Pol2 peaks associated with each gene, the absolute distance of the closest Pol2 

peak to the transcriptional start site of the gene, the maximal MACS2 score for Pol2 associated to the 

gene, the average promoter intensity for Pol2. We also extracted the Traveling Ratio (TR) of Pol2, 

which gives a measure of Pol2 pausing, as described before (Benayoun et al. 2014). Using the CTCF 

ChIP-seq datasets, we included the number of CTCF peaks associated with each gene, the absolute 

distance of the closest CTCF peak to the transcriptional start site of the gene, the maximal MACS2 score 

for CTCF associated to the gene, and the average promoter intensity for CTCF. We also included the 

average promoter intensity for DNAseI signals, which quantifies how accessible the gene promoter is to 

the transcriptional machinery. Finally, we included several DNA sequence features from the mm9 build 

associated to each gene: the presence of a CpG island, the CG and CpG percentage in promoters 

computed using HOMER, as well as the number of exons in each gene.  

Because absolute gene expression levels can influence the ability of differential gene expression 

pipelines to identify differentially expressed genes (Tarazona et al. 2011), we also included the average 

expression level of the genes in the young samples, expressed in FPKM (fragments per read per 

million). This should allow us to take into account potential non-biological effects (i.e. effects due to 

differential expression pipelines) in our models. Any additional feature that is significantly predictive of 

differential gene expression with age should then be associated independently of the expression level 

effect, since the expression level is taken into account by the model at the same time when evaluating 

the importance of features. 

We then trained machine-learning classification models in two different ways: (i) either only 

comparing genes called by DESeq2 as up vs. down with age at FDR < 10% (2-class models) or (ii) 

comparing genes called by DESeq2 as up, down, or unchanged with age at FDR < 10% (3-class models) 
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(Figure 3 and S3). These 2 types models allow us to ask different questions: the former interrogates 

whether are there chromatin differences between upregulated and downregulated genes, without taking 

the rest of the genes into account, whereas the latter also attempts to identify differences between the 

genes that change and the ones that do not change during aging. To note, 2-class models systematically 

outperformed 3-class models in terms of model accuracy (Figures 3B,C and S3B,C; Supplementary 

Table S3), which is consistent with the increased complexity of a classification problem with the 

number of classes to discriminate.  

The relative number of genes that change transcriptionally with age (< 500) is low compared to 

the number of expressed genes (>3000) (class sizes in each tissues can be found in Supplementary 

Table S3). Thus, to avoid biases in the 3-class classification output due to the imbalanced number of 

genes called as transcriptionally changed and unchanged with aging, we generated a list of unchanged 

genes for each sampling that are equal in number to the changed genes in the training set of the cognate 

tissue (e.g. sample 500 unchanged genes to be compared to 500 changed genes in each iteration). We 

repeated the sampling procedure 100-250 times to eliminate random sampling biases (NNET and SVM: 

100 samplings; RF, GBM: 250 samplings). Notably, to improve the signal-to-noise ratio and decrease 

the inclusion of false negatives (i.e. genes called as “unchanged” because of lack of statistical power) in 

our dataset in the learning and testing of the machine-learning, the constant class was restricted to genes 

with a log2-fold change (as called by DEseq2) within half a standard deviation of the log2-fold change 

distribution both above and below 0 (no change). 

 

Functional enrichment analysis using the minimum hypergeometric test 

To perform functional enrichment analysis, we leveraged the minimum HyperGeometric (mHG) 

distribution, which has been spearheaded through the GOrilla enrichment tool (Eden et al. 2007; Eden et 
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al. 2009). The mHG tests is performed using a ranked list of genes, and allows computing of an exact p-

value for the observed enrichment, taking threshold multiple testing into account without the need for 

simulations, which enables rigorous and rapid statistical analysis of thousands of genes and thousands of 

functional enrichment terms (Eden et al. 2007; Eden et al. 2009). We used the R implementation of the 

mHG distribution (‘mHG’ v1.1 package) to run a minimum-hypergeometric (mHG) test as described in 

(Eden et al. 2007) on gene sets from MSigDB hallmarks (Liberzon et al. 2015), KEGG 2017 (Kanehisa 

et al. 2017), obtained using KEGG API, after excluding disease pathways so as to focus on core 

biological processes (see KEGG pathways list with and without disease pathways removed in 

Supplementary Table S5B,C), and transcription factor loss-of-function targets compiled by EnrichR 

(Kuleshov et al. 2016). The MSigDB hallmarks are highly curated datsets that allow for clean 

identification of modified pathways, KEGG is an independent curated list of biological pathways, and 

the EnrichR loss-of-function targets is an unbiased reository derived from published loss-of-function 

experiments allows to identify unbiasedly potential upstream regulators of observed transcriptional 

changes with age. 

For analysis of function enrichments associations on chromatin datasets, we ranked domains to 

run the mHG tests based on the intensity or breadth of the mark of interest, and annotated each domain 

to the gene with the closest transcriptional start site. Genes were often associated to more than one 

chromatin domain, and only the most extreme domain (i.e. more intense, or broadest) were retained 

when running the mHG enrichment test. 

 

Ingenuity Pathway Analysis 

Upstream regulator analysis was performed using QIAGEN’s Ingenuity Pathway analysis (IPA 

QIAGEN Redwood City) software, using the genes that passed the filter in our datasets as reference 
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genome, the cutoff of 0.05 for FDR-corrected p-values and species parameter was restricted to mouse. 

Results in Supplementary Table S5 are shown for gene sets that passed significance in IPA in at least 4 

of the analyzed sets (each tissues and tissue-independent analysis). 

 

Tissue RNA-seq deconvolution using CIBERSORT  

Raw data from RNA-seq datasets from purified mouse cell types was downloaded from the SRA 

repository. All samples were processed using a standardized pipeline, which consisted of mapping with 

STAR v2.4.0j (Dobin et al. 2013) to the mm9 assembly, and summarization of reads over mm9 genes 

using the featureCounts functionality of the subread software suite (subread-1.4.5-p1) (Liao et al. 2014). 

Read counts from all samples were imported into R for further processing and normalization. 

First, single-cell RNA-seq datasets were aggregated into pseudo-bulks by adding reads coming 

from 4-150 cells of the same cell type from the same study (depending on sequencing depth and number 

of available cells). Next, any bulk or pseudo bulk sample with more than 18,000 genes without any read 

detected were eliminated from further processing as too low coverage. Then, all retained quality-

checked samples were normalized using the DESeq2 variance stabilizing transformation (VST), and 

subjected to log2 transformation before upload to the CIBERSORT portal (Newman et al. 2015). The 

CIBERSORT website was used with default parameters to build the signature matrix and to analyze 

RNA-seq samples from cell mixtures. 

To perform the deconvolution process, CIBERSORT requires an input matrix of reference gene 

expression signatures (or ‘signature matrix’), collectively used to estimate the relative proportions of 

each cell type of interest. To provide this reference framework for CIBERSORT, we curated >1500 

RNA-seq datasets of purified mouse cell types (Figure S5A; Supplementary Table S2B). After 

undergoing standardized processing, these datasets were used to build a signature matrix for 
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CIBERSORT (Supplementary Table S7A). To test the accuracy of the trained signature matrix, we 

randomly withheld one RNA-seq sample per cell type with at least 3 biological samples for validation. 

We verified that CIBERSORT was generally sensitive enough to detect various cell types on their own, 

and within in silico mixes of cell types expected to co-occur in tissues (Figure S5B-C; Supplementary 

Table S7B). Using CIBERSORT and the trained signature matrix, we could detect a 

macrophage/microglia signature in the brain tissue of Alzheimer’s mouse models with known increased 

inflammatory cell content (Gjoneska et al. 2015; Iaccarino et al. 2016) (Figure S5D; Supplementary 

Table S7C). However, when applied to our RNA-seq datasets, CIBERSORT did not identify significant 

change in the presence of inflammatory cell signatures, and no strong trend could be observed (Figure 

S5E; Supplementary Table S7D).  

 

 

Rat and turquoise killifish RNA-seq processing 

Tissue aging RNA-seq datasets from female and male rats were obtained from the Rat Bodymap 

project (GEO accession number GSE53960) (Yu et al. 2014). Reads were mapped using Kallisto 

(version 0.43.0) (Bray et al. 2016). DEseq2 normalized fold-changes were then used to estimate 

differential gene expression as a function of age using the ‘DESeq2’ R package (DESeq2 1.6.3). 

Orthology tables between rat and mouse genes for aging trends comparison were obtained from 

ENSEMBL Biomart (2017/05/15). 

The African turquoise killifish (Nothobranchius furzeri, wild-derived MZM-0410 strain) aging 

RNA-seq dataset was obtained from GEO (accession number: GSE69122) (Baumgart et al. 2014; 

Baumgart et al. 2016). Reads were mapped to African turquoise killifish reference transcriptome (GRZ) 

from NCBI Annotation Release 100 
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(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Nothobranchius_furzeri/100) using kallisto. 

Read pseudo-counts for each transcript were merged and read counts per gene were obtained using 

Bioconductor R package ‘tximportData’ (Love M, 2017, version 1.6.0). Linear modeling of the 

differential expression analysis from 5-weeks to 39-weeks old tissues was performed using the R 

‘DESeq2’ package as described above. To note, biological replicate clustering by hierarchical clustering 

and PCA was not very clear, suggesting potential unknown covariates in the dataset that we could not 

model in our analyses. High confidence orthologs between African turquoise killifish and mouse genes 

were obtained using bidirectional best BLASTp analysis using longest protein sequences for each of the 

two species (E-value < 10-3).  

 

Human RNA-seq analysis with aging (GTEx) 

Read counts of human tissue RNA-seq with aging per genes were obtained from from the GTEx 

consortium (v6p version, downloaded 2016/11/22) (Mele et al. 2015). Genotyping principal 

components, sex, age, as well as other provided sample meta-data (i.e. “RIN” [RNA integrity score], 

“Ischemic time”, “Fixation time”, “RNA batch”), were also obtained at the time for differential 

expression analysis. To allow for integration of the discretized age variable into quantitative models, age 

ranges were converted to a single age at the middle point of the coded range (e.g. "20-29" coded as 25 

years, "50-59" coded as 55 years). DEseq2 normalized fold-changes were then used to estimate 

differential gene expression as a function of age (DESeq2 1.6.3). The GTEx v6p count data on genes is 

reported according to Gencode 19 models, which correspond to Ensembl 74/75 builds (NCBI assembly 

GRCh37.p13). Using the Biomart mirror for the Ensembl 75 build, we obtained the orthology table 

between human and mouse genes for aging trend comparisons. We also obtained an independent human 

liver aging transcriptome dataset (accession GSE61260; “GSE61260_datLiverNormalizedExpr.csv”) 
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(Horvath et al. 2014), along with accompanying sample meta-data (sex, age, BMI, disease status). R 

package ‘limma’ normalized fold-changes were then used to estimate differential gene expression as a 

function of age (limma 3.32.10). 

 

Code will be available on GitHub repository. 

 

Data Access 

All new raw sequencing data generated in this study have been deposited at SRA, accession 

SRP057387 (BioProject PRJNA281127). All accession numbers of previously published datasets can be 

found in Supplementary Table S2. 
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Figure Legends 

Figure 1: A genome-wide epigenomic and transcriptomic landscape of in four tissues and one cell 

type during mouse aging 

(A) Experimental data setup. Also see Supplementary Table S1. (B) Example UCSC genome browser 

region showing tracks of generated datasets in cerebellum tissue. (C-F) Multidimensional Scaling 

analysis results across datasets based on RNA expression (C), H3K4me3 peak intensity (D), H3K4me3 

peak breadth (E), or H3K27ac peak intensity at all peaks (F). 

 

Figure 2: Separation of samples across tissues and cell types as a function of age 

Multidimensional Scaling analysis results across samples derived from specific tissues, Liver and 

Cerebellum, based on RNA expression (A-B), H3K4me3 peak intensity (C-D), H3K4me3 peak breadth 

(E-F), H3K27ac peak intensity (all peaks: G-H; Super Enhancers only: I-J). 

 

Figure 3: Machine-learning analysis reveals that changes in enhancer score and H3K4me3 domain 

breadth with age can predict transcriptional aging 

(A) Scheme of the 3-class machine learning pipeline. Nnet: neural network, svm: support vector 

machine, rf: random forest, gbm: gradient boosting machine. (B-C) Balanced classification accuracy 

over the 3-classes (i.e. upregulated, downregulated, and unchanged genes) cross tissues for Random 

Forest models (B) or Gradient Boosting models (C). The accuracy of the model trained in a specific 

tissue on the same tissue (e.g. the liver-trained model on liver data) is measured using held-out 

validation data, and for cross-tissue validation, the entire data of the tested tissue was used. ‘Random’ 

accuracy is displayed to illustrate the accuracy of a meaningless model (~50%). All tests were 

significantly more accurate than random. The robustness of the prediction is supported by the fact that 
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samples for RNA and chromatin profiling were collected from independent mice at 2 independent times 

(Supplementary Table S1). Balanced accuracy across the 3-classes is reported. (D-E) Feature 

importance from Random Forest models (D; Gini score and mean decrease in accuracy) or Gradient 

Boosting models (E; Gini score). High values indicate important predictors. Also see analysis of 2-class 

models (i.e. upregulated vs. downregulated genes) in Figure S3. Note that 2-class models, though 

containing less biological information, outperformed 3-class models, which is consistent with the 

increased complexity of a classification problem with the number of classes to discriminate.  

 

Figure 4: Age-misregulated pathways reveal the activation of an innate immune signature 

(A-B) Venn diagram for the overlap of significantly upregulated (A) or downregulated (B) genes with 

aging in each tissue called by DESeq2 at FDR < 5%. (C-F) Functional enrichments using the minimum 

hypergeometric [mHG] test at for differential RNA expression (C-D), for differential H3K4me3 

intensity (E), for H3K4me3 breadth (F) and for differential H3K27ac intensity (G). Enriched pathways 

were plotted if 4 out of the 6 tests (RNA) or 3 out of the 5 tests (chromatin marks) were significant 

(FDR < 5%). (H) Heatmap of expression for repetitive elements with significant differential expression 

with aging (TE-transcript quantification and DESeq2 statistical test at FDR < 5%). 

 

Figure 5: Age-related transcriptional deregulation from mouse are overall conserved across 

vertebrate species 

(A) Functional enrichments using the mHG test at for differential RNA expression with aging in mouse, 

rat, human and African turquoise killifish samples. The mouse data is a subset of the panel shown in 

Figure 4C and is plotted as a comparison point. (B) Log2 Fold Change per unit of time during aging for 

genes orthologous to differentially expressed mouse genes in this study in rat, human and African 
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turquoise killifish samples [see methods]. The mouse data is plotted for comparison. Significance in on 

sample one-sided Wilcoxon test the fold changes and 0 (i.e. no change with age). Only data from males 

is plotted here. Data with the contribution of female samples (when available) is in Figure S6A.  
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Supplementary Figure legends 

Figure S1: Mouse aging multi-omics dataset across 4 tissues and 1 cell type. 

(A) Summary of the datasets generated in this study. Also see Supplementary Table S1. (B) Liver

histology of 3 months (i, iv), 12 months (ii, v), and 29 months old (iii, vi) C57BL/6 mice paired to the 

RNA-seq cohort from this study. Tissue sections were stained with Hematoxylin and eosin, and 

magnification is 2x (Upper panels) and 40x (lower panels). With age, undulation of the hepatic capsule 

(iii) and perivascular lymphoid aggregates (ii, iii - black arrows) are evident compared to 3-month old

mice (i). Mild (v) and moderate (vi) increases in cell (anisocytosis) and nuclear size (anisokaryosis) 

were present in old individuals compared to 3-month old mice (iv). Additional histologic findings at 29 

months (vi) included bile duct hyperplasia (white arrow), extramedullary hematopoiesis (black 

arrowheads), increased sinusoidal cellularity, and increased numbers of lipid-laden Ito cells. Single and 

double asterisks denote central veins and portal triads, respectively. (C) Properties of primary NSCs 

cultures with increasing animal age at the end of passages 1 and 3. (D-E) Multidimensional Scaling 

analysis results across datasets based on the breadth of the top 5% broadest H3K4me3 domains (D), or 

H3K27ac peak intensity at Super Enhancers only (E). (F-G) Principal Component Analysis results 

across datasets based on RNA expression (F), or H3K4me3 peak breadth (G).  

Figure S2: Separation of samples across tissues and cell types as a function of age 

 (continued) 

Multidimensional Scaling analysis results across samples derived from specific tissues, Heart, Olfactory 

Bulb and primary NSCs cultures, based on RNA expression (A-C), H3K4me3 peak intensity (D-F), 

H3K4me3 peak breadth (G-I), H3K27ac peak intensity (all peaks: J-L; Super Enhancers only: M-O). 

Corresponding example of PCA analysis results across liver samples (P-T). 
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Figure S3: Machine-learning analysis reveals that changes in enhancer score and H3K4me3 

domain breadth with age can predict transcriptional aging (2-class classification) 

(A) Scheme of the 2-class machine learning pipeline. Nnet: neural network, svm: support vector 

machine, rf: random forest, gbm: gradient boosting machine. (B-C) Classification accuracy over the 2-

classes (i.e. upregulated vs. downregulated genes) cross tissues for Random Forest models (B) or 

Gradient Boosting models (C). The accuracy of the model trained in a specific tissue on the same tissue 

(e.g. the liver-trained model on liver data) is measured using held-out validation data, and for cross-

tissue validation, the entire data of the other tissue was used. ‘Random’ accuracy is displayed to 

illustrate the accuracy of a meaningless model (~50%). All tests were significantly more accurate than 

random. (D-E) Feature importance from Random Forest models (D; Gini and mean decrease in 

accuracy) or Gradient Boosting models (E; Gini). High values indicate important predictors. See 

analysis of 3-class models in Figure 3. Note that 2-class models systematically outperformed 3-class 

models, which is consistent with the increased complexity of a classification problem with the number 

of classes to discriminate.  

 

Figure S4: Age-related transcriptomic and epigenomic remodeling  

(A) Table of the number of genes or loci with significant age-remodeling across cells and tissues 

(FDR<5%). (B-D) UCSC Genome Browser Shots for example significantly remodeled loci in the liver 

samples. (E) Circular genome plot showing the genomic distribution of regions with significantly 

remodeled H3K4me3 breadth, H3K4me3 intensity or H3K27ac intensity in Cerebellum and Liver. Note 

that there is no obvious clustering on a specific chromosome. (F) Heatmap of genes with significant 

tissue-independent transcriptional changes with aging plotted in each of the tissues as called by DESeq2 
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with a significance threshold of FDR < 5%. Also see Supplementary Table S4. (G-I) Functional 

enrichments using the mHG test at for differential RNA expression (C), for differential H3K4me3 

intensity (D), and for differential H3K27ac intensity (E). Note that none of the KEGG 2017 pathways 

were significantly enriched using gene with differential H3K4me3 breadth. Enriched pathways are 

plotted if 4 out of the 6 tests (RNA) or 3 out of the 5 tests (chromatin marks) were significant (FDR < 

5%). 

Figure S5: CIBERSORT pipeline and signature matrix validation 

(A) Scheme of the CIBERSORT analysis pipeline. The signature matrix was built using publicly

available RNA-seq datasets derived from pure cell types that are expected in the tissues under study 

(Supplementary Table S2B). (B) Heatmap of predicted cell type fractions on held-out purified RNA-

seq samples using trained CIBERSORT Signature Matrix (see methods). (C) Heatmap of predicted cell 

type fractions on RNA-seq in silico mixtures of known cell types using trained CIBERSORT Signature 

Matrix (see methods).  

(D) RNA deconvolution analysis of hippocampus RNA-seq datasets derived from in mouse models with

known increased inflammatory cell content (in particular microglia) and activity. (Left panel) CK-p25 

Alzheimer’s mouse model (Gjoneska et al. 2015); (Right panel) 5XFAD Alzheimer’s mouse model 

following forced 40Hz gamma oscillations (Iaccarino et al. 2016). Significance in one-sided Wilcoxon 

test. Also see Supplementary Table S7C. (E) RNA deconvolution analysis of tissue aging RNA-seq 

datasets. Significance in one-sided Wilcoxon test between 3 months and 29 months samples. Linear 

regression tests as a function of age were also non-significant. Also see Supplementary Table S7D. (F-

G) Boxplots of DEseq2 normalized counts (log2 scale) for expression of immune marker genes 

Ptrpc/CD45 and Itgam/CD11b. 
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Figure S6: Conservation of age-related transcriptional deregulation in vertebrates  

(A) Functional enrichments using the mHG test at for differential RNA expression with aging in mouse, 

rat, human and African turquoise killifish samples. The mouse data is a subset of the panel shown in 

Figure S4G and is plotted as a comparison point. (B) Log2 Fold Change per unit of time during aging 

for genes orthologous to differentially expressed mouse genes in this study in rat and human (GTEX) 

samples, combining male and female samples. Significance in on sample one-sided Wilcoxon test the 

fold changes and 0 (i.e. no change with age). (C-D) Log2 Fold Change per unit of time during aging for 

genes orthologous to differentially expressed mouse genes in this study in human samples (GSE61260) 

only in males (C) or in combined male and female samples (D) after inclusion of metabolic parameters 

as covariates in limma (i.e. BMI and liver disease status). Significance in on sample one-sided Wilcoxon 

test the fold changes and 0 (i.e. no change with age).  

 

Supplementary Tables 

Supplementary Table S1: Sample design and biological information 

Supplementary Table S2: Accession numbers of publicly available datasets used in this study 

Supplementary Table S3: Summary of machine-learning accuracy, specificity and sensitivity across 

algorithms  

Supplementary Table S4: Genes with significant tissue-independent transcriptional changes with aging 

as called by DESeq2 with a significance threshold of FDR < 5%. 

Supplementary Table S5: Functional annotation notes (IPA and KEGG) 

Supplementary Table S6: HOMER analysis of repeat element transcriptional changes with aging. 

Supplementary Table S7: Results CIBERSORT RNA deconvolution algorithm. 
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