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Abstract 31 

Predicting evolutionary change poses numerous challenges.  Here we take advantage 32 

of the model bacterium Pseudomonas fluorescens in which the genotype-to-33 

phenotype map determining evolution of the adaptive “wrinkly spreader” (WS) type 34 

is known.  We present mathematical descriptions of three necessary regulatory 35 

pathways and use these to predict both the routes that evolution follows and the 36 

expected mutational targets.  To test predictions, mutation rates and targets were 37 

determined for each pathway.  Unanticipated mutational hotspots caused data to 38 

depart from predictions but the new data were readily incorporated into refined 39 

models.  A mismatch was observed between the spectra of WS-causing mutations 40 

obtained with and without selection due to low fitness of previously undetected WS-41 

causing mutations. Our findings contribute toward the development of mechanistic 42 

models for forecasting evolution, highlight current limitations, and draw attention to 43 

challenges in predicting locus-specific mutational biases and fitness effects.  44 
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Introduction 45 

Adaptation requires the realization of beneficial mutations.  As self-evident as this 46 

maybe, predicting the occurrence of beneficial mutations and their trajectories to 47 

improved fitness is fraught with challenges (Lässig, et al. 2017).  Nonetheless 48 

progress has been made for phenotypically diverse asexual populations subject to 49 

strong selection.  Effective approaches have drawn upon densely sampled sequence 50 

data and equilibrium models of molecular evolution to predict amino acid preferences 51 

at specific loci (Luksza and Lassig 2014).  Predictive strategies have also been 52 

developed based on selection inferred from the shape of coalescent trees (Neher, et al. 53 

2014).  In both instances the models are coarse-grained and sidestep specific 54 

molecular and mutational details.   55 

 56 

There is reason to by-pass molecular details: mutation, being a stochastic process, 57 

means that for the most part details are likely to be idiosyncratic and unpredictable. 58 

But an increasing number of investigations give reason to think otherwise – that 59 

adaptive molecular evolution might follow rules (Pigliucci 2010; Stern 2013; Laland, 60 

et al. 2015).  This is particularly apparent in studies of parallel molecular evolution 61 

(Colosimo, et al. 2005; Woods, et al. 2006; Ostrowski, et al. 2008; Flowers, et al. 62 

2009; Meyer, et al. 2012; Tenaillon, et al. 2012; Zhen, et al. 2012; Herron and 63 

Doebeli 2013; Galen, et al. 2015; Bailey, et al. 2017; Kram, et al. 2017; Stoltzfus and 64 

McCandlish 2017).  65 

 66 

A standard starting position for predicting adaptive evolution recognises the 67 

importance of population genetic parameters including mutation rate, generation time, 68 

population size, selection and more recently information on the distribution of 69 

beneficial fitness effects, but these factors alone leave unconsidered mechanistic 70 

details that arise from the genotype-to-phenotype map and from mutational biases.  71 

To what extent do these details matter?   72 

 73 

Mutations arise randomly with respect to utility, but genetic architecture can influence 74 

the translation of mutation into phenotypic variation: the likelihood that a given 75 

mutation generates phenotypic effects depends on the genotype-to-phenotype map 76 

(Alberch 1991; Gompel and Prud'homme 2009; Stern and Orgogozo 2009; Rainey, et 77 
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al. 2017). The function of gene products and their regulatory interactions thus 78 

provides information on likely mutational targets underpinning particular phenotypes.  79 

This is evident when considering a hypothetical structural determinant subject to both 80 

positive and negative regulation and whose over-expression generates a given 81 

adaptive phenotype.  Assuming a uniform distribution of mutational events, mutations 82 

in the negative regulator (and not the positive activator) will be the primary cause of 83 

the adaptive phenotype.  This follows from the fact that loss-of-function mutations are 84 

more common than gain-of-function mutations.  Indeed, an emerging rule indicates 85 

that phenotypes determined by genetic pathways that are themselves subject to 86 

negative regulation are most likely to arise by loss-of-function mutations in negative 87 

regulatory components (McDonald, et al. 2009; Tenaillon, et al. 2012; Lind, et al. 88 

2015; Fraebel, et al. 2017).     89 

 90 

Mutation is not equally likely at each nucleotide of a given genome (Lind and 91 

Andersson 2008; Lynch 2010; Seier, et al. 2011; Foster, et al. 2015; Reijns, et al. 92 

2015; Sankar, et al. 2016; Stoltzfus and McCandlish 2017).  Numerous instances of 93 

mutational bias have been reported.  Prime examples are simple sequence repeats 94 

such as homopolymeric nucleotide tracts or di-, tri- and tetrameric repeats that mutate 95 

at high frequency via slipped strand mispairing (Levinson and Gutman 1987).  These 96 

readily identifiable sequences define contingency loci in obligate human pathogens 97 

and commensals (Moxon, et al. 1994) and are widespread in eukaryotic genomes 98 

(Tautz and Renz 1984).  The behaviour of contingency loci can be further modulated 99 

by defects in components of methyl-directed mismatch repair systems (Richardson 100 

and Stojiljkovic 2001; Martin, et al. 2004; Hammerschmidt, et al. 2014; Heilbron, et 101 

al. 2014).   102 

 103 

Certain palindromic structures also lead to mutational bias (Viswanathan, et al. 2000; 104 

Lovett 2004) and promote amplification events including that increase mutational 105 

target size (Roth, et al. 1996; Kugelberg, et al. 2010; Reams and Roth 2015), 106 

transition-transversion bias (Stoltzfus and McCandlish 2017) and elevated mutation 107 

rates at CpG sites (Galen, et al. 2015) can also skew the distributions of mutational 108 

effects.  Further bias arises from the chromosomal neighbourhood of genes under 109 

selection (Steinrueck and Guet 2017), the location of genes with regard to interactions 110 

with DNA replication/transcription machineries (Sankar, et al. 2016), and 111 
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environmental factors that affect not only mutation rate but also the spectra of 112 

mutational events (Krasovec, et al. 2017; Maharjan and Ferenci 2017; Shewaramani, 113 

et al. 2017).  114 

 115 

Beyond the genotype-to-phenotype map and mutational biases, predicting adaptive 116 

evolution requires ability to know a priori the fitness effects of specific mutations.  At 117 

the present time there is much theoretical and empirical interest in the distribution of 118 

fitness effects (DFE) (Eyre-Walker and Keightley 2007) — and particularly the DFE 119 

of beneficial mutations (Orr 2005) — because of implications for predicting the rate 120 

of adaption and likelihood of parallel evolution (de Visser and Krug 2014), but 121 

knowledge of the shape of the distribution is insufficient to connect specific mutations 122 

to their specific effects, or to their likelihood of occurrence.  Such connections require 123 

a means of knowing the connection between mutations and their environment-specific 124 

fitness effects.  This is tall order.  A starting point is to understand the relationship 125 

between all possible mutational routes to a particular phenotype and the set that are 126 

realised by selection.   127 

 128 

Here we take a bacterial system in which the genetic pathways underpinning 129 

evolution of the adaptive “wrinkly spreader” (WS) type are known and use this to 130 

explore the current limits on evolutionary forecasting.  Pseudomonas fluorescens 131 

SBW25 growing in static broth microcosms rapidly depletes available oxygen 132 

establishing selective conditions that favour mutants able to colonise the air-liquid 133 

interface.  The most successful mutant-class encompasses the WS types (Ferguson, et 134 

al. 2013; Lind, et al. 2017b).  These types arise from mutational activation of 135 

diguanylate cyclases (DGCs), cause over-production of the second messenger c-di-136 

GMP (Goymer, et al. 2006; McDonald, et al. 2009), over-production of an acetylated 137 

cellulose polymer (Spiers, et al. 2002; Spiers, et al. 2003) and ultimately formation of 138 

a self-supporting microbial mat (Figure 1A).  139 
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 140 
Figure 1. The Pseudomonas fluorescens SBW25 wrinkly spreader model. (A) 141 

Selection for access to oxygen allows wrinkly spreader (WS) mutants to invade the 142 

ancestral smooth (SM) population in static microcosms. WS mutants form a mat at 143 

the air-liquid interface through increased expression of the main structural 144 

component, cellulose, encoded by the wss operon. Expression of cellulose is 145 

controlled by the second messenger c-di-GMP, which is produced by diguanylate 146 

cyclases (DGCs). Mutations in the wsp, aws and mws operons that activate their 147 

respective DGCs (WspR, AwsR, MwsR) are the primary mutational pathways to WS. 148 

(B) When a reporter construct connecting expression of the wss operon to resistance 149 

to kanamycin is used under shaken non-selective conditions, WS mutants can be 150 

isolated without the biasing influence of natural selection. This allows estimation of 151 

the mutation rate to WS and an unbiased spectrum of mutations defining the 152 

mutational target. Fitness can then be assayed in competition with a common 153 

reference strain and the influence of fitness, mutational target size and mutational 154 

biases on the outcome of evolution can be evaluated. 155 

 156 

McDonald et al. (McDonald, et al. 2009) showed that each time the tape of WS 157 

evolution is re-run mutations generating the adaptive type arise in one of three DGC-158 

encoding pathways (Wsp, Aws, or Mws) (Figure 1A).  Subsequent work revealed that 159 

when these three pathways are eliminated from the ancestral type that evolution 160 

proceeds along multiple new pathways (Lind, et al. 2015).  Preferential usage of Wsp, 161 

Aws and Mws pathways stems from the fact that they are subject to negative 162 
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regulation and thus, relative to pathways subject to positive regulation, or requiring 163 

promoter-activating mutations, gene fusion events, or other rare mutations, present a 164 

large mutational target. 165 

 166 

Given repeatability of WS evolution, knowledge of the Wsp/Aws/Mws pathways, 167 

plus genetic tools for mechanistic investigation — including capacity to obtain WS 168 

mutants in the absence of selection — the WS system offers a rare opportunity to 169 

explore the feasibility of developing bottom-up strategies for evolutionary 170 

forecasting.  Our findings show that mechanistic-level predictions are possible, but 171 

also draw attention to challenges that stem from current inability to a priori predict 172 

locus specific mutational biases and environment-specific fitness effects. 173 

 174 

Results 175 

Obtaining an unbiased measure of pathway-specific mutation rates to WS 176 

Knowledge of the rate at which mutation generates WS types via each of the Wsp, 177 

Aws and Mws pathways — unbiased by the effects of selection — provides a 178 

benchmark against which the predictive power of null models can be appraised.  To 179 

achieve such measures we firstly constructed a set of genotypes containing just one of 180 

the three focal pathways: PBR721 carries the Wsp pathway but is devoid of Aws and 181 

Mws, PBR713 carries the Aws pathway but is devoid of Wsp and Mws, while 182 

PBR712 harbours the Mws pathway but is devoid of Wsp and Aws.  Into each of 183 

these genotypes a promoterless kanamycin resistance gene was incorporated 184 

immediately downstream of the promoter of the cellulose-encoding Wss operon and 185 

fused to an otherwise unaffected Wss operon (Figure 1B).   186 

 187 

In the ancestral SM genotype the cellulose promoter is inactive in shaken King’s 188 

Medium B (KB) broth and thus the strain is sensitive to kanamycin. When a WS-189 

causing mutation occurs the wss promoter becomes active resulting in a kanamycin-190 

resistant WS type (Fukami, et al. 2007; McDonald, et al. 2011).  Individual growth of 191 

this set of three genotypes in shaken KB, combined with plating to detect kanamycin-192 

resistant mutants, makes possible a fluctuation assay (Luria and Delbruck 1943; Hall, 193 

et al. 2009) from which a direct measure of the rate at which WS mutants arise can be 194 

obtained.  Importantly, because WS types are maladapted in shaken broth culture, the 195 
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screen for kanamycin-resistant clones allows the pathway-specific mutation rate to 196 

WS to be obtained without the biasing effects of selection for growth at the air-liquid 197 

interface (Figure 1B).  The results are shown in Figure 2.   198 

 199 

The mutation rate was highest for the Aws pathway (6.5 × 10-9); approximately 200 

double that of Wsp (3.7 × 10-9) and an order of magnitude higher than that of the Mws 201 

pathway (0.74 × 10-9) (Figure 2). The rate at which WS mutants arose from the 202 

ancestral genotype in which the three pathways are intact (11.2 × 10-9) was 203 

approximately the sum of the rates for the three pathways (11.0 × 10-9) confirming 204 

that the Wsp, Aws and Mws pathways are the primary routes by which WS types 205 

evolve (Lind, et al. 2015).  That the Aws pathway has the greatest capacity to 206 

generate WS is surprising given the smaller target size (three genes compared to 207 

seven genes in the Wsp pathway).     208 

 209 

 210 
Figure 2. Mutation rates to WS. Fluctuation tests were used to estimate the mutation 211 

rate to WS for the three common mutational pathways to WS. Error bars represent 212 

mean and 95% confidence intervals. 213 

 214 

Modelling the genotype-to-phenotype map underpinning WS evolution 215 

Much is known about the function and interactions among components of each of the 216 

three focal pathways.  This knowledge allows development of models that capture the 217 

dynamic nature of each pathway and thus allow predictions as to the likelihood that 218 

evolution will precede via each of the three pathways.  An unresolved issue is the 219 

extent to which these models match experimental findings.  Following a brief 220 

description of each pathway we describe the models. 221 

 222 
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The 8.4 kb Wsp pathway is a chemotaxis-like system (Goymer, et al. 2006; Guvener 223 

and Harwood 2007; Romling, et al. 2013; Micali and Endres 2016) comprised of 224 

seven genes with the first six genes (wspA-wspF) being transcribed as a single unit 225 

and the last (wspR from its own promoter (Bantinaki, et al. 2007).  WspA 226 

(PFLU1219) is a methyl-accepting chemotaxis (MCP) protein that forms a complex 227 

with the CheW-like scaffolding proteins WspB (PFLU1220) and WspD (PFLU1222). 228 

WspA senses environmental stimuli and transmits the information via conformational 229 

changes in the WspA/WspB/WspD complex to effect activity of WspE (PFLU1223), 230 

a CheA/Y hybrid histidine kinase response regulator. WspE activates both the WspR 231 

(PFLU1225) diguanylate cyclase (DGC) and the CheB-like WspF methylesterase 232 

WspF (PFLU1224) following transference of an active phosphoryl group.  The 233 

activity of WspA is modulated by methylation: the constitutively active CheR-like 234 

methyltransferase WspC (PFLU1221) transfers methyl groups to conserved glutamine 235 

residues on WspA while when phosphorylated, WspF serves to remove these groups.  236 

WS mutants are known to arise by mutations in the WspF negative regulator and also 237 

in the WspE kinase (McDonald, et al. 2009).  In vitro manipulations of WspR that 238 

abolish repression of the DGC domain by the response regulator domain are known, 239 

but have never been observed to occur in experimental populations (Goymer, et al. 240 

2006).   241 

 242 

The 2.3 kb aws operon contains three genes transcribed from a single promoter 243 

(awsXRO). Homologous genes in Pseudomonas aeruginosa (yfiRNB, PA1121-1119) 244 

have been characterised in detail (Malone, et al. 2010; Malone, et al. 2012; Xu, et al. 245 

2016). The outer membrane lipoprotein AwsO (PFLU5209) has an OmpA domain, a 246 

signal peptide and binds to peptidoglycan. AwsO is thought to be the sensor whose 247 

activity is modulated in response to envelope stress (Malone, et al. 2012). AwsO 248 

sequesters the periplasmic protein AwsX (PFLU5211) at the outer membrane. AwsX 249 

functions as a negative regulator of the DGC AwsR (PFLU5210) in the inner 250 

membrane. Both increased binding of AwsX to AwsO or loss of negative regulation 251 

by inactivation of the interaction between AwsX and AwsR can lead to WS 252 

(McDonald, et al. 2009; Malone, et al. 2010; Malone, et al. 2012).  253 

 254 

The 3.9 kb mwsR gene (PFLU5329, known as morA (PA4601) in Pseudomonas 255 

aeruginosa), encodes a predicted membrane protein with both a DGC domain that 256 
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produces c-di-GMP and a phosphodiesterase (PDE) domain that degrades c-di-GMP. 257 

Little is known of the molecular details determining its function, but both catalytic 258 

domains appear to be active (Phippen, et al. 2014).  Deletion of the PDE domain 259 

results in a WS phenotype with activity being dependent on a functional DGC domain 260 

(McDonald, et al. 2009). 261 

 262 

If the specific effect of changing each nucleotide (and sets of nucleotides) was known 263 

then models for each pathway would not be required, but such knowledge does not 264 

exist.  We therefore take a simplifying approach in which attention focuses on the 265 

interactions between components that correspond to reactions whose rate can either 266 

increase, decrease, or remain unaffected, depending on mutations in the component 267 

parts.  Such mutations increase the reaction (enabling mutations), decrease the 268 

reaction (disabling mutations) or leave them unaffected.  The components and 269 

interactions are shown in Figure 3.  Figure 3 along with figure supplements 1 to 3 270 

describe the molecular reactions and the associated differential equations governing 271 

the dynamics of each pathway.  An advantage of this simplifying approach is that 272 

changes to a reaction may encompass mutations in more than a single component.  273 

For example, mutations in either WspE or WspR may increase reaction r5 of the Wsp 274 

pathway (Figure 3A). 275 

 276 
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Figure 3. Modeling of WS. (A) Model of the Wsp pathway. R* represents the 277 

activated form of WspR and increase of R* leads to a WS phenotype (B) Model for 278 

the Aws pathway. RR represents the activated form of AwsR and increase of RR 279 

leads to a WS phenotype. (C) Model of the Mws Pathway. D* represents the activated 280 

form of the DGC domain. Our functional model places the PDE domain as a negative 281 

regulator of DGC activity. Details of the molecular networks are found in Figure 3 282 

figure supplement 1 for Wsp, Figure 3 figure supplement 2 for Aws and Figure 3 283 

figure supplement 3 for Mws. In the simple null models all genetic components are 284 

the same size, but information of mutational target size can readily be accommodated 285 

in the model by changing the individual probabilities of disabling and enabling 286 

mutations. The benefit of doing so might however be small if not combined with 287 

detailed data on mutation rates (see Discussion). 288 

 289 

Equipped with the set of mathematical descriptions it is possible to consider 290 

combinations of enabling, disabling, and no effect changes to reaction rates and 291 

determine the likelihood that a WS type is generated. For the Wsp system this 292 

amounts to 36 or 729 combinations.  An example of one set of the possible mutations 293 

(mi) in Wsp is 1, −1, 0, 0, 0, 0 (an increase in r1, a decrease in r2, but no change in r3, 294 

r4, r5, or r6 (Figure 3A)).  295 

 296 

Predicting the pathways that evolution follows and genetic targets  297 

To determine whether mutations producing WS occur more often in Wsp compared to 298 

Aws or Mws pathways, we adopt a Bayesian approach in which the probability that a 299 

particular pathway is used is decomposed into two terms: the probability that a 300 

particular set of mutations (mi) occurs in Wsp (or Aws, or Mws) represented as P (mi 301 

∈ Wsp) and the probability that those mutations give rise to a wrinkly spreader 302 

represented as P (WS |mi ∈Wsp) (or Aws, or Mws). 303 

	  304 

𝑃 𝑊𝑆 ∩𝑚 ∩𝑊𝑠𝑝 = 𝑃 𝑊𝑆 𝑚i ∈𝑊𝑠𝑝 𝑃(𝑚i ∈𝑊𝑠𝑝)! 	   	   (1) 305 

	  306 

To estimate P(mi ∈Wsp) we assume fixed probabilities of enabling and disabling 307 

mutations and compute the product.  Thus, the probability of mi = 1, −1, 0, 0, 0, 0 is 308 

pepd(1 − pe − pd)4, where pe is the probability of a mutation with an enabling effect 309 
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and pd is the probability of a mutation with a disabling effect.  Recognising the value 310 

of accommodating the possibility of localised mutational bias we note that pe and pd 311 

can be adjusted for the affected reactants.  The second term, P (WS |mi ∈Wsp), 312 

requires knowing both how gene products interact and how these interactions result in 313 

a phenotype.  This information is estimated based on the pathway dynamics 314 

represented in Figure 3 and Figure 3 – figure supplement 1 by repeated sampling from 315 

the space of all possible reaction rates, initial concentrations, and magnitude of effects 316 

(see Materials and Methods).  317 

 318 

The results of simulations are shown in Figure 4.  Figure 4A shows that the Wsp 319 

pathway is predicted to be the target of mutation 1.3 - 2.1 times more often than the 320 

Aws pathway while Figure 4B shows that the Mws pathway is predicted to be the 321 

target of mutation 0.7 - 1.0 times less often that the Aws pathway.  While these results 322 

agree with the experimental data showing Mws to be least likely pathway to be 323 

followed, the predictions are at odds with the mutation rate data showing WS types to 324 

be twice as likely to arise from mutation in Aws, versus Wsp.  The causes of this 325 

discrepancy are described in the following section. 326 

327 
 Figure 4. Modelling of the probability of using the Wsp, Aws and Mws pathways 328 

(A) Probability of Wsp relative to Aws. Equal mutation rates for all components. 329 

(B) Probability of Mws relative to Aws. Equal mutation rates for all components. 330 
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 (C) Probability of Mws relative to Wsp. Equal mutation rates for all 331 

components.(D) Probability of Wsp relative to Aws with the mutational hotspot 332 

in AwsX included. Based on the mutational data a hot spot for Aws is included in the 333 

models that increase the mutation rate by a factor five for both enabling and disabling 334 

mutations. (E) Probability of Mws relative to Aws with the mutational hotspot in 335 

AwsX included. The relative contributions of individual reactions rates are available 336 

in Figure 4 - figure supplement 1 for Wsp and Figure 4 - figure supplement 1 for 337 

Aws. 338 

 339 

In addition to predicting the preferred mutational pathways to produce a WS, the 340 

Bayesian approach also predicts genes likely to be affected by mutation (Figure 4 341 

figure supplement 1 and 2). Predictions as to specific genetic targets come from 342 

appraisal of the relative importance of each reaction in terms of generating a wrinkly 343 

spreader (Figure 4 – supplement 1 and 2). While it is recognised that a majority of 344 

WS mutations arise from mutations in negative regulators of DGC activity, such as 345 

WspF and AwsX (McDonald, et al. 2009; Lind, et al. 2015), further predictions are 346 

possible based on impacts of alterations in gene function on reaction rates.  For 347 

example, with reference to the Wsp pathway (Figure 4 – figure supplement 1), there 348 

are two reactions (r2 and r6) that affect WspF function: r2 describes the rate of removal 349 

of methyl groups from the signalling complex and r6 the rate at which WspF is 350 

activated by transfer of active phosphoric groups from the WspE kinase.  Loss-of-351 

function (disabling) mutations being much more common than gain-of-function 352 

(enabling) mutations means that both WspF and WspE are likely targets.  The null 353 

model predicts that in the area of parameter space in which Wsp is most likely 354 

compared to Aws, 45% of the time WS will be generated when the second reaction, 355 

r2, is altered (Figure 4 – figure supplement 1). The same is true for reaction r6. Thus 356 

the presence of a negative regulator is predicted to extend the mutational target size 357 

well beyond the gene itself. This is also true for Aws, where r3 is the main contributor 358 

to the WS phenotype in the case where disabling change is more common than 359 

enabling change.  Here mutations are predicted not only in the negative regulator 360 

AwsX, but also in the interacting region of the DGC AwsR (Figure 4 – figure 361 

supplement 2).  362 

 363 
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Loss-of-function mutations in negative regulators and their interacting partners are 364 

not the only predicted targets.  For Wsp r1, r3, r4, and r5 are altered approximately 5% 365 

of the time in the parameter region where disabling mutations are more common than 366 

enabling mutations, but contribute more when the rate of enabling mutations is 367 

increased (Figure 4 – figure supplement 1). Enabling mutations based on the model 368 

are likely to be found in WspC increasing r1, WspABD increasing r3, WspABD/WspE 369 

increasing r4 and WspR increasing r5 (Figure 2A). For Aws, enabling mutations are 370 

predicted to increase reaction r1 by mutations causing constitutive activation of AwsO, 371 

r2 increasing binding of AwsO and AwsX and r4 increasing formation of the active 372 

AwsR dimer (Figure 3B, Figure 4 – figure supplement 2).  373 

 374 

In summary, high rates of WS mutations are predicted for wspF, wspE, wspA, awsX 375 

and awsR with lower rates for wspC, wspR and awsO. Several of these predictions sit 376 

in accord with previous experimental observations, however, notable are predictions 377 

that evolution might also target wspA and wspR, two genes that have not previously 378 

been identified as mutational causes of WS types (McDonald, et al. 2009). 379 

 380 

Analysis of mutants reveals sources of mutational bias 381 

There are several reasons why predictions from the models might be out of kilter with 382 

experimental data on mutation rates.  We firstly looked to the distribution of WS 383 

generating mutations among the 109 mutants collected during the course of the 384 

fluctuation assays.  Of the 109 mutants, 105 harboured a mutation in wsp (46 385 

mutants), aws (41 mutants) or mws (18 mutants) (Figure 5A, Figure 5 – source data 386 

1). The remaining four had mutations in previously described rare pathways 387 

(PFLU0085, PFLU0183), again confirming that these non-focal pathways produce 388 

just a fraction of the total set of WS mutants (Lind, et al. 2015).   389 

  390 

The distribution of mutations for each of the three pathways is indicative of bias. As 391 

shown in Figure 5B, almost 29% of all WS-causing mutations (adjusted for 392 

differences in mutation rates between the three pathways) were due to an identical 33 393 

base pair in-frame deletion in awsX (Δt229-g261, ΔY77-Q87), while a further 13 % 394 

were due to an identical mutation (79 a->c, T27P) in awsR.  At least 41 different 395 

mutations in Aws can lead to WS: if mutation rates were equal for these sites the 396 

probability of observing 20 identical mutations would be extremely small. In fact 10 397 
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million random samplings from the observed distribution of mutations failed to 398 

recover this bias. While the Wsp pathway also contains sites that were mutated more 399 

than once (six positions were mutated twice, one site three times and one five times), 400 

sources of mutational bias in Wsp were less evident than in Aws (Figure 5B).   401 

 402 

The mathematical models presented above assumed no mutational bias thus the lack 403 

of fit between mutation rate data and predictions from the models.  Nonetheless, 404 

changing specific reaction rates within the models readily incorporates such 405 

knowledge.  For example, the mutational hotspot in awsX affects reactions r2 and r3 in 406 

the Aws differential equation system (Figure 3B, Figure 3 – figure supplement 2).  407 

The effect of a five-fold change in the probability of enabling/disabling change in 408 

these reactions leads to the prediction that the Aws pathway is more likely to generate 409 

WS types than Wsp for most probability values (see Figure 4D). The only area of 410 

parameter space in which evolution is more likely to utilise the Wsp pathway is for 411 

rare mutations that have a high probability of enabling change (>> 10-2). One 412 

interesting consequence is that it changes the phase-space over which evolution of 413 

WS via mutations in the Wsp pathway is more likely with respect to the Aws 414 

pathway. In Figure 4A, evolution is most likely to proceed via the Wsp pathway when 415 

the probability of disabling change is greater than the probability of enabling change. 416 

In contrast, when the likelihood of producing WS types is affected by the mutational 417 

hotspot in awsX, then evolution will proceed via Wsp only when the probability of 418 

enabling change is greater than the probability of disabling change (Figure 4D and 419 

Figure 4 figure supplement 2). 420 

 421 

Analysis of mutants reveals mutational targets and effects 422 

 423 

Wsp pathway: Mutations were identified in five genes of the seven-gene pathway all 424 

of which were predicted by the null model (Figure 4 – figure supplement 1). The most 425 

commonly mutated gene was wspA (PFLU1219), with ten of 15 mutations (Figure 5) 426 

being amino acid substitutions (six unique) clustered in the region 352-420 at the stalk 427 

of the signalling domain. This region has been implicated in trimer-of-dimer 428 

formation for the WspA homologue in Pseudomonas aeruginosa (O'Connor, et al. 429 

2012) which is critical for self-assembly and localization of Wsp clusters in the 430 

membrane. It is possible that these mutations stabilize trimer of dimer formation, 431 
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change the subcellular location of the Wsp complex, or affect interaction with WspD 432 

(putative interface 383-420 in WspA) (Griswold, et al. 2002) and thus affecting relay 433 

of signal to WspE. These effects we interpreted as enabling mutations increasing r3 in 434 

Figure 2A.  The four additional mutations were in frame deletions in a separate region 435 

of the transducer domain (ΔT293 - E299, ΔA281-A308). Although it is possible that 436 

these mutations could also affect trimer-of-dimer formation, there are predicted 437 

methylation sites in the region (Rice and Dahlquist 1991) that regulate the activity of 438 

the protein via methyltransferase WspC and methylesterase WspF. Given that 439 

disabling mutations are more common than enabling mutations it is likely that these 440 

mutations decrease r2 in Figure 3A by disrupting the interaction with WspF.  We also 441 

identified a single mutation that fused the open reading frame of WspC, the 442 

methyltransferase that positively regulates WspA activity, to WspD, resulting in a 443 

chimeric protein (Figure 5, Figure 5 – source data). This mutation is likely to be a rare 444 

enabling mutation that increases the activity of WspC (increasing r1 in Figure 3A) by 445 

physically tethering it to the WspABD complex thus allowing it to more effectively 446 

counteract the negative regulator WspF. Alternatively, the tethering may physically 447 

block the interaction with WspF (decrease of r2 in Figure 3A). 448 

 449 

The second most commonly mutated gene in the wsp operon was wspE (PFLU1223) 450 

(Figure 5). Four amino acids were repeatedly mutated in the response regulatory 451 

domain of WspE and all cluster closely in a structural homology model made with 452 

Phyre2 (Kelley, et al. 2015). All mutated residues surround the active site of the 453 

phosphorylated D682 and it is likely that they disrupt feedback regulation by 454 

decreasing phosphorylation of the negative regulator WspF (decreasing r6) rather than 455 

increasing activation of WspR (r5 in Figure 3A). 456 
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 457 
Figure 5. Mutational targets. (A) 105 independent mutations in the wsp (n=46), aws 458 

(n=41) and mws (n=18) operons were identified. Numbers of independent mutants are 459 

shown in brackets. Full details on the mutations are available in Figure 5 – source 460 

data 1. (B) Diversity of mutations with area proportional to mutation rate (Figure 2). 461 

Two mutations (AwsX ΔY77-Q87 and AwsR T27P) contribute 41% of all mutations 462 

to WS suggesting that these are mutational hot spots. The increased mutation rate can 463 

be incorporated into the null model by increasing the probability of change for r2 and 464 

r3 in the Aws model (Figure 3B). 465 

 466 

Twelve mutations were detected in wspF (PFLU1224).  These are distributed 467 

throughout the gene and include amino acid substitutions, in-frame deletions as well 468 

as a frame-shift and a stop codon (Figure 5). The pattern of mutations is consistent 469 

with both the role of WspF as a negative regulator of WspA activity and the well-470 
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characterised effect of loss-of-function mutations in this gene (Bantinaki, et al. 2007; 471 

McDonald, et al. 2009). The mutations are interpreted as decreasing r2 in Figure 3A.  472 

Five mutations were found in WspR (PFLU1225), the DGC output response regulator 473 

that produces c-di-GMP and activates expression of cellulose (Figure 5). All 474 

mutations were located in the linker region between the response regulator and DGC 475 

domains.  Mutations in this region are known to generate constitutively active wspR 476 

alleles by relieving the requirement for phosphorylation (Goymer, et al. 2006).  They 477 

may additionally affect subcellular clustering of WspR (Huangyutitham, et al. 2013) 478 

or shift the equilibrium between the dimeric form of WspR, with low basal activity, 479 

towards a tetrameric activated form (De, et al. 2009). In our model these increase 480 

reaction r5. 481 

 482 

Aws pathway: Mutations were identified in all three genes of the Aws pathway – all of 483 

which were predicted by the null model.  In the Aws pathway, mutations were most 484 

commonly found in awsX (25 out of 41 mutations (Figure 5)).  The above-mentioned 485 

mutational hotspot produced in-frame deletions likely mediated by 6 bp direct repeats 486 

(Figure 5 – source data 1). The deletions are consistent with a loss of function and a 487 

decrease in r3 (Figure 3B) that would leave the partially overlapping open reading 488 

frame of the downstream gene (awsR) unaffected. 489 

 490 

The DGC AwsR, was mutated in 14 cases with an apparent mutational hot spot at 491 

T27P (9 mutants) in a predicted transmembrane helix (amino acids 19-41). The 492 

remaining mutations were amino acid substitutions in the HAMP linker and in the 493 

PAS-like periplasmic domain between the two transmembrane helices. These amino 494 

acid substitutions are removed from the output DGC domain (Figure 5) and their 495 

effects are difficult to interpret, but they could cause changes in dimerization 496 

(Malone, et al. 2012) or the packing of HAMP domains, which could, in turn, alter 497 

transmission of conformational changes in the periplasmic PAS-like domain to the 498 

DGC domain causing constitutive activation (Parkinson 2010). Such effects would 499 

increase r4 in Figure 3B. Mutations in the N-terminal part of the protein are easier to 500 

interpret based on the existing functional model (Malone, et al. 2012) and most likely 501 

disrupt interactions with the periplasmic negative regulator AwsX resulting in a 502 

decrease in r3 in Figure 3B. 503 

 504 
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Two mutations were found in the outer membrane lipoprotein protein AwsO between 505 

the signal peptide and the OmpA domain (Figure 5). Both mutations were glutamine 506 

to proline substitutions (Q34P, Q40P), which together with a previously reported 507 

G42V mutation (McDonald, et al. 2009) suggest that multiple changes in this small 508 

region can cause a WS phenotype. This is also supported by data from Pseudomonas 509 

aeruginosa in which mutations in nine different positions in this region lead to a small 510 

colony variant phenotype similar to WS (Malone, et al. 2012). A functional model 511 

based on the YfiBNR in P. aeruginosa (Malone, et al. 2012; Xu, et al. 2016), suggest 512 

that AwsO sequesters AwsX at the outer membrane and that mutations in the N-513 

terminal part of the protein lead to constitutive activation and increased binding of 514 

AwsX. This would correspond to an increase in r2 in Figure 3B, which would relieve 515 

negative regulation of AwsR.  516 

 517 

Mws pathway: The MwsR pathway (comprising just a single gene) harbours 518 

mutations in both DGC and phosphodiesterase (PDE) domains .  Only mutations in 519 

the C-terminal phosphodiesterase (PDE) domain were predicted (Figure 3C).  Eleven 520 

of 18 mutations were identical in-frame deletions (ΔR1024-E1026) in the PDE 521 

domain, mediated by 8 bp direct repeats (Figure 5, Figure 5 – source data 1).  It has 522 

been shown previously that deletion of the entire PDE domain generates the WS 523 

phenotype (McDonald, et al. 2009), suggesting a negative regulatory role that causes 524 

a decrease of r2 in the model in Figure 3C. One additional mutation was found in the 525 

PDE domain (E1083K) located close to R1024 in a structural homology model made 526 

with Phyre2 (Kelley, et al. 2015), but distant to the active site residues (E1059-527 

L1061). Previously reported mutations (A1018T, ins1089DV) (McDonald, et al. 528 

2009) are also removed from the active site and cluster in the same region in a 529 

structural homology model. This suggests that loss of phosphodiesterase activity may 530 

not be the mechanism leading to the WS phenotype. This is also supported by the 531 

high solvent accessibility of the mutated residues, which indicates that major stability-532 

disrupting mutations are unlikely and changes in interactions between domains or 533 

dimerization are more probable. Thus, it is likely that the WS phenotype resulting 534 

from a deletion in the PDE domain is caused by disruption of domain interactions or 535 

dimerization rather than loss of phosphodiesterase activity.  536 

 537 
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The remaining mutations within mwsR are amino acid substitutions in the GGDEF 538 

domain, close to the DGC active site (927-931) with the exception of a duplication of 539 

I978-G985. While it is possible that these mutations directly increase the catalytic 540 

activity of the DGC, increasing r1 in Figure 3C, such enabling mutations are 541 

considered to be rare. An alternative hypothesis is that these mutations either interfere 542 

with c-di-GMP feedback regulation or produce larger conformational changes that 543 

change inter-domain or inter-dimer interactions, similar to the mutations in the PDE 544 

domain. Based on these data we reject the current model of Mws function, which 545 

predicted mutations decreasing r2 (Figure 3C) through mutations inactivating the PDE 546 

domain. We instead suggest that the mutations are likely to disrupt the conformational 547 

dynamics between the domains and could be seen either as activating mutations 548 

causing constitutive activation or disabling mutations with much reduced mutational 549 

target size that must specifically disrupt the interaction surface between the domains. 550 

In both cases the previous model lead to an overestimation of the rate to WS for the 551 

Mws pathway. 552 

 553 

Fitness of WS types 554 

We measured the fitness of representative WS types with mutations in each of the 555 

mutated genes (wspA, wspC/D, wspE, wspF, wspR, awsX, awsR, awsO, mwsR) in 1:1 556 

competitions against a reference WspF ΔT226-G275 deletion mutant marked with 557 

GFP (Figure 6). This type of fitness data should be interpreted with caution because 558 

the fitness of WS mutants have been shown to be frequency dependent and some WS 559 

mutants are superior in early phase attachment as opposed to growth at the air-liquid 560 

interface (Lind, et al. 2015). Nevertheless, these competition experiments provide an 561 

estimate of fitness when several different WS mutants compete at the air-liquid 562 

interface (a likely situation given a ~10-8 mutation rate to WS and a final population 563 

size of >1010). The fitness data account for the over- or under-representation of some 564 

WS mutants when grown under selection (McDonald, et al. 2009) compared to those 565 

uncovered without selection (as reported here). 566 
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 567 
Figure 6. Fitness of different WS mutants. Competitive fitness against a WspF 568 

ΔT226-G275 reference strain was measured for representative mutations in the Wsp, 569 

Aws, Mws pathways. Pairwise competitions were performed in quadruplicates and 570 

error bars represent +/- one standard deviation. 571 

 572 

The three wspF mutants, the wspC-wspD fusion, and the wspE mutants have similar 573 

fitness. In contrast, both wspA mutants are slightly less fit and both wspR mutants are 574 

severely impaired (Figure 6). This sits in accord with previous work in which 575 

mutations generating WS obtained with selection have been detected in wspF and 576 

wspE, but not wspA or wspR (Goymer, et al. 2006; McDonald, et al. 2009). All 577 

awsXRO mutants have similar low fitness compared to the wspF reference strain 578 

(Figure 6), which explains why under selection these are found at lower frequencies 579 

compared to mutations in the wsp pathway (McDonald, et al. 2009) despite a roughly 580 

two-fold higher mutation rate to WS. 581 

 582 

Differences of mutational spectra with and without selection 583 

A final question concerns the outcome of the original experimental evolution under 584 

selection (McDonald, et al. 2009) and whether it can be explained by our detailed 585 

measurement of mutation rates, mutational targets and fitness assays. As indicated 586 

above, there exist major differences in the spectrum of mutations isolated with and 587 

without selection (Figure 7). The most obvious difference is in the use of the Wsp 588 

pathway, which is most commonly used (15/24) under selection and yet produces WS 589 
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types at a lower rate than the Aws pathway.  The explanation lies in the lower fitness 590 

of Aws mutants (Figure 6). Similarly, fitness effects also explains differences in the 591 

spectrum of wsp mutations, with no wspA mutations being found under selection 592 

despite being the most commonly mutated gene without selection (15/46). The 593 

previous failure to detect wspR mutants in a screen of 53 WS mutants (Goymer, et al. 594 

2006) is similarly explained by low fitness of WS types arising via mutations in this 595 

gene.  596 

 597 
Figure 7. WS mutations isolated with and without selection. Fitness effects bias 598 

the mutational spectrum observed under selection resulting in underrepresentation of 599 

WspA and WspR compared to WspF and WspE. Similar fitness effects of different 600 

Aws mutants lead to similar patterns regardless of selective conditions. Only within 601 

operon comparisons are valid for this figure as the mutants isolated without selection 602 

had double deletions of the other operons. Between operon mutation rates are 603 

available in Figure 2. 604 

 605 

Discussion 606 

The issue of evolutionary predictability and the relative importance of stochastic 607 

events compared to deterministic processes have a long history in evolutionary 608 

biology (Darwin 1872; Simpson 1949; Jacob 1977; Gould 1989; Conway Morris 609 

2003; Orgogozo 2015). Recent interest has been sparked by an increasing number of 610 

observations that evolution, under certain circumstances, can be remarkably 611 

repeatable (Colosimo, et al. 2005; Shindo, et al. 2005; Jost, et al. 2008; Barrick, et al. 612 

2009; Lee and Marx 2012; Meyer, et al. 2012; Zhen, et al. 2012; Herron and Doebeli 613 
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2013), but whether these cases are representative for evolutionary processes in 614 

general remains to be determined. A related question, with greater potential for 615 

practical applications, is whether it is possible to forecast short-term evolutionary 616 

events and if so, then the challenge is to stipulate the data necessary to make 617 

successful predictions. 618 

 619 

Our uniquely detailed knowledge of the WS experimental evolution system has 620 

provided a rare opportunity to disentangle the contributions of selection, mutational 621 

biases and genetic architecture to evolutionary outcomes, and consequently explore 622 

the limits of evolutionary forecasting. A thorough understanding of the function of the 623 

molecular species and their interactions allowed development of a null model by 624 

defining the genotype-to-phenotype map, which successfully predicted mutational 625 

targets and the relative likelihood that evolution followed each of the three principle 626 

pathways.  Importantly, genetic architecture is likely to be transferable between 627 

different species, which stands to allow the formulation of general principles and 628 

evolutionary rules (Lind, et al. 2015). Despite the simplicity of the mathematical null 629 

models, which contain only general information about functional interactions, we 630 

successfully predicted mutational targets including previously unknown mutations in 631 

wspA. Without information about fitness and mutational biases, however, only order 632 

of magnitude predictions of mutant frequencies can be made. Thus, it is possible to 633 

predict that Wsp, which is subject to negative regulation will be more common than a 634 

DGC that requires enabling mutations (Lind, et al. 2015), but not which of two 635 

pathways (Wsp and Aws) with differently wired negative regulation is likely to be 636 

dominant after selection. Insights from the null model combined with data on 637 

mutational targets also allowed us to reject our functional model of Mws. 638 

 639 

Direct measurement of the fitness effects of large number of mutations is difficult and 640 

time-consuming and typically only possible for microbial species. Therefore future 641 

success in predicting fitness effects of mutations rests on the ability to infer them 642 

from other parameters, such as estimated effects of mutations on thermodynamic 643 

stability or molecular networks, or from incorporation of information concerning 644 

evolutionary conservation of amino acid residues. Alternatively, it might be possible 645 

to extrapolate findings from a small number of mutations that are either directly 646 

constructed and assayed in the laboratory or through fitness estimates of 647 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 3, 2018. ; https://doi.org/10.1101/335711doi: bioRxiv preprint 

https://doi.org/10.1101/335711
http://creativecommons.org/licenses/by/4.0/


24	  

polymorphisms data for natural populations. Recent work on the prediction of the 648 

fitness effects of random mutations in several genes suggests that in many cases large 649 

effect mutations can be predicted using methods based on evolutionary conservation 650 

(Lind, et al. 2017a). 651 

 652 

Interestingly WS mutations in the same gene often have similar fitness effects (Figure 653 

6).  Obviously no general conclusions can be drawn from these few cases, but if 654 

mutations with similar functional effects, for example disruption of a particular 655 

interaction, can be assumed to be equally fit, this would greatly reduce the number of 656 

specific mutants that need to be experimentally assayed for each gene. Several studies 657 

suggest that fitness distributions are often bimodal, with a significant proportion being 658 

complete loss-of-function mutations, which could explain the similar fitness effects of 659 

mutations in the same genes if they result in inactivation of a particular biochemical 660 

reaction of interaction (Sanjuan 2010; Jacquier, et al. 2013; Sarkisyan, et al. 2016; 661 

Lind, et al. 2017a). The extent to which fitness effects are transferable between strains 662 

with different genetic backgrounds or closely related species remains to be more fully 663 

investigated (Ungerer, et al. 2003; Pearson, et al. 2012; Wang, et al. 2014). 664 

 665 

Estimates of genomic mutation rates are remarkably consistent across species (Drake 666 

1991), and mutational biases as evident in the types of base substitutions, are well-667 

characterized for a large number of bacterial species (Sung, et al. 2012; Wei, et al. 668 

2014; Farlow, et al. 2015; Foster, et al. 2015; Long, et al. 2015). It is also known that 669 

molecular processes, such as transcription and replication, can introduce mutational 670 

biases (Beletskii and Bhagwat 1996; Hudson, et al. 2003; Lind and Andersson 2008; 671 

Reijns, et al. 2015; Zhao, et al. 2015) and mutational hotspots caused by 672 

homopolymeric tracts and direct repeats can greatly increase local mutation rate 673 

(Streisinger and Owen 1985; Seier, et al. 2011). However, the distribution of mutation 674 

rates across a gene or operon remains largely unknown.  Absence of this knowledge 675 

currently hinders efforts to forecast adaptive evolution.    676 

 677 

There are several cases of probable mutational hotspots in the spectrum of WS 678 

mutants found in this study before the influence of selection. One specific deletion 679 

(ΔY77-Q87) in awsX accounts for nearly half (20/41) of the mutations in the Aws 680 

pathway. Thus, despite the existence of hundreds of possible mutations leading to WS 681 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 3, 2018. ; https://doi.org/10.1101/335711doi: bioRxiv preprint 

https://doi.org/10.1101/335711
http://creativecommons.org/licenses/by/4.0/


25	  

(this work and (McDonald, et al. 2009; McDonald, et al. 2011; Lind, et al. 2015)) one 682 

single mutation accounts for more than one quarter of all WS mutations. While the six 683 

base pair direct repeat flanking the deletion provides a convincing explanation for its 684 

increased rate, it is not clear why this deletion would be ten times more common than 685 

the ΔP34-A46 deletion in the same gene that is flanked by ten base pair repeats and 686 

contains five base pairs identical to those from the ΔY77-Q87 deletion (Figure 5 – 687 

source data 1). There are also instances where single base pair substitutions are 688 

overrepresented: the AwsR T27P mutation is found in nine cases, while eight other 689 

single pair substitutions in Aws were found only once.  Consider further the fact that 690 

WspE (a gene of ~2.3 kb), where changes to only four specific amino acids repeatedly 691 

cause WS, and WspF (a gene of ~1 kb) where any mutation that disrupts function 692 

results in WS (Figure 5) contribute equally to the evolution of WS types.  Together, 693 

these findings draw attention to the limited value of including mutational target size 694 

alone as a parameter in predictive models.   695 

 696 

It is evident from these findings and from related studies (Pollock and Larkin 2004) 697 

that there is need for detailed experimental measurement of local mutation rates in 698 

specific systems.  Such investigations stand to contribute to understanding of the 699 

causes of mutational bias and the extent to which biases might be conserved among 700 

related or even unrelated organisms. If local nucleotide sequence is the major 701 

determinant, an estimate of mutation rate will apply strictly to very closely related 702 

species, but if the dynamics of molecular processes, such as transcription and 703 

replication (Sankar, et al. 2016), are major influences then estimates might be 704 

applicable to a wider range of species. 705 

 706 

Evolutionary forecasting is likely to be most successful for biological systems where 707 

there are experimental data on a large number of independent evolutionary events, 708 

such as influenza, HIV and cancer (Kouyos, et al. 2012; Fraser, et al. 2014; Lawrence, 709 

et al. 2014; Luksza and Lassig 2014; Neher, et al. 2014; Eirew, et al. 2015). Evolution 710 

might appear idiosyncratic indicating that every specific system requires detailed 711 

investigation, but our hope is that deeper knowledge of the distribution of fitness 712 

effects and mutational biases will allow short term forecasts to be produced using 713 

modelling without the need for large-scale experimental studies. A major boost to 714 

further refinement of evolutionary forecasting is likely to come from combining 715 
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coarse and fine-grained approaches.  Our demonstration that simple null models of 716 

functional networks can produce highly relevant quantitative predictions is an 717 

important step forward allowing predictions to be directly tested in other experimental 718 

systems.  719 

 720 

Materials and methods 721 

 722 

Strains and media 723 

The strains used in the study are all Pseudomonas fluorescens SBW25 (Silby, et al. 724 

2009) or derivatives thereof. The reporter construct (pMSC), used for isolation of WS 725 

mutants before selection, fused the Pwss promoter to a kanamycin resistance marker 726 

(nptII) (Fukami, et al. 2007; McDonald, et al. 2011). P. fluorescens strains with 727 

deletions of the wsp (PFLU1219-1225), aws (PFLU5209-5211) and mws (PFLU5329) 728 

operons were previously constructed as described by McDonald et al. (McDonald, et 729 

al. 2011). All experiments used King’s medium B (KB) (King, et al. 1954), solidified 730 

with 1.5% agar and incubation was at 28°C. All strains were stored in glycerol saline 731 

at -80°C. 732 

 733 

Fluctuation tests and isolation of WS mutants before selection 734 

Strains with the pMSC reporter construct and either wild type genetic background or 735 

double deletions of aws/mws, wsp/mws or wsp/aws were used to estimate mutation 736 

rates to WS before selection. Overnight cultures were diluted to approximately 103 737 

cfu/ml and 60 independent 110 ul cultures were grown for 16-19 h (OD600= 0.9-1.0) 738 

with shaking (200 rpm) in 96-well plates before plating on KB plates with 30 mg/l 739 

kanamycin. Viable counts were estimated by serial dilution and plating on KB agar. 740 

One randomly chosen colony per independent culture with WS colony morphology 741 

was restreaked once on KB agar. The assay was repeated at least four times for the 742 

double deletion mutants and twice for the wild type strain. Mutations rates were 743 

estimated using the Ma-Sandri-Sarkar Maximum Likelihood Estimator (Hall, et al. 744 

2009) available at www.keshavsingh.org/protocols/FALCOR.html.  745 

 746 

Sequencing 747 
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Mutations causing the WS phenotype were identified by Sanger sequencing of 748 

candidate genes in the remaining common pathway to WS, for example the wsp 749 

operon for the aws/mws deletion strain. In a few cases where no mutations were 750 

identified in the previously established WS target genes, we used genome sequencing 751 

(Illumina HiSeq, performed by Macrogen Korea). 752 

 753 

Fitness assays 754 

Competition assays were performed as previously described (Lind, et al. 2015) by 755 

mixing the WS mutant 1:1 with a reference strain labelled with green fluorescent 756 

protein and measuring the ratio of each strain before and after static growth for 24 h 757 

using flow cytometry (BD FACS Canto). We used a WspF ΔT226-G275 deletion 758 

mutant as the reference strain because WspF mutants are the most commonly found 759 

WS type when grown under selective conditions (McDonald, et al. 2009) and the in 760 

frame deletion of 50 amino acids most likely represents a complete loss-of-function 761 

mutation with minimal polar effects on the downstream wspR. Selection coefficients 762 

per generation were calculated as s = [ln(R(t)/R(0))]/[t], as previously described 763 

(Dykhuizen 1990) where R is the ratio of alternative WS mutant to WspF ΔT226-764 

G275 GFP and t the number of generations determined using viable counts. Control 765 

competition experiments with isogenic WspF ΔT226-G275 reference strains with and 766 

without GFP were used to correct for the cost of the GFP marker. Control 767 

competitions were also used to determine the cost of the double deletions and the 768 

reporter construct relative to a wild type genetic background, for example an AwsX  769 

ΔY77-Q87 mutant in Δwsp/Δmws background with pMSC was competed with a GFP 770 

labeled AwsX  ΔY77-Q87 mutant in wild type background. Competitions were 771 

performed independently inoculated quadruplicates for each strain.  772 

 773 

Homology models 774 

Homology models of the structure of WspA, WspE, WspR, AwsR, AwsO and MwsR 775 

were made using Phyre2 in intensive mode (http://www.sbg.bio.ic.ac.uk/phyre2) 776 

(Kelley, et al. 2015). 777 

 778 

Probability estimation in the mathematical models 779 

The differential equation models describe the interactions between proteins in each of 780 

the three WS pathways. In order to solve the differential equations, two pieces of 781 
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information are required:  i) the initial concentrations of the molecular species and ii) 782 

the reaction rates. Although this information is unavailable a random-sampling 783 

approach was used to generate different random sets of initial concentrations and 784 

reaction rates.  Each random set was used to establish a baseline of potential WS 785 

expression making it possible to evaluate whether a set of mutations results in a WS 786 

type. Effectively, this approach allows sampling of the probability distribution P (WS 787 

|mi ∈ Wsp) used in our Bayesian model.  788 

 789 

We randomly sample 1,000 different sets of reaction rates and initial concentrations 790 

from uniform priors: reaction rates were sampled randomly from a uniform 791 

distribution on log space (i.e. 10U[−2,2]) and initial concentrations of reactants were 792 

sampled from a uniform distribution U[0,10]. For each set, the appropriate differential 793 

equation model was integrated and the steady state concentration of the compounds 794 

that correspond to a wrinkly spreader (RR in Aws, R* in Wsp and D* for Mws) 795 

computed. This served as a baseline for the non-WS phenotype that was used for 796 

comparison to determine whether combinations of mutations result in increased WS 797 

expression. After obtaining the baseline, we implemented particular combinations of 798 

enabling/disabling mutations (a mi). Ideally, a distribution linking enabling/disabling 799 

mutations to a fold change in reaction rates would be used, but this information is 800 

unavailable.  In order to progress the effect sizes for enabling and disabling mutations 801 

were sampled from 10U[0,2] and 10U[−2,0], respectively, and then multiplied by the 802 

reaction rates. The differential equations were then solved for the same time that it 803 

took the baseline to reach steady state. The final concentration of R* (Figure 3A), RR 804 

(Figure 3B) and D* (Figure 3C) was then compared to the baseline and the number of 805 

times out of 1,000 that the WS-inducing compound increased served as an estimate of 806 

P (WS|mi ∈ Wsp).  The probability distribution stabilized by 500 random samples 807 

and additional sampling did not produce significant changes (data not shown). 808 

 809 

The absence of empirical data on reaction rates, initial concentrations, and expected 810 

mutation effect size meant using a random sampling approach requiring estimates for 811 

parameter ranges. Parameter ranges were chosen to be broad enough to capture 812 

differences spanning several orders of magnitudes while allowing numerical 813 

computations for solving the differential equations. To assess the effect of these 814 
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ranges on the results, the sampling procedure was repeated for WSP for three 815 

different parameter regimes i) an expanded range for initial concentrations [0-50], ii) 816 

an expanded range for reaction rates 10[-3,3], iii) a compressed range for mutational 817 

effect size 10^[-1,1]. This analysis shows that qualitative results are robust to these 818 

changes (see Figure S1). 819 

 820 

Source code for the mathematical modelling is deposited as supplemental material. 821 
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Figure supplements 1169 

 1170 
Figure 3 - figure supplement 1. Wsp model (A) Description of functional 1171 

interactions (B) Description of molecular reaction (C) Differential equations 1172 

describing the dynamics of the Wsp pathway. The activity of WspA is modulated by 1173 

methylation, where it is activated by the	  CheR-like methyltransferase WspC 1174 

(PFLU1221).  The CheB-like methylesterase WspF (PFLU1224) functions as a 1175 

negative regulator. Modulation of WspR activity through changes in oligomerization 1176 

state and clustering is not explicitly included in the model (De, et al. 2008; 1177 

Huangyutitham, et al. 2013), but can be interpreted as changes in the rate of WspR 1178 

activation.  1179 

 1180 

 1181 
Figure 3 - figure supplement 2. Aws model (A) Description of functional 1182 

interactions (B) Description of molecular reaction (C) Differential equations 1183 

describing the dynamics of the Aws pathway. Release of AwsX mediated repression 1184 

results in a conformational shift that in the model is represented as formation of an 1185 

active dimer. 1186 
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 1187 

 1188 
Figure 3 - figure supplement 3. Mws model (A) Description of functional 1189 

interactions (B) Description of molecular reaction (C) Differential equations 1190 

describing the dynamics of the Aws pathway 1191 
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 1193 
Figure 4 - figure supplement 1. Relative contributions of reaction rates for Wsp 1194 

 1195 

 1196 

 1197 
Figure 4 - figure supplement 2. Relative contributions of reaction rates for Aws. 1198 

Effect of the mutational hotspot on the relative contribution of each reaction in Aws 1199 

to the probability of generating a wrinkly spreader (A) Null model. (B) Hot spot in 1200 

AwsX increase rate mutation rate five times. Because the mutational hotspot increases 1201 

the likelihood that AwsX’s reactions will be altered, r2 and r3 have an increased 1202 

probability of enabling or disabling change. As a consequence, r2 shows the biggest 1203 

change as it contributes up to 70% (as opposed to 35% without the mutational 1204 

hotspot) of the probability that Aws is used to generate a WS in the area where 1205 
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48	  

enabling change is more likely than disabling change. Furthermore, in the other area 1206 

of parameter space where disabling change is more likely, r3 contributes up to 90% of 1207 

the probability that Aws is used with or without the hotspot.  1208 

 1209 

Supplementary files 1210 

Figure S1 1211 

Figure 5 – source data 1. Table of all WS mutations in Wsp, Aws and Mws. 1212 

ODE model and code 1213 
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Figure S1. Parameter sensitivity analysis. To assess the effect of the chosen 
parameter (A) ranges on our results, we redid our sampling procedure for WSP for 
three different parameter regimes: (B) an expanded range for initial concentrations [0-
50], (C) an expanded range for reaction rates 10[-3,3], (D) a compressed range for 
mutational effect size 10[-1,1]. We found that our qualitative results are robust to these 
changes. 
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Figure	  5	  -‐	  Source	  data	  -‐	  Wsp	  mutations
Genome	  position Type Change Gene	  positionGene	  locus Gene	  symbol Effect Comment Proposed	  molecular	  effect
1353597	  -‐	  1353602 Deletion del	  6	  bp 1328	  -‐	  1333 PFLU1219 wspA In	  frame	  del	  G443	  -‐	  M444) No	  homology
1353112	  -‐	  1353195 Deletion del	  84	  bp 843	  -‐	  926 PFLU1219 wspA In	  frame	  del	  A281-‐A308 6	  bp	  GGCCAC	  homology methylation	  site
1353112	  -‐	  1353195 Deletion del	  84	  bp 843	  -‐	  926 PFLU1219 wspA In	  frame	  del	  A281-‐A308 6	  bp	  GGCCAC	  homology methylation	  site
1353140	  -‐	  1353160 Deletion del	  21	  bp 878	  -‐	  898 PFLU1219 wspA In	  frame	  del	  T293	  -‐	  E299 5	  bp	  ACTGA	  homology methylation	  site
1353140	  -‐	  1353160 Deletion del	  21	  bp 878	  -‐	  898 PFLU1219 wspA In	  frame	  del	  T293	  -‐	  E299 5	  bp	  ACTGA	  homology methylation	  site

1353423 Transversion A-‐>C 1154 PFLU1219 wspA N385T trimer-‐of-‐dimer	  association
1353451 Transversion A-‐>C 1182 PFLU1219 wspA E394D trimer-‐of-‐dimer	  association
1353451 Transversion A-‐>C 1182 PFLU1219 wspA E394D trimer-‐of-‐dimer	  association
1353411 Transition C-‐>T 1142 PFLU1219 wspA A381V trimer-‐of-‐dimer	  association
1353411 Transition C-‐>T 1142 PFLU1219 wspA A381V trimer-‐of-‐dimer	  association
1353528 Transition C-‐>T 1259 PFLU1219 wspA A420V possible	  trimer-‐of-‐dimer	  association
1353528 Transition C-‐>T 1259 PFLU1219 wspA A420V possible	  trimer-‐of-‐dimer	  association
1353323 Transition G-‐>A 1054 PFLU1219 wspA A352T possible	  trimer-‐of-‐dimer	  association
1353323 Transition G-‐>A 1054 PFLU1219 wspA A352T possible	  trimer-‐of-‐dimer	  association
1353408 Transversion T-‐>G 1139 PFLU1219 wspA V380G trimer-‐of-‐dimer	  association

1355373	  -‐	  1355707 Deletion del	  309	  bp 973	  -‐	  51 PFLU1221 wspC/D
WspC	  M1-‐A324	  fused	  to	  
WspD	  D18-‐S232 9	  bp	  ACCCTGGCC	  homology	   increase	  wspC	  activity

1358267 Transversion A-‐>C 1916 PFLU1223 wspE D639A disrupt	  phoshorylation	  site	  of	  wspF
1358267 Transversion A-‐>C 1916 PFLU1223 wspE D639A disrupt	  phoshorylation	  site	  of	  wspF
1358267 Transversion A-‐>C 1916 PFLU1223 wspE D639A disrupt	  phoshorylation	  site	  of	  wspF
1358267 Transversion A-‐>C 1916 PFLU1223 wspE D639A disrupt	  phoshorylation	  site	  of	  wspF
1358267 Transversion A-‐>C 1916 PFLU1223 wspE D639A disrupt	  phoshorylation	  site	  of	  wspF
1358551 Transition A-‐>G 2200 PFLU1223 wspE K734E disrupt	  phoshorylation	  site	  of	  wspF
1358553 Transversion A-‐>C 2202 PFLU1223 wspE K734N disrupt	  phoshorylation	  site	  of	  wspF
1358553 Transversion A-‐>C 2202 PFLU1223 wspE K734N disrupt	  phoshorylation	  site	  of	  wspF
1358553 Transversion A-‐>C 2202 PFLU1223 wspE K734N disrupt	  phoshorylation	  site	  of	  wspF
1358270 Transition C-‐>T 1919 PFLU1223 wspE S640L disrupt	  phoshorylation	  site	  of	  wspF
1358266 Transversion G-‐>T 1915 PFLU1223 wspE D639Y disrupt	  phoshorylation	  site	  of	  wspF
1358279 Transversion T-‐>A 1928 PFLU1223 wspE V643E disrupt	  phoshorylation	  site	  of	  wspF
1358279 Transversion T-‐>A 1928 PFLU1223 wspE V643E disrupt	  phoshorylation	  site	  of	  wspF

1358766	  -‐	  1358780 Deletion del	  15	  bp 151-‐165 PFLU1224 wspF In	  frame	  del	  L51-‐	  I55 10	  bp	  GGACCTGATC	  homology	   disrupt	  demethylase	  activity
1358766	  -‐	  1358780 Deletion del	  15	  bp 151-‐165 PFLU1224 wspF In	  frame	  del	  L51-‐	  I55 10	  bp	  GGACCTGATC	  homology	   disrupt	  demethylase	  activity
1358810	  -‐1358935 Deletion del	  126	  bp 195	  -‐	  320 PFLU1224 wspF In	  frame	  del	  R66	  -‐L107 No	  homology disrupt	  demethylase	  activity
1359285	  -‐	  1359289 Deletion del	  5	  bp 670	  -‐	  674 PFLU1224 wspF Frame	  shift	  after	  L223 3	  bp	  GGC	  homology disrupt	  demethylase	  activity
1359292	  -‐	  1359441 Deletion del	  150	  bp 677	  -‐	  826 PFLU1224 wspF In	  frame	  del	  T226-‐G275 3	  bp	  ACC	  homology	   disrupt	  demethylase	  activity

1359505 Transition A-‐>G 890 PFLU1224 wspF Q297R disrupt	  demethylase	  activity
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1358755 Transition C-‐>T 140 PFLU1224 wspF P47L disrupt	  demethylase	  activity
1359091 Transition C-‐>T 476 PFLU1224 wspF S159L disrupt	  demethylase	  activity
1359171 Transition C-‐>T 556 PFLU1224 wspF H186Y disrupt	  demethylase	  activity
1359538 Transition C-‐>T 923 PFLU1224 wspF P308L disrupt	  demethylase	  activity
1359423 Transversion G-‐>C 808 PFLU1224 wspF G270R disrupt	  demethylase	  activity
1359604 Transversion T-‐>A 989 PFLU1224 wspF L331* disrupt	  demethylase	  activity

1360156	  -‐	  1360167 Deletion del	  12	  bp 481	  -‐	  492 PFLU1225 wspR In	  frame	  del	  N161	  -‐	  L164 No	  homology disrupt	  requirement	  for	  phosphorylation
1360099 Transversion C-‐>A 424 PFLU1225 wspR Q142K disrupt	  requirement	  for	  phosphorylation
1360102 Transition C-‐>T 427 PFLU1225 wspR R143W disrupt	  requirement	  for	  phosphorylation
1360102 Transition C-‐>T 427 PFLU1225 wspR R143W disrupt	  requirement	  for	  phosphorylation
1360107 Transversion T-‐>G 432 PFLU1225 wspR D144E disrupt	  requirement	  for	  phosphorylation

Figure	  5	  -‐	  Source	  data	  -‐	  Aws	  mutations
Genome	  position Type Change Gene	  positionGene	  locus Gene	  symbol Effect Comment Proposed	  molecular	  effect

5705729 Transversion A-‐>C 101 PFLU5209 awsO Q34P change	  binding	  with	  awsX
5705711 Transversion A-‐>C 119 PFLU5209 awsO Q40P change	  binding	  with	  awsX
5706522 Transition C-‐>T 575 PFLU5210 awsR A192V HAMP	  linker
5706522 Transition C-‐>T 575 PFLU5210 awsR A192V HAMP	  linker
5706909 Transition C-‐>T 188 PFLU5210 awsR A63V interaction	  awsX
5706441 Transversion A-‐>C 656 PFLU5210 awsR D219A HAMP	  linker
5706937 Transition C-‐>T 160 PFLU5210 awsR R54C interaction	  awsX
5707018 Transversion A-‐>C 79 PFLU5210 awsR T27P disrupt	  TM	  helix
5707018 Transversion A-‐>C 79 PFLU5210 awsR T27P disrupt	  TM	  helix
5707018 Transversion A-‐>C 79 PFLU5210 awsR T27P disrupt	  TM	  helix
5707018 Transversion A-‐>C 79 PFLU5210 awsR T27P disrupt	  TM	  helix
5707018 Transversion A-‐>C 79 PFLU5210 awsR T27P disrupt	  TM	  helix
5707018 Transversion A-‐>C 79 PFLU5210 awsR T27P disrupt	  TM	  helix
5707018 Transversion A-‐>C 79 PFLU5210 awsR T27P disrupt	  TM	  helix
5707018 Transversion A-‐>C 79 PFLU5210 awsR T27P disrupt	  TM	  helix
5707018 Transversion A-‐>C 79 PFLU5210 awsR T27P disrupt	  TM	  helix
5707574 Transition C-‐>T 92 PFLU5211 awsX A31V disrupt	  awsX	  function

5707528-‐5707566 Deletion del	  39	  bp 100-‐138 PFLU5211 awsX del	  P34-‐A46 10	  bp	  homology	  CGCCCAGGCG disrupt	  awsX	  function
5707528-‐5707566 Deletion del	  39	  bp 100-‐138 PFLU5211 awsX del	  P34-‐A46 10	  bp	  homology	  CGCCCAGGCG disrupt	  awsX	  function

5707460 Transversion T-‐>G 206 PFLU5211 awsX L69R disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
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5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function
5707405-‐5707437 Deletion del	  33	  bp 229-‐261 PFLU5211 awsX del	  Y77-‐Q87 6	  bp	  homology	  ACCCAG disrupt	  awsX	  function

5707262 Transversion T-‐>G 404 PFLU5211 awsX L135R disrupt	  awsX	  function

Figure	  5	  -‐	  Source	  data	  -‐	  Mws	  mutations
Genome	  position Type Change Gene	  positionGene	  locus Gene	  symbol Effect Comment Proposed	  molecular	  effect
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
5857733-‐5857741 Deletion del	  9	  bp 3071-‐3079 PFLU5329 mwsR del	  R1024	  -‐	  E1026 8	  bp	  homology	  CCTGGAGC Disrupt	  interaction	  DGC	  and	  EAL	  domain
A5857192C Transversion A-‐>C A2530C PFLU5329	   mwsR I844L
C5857598/	  C5857599 Insertion duplication	  24	  bp2937-‐2959 PFLU5329 mwsR dup	  I978-‐G985	   Disrupt	  interaction	  DGC	  and	  EAL	  domain
G5857440A Transition G-‐>A G2778A PFLU5329 mwsR M926I Disrupt	  interaction	  M992
G5857440A Transition G-‐>A G2778A PFLU5329	   mwsR M926I Disrupt	  interaction	  M926
G5857440A Transition G-‐>A G2778A PFLU5329	   mwsR M926I Disrupt	  interaction	  M926
G5857638A Transition G-‐>A G2976A PFLU5329 mwsR M992I Disrupt	  interaction	  M926
G5857909A Transition G-‐>A G3247A PFLU5329 mwsR E1083K Disrupt	  interaction	  DGC	  and	  EAL	  domain
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Differential equations for WSP, AWS, & MWS pathways

WSP

d[ABD]

dt
= r2F

∗[ABDm] − r1[ABD][Cm]

d[ABDm]

dt
= r1[ABD][Cm] − r2F

∗[ABDm] − r3S[ABDm] + r4E[ABDm∗]

d[ABDm∗]

dt
= −r4E[ABDm∗] + r3S[ABDm]

dE∗

dt
= r4E[ABDm∗] − r5E

∗R− r6E
∗F

dR∗

dt
= r5RE∗

dE

dt
= r6E

∗F − r4E[ABDm∗] + r5RE∗

dF

dt
= −r6E

∗F + r2F
∗[ABDm]

dF ∗

dt
= r6E

∗F − r2F
∗[ABDm]

dR

dt
= −r5RE∗ − .01R

AWS

dX

dt
= −r2XO∗ − r3XR

d[XR]

dt
= r3XR

dO

dt
= −r1SO

dO∗

dt
= r1SO − r2XO∗

d[OX]

dt
= r2O

∗X

dR

dt
= −r3XR− r4RR

d[RR]

dt
= r4RR
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MWS

dG

dt
= −r1GS

dG∗

dt
= r1GS − r2G

∗E − r3G
∗C

dE

dt
= −r2G

∗E

d[GE]

dt
= r2G

∗E

dC

dt
= −r3G

∗C

d[GC]

dt
= r3G∗C

Julia code for WSP, AWS, and MWS differential equations

The following three functions implement the differential equation model (ODE model) for the WSP,
AWS, and MWS pathways.

using ODE,StatsBase,MAT,HDF5,JLD

# code for WSP differential equations

function lindodeWSP(t,y)

# convert y to reactants for ease of reading

ABD=y[1];

ABDm=y[2];

ABDmp=y[3];

Ep=y[4];

Rp=y[5];

E=y[6];

F=y[7];

Fp=y[8];

R=y[9];

# pull reaction rates from rs variable

r1=rs[1];r2=rs[2];r3=rs[3];r4=rs[4];r5=rs[5];r6=rs[6];

# compute derivatives, i.e. y’

yp=zeros(size(y));

yp[1]=r2*Fp*ABDm-r1*ABD*Cm; # dABD/dt

yp[2]=r1*ABD*Cm-r2*Fp*ABDm-r3*S*ABDm+r4*E*ABDmp; # dABDm/dt

yp[3]=-r4*E*ABDmp + r3*S*ABDm ; # dABDmp/dt

yp[4]=r4*E*ABDmp - r5*Ep*R -r6*Ep*F ; # dEp/dt

yp[5]=r5*R*Ep ; # dRp/dt

yp[6]=r6*Ep*F-r4*E*ABDmp+r5*R*Ep ; # dE/dt

yp[7]=-r6*Ep*F +r2*Fp*ABDm ; # dF/dt

yp[8]=r6*Ep*F -r2*Fp*ABDm ; # dFp/dt

yp[9]=-r5*R*Ep-.01*R; # dR/dt

return yp

end

# code for AWS differential equations

2
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function lindodeAWS(t,y)

# convert y to reactants for ease of reading

X=y[1];

XR=y[2];

O=y[3];

Op=y[4];

OX=y[5];

R=y[6];

RR=y[7];

# pull reaction rates from rs variable

r1=rs[1];r2=rs[2];r3=rs[3];r4=rs[4];

# compute derivatives, i.e. y’

yp=zeros(size(y));

yp[1]=-r2*X*Op-r3*X*R; # dX/dt

yp[2]=r3*X*R; # dXR/dt

yp[3]=-r1*S*O; # dO/dt

yp[4]=r1*S*O-r2*X*Op; # dOp/dt

yp[5]=r2*Op*X; # dOX/dt

yp[6]=-r3*X*R-r4*R*R; # dR/dt

yp[7]=r4*R*R; # dRR/dt

return yp;

end

# code for MWS differential equations

function lindodeMWS(t,y)

# convert y to reactants for ease of reading

G=y[1];

Gp=y[2];

E=y[3];

GE=y[4];

C=y[5];

GC=y[6];

# pull reaction rates from rs variable

r1=rs[1];r2=rs[2];r3=rs[3];

# compute derivatives, i.e. y’

yp=zeros(size(y));

yp[1]=-r1*G*S; # dG/dt

yp[2]=r1*G*S-r2*Gp*E-r3*Gp*C;# dGp/dt

yp[3]= -r2*Gp*E;# dE/dt

yp[4]= r2*Gp*E;# dGE/dt

yp[5]=-r3*Gp*C;# dC/dt

yp[6]=r3*Gp*C; # dGC/dt

return yp;

end

Julia code for running differential equation solvers

We include the code for implementing our Bayesian sampling method. The colored sections corre-
spond to statements that make it specific to WSP (blue), AWS (red), or MWS (green). It was run
in julia version 0.4.3.

# Variables for reactions

numrxns=6; # number of reaction rates for WSP

3
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numrxns=4; # number of reaction rates for AWS

numrxns=3; # number of reaction rates for MWS

rs=rand(numrxns); # establish variable scope, will be reaction rates later

rs_save=copy(rs); # establish variable scope, will be a saved version of reaction rates later

totnumruns=3.^length(rs); # all possible combinations for reaction rates (down,nothing, up)

v=zeros(length(rs)); # establish variable scope (used to alter reaction rates)

S=0;Cm=0; # initialize constants used in differential equations

indexWS=5; # reactant corresponding to WS in WSP

indexWS=7; # reactant corresponding to WS in AWS

indexWS=6; # reactant corresponding to WS in MWS

# Variables for running ODE solver

testnums=1000; # number of runs

yorig=zeros(testnums); # storage for baseline WS production

yout=0; # establish variable scope

tf=1.0; # establish variable scope

tftimes=1.0; # establish variable scope

numreactants=9; # number of reactants

numreactants=7; # number of reactants

numreactants=6; # number of reactants

init=10*rand(numreactants); # establish variable scope

# Variables for storing data

res=-1*ones(totnumruns,testnums); # storage for altered WS production

numfinished=1; # counter for runs completed

# Code for Bayesian sampling method

while numfinished<=testnums

done=0;

try

println(numfinished) # keeps track of how many sims have been done

# Sample concentrations and rates to establish a baseline amount of WS production

rs=10.^(4*rand(numrxns)-2); # sample reaction rates from [.01,100]

rs_save=copy(rs); # saved copy as a reference when altering later

init=10*rand(numreactants); # sample initial concentrations for reactants from [0,10]

S=10*rand(); # sample initial concentration for constant reactant of signal (S) from [0,10]

Cm=10*rand(); # sample initial concentration for constant reactant Cm from [0,10]

# ODE solver for baseline

tf=1.0; # initial time for ode solver

dst=100; # initial distance, used to determine solution converged

tol=10^(-8.0); # tolerance for ODE solver

while dst>tol

tout, yout = ode45(lindodeWSP, init, [0.0 ,tf]);

tout, yout = ode45(lindodeAWS, init, [0.0 ,tf]);

tout, yout = ode45(lindodeMWS, init, [0.0 ,tf]);

dst=sum((yout[end-1]-yout[end]).^2); # Euclidean distance in final step of solution

yorig[numfinished]=yout[end][indexWS]; # reactant corresponding to WS

tftimes=tout[end]; # final time

tf*=2;

end

done=1; # successful completion of try loop

end

if done==1 # baseline WS production is established, now sample changes/mutations

i0=1; # counter for completed changes

cct=0; # counter for total number of attempts
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while i0<=totnumruns;

cct+=1;

println([numfinished cct]) # report status for tracking progress

# Alter reaction rates

num=i0-1; # used for determining which rates change down/none/up

for i1=length(rs)-1:-1:0;

v[i1+1]=floor(num/(3^i1)); # v is num into base 3 number

num=num-v[i1+1]*3^i1;

end

v+=1;

facs=[10.^(-2*rand()), 1, 10.^(2*rand())]; # factors to alter rxn rates [.01,1] down, 1 none, [1,100] up

for i1=1:length(rs)

rs[i1]=facs[v[i1]]*rs_save[i1]; # alter reaction rates

end

try

tout, yout = ode45(lindodeWSP, init, [0.0,tftimes]);

tout, yout = ode45(lindodeAWS, init, [0.0,tftimes]);

tout, yout = ode45(lindodeMWS, init, [0.0,tftimes]);

if abs(tout[end]-tftimes)<.01 # ODE solver finished

res[i0,numfinished]=yout[end][indexWS]; # store amount of WS produced

i0+=1

end

end

if cct>10000

i0=2*totnumruns; # baseline and sampling occurred in space with poorly conditioned ODEs, try again

end

end

if i0<2*totnumruns # successful

numfinished+=1;

# Save data to a file for checking in MATLAB

file=matopen("pathway_results_temp.mat","w")

write(file,"res",res); altered WS production

write(file,"yorig",yorig); baseline WS production

close(file);

end

end

end

# Save data to a file for processing in MATLAB

file=matopen("pathway_results_complete_WSP.mat","w")

file=matopen("pathway_results_complete_AWS.mat","w")

file=matopen("pathway_results_complete_MWS.mat","w")

write(file,"res",res); altered WS production

write(file,"yorig",yorig); baseline WS production

close(file);

MATLAB code for interpreting saved data WSP vs MWS

This code shows how the data from the julia code is analyzed and transformed into the contour
plots shown in the paper.

% create record of how parameters change down, none, up for WSP
rs1=rand(1,6);
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totnumruns=3.ˆlength(rs1);
paramsWSP=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;

num=i0-1;
for i1=length(rs1)-1:-1:0;

v(i1+1)=floor(num/(3ˆi1));
num=num-v(i1+1)*3ˆi1;

end
v=v+1;
paramsWSP(i0,:)=v;
i0=i0+1;

end
% create record of how parameters change down, none, up for MWS
rs1=rand(1,3);
totnumruns=3.ˆlength(rs1);
paramsMWS=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;

num=i0-1;
for i1=length(rs1)-1:-1:0;

v(i1+1)=floor(num/(3ˆi1));
num=num-v(i1+1)*3ˆi1;

end
v=v+1;
paramsMWS(i0,:)=v;
i0=i0+1;

end

% Load data
load pathway results complete MWS.mat
resMWS=res;
yorigMWS=yorig';
clear res yorig
load pathway results complete WSP.mat
resWSP=res;
yorigWSP=yorig';

% Variables and data storage to compare likelihood of pathways
numsampWSP=size(resWSP,2); % in case want to use fewer samples
numsampMWS=size(resMWS,2); % in case want to use fewer samples

perange=10.ˆ[-7:.5:-1]; % range for probability enabling mutations
pdrange=10.ˆ[-7:.5:-1]; % range for probability disabling mutations
pemat=zeros(length(perange),length(pdrange)); % matrix for plotting data and reference
pdmat=zeros(size(pemat)); % matrix for plotting data and reference
psummatWSP=zeros(size(pemat)); % matrix for probability WSP used
psummatMWS=zeros(size(pemat)); % matrix for probability MWS used
tol=0;
% Code to compare likelihood of pathways
for i0=1:length(perange)

for j0=1:length(pdrange)
% Retrieve probabilities
pe=perange(i0);
pd=pdrange(j0);
pemat(i0,j0)=pe;
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pdmat(i0,j0)=pd;
% WSP computation
pmatforr=ones(6,1)*[pd 1-pe-pd pe];
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for i1=1:size(resWSP,1)

probevent=1; % initialize, probability to get combination of down, none, up for rxns
for j1=1:6;

probevent=probevent*pmatforr(j1,paramsWSP(i1,j1)); % multiply by prob of each change
end

psum=psum+probevent*sum(resWSP(i1,1:numsampWSP)>yorigWSP(1:numsampWSP)+tol)/numsampWSP;
end
psummatWSP(i0,j0)=psum;

% MWS computation
pmatforr=ones(3,1)*[pd 1-pe-pd pe];
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for i1=1:size(resMWS,1)

probevent=1; % initialize, probability to get combination of down, none, up for rxns
for j1=1:3;

probevent=probevent*pmatforr(j1,paramsMWS(i1,j1)); % multiply by prob of each change
end
psum=psum+probevent*sum(resMWS(i1,1:numsampMWS)>yorigMWS(1:numsampMWS)+tol)/numsampMWS;

end
psummatMWS(i0,j0)=psum;

end
end

% Plot data
close all
figure
contourf(pemat,pdmat,log2(psummatWSP./psummatMWS),400,'LineStyle','None')
set(gca,'xScale','log','yScale','log','TickLength',[.025 .025],'LineWidth',3);
set(gca,'FontSize',18,'xTick',10.ˆ[-7:1:-1],'yTick',10.ˆ[-7:1:-1]);
xlabel('Probability of enabling change','FontSize',24);
ylabel('Probability of disabling change','FontSize',24);
c=colorbar('FontSize',18);
c.Label.String='log 2 ratio probability WSP/MWS';
colormap jet;
axis square
eval(['print -f1 -depsc -r300 WSP vs MWS contour.eps']);

MATLAB code for interpreting saved data WSP vs AWS

% create record of how parameters change down, none, up for WSP
rs1=rand(1,6);
totnumruns=3.ˆlength(rs1);
paramsWSP=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;

num=i0-1;
for i1=length(rs1)-1:-1:0;

v(i1+1)=floor(num/(3ˆi1));

7

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 3, 2018. ; https://doi.org/10.1101/335711doi: bioRxiv preprint 

https://doi.org/10.1101/335711
http://creativecommons.org/licenses/by/4.0/


num=num-v(i1+1)*3ˆi1;
end
v=v+1;
paramsWSP(i0,:)=v;
i0=i0+1;

end
% create record of how parameters change down, none, up for AWS
rs1=rand(1,4);
totnumruns=3.ˆlength(rs1);
paramsAWS=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;

num=i0-1;
for i1=length(rs1)-1:-1:0;

v(i1+1)=floor(num/(3ˆi1));
num=num-v(i1+1)*3ˆi1;

end
v=v+1;
paramsAWS(i0,:)=v;
i0=i0+1;

end

% Load data
load pathway results complete AWS.mat
resAWS=res;
yorigAWS=yorig';
clear res yorig
load pathway results complete WSP.mat
resWSP=res;
yorigWSP=yorig';

% Variables and data storage to compare likelihood of pathways
numsampWSP=size(resWSP,2); % in case want to use fewer samples
numsampAWS=size(resAWS,2); % in case want to use fewer samples

perange=10.ˆ[-7:.5:-1]; % range for probability enabling mutations
pdrange=10.ˆ[-7:.5:-1]; % range for probability disabling mutations
pemat=zeros(length(perange),length(pdrange)); % matrix for plotting data and reference
pdmat=zeros(size(pemat)); % matrix for plotting data and reference
psummatWSP=zeros(size(pemat)); % matrix for probability WSP used
psummatAWS=zeros(size(pemat)); % matrix for probability MWS used
tol=0;
fac=5; % factor increase of mutation because of hotspot

% Code to compare likelihood of pathways
for i0=1:length(perange)

for j0=1:length(pdrange)
% Retrieve probabilities
pe=perange(i0);
pd=pdrange(j0);
pemat(i0,j0)=pe;
pdmat(i0,j0)=pd;
% WSP computation
pmatforr=ones(6,1)*[pd 1-pe-pd pe];
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for i1=1:size(resWSP,1)

probevent=1; % initialize, probability to get combination of down, none, up for rxns
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for j1=1:6;
probevent=probevent*pmatforr(j1,paramsWSP(i1,j1)); % multiply by prob of each change

end
psum=psum+probevent*sum(resWSP(i1,1:numsampWSP)>yorigWSP(1:numsampWSP)+tol)/numsampWSP;

end
psummatWSP(i0,j0)=psum;

% AWS computation
pmatforr=ones(4,1)*[pd 1-pe-pd pe];
pmatforr(4,:)=[.5*pd 1-.5*pd-.5*pe .5*pe]; % because only reactant in dimerization
pmatforr(3,:)=[fac*pd 1-fac*pd-fac*pe fac*pe]; % effect of hotspot
pmatforr(2,:)=[fac*pd 1-fac*pd-fac*pe fac*pe]; % effect of hotspot
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for i1=1:size(resAWS,1)

probevent=1; % initialize, probability to get combination of down, none, up for rxns
for j1=1:4;

probevent=probevent*pmatforr(j1,paramsAWS(i1,j1)); % multiply by prob of each change
end
psum=psum+probevent*sum(resAWS(i1,1:numsampAWS)>yorigAWS(1:numsampAWS)+tol)/numsampAWS;

end
psummatAWS(i0,j0)=psum;

end
end

% Plot data
close all
figure
contourf(pemat,pdmat,log2(psummatWSP./psummatAWS),400,'LineStyle','None')
set(gca,'xScale','log','yScale','log','TickLength',[.025 .025],'LineWidth',3);
set(gca,'FontSize',18,'xTick',10.ˆ[-7:1:-1],'yTick',10.ˆ[-7:1:-1]);
xlabel('Probability of enabling change','FontSize',24);
ylabel('Probability of disabling change','FontSize',24);
c=colorbar('FontSize',18);
c.Label.String='log 2 ratio probability WSP/AWS';
colormap jet;
axis square
eval(['print -f1 -depsc -r300 WSP vs AWS contour.eps']);
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