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Abstract1

Mutualistic interspecific interactions, including Müllerian mimicry and division of labor, are common2

in nature. In contrast to antagonistic interactions, where faster evolution is favored, mutualism can3

favor slower evolution under some conditions. This is called the Red King effect. After Bergstrom and4

Lachmann (2003) proposed Red King effect, it has been investigated in two species models. However,5

biological examples suggest that the mutualisms can include three or more species. Here, I modeled6

the evolutionary dynamics of mutualism in communities where there exist two or more species, and all7

species mutually interact with one another. Regardless of the number of species in the community, it is8

possible to derive conditions for the stable equilibria. Although there exist nonlinear relationship between9

the evolutionary rates and the evolutionary fate of each species in the multi-species communities, the10

model suggests that it is possible to predict whether the faster evolution is favored or disfavored for the11

relatively fast species; on the other hand, it is difficult to predict the evolutionary fate of relatively slow12

species because the evolutionary dynamics of the slow species is affected by the evolutionary fate of the13

fast species.14
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1 Introduction16

Mutualism, or cooperation between and among species, is widely spread in ecosystems. Two well known17

examples of mutualism are Müllerian mimicry and division of labor. In Müllerian mimicry, unpalatable18

species have evolved similar appearances, and they are each less likely to be predated upon because the19

predators effectively learn that these species are noxious (Müller, 1879). Although many empirical studies20

deal with Müllerian mimicry in butterflies (Sherratt, 2008), other examples include moths (Sbordoni21

et al., 1979; Niehuis et al., 2007), poison frogs (Chiari et al., 2004), vipers (Sanders et al., 2006), and22

fish (Springer and Smith-Vaniz, 1972). In division of labor, on the other hand, each species specializes23

certain tasks and exchanges different goods or services (Leigh, 2010). The examples of division of labor24

are found in the relationships within the gut microbiota (Rakoff-Nahoum et al., 2016), between plants25

and mycorrhizae (Remy et al., 1994), and between ants and aphids (Way, 1963).26

Conflict can arise in mutualism regarding the role of each species. In Müllerian mimicry, it could27

be more advantageous to be a model species than a mimic because the life cycles, the habitats, and the28

body plans of model species are innate while a mimic species has to change these aspects to mimic (Veller29

et al., 2017). In division of labor, conflict can arise regarding species tasks (Wahl, 2002); when providing30

nutrients, one type of nutrient might have a greater cost for the organism than another type of nutrient.31

Such mutualistic symbioses with varying degrees of conflict have been conceptualized by the by-matrix32

snowdrift game whose payoff matrix is given by Table 1, where 0 ≤ k < 2 because of the conflict between33

the species. In this game, each species performs either a generous strategy or a selfish strategy, and the

Table 1: Payoff matrix of the by-matrix snowdrift game
species j

Generous Selfish
species i Generous (k, k) (1, 2)

Selfish (2, 1) (0, 0)

34

left payoff in each cell is for species i and the right payoff is for species j. Nash equilibria are, therefore,35

where one species plays the generous strategy and the other species play the selfish strategy.36

Bergstrom and Lachmann (2003) modeled the evolutionary dynamics of the two species mutualism37

with a degree of conflict and they found that the slower evolving species is more likely to reach a favorable38

equilibrium than the faster species under some conditions. The slower evolutionary rate is caused, for39

example, by the longer generation time or the smaller mutation rate. The authors called this effect the40

Red King (RK) effect, which is converse to the Red Queen (RQ) effect (Van Valen, 1973), where the41

faster evolution is favored in antagonistic symbioses (and sometimes mutualistic symbioses as noted by42

Herre et al. (1999)). Although the model analyzed by Bergstrom and Lachmann was very simple (i.e.,43

assuming a two-player game and infinite population sizes for both species), other researchers relaxed these44

assumptions and investigated the RK and/or RQ effects in mutualism with a degree of conflict. Gokhale45
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and Traulsen (2012) found that in the multi-player snowdrift game of the two-species model, RK effect46

can change to the RQ effect. Gao et al. (2015) uncovered that a reward mechanism in the multi-payer47

snowdrift game causes the shift between the RK and RQ effects. Veller et al. (2017) investigated the48

factors which changes the evolutionary rates of each species (generation time, mutation rates, selection49

strength, and population sizes) in finite population, and they found that the RK effect shift to the RQ50

effect and vice versa from the short time scale to the long time scale due to the stochasticity.51

Although these previous studies on the RK effect assume two-species communities, mutualisms can52

include more than two species. In the context of Müllerian mimicry, such phenomenon is called as the53

(Müllerian) mimicry ring, where three or more unpalatable species show the similar appearances to avoid54

predation (Sherratt, 2008). Examples of Müllerian mimicry rings include Appalachian millipedes (Marek55

and Bond, 2009), bumble bees (Plowright and Owen, 1980), cotton-stainer bugs (Zrzavý and Nedvěd,56

1999), and Heliconius butterflies (Mallet and Gilbert, 1995). In the context of division of labor, as well,57

mutualistic symbioses are not limited to one-to-one relationships. For example, green algae can display58

mutualism with with several phylogenetically broad fungal species (Hom and Murray, 2014).59

Inspired by these biological examples, I investigated whether it is possible to predict whether the faster60

evolution or slower evolution is favored in communities that include more than two species. Although the61

nonlinearity arises in the multi-species communities and it is difficult to say whether the faster evolution62

or the slower evolution is favored in the entire communities, the model suggests that it is predictable63

whether the faster or the slower evolution is favored for only the relatively fast species, especially if many64

species coexist in the communities.65

2 Models66

In this paper, I extend the original model of the Red King effect (Bergstrom and Lachmann, 2003) by67

generalizing the number of species in a community. Mutualistic symbioses with a degree of conflict are68

conceptualized by the by-matrix snowdrift game, whose payoff matrix is given by Table 1.69

In this model, the fitness of each species is determined only by the interspecific interactions (i.e.,70

intraspecific interactions are ignored). Given the number of species in the community M , the evolutionary71

dynamics of the fraction of generous individuals in species i is given by the replicator dynamics as below:72

ẋi = rixi

(
f

g
i − f̄i

)
(1)

= rixi(1− xi)
1∑M

j 6=iNj

M∑
l 6=i

Nl {(k − 3)xl + 1} , (2)

where ri is the evolutionary rate of species i, f
g
i is the mean fitness of the generous individuals in species73

i, f̄i is the mean fitness of species i, and Ni is the relative population size of species i. The parameters74
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Table 2: The parameters and variables in the model
Notation Interval Description

xi ∈ [0, 1] Fraction of generous individuals in species i
ri > 0 Evolutionary rate of species i
Ni > 0 Relative population size of species i
M ≥ 2 (integer) Number of species in the community

in this model are summarized in Table 2. In this model, the intraspecific interaction is ignored and the75

interspecific interactions are weighted by the population sizes. Notice that assumptions on the initial76

conditions, or the initial fractions of generous individuals in each species are important because the77

evolutionary dynamics is affected by the initial conditions.78

For clarity, I explicitly define Red King and Red Queen effects here. For convenience, I call species i79

generous (selfish) species when all individuals of species i become generous (selfish) at equilibrium states:80

i.e., the probabilities of x∗i = 0, and x∗i = 1, respectively.81

Definitions of the Red King and Red Queen effects . Given that the initial fractions of the generous82

individuals in each species xi(0) are uniformly independent and identically distributed (i.i.d.), one can83

say the Red King (Red Queen) effect is operating when the slower (the faster) the species evolves, the84

more likely it is to become a selfish species. In other words, if the RK or RQ effect operates, there should85

be a linear relationship between the order of the evolutionary rates and the probability that each species86

become selfish.87

Although previous studies on the RK effect (Bergstrom and Lachmann, 2003; Gokhale and Traulsen,88

2012) measured the sizes of basin of attraction wherein either of the two species becomes selfish, it is89

difficult to analyze in the same way in M species communities due to the high dimensionality of the model90

and the existence of multiple stable equilibria (see Results). To avoid this problem, the favorabilities91

were measured by the probabilities that focal species evolved selfishly in this study. In addition, it92

is necessary to consider the probability density of the initial conditions (x1(0), . . . , xM (0)) because the93

initial conditions determine which equilibrium states the communities converge to. In other words, the94

probability density of the initial conditions affects the favorabilites of the species in the communities95

although the evolutionary dynamics given by Eq (2) is deterministic. In this model, I assumed that96

the initial fractions of the generous individuals are uniformly i.i.d. and no particular initial condition is97

weighted, but other assumptions on the initial conditions will change the results.98

3 Results99

In this section, I shall show the conditions for linear stable equilibria and analyze the effect of the100

evolutionary rates on the evolutionary fate of each species. First, the conditions for the stable equilibrium101
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state is derived, and then, the relationship between the evolutionary rates and the favorabilities using102

the computer simulations. In the communities with a large value of M , however, the computational cost103

of the simulation is large. To avoid this problem, the analytical results under the ideal conditions are104

shown.105

3.1 Stable equilibria106

Assuming that the population size of each species is infinitely large (Ni → ∞ for i = 1, . . . ,M), the107

evolutionary dynamics is represented as108

ẋi = rixi(1− xi) {1 + (k − 3)x̄j 6=i} , (3)

where x̄j 6=i is the average fraction of generous individuals except for species i:109

x̄j 6=i =
1

M − 1

M∑
j 6=i

xj . (4)

Notice that equation (3) is the same as the evolutionary dynamics proposed by Bergstrom and Lachmann110

(2003) when M = 2. The situation where the assumption on the population size is relaxed is analyzed111

in Appendix B.112

In the stable equilibria in equation (3), there exist m generous species and M −m selfish species. The113

number of generous species m should satisfy the inequality below:114

M − 1

3− k
< m <

M − k + 2

3− k
. (5)

The derivation is shown in Appendix A. It should be noted that there exists at most one integer m115

that satisfies inequality (5) given the values of k and M . In a community with three species (M = 3), for116

example, one species becomes generous (m = 1) and other two species are selfish at stable equilibria if k117

is small (0 ≤ k < 1); on the other hand, there exist two generous species (m = 2) and one selfish species118

at a stable equilibrium if k is large (1 < k < 2).119

3.2 Computer simulation120

Although inequality (5) indicates that there exist
(
M
m

)
stable equilibria in the dynamics defined by equa-121

tion (3), it is unclear whether species i is more likely to evolve generously or selfishly because the122

initial conditions determine which stable equilibria the dynamics converge to. To clarify this point, the123

evolutionary dynamics in the three and four species communities were simulated from various initial con-124

ditions. The evolutionary rate of each species is given by r = (1/8, 1, 8) in the three species model, and125

r = (1/8, 1/2, 2, 8) in the four species model, respectively. The initial conditions are given by changing126
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the fraction of generous individuals in each species (the step size 0.05). The total numbers of simula-127

tions in the three and four species models are 8, 000 and 16, 000, respectively. The favorabilities, or the128

probabilities that each species evolve selfishly at the stable equilibrium is shown in Fig. 1.129

0.256
0.140

0.256
0.348

0.243

0.3840.378

0.320

0.658
0.5680.454

0.6490.607

0.744

Figure 1: The evolutionary rates and the probability of becoming selfish species

The relationship between the order of the evolutionary rates and the probability that each species becomes selfish

at stable equilibria (i.e., favorability) are shown. Top: the hypothetical results if RK effect or RQ effect operates;

there should be a negative (positive) relationships between the order of evolutionary rates and the favorability.

However, the results of computer simulations (Middle: three species, and Bottom: four species) did not show such

relationships except for the case of small k in the four species community. The parameters are: r = (1/8, 1, 8),

and k = 0.5 (small) or k = 1.5 (large) in the three species model, and r = (1/8, 1/2, 2, 8) and k = 0.5 (small) or

k = 1.6 (large) in the four species model.

Except for the case of the four species model with small k, there is no clear RQ effect nor RK effect130

in Fig. 1; there exists nonlinear relationship between the evolutionary rates and probabilities that each131

species becomes selfish (favorability); in the three species community, the slowly evolving species and the132

fast species are more favorable than the intermediate species if k is small. When k is large in the three133

species model, there exist no clear RQ nor RK effects either, although the difference of the probabilities134

of being selfish is small between the slowly evolving species and the intermediate one. In the four species135

model, there exist a convex relationship between the order of the evolutionary rates and the favorability136

when k is large. On the other hand, there exists a positive relationship and, therefore, a RQ effect if k is137

small. These results suggest there can be the mixture of the RQ effect and the RK effect in multi-species138

communities.139

The analysis with the computer simulation is, however, ineffective when the number of species in the140

community M is large; although the numerical integration of the evolutionary dynamics given by Eq (3)141
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does not take a long time, the space of the initial conditions enlarge as M increases. In other words,142

the total computational cost increases when M increases. One way to avoid this problem is assuming an143

ideal condition where only one species changes the fraction of generous individuals until this species fixes144

its strategy while the other species do not evolve. Under this ideal condition, the value of x̄j 6=i does not145

change until species i fixes it’s strategy, and therefore, the evolutionary fate of species i is determined by146

the sign of 1 + (k − 3)x̄j 6=i (positive: generous, and negative: selfish).147

The computer simulations suggested that the order of fixation is consist with the order of the evolu-148

tionary rate (Fig. 2); for example, the fastest species is the species that is the most likely to the strategy149

at first. In other words, the effect of the initial conditions on the order of the fixation isnegligibly small,150

and the the order of the fixation is predictable from the order of the evolutionary rate.151

slowest fastest

1st

2nd

3rd

4th

small k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

slowest fastest

1st

2nd

3rd

4th

large k

0.0

0.2

0.4

0.6

0.8

Figure 2: The order of the evolutionary rates and the order of the fixation
The relationship between the evolutionary rates (horizontal axis) of each species and the order of the fixation

(vertical axis) in the four species model with a small value of k (k = 0.5, left) and a large value (k = 1.6, right).

The color of each cell represent the probability that focal species fixes its strategy at the given order. Regardless

of the value of k,there exist consistency between the order of the evolutionary rates and the order of the fixation;

the species that is the most likely to fix its strategy at first is the fastest species, and those that fixes the strategy

at last is the species with the slowest evolutionary rate. The evolutionary rates and the initial conditions are the

same as in Fig. 1.

3.3 Analysis under the ideal condition152

As the order of the fixation can be estimated by the order of the evolutionary rate, let us assume the ideal153

condition where the differences in evolutionary rates between each species are quite large. Under this154

condition, only the fastest evolving species that has never fixed its strategy can evolve toward generosity155

or selfishness while the remaining species do not change in their fractions of generous individuals. In156

other words, each species fixes its strategy according to the order of the evolutionary rate, and the157

evolutionary direction of each species is determined by the initial condition and the evolutionary fate of158

the species which have already fixed their strategies because the sign of 1 + (k − 3)x̄j 6=i determines the159

evolutionary direction. Notice that the it is necessary to the calculate the probability distribution of the160

initial conditions because the evolutionary dynamics is affected by the initial conditions, although the161

dynamics is deterministic.162
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When species i is the ith fastest species in the M species community (i = 1, . . . ,M − 1), the focal163

species i is more likely to evolve generously or selfishly if and only if164

1 + (k − 3)x̄j 6=i = 1 +
k − 3

M − 1

∑
j 6=f

xj ≷ 0

⇔ 1 +
k − 3

M − 1

f1 +
M∑
j>i

xj(0)

 ≷ 0

⇔ 1

M − i

M∑
j>i

xj(0) ≶
1

M − i

(
M − 1

3− k
− f1

)
, (6)

where f1 is the number of species which have already been fixed as generous species. Notice that it is not165

necessary to consider the slowest species i = M because the evolutionary fate of the slowest species is166

determined only by the evolutionary fate of the other species (if there already exist m generous species,167

the slowest species become selfish; otherwise, the slowest species evolve generously).The upper (lower)168

sign of Eq (6) is the case when species i is more likely to be generous (selfish) species. As the initial169

fraction of generous individuals in each species is uniformly i.i.d., the left-hand side of Eq (6) represents170

the mean of M − i independent samples from the uniform distribution. Using the central limit theorem,171

the left-hand side of Eq(6) approximately follows the normal distributionN
(
µ, σ2

i

)
whose mean is µ = 0, 5172

and the inverse of the variance is 1/σ2
i = 12(M − i).173

The right-hand side of Eq (6), on the other hand, can be regarded as the threshold for species i Ti;174

if the left-hand side of Eq (6) is smaller (larger) than Ti, species i evolves generously (selfishly). This175

threshold is, however, affected by the evolutionary fates of the faster species, which have already fixed176

their strategies. By denoting the number of species which have already been fixed as selfish f1 = i+1−f0,177

the right-hand side of Eq (6) is seen as the threshold for the evolutionary direction of species i, whose178

value is determined by f0, f1;179

Ti (f0, f1) ≡ 1

M − i

(
M − 1

3− k
− f1

)
. (7)

From Eqs(6) and (7), the favorability of species i is computable with arbitrary values of k and M .180

Given the value of f0 and f1, let denote the conditional probability that species i become selfish as181

qi (x∗i = 0|f0, f1). Then , the favorability of species i is written as182

favorabilityi =
∑
f0,f1

pi (f0, f1) qi (x∗i = 0|f0, f1) (8)

where pi (f0, f1) is the probability density of (f0, f1) for species i. From Eq (6), the conditional probability183
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qi (x∗i = 0|f0, f1) is derived as184

qi (x∗i = 0|f0, f1) = 1− qi (x∗i = 1|f0, f1)

= 1−
∫ Ti(f0,f1)

0

N
(
x|0.5, σ2

i

)
dx (9)

where qi (x∗i = 1|f0, f1) indicates the conditional probability that species i become generous given the185

value of (f0, f1). Notice that these two conditional probabilities are affected by the values of f0 and f1,186

but given the values of f0 and f1, the two conditional probabilities can easily be computed by calculating187

the cumulative probability function of the normal distribution N
(
0.5, σ2

i

)
.188

The probability density pi (f0, f1) is, on the other hand, sequentially computable (Fig. 3). For the189

fastest species (i = 1), p1 (0, 0) = 1 and the favorability of the fastest species is derived by190

favorability1 = q1 (x∗1 = 0|0, 0) . (10)

To calculate the favorability of the second fastest species, on the other hand, it is necessary to calcu-191

late the probability densities of (f0, f1) = (0, 1) , (1, 0). However, the probability that (f0, f1) = (0, 1)192

(or (f0, f1) = (1, 0)) is the same as the probability that the fastest species become generous (selfish),193

respectively. The favorability of the second fastest species is, therefore, derived as below:194

favorability2 = p2 (0, 1) q2 (x∗2 = 0|0, 1) + p2 (1, 0) q2 (x∗2 = 0|1, 1)

= q1 (x∗1 = 1|0, 0) q2 (x∗2 = 0|0, 1) + q1(x∗1 = 0|0, 0)q2 (x∗2 = 0|1, 0) . (11)

For the third fastest species (i = 3), the probability density of (f0, f1) is derived as follows:195

p3 (2, 0) = q2 (x∗2 = 0|1, 0) q1 (x∗1 = 0|0, 0) (12a)

p3 (1, 1) = q2 (x∗2 = 1|1, 0) q1(x∗1 = 0|0, 0) + q2 (x∗2 = 0|0, 1) q1 (x∗1 = 1|0, 0) (12b)

p3 (0, 2) = q2(x∗2 = 1|0, 1)q1(x∗1 = 1|0, 0). (12c)

By substituting Eq (7) into Eq (9), the conditional probabilities that the third fastest becomes selfish196

species are achieved. Then, the favorability of the third fastest species is derived from Eq (8). Therefore,197

for any value of i, the favorability of species i is computable by the conditional probabilities that the198

species evolving faster than i becomes selfish.199

Fig. 4 shows the results of analysis on the relationship between the evolutionary rates and the200

favorabilities under the ideal conditions. As the results of the computer simulations (Fig. 1), there201

exist nonlinear relationships between the evolutionary rates and the favorabilities. Moreover, in the four202

species model with the small value of k, where the computer simulation represents the linear relationships203
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fastest

2nd fastest

Figure 3: The schematic illustration of the analysis under the ideal conditions

The threshold of the evolutionary direction is determined by the evolutionary fate of the species which have

already fixed their strategies. Under the ideal conditions, the evolutionary fate of the fastest species (i = 1) is

determined only by the value of k. In other words, the favorability of the fastest species is computable with

arbitrary value of and k. The threshold for the second fastest species (i = 2) is determined not only by k but

also the strategy of the fastest species (left: generous and right: selfish). Notice that the probability p2 (0, 1)

(p2 (1, 0))is the same as the probability that the fastest species becomes generous (selfish). The favorability of the

second fastest species is, therefore, also computable. In addition, from the computation above, the probability

density of (f0, f1) for the third fastest species p3 (f0, f1) is calculated.

between the evolutionary rates and the favorabilities, the analysis under the ideal conditions shows the204

nonlinear relationship.205

The advantage of the analysis under the ideal conditions is that the ideal conditions enable to analyze206

the communities with larger number of species., which requires the quite large computational costs in the207

computer simulation due to the high dimensionality. Although there still exist nonlinear relationships208

between the evolutionary rates and the favorabilities when M is large (e.g., M = 20), there exist a pattern209

which cannot be seen when M is small (Fig. 5); if the focal species has a relatively fast evolutionary rate,210

the faster the species evolves, the larger (the smaller) the favorability of the species is when k is small211

(large). The species with relatively intermediate evolutionary rates show the almost same favorabilities212

(around 0.5), which means that the difference of the evolutionary rates has little effect on the favorabilities213
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0.688

0.726
0.620

0.160

0.450

0.529

0.264
0.207

0.099

0.082

0.492

0.327

Figure 4: Favorabilities under the ideal conditions

The favorabilities of each species in the three species communities (M = 3) and the four species communities

(M = 4) are computed under the ideal conditions. using different value of k (in the three species communities,

k = 0.5 for small k and k = 1.5 for large k whereas k = 0.5 for small k and k = 1.6 for large k in the four

species community). It is assumed that the left-hand side of Inequality (6) is distributed according to the normal

distribution if i = 1, 2, . . . ,M − 2; otherwise the uniform distribution is used for the distribution of the left hand

side in inequality (6).

for these species. The species with the relatively slowly evolving species, especially the slowest species,214

however, it is difficult to find a pattern. To sum up, under the ideal conditions, the communities with215

large number of M can show the pattern between the evolutionary rates and the favorabilities of the216

species with the relatively fast or intermediate evolutionary rates.217

4 Discussion218

In this paper, the effect of evolutionary rates on mutualism is investigated by generalizing the model219

proposed by (Bergstrom and Lachmann, 2003). In particular, I modified their model with respect to220

of the number of species in the communities and the population sizes of each species. Although the221

evolutionary dynamics is deterministic, the stable equilibrium where the dynamics converges depends222
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Figure 5: Favorabilities under the ideal conditions in larger communities

The favorabilities under the ideal conditions when M = 5, 10, 15, and 20 are shown. In each value of M , the

value of k is changed (cyan: k = 0.5, and blue k = 1.5). Although there exist nonlinear relationships between the

evolutionary rates and the favorabilities, the models with large value of M show that the faster the evolutionary

rate is, the more the focal species is likely to evolve generously (selfishly) if k = 0.5 (k=1.5) and if the focal species

has the enough large evolutionary rate.

on the initial conditions, and therefore, the favorability or the probability that the focal species become223

selfish at a stable equilibrium should be evaluated.224

In the original two-species model of Red King (Bergstrom and Lachmann, 2003), the stable equilibria225

are where one species become generous and the other species become selfish. At such stable equilibria,226

the selfish species receives a larger benefit than the generous species, and one may say the selfish species227

is a “winner” and the generous species is a “loser”. In the multi-species model of this paper, on the other228

hand, the selfish species are not always such “winners”. For example, in the three species model where all229

species have the same population size, there exist 1 generous and 2 selfish species at the stable equilibria230

when 0 ≤ k < 1, while the stable equilibria have 2 generous and 1 selfish species when 1 < k < 2. In231

the latter case, the selfish species receive 4 payoff while the generous species receive k+ 1 payoff in each,232

meaning that the selfish species “wins” the both of the two generous species. However, if 0 ≤ k < 1, the233

payoffs of all species are 2; both the selfish species and the generous species receive the same amount of234

benefit; therefore, the two selfish species do not “win” the generous species.235

Better interpretations of the generous strategy and the selfish one would be as follows; the generous236

strategy is a role which produces a benefit to other species (e.g., producing a leaky resource which works237

as energy for the producer species andother species), and the selfish strategy is a role which pays a small238

cost but does not produce benefits unless other species play the generous strategy (e.g., producing enzyme239

which makes the resource available more effectively). While the selfish species always receive a larger240

benefit from the generous species than the selfish one, the generous species receives more (or less) benefits241
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from the selfish species than the generous one when 0 ≤ k < 1 (or < 1k < 2). In the context of the242

division of labor of producing the leaky resource and the enzyme, the diffusion rate of the enzyme can243

be a measure of k. For example, 0 ≤ k < 1 represents the case where the diffusion rate of the enzyme is244

large and both the generous species and the selfish species use the leaky resource effectively due tot the245

enzyme the selfish species produces. The difference in the payoffs of the two species would represent the246

differences in the cost of producing the resource or the enzyme. The situation where the diffusion rate247

of the enzyme is low, on the other hand, will be represented by the parameter 1 < k < 2. In such case,248

only the selfish species make the resource available effectively due to the benefit of the enzyme while the249

generous species cannot access the enzyme. In such situation, it is better for the generous species that250

other species play the generous strategy and increase the amount of the leaky resource. Considering this251

interpretation, the generous species can be regarded as one which provides the benefit of the mutualism252

through the community, while the selfish species can be regarded as one that selfishly maximizes its253

potential payoff.254

While the two-species model of the two player game shows the positive or negative correlations between255

the evolutionary rates and the favorabilities (Bergstrom and Lachmann, 2003; Veller et al., 2017), the256

computer simulation (Fig. 1) and the analysis under the ideal conditions (Fig. 4) in this paper represent257

the nonlinear relationship between the evolutionary rates and the favorabilities in the three or four species258

communities. Although the computer simulations of the communities with the large value of M take a259

long time, the assumption of the ideal conditions enable to analyze the communities where many species260

coexist. Although the nonlinear relationship between the evolutionary rates and the favorabilities remains261

when M increases, one can find a clear pattern in the relationship (Fig. 5); the relatively fast species262

have the larger (smaller) favorabilities as the focal species evolves faster when k is small (k is large),263

while the favorabilities of the species with the relatively intermediate evolutionary rates are around 0.5.264

For the relatively slow species, however, it is difficult find any tendency.265

Such pattern suggests that the faster evolution is favored (disfavored) for the relatively fast species266

in the community with many species if k is smaller (larger) than 1. This result is consistent with the267

original two-species model (Bergstrom and Lachmann, 2003), where the Red Queen effect (the King effect)268

operates when k < 1 (k > 1). This consistency would arise from the fact that faster evolving species is269

more sensitive to the value of k. Eq (7) suggests that the evolutionary direction is more sensitive to the270

values of k, which determines the evolutionary direction, when the focal species evolves faster (smaller271

i), because f1 is equal or smaller than i − 1. In other words, the evolutionary fate of the fast species is272

sensitive to the value of k, while the slow species is more sensitive to the evolutionary fate of the faster273

species, which would lead the difficulty of finding a pattern for the relatively slow species. Notice that274

an exception is a case when M = 2; if the evolutionary fate of the faster species is determined, then that275

of the slower species is also determined as there exist only stable equilibrium states. Therefore, in the276
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multi-species communities, only the evolutionary fate of the relatively fast species is predictable from the277

value of k, the payoff when the generous species interacts with other generous species.278

Of course, this research has some limitations. First, it would be unnatural that all species play the279

same game defined by Table 1. The parameter k could be replaced with kij , which a generous individual of280

species i receives when interacting with a generous individual of species j. In addition, it is more natural281

if a community includes not only mutualistic interactions but also antagonistic interactions. Second,282

this paper assumes the two distinct strategies, selfish or generous. However, it is possible to consider283

continuous trait values where the payoff is then given by the difference of the trait values of the payers.284

Although the distinct strategies could be enough in the context of division of labor, continuous traits285

model is better in the context of mimicry as each species would have the different appearance and they286

have to pay different amount of cost to mimic the model species. Third, population sizes can change287

over time although the population sizes are fixed in this paper. The population dynamics can change288

the results in this study because the population size affects the evolutionary rates (Veller et al., 2017)289

and the stability of the equilibria, as shown in Appendix B. Indeed, recent studies combine the public290

good game with population dynamics and show the maintenance of cooperation (Hauert et al., 2006) and291

complex dynamics (Gokhale and Hauert, 2016). Such eco-evolutionary dynamics can also be analyzed in292

the mutualism with a degree of conflict.293

In summary, this study analyzed the evolution of mutualism in the multi-species communities by294

generalizing the two-species model proposed by Bergstrom and Lachmann (2003). Although in the295

multi-species communities, there exist nonlinear relationship between the evolutionary rates and the296

favorabilities, it is possible to predict the evolutionary fates of relatively fast evolving species from the297

value of k, or the payoff of generous species when they interact with other generous individuals.298
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Appendix A Stability analysis of infinite population sizes

Here, the linear stability of the equilibria in the model with infinite population sizes given by equation (3)

is performed and I prove that stable equilibria are only those which has m generous species and M −m

selfish species, where integer m satisfies inequality (5).
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The element of the Jacobian matrix of equation (3) at the equilibrium x∗ is represented by

J (x∗) =

 ri(1− 2x∗i ){1 + k−3
M−1

∑M
j 6=i x

∗
j} (j = i)

rix
∗
i (1− x∗i ) k−3

M−1 (j 6= i)
. (13)

To analyze the stability of each equilibrium, I classified the equilibria into the two class: (i) an exterior

equilibrium where all elements are either 0 or 1 (∀i, x∗i ∈ {0, 1}), and (ii) an interior equilibrium which

holds at least one element between 0 and 1 (∃i, 0 < x∗i < 1).

Appendix A.1 Stability of exterior equilibria

In the case of an exterior equilibrium(∀i, x∗i ∈ {0, 1}), the Jacobian matrix J of such equilibrium is given

by

Jij =


0 (i 6= j)

− ri
M−1{−m(3− k) + (M − k + 2)} (i = j, x∗i = 1)

ri
M−1 {−m(3− k) + (M − 1)} (i = j, x∗i = 0)

. (14)

where m is the number of generous species at this equilibrium. As this Jacobian matrix is a diagonal

matrix with an exterior equilibrium, the eigenvalues of the Jacobian matrix are the same as the diagonal

elements of the Jacobian matrix. The exterior equilibrium is, therefore, linearly stable if and only if

 −m(3− k) + (M − k + 2) > 0

−m(3− k) + (M − 1) < 0
. (15)

Here, inequalities (5) are obtained.

Appendix A.2 Stability of interior equilibria

Next, let consider the stability of the interior equilibria 0 and 1 (∃i, 0 < x∗i < 1). The interior equilibria

can divide into two sub-categories: a full interior equilibrium where all elements are between 0 and 1, and

a partially interior equilibrium where some elements are between 0 and 1 while the other elements are

either 0 or 1. In this section, the full interior equilibrium is first analyzed because the stability analysis for

the full interior equilibrium is simple. Then, the analysis for the partially interior equilibrium is shown.

There exist a unique full interior equilibrium in the evolutionary dynamics given by equation (3):
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x∗ =
(
(3− k)−1, (3− k)−1, . . . , (3− k)−1

)
. The Jacobian matrix at this equilibrium is written as

J =



0 K1 K1 . . . K1

K2 0 K2 . . . K2

K3 K3 0 K3

...
...

. . .
...

KM . . . KM 0


, (16)

where Ki = −ri(2− k)/ {(3− k)(M − 1)} ≤ 0. As the Jacobian matrix is not a diagonal matrix in this

case, it is difficult to directly calculate the eigenvalues.

Instead of this approach, I shall show that Routh-Hurwitz criteria do not hold in the case of the

full interior equilibrium and, therefore, the full interior equilibrium is not stable. Here, Mathematical

Induction shows that the coefficient of M − 1th order in the characteristic equation is 0, which means

that Routh-Hurwitz criteria do not hold (Murray, 2002, Appendix B.1).

Proof. First, let consider the case when M = 2. Then, the characteristic equation is written as

|λI − J | = 0

⇔ λ2 −K1K2 = 0, (17)

where λ is the eigenvalue of the Jacobian matrix given by equation (16), I is the identity matrix, and

|λI − J | is the determinant of matrix λI − J . Obviously, the coefficient of λ is zero.

Next, let assume that the coefficient of M − 1th order in the characteristic equation is zero when
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M = 2, 3, . . . , n. If M = n+ 1, the characteristic equation is

|λI − J | =

λ −K1 . . . −K1

−K2 λ −K2

...
. . .

...

−Kn+1 −Kn+1 . . . λ

= λ

λ −K2 . . . −K2

−K3 λ −K3

...
. . .

...

−Kn+1 −Kn+1 . . . λ

+
n+1∑
l=2

(−1)lKl

−K1 −K1 . . . −K1

... λ
...

−Ki . . .
. . . −Ki

... . . .
...

. (18)

The first term in equation (18) is

λ

λ −K2 . . . −K2

−K3 λ −K3

...
. . .

...

−Kn+1 −Kn+1 . . . λ

= λ |λI − Jn×n|

= λn+1 + a2λ
n−1 + . . . , (19)

where Jn×n is n × n matrix while J in equation (18) is (n + 1) × (n + 1) matrix. The second term in

equation (18) is, on the other hand, the n − 1th degree equation of λ. The coefficient of nth order in

equation (18) is, therefor, zero.

From these result, Routh-Hurwitz criteria do not hold in the characteristic equation of the Jacobian

matrix in equation (16) with the arbitrary integer of M . As all eigenvalues are negative if and only if the

Routh-Hurwitz criteria hold, the full interior equilibrium is not stable.

Next, let consider the stability of the partially interior equilibria. At a partially interior equilibrium,

I denoted the number of selfish and generous species as f0 and f1, respectively. The number of remaining

species is R = M − (f0 + f1) and both generous individuals and selfish ones coexist within each species.
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The elements of partially interior equilibrium is represented as below:

x∗i =


0 if species i is selfish

1 if species i is generous

M−1+f1(k−3)
(R−1)(3−k) otherwise

. (20)

The Jacobian matrix of such equilibrium is written as equation (16), although Ki = 0 if x∗i = 0 or 1. As

the Mathematical Induction above again holds in this case, all partially interior equilibrium is not stable.

Appendix B Stability analysis in the of different population size

model

Appendix B.1 Model formulation

In the main text, the analysis is based on the assumption that all species have the infinite population

sizes. Here this assumption is relaxed and it is assumed that each species has a different population size.

Notice that, however, the population sizes are enough large to use the ordinary differential equations and

that the population sizes are not changed over time.

In the case that each species has a different population size, the evolutionary dynamics defined in

equation (2) are written as

ẋi = rixi (1− xi)
1∑M

j 6=iNj

Nl


M∑
l 6=i

(k − 3)xl + 1


= rixi (1− xi)

1 +
∑
j 6=i

wij (k − 3)xj

 , (21)

where wij = Nj/
∑M

l 6=iNl. By giving wii = 0 for i = 1, 2, . . . ,M , one can find
∑M

j=1 wij = 1 for any i.

This means that wij is the weight of the effect of species j on species i. In this model, the results shown

in the main text are rewritten by evaluating the weighted average of generous individuals
∑M

j=1 wijxj .

The stable equilibria (x∗i ∈ {0, 1} ∀i) should satisfy the conditions below:

1

3− k
<

∑M
j=1 wijx

∗
j if x∗i = 0

>
∑M

j=1 wijx
∗
j if x∗i = 1

. (22)

The derivation is shown in Appendix B.2. It should be noted that the population sizes do not affect the

stability of each equilibrium in the case of M = 2. Inequalities (22) suggest that we need to evaluate

matrix W = {wij} and the value of k for all possible 2M combinations of the evolutionary fate of all

species in the community. Interestingly, this model can hold the multiple stable equilibria which have
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different number of generous spices in each while the model where all species have infinite large population

size shows that each stable equilibrium should have m generous species given the values of k and M .

For example, there exist two stable equilibria and one has two generous and one selfish species while the

other stable equilibrium has one generous and two selfish species when N = (1, 1, 5) and k = 0.5 (see

Fig. 7d).

Appendix B.2 Stability analysis

Here, I prove that in the model of different population sizes, the stable equilibria should satisfy inequalities

(22) while the interior equilibria, which have at least one species wherein there exist both generous and

selfish individuals cannot be stable. The elements of Jacobian matrix for equation (21) are represented

as

Jij =

 ri(1− 2x∗i ){1 + (k − 3)
∑M

j=1 wijx
∗
j} (j = i)

rix
∗
i (1− x∗i )(k − 3)wijx

∗
j (j 6= i)

. (23)

In the case of the exterior equilibria where all species have either generous or selfish individuals,

Jacobian matrix is a diagonal matrix. An exterior equilibrium is stable if and only if all diagonal elements

of Jacobian matrix are negative, which is the same as inequalities (22).

In the case of interior equilibria, on the other hand, all diagonal elements of Jacobian matrix are zeros.

As shown in Appendix A.2, Routh-Hurwitz criteria do not hold in the characteristic equation with such

Jacobian matrix, although the row elements except for the diagonal elements in each row do not have

the same values in this case.

Appendix C Code availability

The codes used in this research are available at Github.
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Appendix D Supplementary figures
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Figure 6: Initial conditions and the evolutionary fates in the infinite population size model.
The relationship between the initial conditions and the stable equilibria the dynamics converge to in the three

species community is illustrated when (a) k = 0.5 (small k) and (b) k = 1.5 (large k). The colors of the dots

show which stable equilibrium the dynamics converges to when the initial fractions of generous individuals in

each species are given by the coordinates of the dots. (a) cyan: the slow and the intermediate are selfish while

the fast is generous. yellow: the slow and the fast are selfish while the intermediate is generous. magenta: the

intermediate and the fast are selfish while the slow is generous. (b) cyan: slow is selfish while the others are

generous. yellow the intermediate is selfish while the others are generous. magenta: the fast is selfish while the

others are generous.

Figure 7: Examples of different population size model
If M = 3, there exist 8 candidates of the stable equilibrium. Each dot indicates the initial fractions of generous

individuals, and the color of the dots represents which equilibrium the dynamics converge to. While the evo-

lutionary rate only changes the size of basin attraction, the value of k and the population sizes N can affect

the stability of each equilibrium. In addition, the stable equilibria do not always the same number of generous

species given the values of k, M , and N .The parameters are (a): r = (1/8, 1, 8), k = 0.5, and N = (3, 3, 4), (b):

r = (8, 1, 1/8), k = 0.5, and N = (3, 3, 4), (c):r = (1/8, 1, 8), k = 1.5, and N = (3, 3, 4), and (d): r = (1/8, 1, 8),

k = 0.5, and N = (1, 1, 5).
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