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20 Abstract

21 Clinicians’ experts in mechanical ventilation are not continuously at each patient’s bedside in 

22 an intensive care unit to adjust mechanical ventilation settings and to analyze the impact of 

23 ventilator settings adjustments on gas exchange. The development of clinical decision support 

24 systems analyzing patients’ data in real time offers an opportunity to fill this gap. The 

25 objective of this study was to determine whether a machine learning predictive model could 

26 be trained on a set of clinical data and used to predict hemoglobin oxygen saturation 5 min 

27 after a ventilator setting change. Data of mechanically ventilated children admitted between 

28 May 2015 and April 2017 were included and extracted from a high-resolution research 

29 database. More than 7.105 rows of data were obtained from 610 patients, discretized into 3 

30 class labels. Due to data imbalance, four different data balancing process were applied and 

31 two machine learning models (artificial neural network and Bootstrap aggregation of complex 

32 decision trees) were trained and tested on these four different balanced datasets. The best 

33 model predicted SpO2 with accuracies of 76%, 62% and 96% for the SpO2 class “< 84%”, “85 

34 to 91%” and “> 92%”, respectively. This pilot study using machine learning predictive model 

35 resulted in an algorithm with good accuracy. To obtain a robust algorithm, more data are 

36 needed, suggesting the need of multicenter pediatric intensive care high resolution databases.

37

38
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39 Introduction

40 In case of respiratory failure, mechanical ventilation supports the oxygen (O2) diffusion into 

41 the lungs and the carbon dioxide (CO2) body removal. As an expert in mechanical ventilation 

42 cannot reasonably be expected to be continuously present at the patient’s bedside, specific 

43 medical devices aimed to help in ventilator settings adjustments may help to improve the 

44 quality of care. Such devices are developed using either algorithms based on respiratory 

45 physiology/medical knowledge that adapt ventilator settings in real time based on patients’ 

46 characteristics but are not accurate enough to be used widely in clinical practice, especially in 

47 children [1, 2]; or physiologic models that simulate cardiorespiratory responses to mechanical 

48 ventilation settings modifications but none was validated for this indication [3]. The above-

49 mentioned models all share the limitation of not being suited to learn from ever-growing sets 

50 of clinical research data, and potentially improve their performances.  To overcome this 

51 drawback, another avenue is the development of algorithms using artificial Intelligence to 

52 provide caregivers with support in their decision-making tasks. In this study, we assessed 

53 machine learning methods to predict transcutaneous hemoglobin saturation oxygen (SpO2) of 

54 mechanically ventilated children after a ventilator setting change using a high resolution 

55 research database.

56

57 Materials and Methods

58 This study was conducted at Sainte-Justine Hospital and included the data collected 

59 prospectively between May 2015 and April 2017 of all the children, age under 18 years old, 

60 admitted to the Pediatric Intensive Care Unit (PICU) who were mechanically ventilated with 

61 an endotracheal tube. Patients’ data were excluded if the patient was hemodynamically 

62 unstable defined as 2 or more vasoactive drugs delivered at the same time (ie., epinephrine, 
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63 norepinephrine, dopamine or vasopressin) or with an uncorrected cyanotic heart disease 

64 defined by no SpO2 > 97% during all PICU stay. All the respiratory data from included 

65 patients were extracted from the PICU research database [4], after study approval by the 

66 ethical review board of Sainte-Justine hospital (number 2017 1480).

67

68 Data extraction

69 To determine the data that will be extracted for each child, an item generation was 

70 conducted by three physicians (PJ, MS, DB). The resulting items are presented in Fig 1 within 

71 their sources, means of extraction and a schematic of the main components of the study. 

72 The predictive SpO2 value was the SpO2 5 minutes after a change of a ventilator setting. The 

73 delay of 5 min corresponded to the shortest period of time to reach a steady state after 

74 modification of a ventilator setting [5].

75 Fig 1. Schematic description of the analysis process and items involved. EMR: electronic 
76 Medical Record, FiO2: inspired fraction of Oxygen, Vt: tidal volume, PEEP: 
77 Positive end expiratory pressure, PS above PEEP: pressure support level Above 
78 PEEP, PC above PEEP: pressure control level above PEEP, MVe: expiratory 
79 minute volume, I:E Ratio: inspiratory time over expiratory time, Measured RR: 
80 respiratory rate measured by the ventilator, PIP: positive inspiratory pressure ie 
81 maximal pressure measured during inspiration. 5minSpO2: SpO2 observed 5 min 
82 after PEEP, FiO2, tidal volume, PS above PEEP, PC above PEEP change, ML: 
83 machine learning, ANN: artificial neural network, BACDT: Bootstrap aggregation 
84 complex decision trees.
85
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86i. Data formatting

87 The data extracted from the research database needed: (1) to remove erroneous data due to 

88 disconnection of the patient from the ventilator or the monitor, or due to transient 

89 interventions such as suctioning; (2) to remove the rows at which no ventilator setting 

90 variables was modified; (3) to adapt data format for classifier training. The methodology to 

91 format the data is described in S1 file.

92

93 Data categorization

94 SpO2 levels at 5min were classified into three categories (Table 1). The thresholds were 

95 selected according to clinical value: a SpO2 < 92% is a target to increase oxygenation in 

96 mechanically ventilated children [6]. The critical level of 85% SpO2 is used as an alarm of 

97 severe hypoxemia in intensive care [7].

98

99 Table 1: Definition of SpO2 class labels specifications

SpO2 classification SpO2 range
(%)

Rows number
(n)

1 < 84 17,112
2 85 to 91 29,869
3 92 to 100 729,746

100
101 Data balancing

102 The data analysis showed a severe imbalance with most SpO2 at 5min above 92%.  This is 

103 logical as caregivers want to maintain SpO2 in normal range during child PICU stay. In such 

104 condition, the classifier learns the majority class label (class 3) (Table 1) but doesn’t learn the 

105 minority class labels (class 1 and 2) [8]. The data balancing process aims to allow the 
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106 classifier to learn from all class equally. The data balancing process used in this study 

107 included a combination of down-sampling and up-sampling techniques: to balance the three 

108 classes of the data involved, a down-sampling of the SpO2 class 3 using TOMEK algorithm [9] 

109 and an over-sampling of SpO2 class 1 and 2 using Synthetic Minority Oversampling 

110 Technique (SMOTE) [10] were performed. 

111 The creation of synthetic data points by SMOTE can be formulated as follows:

112 𝑥𝑠𝑦𝑛 =  𝑥𝑖 + (𝑥𝑘𝑛𝑛 ‒  𝑥𝑖) ×  𝛿                             (2)

113 In equation (2), xsyn represents the synthetic data point. The variables xi  and xknn are 

114 respectively the original instance, and the nearest neighbor data point which is randomly 

115 picked among the k nearest neighbors.. The random number δ is generated in [0,1] to 

116 determine the position of the created synthetic data point along a straight line joining the 

117 original data point xi and its chosen nearest neighbor xknn.

118 To study which data balancing method provided the more accurate algorithm, four datasets 

119 were produced via four different balancing procedures, involving different combinations of 

120 data balancing techniques (Fig 2).

121 Fig 2. Descriptions of the four balancing procedures.

122

123 Predicted SpO2 Classification

124 To identify the best machine learning classification method, we tested two classification 

125 models: artificial neural network and bagged complex decision trees, on the four balanced 

126 datasets.

127 Artificial Neural Network (ANN)

128 Once the data has been pre-processed, a machine learning predictive model was trained on a 

129 sub-set of labeled training data. The model is then used to predict the target variable values on 
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130 a testing subset where the class labels are hidden.  We used Artificial Neural Networks 

131 (ANN) to make predictions of the SpO2 variable, based on the values of other variables of 

132 interest. Through the function approximation that the ANN performs, it is possible to make 

133 predictions of SpO2 variable, based on the input data.

134

135 The ANN is learned from training data, using the backpropagation algorithm [11] and is 

136 tested on a test set made of the remaining rows of data to validate the generalization of the 

137 model. The learning algorithm runs through all the rows of data in the training data set and 

138 compares the predicted outputs with the target outputs found in the training data set. The 

139 weights are adjusted via supervised learning, in a manner to minimize the error of predicted 

140 SpO2 vs target SpO2. The process is repeated until the error is minimized.

141

142 The ANN classifier was implemented through cycles of forward propagation followed by 

143 backward propagation through the network’s layers.  The backpropagation algorithm is used 

144 for performance optimization.

145 For a given number of classes K > 2, the cross-entropy error can be formulated as shown in 

146 eq. 3, where (Wi)i is the matrix of weights between the neuron layers, ri is the target value. yi is 

147 the value generated by the ANN, ie., its output.

148 (3) Et((Wi)i |𝑥𝑡, 𝑟𝑡) =  -  ∑𝑖𝑟
𝑡
𝑖𝑙𝑜𝑔 𝑦𝑡

𝑖                   

149  The outputs of the ANN are:

150  𝑦𝑡
𝑖 =  

𝑒𝑥𝑝 𝑤𝑡
𝑖𝑥𝑖

∑
𝑘

𝑒𝑥𝑝 𝑤𝑡
𝑘𝑥𝑡

                           (4) 

151 Using stochastic gradient-descent (SGD) for error minimization, the update rule for the ANN 

152 weights is:

153  ∆𝑤 𝑡
𝑖𝑗 = 𝑛(𝑟𝑡

𝑖 ‒  𝑦𝑡
𝑖)𝑥𝑡

𝑗                           (5)
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154 In equation 5, η is the learning rate, which, when SGD is used, decreases as the error is 

155 minimized. During ANN training, each observation, comprised of an input vector and a target 

156 output, is denoted (xt, rt), with rt ϵ (“1”, “2”, “3”).  The reason why the cross-entropy (eq. 3) is 

157 used instead of the Least Square Error (LSE) is to avoid long periods of training, due to the 

158 ANN going through stages of slow error reduction.

159

160 Bootstrap aggregation of complex decision trees

161 Bootstrap aggregating (acronym: bagging) was proposed by L Breiman in 1994 to improve 

162 classification by combining classifications of randomly generated training sets [12].  Bagging 

163 allows for the creation of an aggregated predictor via the use of multiple training sub-sets 

164 taken from the same training set. Let ( ) denote the replicate training sub-sets bootstrapped 𝑻𝒊

165 from the training set T.  These replicate sub-sets each contain N observations, drawn at 

166 random and with replacement from T.  For each of these sub-sets of N observations, a 

167 prediction model, or classifier, is created.  The computational model we used for bagging was 

168 complex decision trees.  This means that, for each bootstrapped sub-set of training data, a 

169 complex decision tree is trained and thus a classifier is created.  If i = 1, …, n, then n 

170 classifiers are created through the bagging process.

171

172 A decision tree is a flowchart computational model which can be used for both regression, as 

173 well as classification problems.  Paths from the root of the tree to its various leaf nodes go 

174 through decision nodes in which decision rules are applied in a recursive manner, based on 

175 values of input variables.  Each path represents an observation (X, y) = (x1, x2, x3, …, xn, y), 

176 where the label assigned to the target y is given in the leaf node, at the end of the path, ie., 

177 classification [13].

178
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179 In the aim of maximizing the model’s generalization capability during the training process, 

180 the Bagged Complex Trees’ performance is tested via k-fold cross-validation.  A value k = 10, 

181 which is common practice, was used in this study.  The training using k-fold cross-validation 

182 is carried out as described in Fig 3. 

183 Fig 3. k-fold cross-validation

184

185 The mathworks Matlab R2016b Machine Learning toolbox was used for the creation of the 

186 ensemble of Bagged complex trees model.

187
188 Assessment of the performances of the classifiers

189 We evaluated the performances of the classifiers based on the metrics including testing 

190 confusion matrix, average accuracy, precision, recall and F score [14] with a 5minSpO2 

191 prediction expected above 0.9 for each class.

192

193 Precision

194            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 # 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖             (6)

195 The Precision (eq. 6) is the ratio of all correct classifications for class i to all instances labeled 

196 as class label i by the model.  In a non-normalized confusion matrix, this would mean 

197 dividing the number of instances classified in class label i by the total of instances in column 

198 i.

199

200 Recall

201                    𝑅𝑒𝑐𝑎𝑙𝑙 =
# 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖                     (7)
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202 Recall is the ratio of the number of instances classified in class label i to the number of true 

203 class i labels. In a non-normalized matrix, this would require dividing the number of 

204 instances classified in class label i by the total of row i

205

206 F-score

207                    𝐹 ‒ 𝑠𝑐𝑜𝑟𝑒 =
2

1
𝑟𝑒𝑐𝑎𝑙𝑙 +

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

                              (8)

208 The F-score provides a single measure of classification performance of the model used.

209

210 Results and discussion

211 We developed and assessed the performances of two machine learning classifiers on four 

212 different balanced datasets to predict SpO2 at 5 min after a ventilator setting change (ie FiO2, 

213 PEEP, Vt/Pressure), in 610 mechanically ventilated children. In Fig 4 and Table 2, we report 

214 the performances of these two classifiers. Using the classification performance metrics, the 

215 bagged trees classifier trained on dataset #3 (see Fig 2) has yielded the best classification 

216 performance on the test sets (Table 2). The confusion matrix of the whole bagged trees 

217 shows that SpO2 at 5 min could correctly predict in 76% of class “1” data, 62% of class “2”, 

218 and 96% of class “3” (Fig 4).  This huge variation in classification performances of the three 

219 class labels can be explained by the large variation in the numbers of observations available 

220 for each of the class labels in the initial dataset that has limited the machine learning (Table 

221 1).

222

223 Fig 4. Artificial neural network (ANN) and bootstrap aggregation of complex decision trees 
224 (BACDT) test confusion matrices. The darker colors represent higher levels of accuracy. A: 
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225 balanced dataset 1, B: balanced dataset 2, C: balanced dataset 3, D: balanced dataset 4 (see 
226 Fig 2).
227

228 Table 2. Performance of artificial neural networks (ANN) and bootstrap aggregation of 
229 complex decision trees (BACDT) classifiers for SpO2 prediction at 5 min following a 
230 ventilator setting change. Avg/total: average accuracy of total classification values. In italics 
231 is the performance of the best predictive model obtained among the eight tested.
232

ANN BACDTBalanced 
datasets

5minSpO2 
class Precision Recall F-

score
Precision Recall F-

score
1 0.12 0.70 0.21 0.80 0.76 0.78
2 0.16 0.43 0.23 0.61 0.56 0.59
3 0.96 0.67 0.79 0.97 0.98 0.97Dataset 1

Avg/total 0.88 0.65 0.73 0.94 0.94 0.94
1 0.09 0.72 0.16 0.77 0.72 0.74
2 0.09 0.47 0.16 0.57 0.53 0.55
3 0.98 0.70 0.81 0.98 0.99 0.98Dataset 2

Avg/total 0.93 0.69 0.78 0.96 0.97 0.97
1 0.16 0.68 0.25 0.80 0.76 0.78
2 0.26 0.42 0.33 0.67 0.62 0.65
3 0.92 0.60 0.72 0.95 0.96 0.96Dataset 3

Avg/total 0.80 0.58 0.65 0.91 0.91 0.91
1 0.09 0.69 0.16 0.80 0.74 0.77
2 0.12 0.47 0.19 0.58 0.54 0.56
3 0.97 0.68 0.80 0.98 0.98 0.98Dataset 4

Avg/total 0.92 0.67 0.76 0.96 0.96 0.96
233

234 For the artificial neural network, the variation of the number of hidden layers and number of 

235 neurons per hidden layer did not seem to have a significant effect on the model’s 

236 classification performance (Table 3). As for the Bagged complex trees, the variation of the 

237 number of complex trees did not yield significant changes in classification performance 

238 (Table 4).

239

240 Table 3. Absence of impact on performance of the increase of neurons and hidden layers 
241 for artificial neural network (ANN). Example of the performance assessed by the F score on 
242 the balanced dataset 3 (see fig 2)
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243

244
ANN

Hidden layers (n) 1 2 3
Neurons/hidden layer (n) 10 50 100 10 50 100 10 50 100 

5minSpO2 class 1 25 25 25 25 25 25 22 22 19
5minSpO2 class 2 33 33 33 33 33 33 33 33 32F-score
5minSpO2 class 3 72 72 72 72 72 72 69 69 69

245
246 Table 4. Absence of impact on performance of the number of complex trees for bootstrap 
247 aggregation of complex decision trees (BACDT). Example of the performance assessed by 
248 the F score on the balanced dataset 3 (see Fig 2)
249

BACDT
n = 30 n=50

5minSpO2 class 1 78 78
5minSpO2 class 2 65 65F-score
5minSpO2 class 3 96 96

250

251 In agreement with previous studies regarding bagging being a better method for medical 

252 data classification, tree Bagging fared better than the artificial neural network used in this 

253 study [12].  It is noteworthy however that the gaps in performance results between the 

254 training and testing confusion matrices are relatively higher in the case of bagged trees 

255 model than in that of the artificial neural network (Fig 5).  This seems to indicate that, 

256 although the bagged trees model was capable of learning very well from the data, there’s 

257 still room for improvement in the generalization. The SMOTE algorithm is designed in such a 

258 way that should theoretically not affect the generalization of the trained model.  In cases of 

259 extreme data imbalance, however, as is the case in this study, the over-sampling within the 

260 data space of a given minority class label, used for increasing the cardinality of the class 

261 label’s set, is also likely to be extreme.  This may render the data space of this class relatively 

262 dense with respect to the rest of the data, made up of real data points of the studied patient 

263 sub-population.  This may potentially explain the classification model’s relatively poor 
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264 generalization for 5minSpO2 class “1” and “2” with respect to the generalization for 5minSpO2 

265 class “3”. Also, since SMOTE generates synthetic data points by interpolating between 

266 existing minority class instances, it can obviously increase the risk of over-fitting when 

267 classifying minority class labels, since it may duplicate minority class instances.  The fact that 

268 the training confusion matrix shows extremely high classification performances for the 

269 minority 5minSpO2 class “1” and “2”, as opposed to those shown in the testing confusion 

270 matrix, suggests that the over-sampling of the minority 5minSpO2 class using SMOTE could 

271 have caused some overfitting for these classes, but this would have to be further 

272 investigated. 

273

274 Fig 5. Training and testing confusion matrices of artificial neural networks (ANN) and 
275 bootstrap aggregation of complex decision trees (BACDT) classifiers for SpO2 prediction at 
276 5 min following a ventilator setting change.
277

278 The strengths of this study include a large clinical database of mechanically ventilated 

279 children used with more than 7.105 rows. In a recent similar study in PICU, 200 patients were 

280 included with 1.15.103 rows [15]. However, the volume of data is clearly insufficient. To use 

281 such machine learning predictive models, the pediatric intensive care community needs to 

282 combine multicenter high resolution database. In addition, children data could be pooled to 

283 neonatal and adult intensive care data, when possible, such as MIMIC III database [16]. The 

284 other strength is the process used to transform the data into a usable format and to correct 

285 a variety of artifacts present (S1 file). In health care, there is a significant interest in using 

286 clinical databases including dynamic and patient-specific information into clinical decision 

287 support algorithms. The ubiquitous monitoring of critical care units’ patients has generated a 

288 wealth of data which presents many opportunities in this domain. However, when 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2018. ; https://doi.org/10.1101/334896doi: bioRxiv preprint 

https://doi.org/10.1101/334896
http://creativecommons.org/licenses/by/4.0/


14

289 developing algorithms domains, such as transport or finance, data are specifically collected 

290 for research purposes. This is not the case in healthcare where the primary objective of data 

291 collection systems is to document clinical activity, resulting in several issues to address in 

292 data collection, data validation and complex data analysis [17]. As detailed in S1 file, a 

293 significant amount of effort is needed, when data have been successfully archived and 

294 retrieved, to transform the data into a usable format for research.

295 This study has several limitations. The limited row number reduced the SpO2 classification 

296 for machine learning predictive model to three clinically relevant classes. SpO2 is a 

297 continuous variable and the use of three class is probably insufficient, especially when high 

298 SpO2 range is suggested as potentially harmful [18, 19]. Instead of the classification model, 

299 the next step could be to test regression models’ performance. SpO2 was predicted at 5min 

300 after ventilator setting change, a clinically relevant delay. However, the delay between 

301 ventilator setting change and oxygenation steady state is not well defined and vary from 1 to 

302 71 minutes according to the parameter set (FiO2, PEEP or other parameters that change 

303 mean airway pressure) and clinical conditions studied [15, 20, 21]. This needs further 

304 research and probably more sophisticated clinical decision support systems using machine 

305 learning predictive models should consider these factors. Finally, we excluded hemodynamic 

306 unstable patients using a treatment criteria (≥ 2 vasoactive drugs infused) because this 

307 condition decreases pulse oximeter reliability [22, 23]. The validation and electronic 

308 availability of reliable markers of hemodynamic instability in children such as 

309 plethysmographic variability indices could be helpful [24].

310

311 Conclusion 
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312 This pilot study using machine learning predictive model resulted in an algorithm with good 

313 accuracy. To obtain a robust algorithm with such a method, more data rows are needed, 

314 suggesting the need of multicenter pediatric intensive care high resolution databases.

315
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