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Abstract 

To understand the mutational burden of human induced pluripotent stem cells (iPSCs), we whole genome 

sequenced 18 fibroblast-derived iPSC lines and identified different classes of somatic mutations based on structure, 

origin and frequency. Copy number alterations affected 295 kb in each sample and strongly impacted gene 

expression. UV-damage mutations were present in ~45% of the iPSCs and accounted for most of the observed 

heterogeneity in mutation rates across lines. Subclonal mutations (not present in all iPSCs within a line) composed 

10% of point mutations, and compared with clonal variants, showed an enrichment in active promoters and 

increased association with altered gene expression. Our study shows that, by combining WGS, transcriptome and 

epigenome data, we can understand the mutational burden of each iPSC line on an individual basis and suggests 

that this information could be used to prioritize iPSC lines for models of specific human diseases and/or 

transplantation therapy.  
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Introduction 

Somatic mutations in induced pluripotent stem cell (iPSCs) have been previously analyzed using a variety of 

approaches (Bhutani et al., 2016; Cheng et al., 2012; Gore et al., 2011; Laurent et al., 2011; Lo Sardo et al., 2017), 

however, a more complete understanding of mutational burden in iPSCs could increase their utility as a model 

system for human disease as well as for transplantation therapy. The iPSC reprogramming process involves clonal 

selection and somatic alterations present in the parental cell of origin or that arise during reprogramming may be 

under selection (Stratton et al., 2009; Torkamani et al., 2009). Previous studies that examined the genomic integrity 

of iPSCs have mainly used SNP arrays (International Stem Cell et al., 2011; Laurent et al., 2011; Panopoulos et al., 

2017; Taapken et al., 2011), but this approach only allows the detection of relatively large copy-number alterations 

(CNAs, > 50 kb). A number of studies using exome or whole-genome sequencing (WGS) technologies have shown 

that somatic single nucleotide variants (SNVs), and small insertion and deletion (indel) mutations in iPSC lines, are 

predominantly derived from the parental cell rather than arising during the reprogramming process (Cheng et al., 

2012; Gore et al., 2011; Kwon et al., 2017; Lo Sardo et al., 2017; Rouhani et al., 2016). Of note, the functional 

impact of somatic CNAs, SNVs and indels has not yet been examined in detail. Therefore, it is still unknown how 

to identify which somatic alterations – including those derived from the parental cell of origin as well as those that 

arose during reprogramming – influence molecular phenotypes in iPSCs, and hence may have an impact on the 

utility of iPSC-derived tissues as an experimental model of human disease and/or influence their safety for 

transplantation therapy. 

Characterizing the somatic mutational landscape of iPSCs can be facilitated by taking advantage of the methods 

developed to analyze the whole-genome sequences of cancer genomes (Alexandrov et al., 2013a; International 

Cancer Genome et al., 2010; Nik-Zainal et al., 2016). Indeed, the analyses of cancer and iPSC genomes have 

several goals in common, including: 1) identification of somatic variants; 2) characterization of somatic variant 

function; 3) identification of the set of somatic variants under selective pressure; and 4) characterization of the 

subclonal nature of mutations. These cancer genomic methods compare the whole-genome sequences of tumor and 

a matched blood sample and are directly transferable to the analysis of somatic mutations in iPSC lines and other 

tissues types. A study utilizing this approach showed that in normal skin cells, which are often used to derive 

iPSCs, many cancer genes harbor somatic mutations that were likely caused by ultraviolet (UV) light exposure 

(Martincorena et al., 2015). Additionally, a study on human embryonic stem cells (Merkle et al., 2017) found that 

~20% of analyzed cell lines had deleterious subclonal mutations, including some known cancer drivers in TP53. 

We hypothesize that due to their different origins, clonal and subclonal mutations have been under different 

selective pressures. The clonal mutations occurred in skin fibroblasts, and as mutations in somatic cells are under 

high selective pressure (Polak et al., 2014; Schuster-Bockler and Lehner, 2012), only neutral mutations tend to be 

retained. Conversely, because subclonal mutations occurred in cell culture during or after reprogramming, they 

have been under selective pressure for considerably less time, and thus are expected to be more likely to alter 

molecular phenotypes in the iPSCs and iPSC-derived cell types. Therefore, to fully understand the mutational 

burden of iPSCs, it is important to examine the distributions and functions of both clonal and subclonal mutations.  
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Many iPSC lines included in large databanks were derived from skin fibroblasts (Kilpinen et al., 2017; Panopoulos 

et al., 2017), and it has been estimated that up to one third of human skin cells carry UV-associated mutations in 

cancer genes (Martincorena et al., 2015). However, the extent to which skin fibroblast-derived iPSCs harbor UV-

associated mutations has not yet been investigated. One key question is whether different iPSC lines carry similar 

number of mutations associated with UV damage or whether the mutational burden varies greatly across lines. 

Additionally, the functional impact of UV-associated mutations is important to understand, and how the utility of 

iPSC lines carrying large numbers of such mutations may be affected. 

Here, we used deep whole-genome sequencing data (>50X average coverage) of 18 skin fibroblast-derived iPSC 

lines in the iPSCORE resource (Panopoulos et al., 2017) to investigate the distribution and functional impact of 

somatic variants, including both point mutations and larger copy-number alterations. We compared the average 

somatic mutational load of the 18 iPSC lines and show that it is comparable to that observed in adult stem cells, but 

less than what has been observed in adult tumors. We observed high variability in the number of point and indel 

mutations per iPSC line, which can be explained by UV exposure of the parental fibroblast cell. To assess the 

potential functional effects of the somatic mutations we used chromatin state information and RNA-seq data and 

showed that the vast majority of point mutations are in genomic regions associated with repressed chromatin and do 

not affect gene expression; however, compared with clonal variants, subclonal SNVs showed an enrichment in 

active promoters and increased association with altered gene expression. Subclonal point mutations showed a 

constant allelic fraction during early and late passages, as well as during differentiation into iPSC-derived 

cardiomyocytes, suggesting that the iPSC subclones carrying these variants do not substantially evolve in culture 

over time. In the 18 iPSCs we detected 255 copy number alterations which altered on average 295 kb per line and 

strongly impacted the expression of the genes that they overlapped. Our study demonstrates that annotating somatic 

mutations based on origin, structure, frequency, and the chromatin state in which they occur, enables one to predict 

their influence on molecular phenotypes, such as gene expression, in iPSCs and derived cell types.  

Results 

Selection and whole genome sequencing of 18 iPSC lines 

We generated deep whole genome sequence data (WGS) (median read depth 50.8, range 39.8-64.6) of 18 iPSC 

lines previously shown to be pluripotent and to have high genomic integrity (no or low numbers of somatic CNAs) 

using high-throughput PluriTest-RNAseq and genotyping arrays, respectively (Panopoulos et al., 2017). The iPSC 

lines were derived from 18 subjects chosen to represent five different ethnicities, a range in donor ages (18 to 59 

years), both sexes (12 females and 6 males) (Supplementary Figure 1A; Supplementary Table 1), and that are part 

of the 273 participants in the iPSCORE resource (many of whom have iPSC lines publicly available) (DeBoever et 

al., 2017; Panopoulos et al., 2017). Twelve of the 18 subjects were members of three families (one extended family 

and two quartets – including one with a set of identical twins, Supplementary Figure 1B), and six subjects were 

singletons (unrelated to anyone else in this study).  
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Identification of somatic mutations  

To detect and characterize somatic mutations in the WGS’ of the 18 iPSC lines, we applied two established 

bioinformatics approaches (Mutect (Cibulskis et al., 2013) and Strelka (Saunders et al., 2012)) for analyzing cancer 

genome sequencing data, treating the iPSCs as “tumor” and the matched blood as “normal”. To obtain a stringent 

call set, we retained only somatic mutations detected using both methods and showing an allelic frequency greater 

than 10% (Cibulskis et al., 2013; Weinhold et al., 2014). In the genomes of the 18 iPSCs, we found 49,388 somatic 

mutations: 44,441 single nucleotide variants (SNVs), 2,171 dinucleotide variants (DNVs), 2,170 small deletions, 

and 606 small insertions (1-51 nucleotides) (Supplementary Table 2). Of the 44,441 somatic SNVs, only 2,480 

(5.6%) were annotated as variants in dbSNP, indicating that the somatic mutations were not misidentified inherited 

variants. The number of somatic mutations per iPSC line was highly variable, ranging from 958 to 7,027, 

corresponding to an average mutation rate of 0.88 mutations/Mb (range: 0.31 to 2.27 mutations/Mb) (Figure 1A). 

We found a significantly higher mutation rate (p = 8.6 x 10-6 Mann-Whitney U test) than previous studies 

examining WGS of iPSCs derived from fibroblasts (Bhutani et al., 2016) and bone marrow (Cheng et al., 2012) 

which respectively identified an average mutation rate of 0.25 mutations/Mb and 0.47 mutations/Mb (Figure 1B). 

This difference was most likely due to the fact that these previous studies compared the WGS of the iPSC lines to 

the parental cell population, and thus most somatic mutations present in the parental cell were excluded from the 

analysis; here we instead compared the WGS of the skin fibroblast-derived iPSC lines to blood DNA. We did not 

observe a significant association between the number of somatic mutations and the donor’s age (r = 0.107, p-value 

= 0.671), ethnicity (ANOVA p-value = 0.718), or gender (ANOVA p-value = 0.751). Of note, members of the same 

family displayed large differences in the number of somatic mutations, for instance, between the two identical twins 

(subjects 3_1 and 3_2 Figure 1A), there was a four-fold difference. These data show that iPSC lines have a greater 

number of mutations than indicated by previous studies, and suggest that the heterogeneity in mutation rates across 

iPSC lines is heavily influenced by a factor(s) other than donor age, ethnicity, gender or genetic background.  

To identify somatic copy number alterations (CNAs) with high confidence, we used Genome STRiP (Handsaker et 

al., 2015). CNAs were classified as somatic if: 1) they were present in the iPSCs but not in the matched blood 

genome; and 2) they were singleton (present only in the iPSC line and not in any of the other 255 iPSCORE WGS, 

including 236 blood and 19 fibroblasts). Across the 18 iPSCs, we detected 255 somatic CNAs (82 duplications and 

173 deletions) which in total affected ~295 kb of sequence (0.01% of the genome) in each sample (Supplementary 

Table 2, Supplementary Table 3). The CNAs were distributed across the genome and had a median length of 1,564 

bp (range 999 bp to 49 Mb). To examine the quality of our somatic CNA calls from WGS data, we compared them 

with somatic CNAs called from the 18 iPSCs using Illumina HumanCoreExome arrays (Panopoulos et al., 2017). 

From the array data, we identified 17 somatic CNAs with a median length of 259 kb (range 110 kb to 54 Mb), of 

which 13 (76.5%) overlapped somatic CNAs in our WGS call set (Supplementary Table 4). Thus, the set of somatic 

CNAs identified from the WGS had high sensitivity and included hundreds of CNAs that were below the resolution 

afforded by SNP array analysis. Overall, we detected 255 CNAs (the majority had lengths below the resolution 

afforded by SNP array analysis) which altered on average 295 kb in the 18 iPSC lines.  
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Comparison of iPSC mutational load to adult stem cells and tumors  

To better understand the mutational load in the genomes of iPSC lines derived from skin fibroblasts, we compared 

the number of somatic mutations that we observed in the 18 iPSCs, to the mutation rates of adult stem cells (ASCs) 

and 16 different tumor types (up to 679 tumors from each type were analyzed) (Alexandrov et al., 2013a; Berger et 

al., 2012; International Cancer Genome et al., 2010; Nik-Zainal et al., 2016). We observed similar mutations rates 

between iPSCs and ASCs (Blokzijl et al., 2016) from middle age and older adult subjects (p = 0.342 and p = 

0.2292, Mann–Whitney U test, respectively for subjects between 16 and 60 years old and for subjects older than 60 

years), but higher mutation rates in iPSCs compared to ASCs from younger subjects (p = 2.3 x 10-7, Mann-Whitney 

U test, for subjects 15 years old or younger). We found the mutation rate in the iPSCs was substantially lower than 

that observed in melanoma and lung adenocarcinoma, which involve potent mutagens (ultraviolet light and 

cigarette smoke, respectively) in their pathogenesis (Vogelstein et al., 2013). Of note, melanoma, had significantly 

more somatic SNVs, DNVs, and indel mutations than the iPSCs in this study (29 times: 25.5 mutations/Mb versus 

0.88, p = 6.6 x 10-12, Mann-Whitney U test, Figure 1B) (Berger et al., 2012). The 18 iPSCs also had a lower somatic 

mutation rate than most adult solid and liquid tumors (with the exception of prostate, early-onset prostate, and 

chronic lymphocytic leukemia), but at a higher rate than pediatric tumors (Figure 1B). These data show that the 

iPSCs have mutation rates comparable to stem cells but lower than most tumors obtained from individuals in the 

same age groups as the study subjects; however, the iPSCs have higher mutation rates than stem cells and tumors 

obtained from younger individuals. 

Evidence of UV damage in the skin-derived iPSC genomes  

To examine the origin of the somatic mutations in the iPSCs and detect differences between lines, we compared 

their mutational landscapes with 30 mutational signatures derived from more than 10,000 genomes and exomes in 

40 tumor types (Alexandrov et al., 2013a; Alexandrov et al., 2013b). We divided all SNV mutations into six classes 

of base substitutions (C>A, C>G, C>T, T>A, T>C, T>G), extracted the surrounding sequence contexts for each 

class and compared with the 30 mutational signatures. We found that the 18 iPSCs lines were associated with two 

distinct sets of mutational landscapes (Figure 2A-C, Supplementary Figure 2): 1) eight samples, corresponding to 

the lines with the largest number of mutations (Supplementary Table 2), are strongly correlated with Signature 2 

(prevalence of C>T transitions, likely due to the AID/APOBEC family of cytidine deaminases), Signature 7 (caused 

by UV exposure and predominantly found in skin cancers), Signature 11 (associated with melanoma, likely due to 

the presence of alkylating agents) and Signature 30 (prevalence of C>T transitions, of unknown origin); and 2) ten 

samples are strongly correlated with mutational signatures associated with a high prevalence of C>A transversions 

(Signatures 4, 8, 10, 16, 18 and 29) and with Signature 5, which is found ubiquitously in all cancer types but is not 

associated with any known process (Helleday et al., 2014). These results suggest that the parental cells used to 

reprogram the eight iPSC lines with highest amounts of mutations had been subjected to UV damage. 

In the 18 iPSC lines we investigated the prevalence of CNAs, C>T SNVs and CC>TT DNVs, of which the latter 

two mutation classes are typical of melanoma and are known to be caused by UV damage (Brash, 2015; Brash et 
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al., 1991; Gartner et al., 2013; Greenman et al., 2007). The eight most mutated iPSCs had significantly more CNAs 

(22.3 CNAs/samples on average) than the other ten samples (7.5 CNAs/samples on average, p = 0.032, Mann-

Whitney U test), but the total amount of the genome involved in CNAs was not higher (295 kb and 292 kb, 

respectively, p = 0.75, Mann-Whitney U test, Supplementary Table 2) (Figure 2C). We found that the eight most 

mutated iPSCs had a relatively high incidence of C>T SNVs (Figure 2D) and CC>TT DNVs (Figure 2E, 

Supplementary Table 5), and that the number of these mutations in a given line were highly correlated with the total 

number of mutations (C>T: r = 0.98, CC>TT: r = 0.91, Figure 2C). The other DNV classes together correspond to 

0.7% of all somatic mutations, while CC>TT accounted for 4.8% in the eight most mutated iPSC lines (range 3.0 to 

9.2%). Overall, these results show that 45% of the iPSC lines were derived from parental fibroblast cells harboring 

UV damage, that these iPSCs have significantly more CNAs, C>T SNVs and CC>TT DNVs, and mutational 

signatures similarly to those found in melanoma.  

Functional impact of clonal and subclonal mutations on gene structure  

While clonal mutations present in all cells of an iPSC line are likely to be derived from the parental cell, those that 

are subclonal and only present in a fraction of the cells, must have arisen during the reprogramming process or 

subsequent culturing. Based on the frequency of the mutated allele in the iPSC line, we divided the somatic 

mutations into three classes: 1) clonal (frequency of mutated allele between 30% and 80%); 2) subclonal (frequency 

of mutated allele between 10% and 30%); and 3) hemizygous (frequency of mutated allele > 80%) (Figure 3). We 

found the majority of somatic SNVs (39,100; 88.0%) and DNVs (1,602; 88.1% of CC>TT, and 306; 86.7% of the 

other DNVs) were clonal (Supplementary Table 2). There were 4,738 subclonal SNVs (10.7% of all SNVs, 

range=4.0-26.8% per iPSC line, Supplementary Table 2) and 263 subclonal DNVs (12.1 % of all DNVs). 

Additionally, we identified 603 hemizygous SNVs and DNVs (1.29% of the total number of somatic mutations), 

located on sex chromosomes in male samples or in regions where their sister chromosome contained a large 

deletion. These results indicate that ~11% of all somatic mutations are subclonal and based on their frequency (10% 

to 30%) likely arose within the first few cellular divisions after reprogramming of the parental cell. 

We examined if the different origins of clonal and subclonal mutations resulted in their having different functional 

impacts on gene structure. We grouped somatic mutations into four classes: 1) clonal C>T SNVs; 2) other clonal 

SNVs; 3) clonal CC>TT DNVs; and 4) subclonal SNVs. We considered clonal C>T SNVs separately from the 

other clonal SNVs and only the CC>TT DNVs, because these two classes are likely caused by UV exposure in the 

parental cell of origin (Brash, 2015; Brash et al., 1991; Gartner et al., 2013; Greenman et al., 2007). We annotated 

the variants using SnpEff (Cingolani et al., 2012), which divides the mutations into four groups based on their 

predicted functional impact on gene structure (Supplementary Table 6): 1) no impact (mutations occurring in 

intergenic regions or intronic regions that do not affect splice sites); 2) low impact (mutations affecting UTRs, 

transcription factor binding sites, non-coding exons and synonymous mutations); 3) moderate impact (missense, 

splice-site and in-frame indels); and 4) high impact (nonsense and frameshift). In total, we found 504 genes affected 

by low, moderate, or high impact mutations (186, 287 and 31 genes, respectively, Supplementary Table 7), and an 
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average of 21 moderate or high impact mutations per iPSC line – substantially more than previous studies, which 

identified 2-12 non-synonymous mutations per iPSC line (Bhutani et al., 2016; Cheng et al., 2012; Gore et al., 

2011) (Supplementary Table 6). These findings are likely because we identified iPSC somatic mutations by 

comparison with blood DNA rather than with DNA from the parental tissue of origin, as was done in the prior 

studies (Bhutani et al., 2016; Cheng et al., 2012; Gore et al., 2011). While all four classes of somatic mutations had 

similar fractions of no impact (~97%), moderate impact (~0.8%) and high impact (~0.04%) variants, subclonal 

SNVs had a significantly greater fraction of low impact variants compared with clonal SNVs (2.5% versus 1.5%, p 

= 1.5 x 10-7, Fisher’s exact test, Figure 4A). Overall these analyses suggest that iPSC lines carry ~2 times more 

detrimental coding mutations than estimated by previous studies, and show that while the majority of SNVs and 

indels have no predicted functional impact on gene structure, there was an enrichment of low impact mutations in 

subclonal SNVs compared with clonal SNVs.  

As it has been reported that embryonic stem cells may harbor subclonal mutations in cancer genes (Merkle et al., 

2017), we investigated whether the iPSCs showed enrichment for clonal (combined the three classes: clonal SNVs, 

clonal C>T SNVs and clonal CC>TT DNVs) or subclonal SNVs and indels in cancer genes. We intersected cancer-

associated genes using the Cancer Gene Census (Forbes et al., 2015) (110 oncogenes and 141 tumor suppressors) 

with 504 genes that we identified as carrying either high, moderate, low, or no impact mutations in one or more of 

the 18 iPSC lines (Supplementary Table 7). Of the 504 genes carrying mutations, only 13 were cancer genes 

(eleven carried clonal and two carried subclonal mutations), which was not significantly different than expected by 

chance (Figure 4B). Of note, eight iPSC lines carried clonal non-synonymous mutations in one or more known 

oncogenes (COL1A1, IL6ST, JUN, and NUP214), tumor suppressors (BLM, CYLD, FANCA, POLE and STAG2), 

and IKZF1, which behaves as either an oncogene or a tumor suppressor in different tumor types, and two lines 

carried subclonal non-synonymous mutations in two oncogenes (DDX6 and PDE4DIP) (Supplementary Table 7). 

These results indicate that neither clonal nor subclonal somatic mutations are enriched in cancer genes; but by 

chance ~50% of the iPSC lines carry moderate or high impact mutations in known cancer genes. 

Clonal and subclonal mutations are associated with different chromatin states 

We investigated the distributions of clonal and subclonal somatic mutations with respect to active and repressed 

chromatin states (Ernst and Kellis, 2012) in 22 stem cell lines from the Roadmap and ENCODE consortia (Neph et 

al., 2012; Roadmap Epigenomics et al., 2015). As expected (Yoshihara et al., 2017), we observed that overall 

mutations were more likely than expected to occur in repressed chromatin regions (defined as heterochromatin, 

polycomb repressed and quiescent chromatin) and less likely to occur in active chromatin (transcribed regions and 

active promoters, Figure 5A). A direct comparison of the distribution between the clonal SNVs and C>T SNVs 

across the 15 chromatin states showed that they were highly correlated (r = 0.961) (Figure 5A); both mutation 

classes were strongly enriched in repressive chromatin states (heterochromatin, weak repressed polycomb and 

quiescent chromatin regions) and strongly depleted in active chromatin states [transcribed genes, enhancers, 

transcriptional start sites (TSS)]. However, clonal C>T SNVs were significantly more likely to occur in 
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heterochromatin than other clonal SNVs (p = 6.41 x 10-5, t-test, Bonferroni correction for FDR; Figure 5B, 

Supplementary Table 8). The distributions of clonal SNVs and CC>TT DNVs were slightly more weakly correlated 

(r = 0.850, Figure 5A) and CC>TT DNVs were less likely to occur in repressive chromatin states, including 

heterochromatin and quiescent chromatin regions (p = 1.77 x 10-10 and p = 1.48 x 10-6, respectively) and more 

likely to be present in transcribed genes (p = 3.27 x 10-6), active TSS (p = 1.00 x 10-12) or in enhancers (p = 3.69 x 

10-8). Compared with clonal SNVs, subclonal SNVs demonstrated significantly different associations with 

chromatin marks (r = 0.596): they were not enriched in quiescent regions (p = 1.43 x 10-12) and not strongly 

depleted in active TSS (p = 9.36 x 10-15), weakly transcribed genes (p = 1.87 x 10-14), strongly transcribed genes (p 

= 3.88 x 10-6), 5’ and 3’ transcribed regions (p = 6.01 x 10-5). These data demonstrate that the four mutational 

classes are associated with different chromatin states, and that subclonal SNVs are the most likely to be located in 

functional genomic regions. 

Subclonal mutations and CNAs result in altered gene expression 

To examine if the different associations between the four mutation classes and chromatin states could result in 

different effects on cellular molecular phenotypes, we investigated their associations with aberrant gene expression 

using an approach developed by the GTEx Consortium to determine the effects of rare genetic variation on gene 

expression (Li et al., 2017). For each gene, we quantile-normalized its expression levels across 222 iPSC lines 

included in the iPSCORE cohort (DeBoever et al., 2017), we found its closest mutation (<500 kb from its TSS) and 

determined its normalized expression level in the mutated sample (Supplementary Table 9). We next compared the 

distribution of normalized expression levels between genes with clonal SNVs and genes with either subclonal 

SNVs, clonal CC>TT DNVs or clonal C>T SNVs (Figure 6A). We observed that subclonal SNVs were more likely 

to be associated with aberrantly expressed genes than clonal SNVs (p = 0.019, Fisher’s exact test), whereas CC>TT 

DNVs (p = 0.036) and C>T SNVs (p = 0.0029) were less likely. An example of a functional subclonal SNV 

includes a mutation present at 29% frequency located 14 kb upstream of MYCL associated with a large decrease in 

expression level (TPM is reduced from 20.8 to 8.6, Figure 6B). MYCL is a member of the myelocytomatosis 

oncogene (MYC) family involved in cell proliferation and death, is required for iPSC reprogramming and for 

dendritic cell differentiation (Hatton et al., 1996; Kc et al., 2014; Nakagawa et al., 2010). Of note, the closest 

mutation to a gene was a clonal SNV which occurred in the promoter of IRF2 (131 bp upstream) and resulted in a 

75% increase (Z-score = 2.15) of its expression level (TPM = 12.3; mean TPM across all iPSC lines = 7.0, Figure 

6C). This gene is a member of the interferon regulatory transcription factor (IRF) family, and its overexpression has 

been shown to have pro-oncogenic activity (Cui et al., 2012; Harada et al., 1993). These results show that while 

subclonal mutations were more likely to be associated with alterations of gene expression levels than clonal 

mutations, regulatory mutations included in all mutational classes may alter expression levels of genes that are 

involved in differentiation and/or cancer.  

We next investigated the functional impact of the 255 CNAs in the 18 iPSC lines on gene expression 

(Supplementary Table 10). We initially examined the effect of the largest CNA identified (a duplication of the 
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distal 50 Mb of chromosome 1q in iPSCORE_3_4). As expected based on gene dosage, we determined that the 

expression of genes in iPSCORE_3_4 overlapping this CNA were on average 1.6 standard deviations higher than 

the mean average of the same genes in the other iPSC lines (p = 2.1 x 10-91, t test) (Figure 6D). Additionally, they 

were more likely to show allele specific expression (ASE) compared to the other iPSCs (p = 3.2 x 10-32, t test) and 

to the other chromosome 1 genes in iPSCORE_3_4 outside of the duplication (2.3 x 10-3, t test) (Figure 6E). 

Congruent with these findings, 10 of the 13 genes whose sequence was fully included in CNA duplications were 

overexpressed (p = 5.8 x 10-6, t test, Figure 6F,G). While the mean expression levels of 38 genes that only partially 

overlapped an CNA duplication did not display significant overexpression or downregulation (p = 0.51, Figure 6H), 

we observed that nine of these genes had a normalized expression level below -1 SD and eight above 1 SD (Figure 

6F), suggesting that several genes in this group may indeed be aberrantly expressed. Therefore, we investigated the 

absolute gene expression levels of these 38 genes that partially overlapped a CNA duplication, and found that their 

absolute expression levels were significantly higher than expected, confirming that genes that partially overlapped a 

CNA duplication could have altered expression (p = 0.00697, t test, Figure 6I). Genes affected by somatic CNA 

deletions were downregulated, irrespective of whether the deletion overlapped the entire gene (n = 5; p = 3.0 x 10-3, 

t test) or only part of the gene (n = 78; p = 5.6 x 10-3, t test, Figure 6J,K). These results show that of the 134 genes 

that are expressed in iPSCs and overlap somatic CNAs, 48 (35.8%) had significantly altered expression in iPSC 

lines. 

iPSCs carrying subclonal SNVs do not evolve 

To understand the extent to which subclonal mutations in iPSCs evolve, we examined changes in their allele 

frequencies during culturing and differentiation into cardiomyocytes by analyzing RNA-seq data as recently 

described by Merkle et al. (Merkle et al., 2017). For each of the four iPSC lines of family 2 (iPSCORE_2_1, 

iPSCORE_2_2, iPSCORE_2_3 and iPSCORE_2_9; Supplementary Figure 1, Supplementary Table 11) between six 

and twenty-one independent RNA sequencing datasets were generated at varying passages (P12 to P25) and time 

points (day 2, 5, 9 and 15) during cardiomyocyte differentiation (Panopoulos et al., 2017). We were able to analyze 

the allelic frequency of 146 coding mutations, of which 30 were subclonal, of which only four (2.4%) (one 

subclonal, three clonal with allelic frequency < 40%) significantly changed allelic fraction (Bonferroni-adjusted p-

value < 0.1, Cochran-Armitage test for trend). Thus, the vast majority of subclonal SNVs tended to maintain a 

constant allelic fraction at all time points (Figure 7), suggesting that different subclones were in equilibrium and did 

not substantially evolve between passage 12 and later passages, or throughout differentiation. This consistency in 

allele frequencies across up to seven distinct time points and more than 50 cell divisions suggests that most iPSC 

subclonal mutations are stable in culture (i.e. not under strong selective pressure), and thus not evolving over time.  

Discussion 

In this study, we used deep whole-genome sequencing data (>50X average coverage) of 18 iPSC lines to 

investigate the distribution and functional impact of somatic variants, including both point mutations and larger 
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copy number alterations. Because we identified iPSC somatic mutations by comparison with blood DNA, rather 

than with DNA from the parental tissue of origin, we found that the mutational burden in iPSCs (including both 

point mutations and structural variants) is greater than it was previously reported (Bhutani et al., 2016; Cheng et al., 

2012; Rouhani et al., 2016). The use of deep WGS data also enabled us to also detect 20 times more CNAs at 

higher resolution (1 kb) than previous studies have reported (International Stem Cell et al., 2011; Laurent et al., 

2011; Taapken et al., 2011). We did not observe significant associations between the number of mutations and 

donor age, ethnicity, gender or genetic background; however, we discovered that UV-associated mutations are a 

major contributor to the heterogeneity in mutation rates across iPSC lines. Of note, we show that the mutational 

load in iPSCs is comparable to what is observed in adult stem cells, and hence somatic mutations may have similar 

effects on molecular phenotypes in both cell types. Our findings were consistent with previous studies showing that 

mutations present in iPSCs are underrepresented in gene bodies and in genomic regions associated with open 

chromatin (Yoshihara et al., 2017), and that the origin of somatic mutations influences their functional features 

(Rouhani et al., 2016). Overall, our analyses not only provided novel insights about the functional impact of two 

previously investigated classes of somatic mutations (clonal SNVs and CNAs) but also resulted in the discovery 

and functional characterization of two previously undescribed classes of somatic mutations (UV damage and 

subclonal SNVs) in iPSCs.  

Mutational signatures associated with UV damage (high prevalence of clonal C>T SNVs and clonal CC>TT 

DNVs) were found in ~45% of the iPSC lines and were likely derived from the parental skin-fibroblast cell. The 

iPSC lines displaying UV damage mutational signatures had significantly more CNAs, but the total amount of the 

genome involved in CNAs was not higher, suggesting that UV damage typically does not result in large 

chromosomal alterations. We observed that clonal CC>TT DNVs were more likely to occur in open chromatin than 

other clonal mutations (clonal SNVs); however, we also observed that clonal C>T and clonal CC>TT DNVs tend to 

impact gene expression less than other clonal mutations. These two observations suggest that UV-associated 

mutations (even those in functional chromatin states) are less likely to affect molecular phenotypes than other 

clonal mutations. Although mutations caused by UV damage appear to be largely neutral, for any given iPSC line 

harboring a UV damage mutational signature, due to the sheer number of mutations some are likely to strongly 

impact a molecular phenotype.  

Approximately 10% of all somatic mutations in the iPSC lines were subclonal, which suggests that a single line 

may contain multiple subclones with highly heterogeneous genetic backgrounds. The allelic fraction of subclonal 

mutations remained constant between early and later iPSC passages and during differentiation into cardiomyocytes, 

suggesting that they were in an equilibrium state under culturing conditions. Additionally, subclonal mutations 

were more likely to occur within active chromatin regions (in particular promoters and transcribed regions) than 

clonal mutations. Furthermore, subclonal mutations had significantly stronger positive effects on gene expression 

than clonal SNV mutations. The functional characteristics of subclonal mutations suggest that they have been under 

less negative selection than clonal mutations (likely due to their origin during or shortly after reprogramming). Of 
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note, since subclonal mutations are present only in a fraction of the iPS cells in a line (20% to 60% of cells), their 

effects on gene expression within a specific cell were likely stronger than what we observed.  

Until recently, CNAs have been difficult to call from WGS data, and therefore most studies investigating these 

alterations in iPSC lines have analyzed CNAs called from array data. Having high-coverage WGS data (>50X), we 

were able to detect 255 CNAs in the 18 iPSC lines, the majority of which had lengths below the resolution afforded 

by SNP array analysis, that altered on average 295 kb in each line. We investigated the effects of somatic CNAs on 

gene expression and found that more than one third of the genes overlapped by CNAs had altered expression, in a 

fashion similar to rare inherited CNAs (Chiang et al., 2016; DeBoever et al., 2017). These findings show that one 

can predict the effect of a CNA on the expression of overlapping genes in iPSC lines based on whether the 

alteration is a duplication (upregulate) or deletion (downregulate). 

In summary, we extensively characterized somatic mutations in iPSCs based on their structures and origins and 

found that different mutational classes display different properties. Although some mutational classes were more 

likely to be functional than others, we detected hundreds to thousands of mutations per iPSC line, and showed that 

mutations in all classes may be associated with altered molecular phenotypes. While the effects of some mutations 

could be predicted based on their structure and genomic location, most had to be paired with an RNA-seq sample 

from the same iPSC line to fully characterize their effect on gene expression. It is likely that some of the somatic 

mutations that did not affect gene expression in the iPSCs may have affects in specific differentiated tissues. For 

instance, mutations in a cardiac specific transcription factor, such as NKX2-5, would potentially have effects on 

phenotypes in iPSC-derived cardiomyocytes but not in iPSC-derived neurons or in the iPSCs themselves. In 

conclusion, our study shows that, by combining WGS, transcriptome and epigenome data, we can understand the 

mutational burden of each iPSC line on an individual basis and can use this information to prioritize the use of 

specific iPSC lines for modeling human diseases and/or transplantation therapy.  

Methods 

Samples and iPSC reprogramming 

The 18 iPSC lines analyzed in this study are part of the iPSCORE resource (Panopoulos et al., 2017). 273 

individuals of diverse ethnicities and ages were recruited into the iPSCORE study and whole genome sequencing of 

their blood or skin fibroblast DNA (254 DNA samples isolated from blood and 19 DNA samples isolated from skin 

fibroblasts) was conducted as previously described (DeBoever et al., 2017; Jakubosky et al., In preparation). 

Written informed consent was obtained from all the individuals. The iPSCORE iPSC lines were systematically 

derived as described in Panopoulos et al. (Panopoulos et al., 2017). Briefly, cultures of primary skin fibroblast cells 

were expanded for approximately 3 passages, plated at a density of 2.5 x 105 cells/well of 6-well plate, and infected 

with the Cytotune Sendai virus (Life Technologies) per manufacturer’s protocol. The Sendai infected cells were 

maintained with 10% FBS/DMEM (Invitrogen) for Days 4-7 until the cells recovered and repopulated the well. 
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These cells were enzymatically dissociated using TrypLE (Life Technologies) and seeded onto a 10-cm dish pre-

coated with mitotically inactive-mouse embryonic fibroblasts (MEFs) at a density of 5 x 105 per dish and 

maintained with hESC medium, as previously described(Ruiz et al., 2010). Emerging iPSC colonies were manually 

picked after Day 21 and maintained on Matrigel (BD Corning) with mTeSR1 medium (Stem Cell Technologies) as 

previously described (Panopoulos et al., 2012). Clones were cultured to passage 12-16 (typically passage 12). All 

iPSC lines have good genomic integrity and express pluripotency markers at high levels (Panopoulos et al., 2017).  

The iPSCORE resource was established as part of the Next Generation Consortium of the National Heart, Lung and 

Blood Institute and the iPSC lines are available through the biorepository at WiCell Research Institute 

(www.wicell.org; NHLBI Next Gen Collection). 

Whole genome sequencing 

Genomic DNA was isolated from the 18 iPSC lines (AllPrep DNA/RNA Mini Kit, Qiagen) and WGS was 

performed as described in DeBoever et al. (DeBoever et al., 2017). The reads were aligned to human genome hg19 

with decoy sequences (Genomes Project et al., 2015) using BWA-MEM with default parameters (Li and Durbin, 

2009). Duplicate reads were marked using Biobambam2 (Tischler and Leonard, 2014), and reads were sorted by 

genomic coordinate using Sambamba (Tarasov et al., 2015) in BAM format. The 18 iPSC WGS data (and the 

previously generated matched blood WGS) were high quality, having 4-20% duplicates and a minimum of 700M 

reads after duplicate removal (Supplementary Figure 3). Inherited variants in the 18 iPSC lines were called together 

with the 273 iPSCORE blood and fibroblast WGS (254 blood and 19 skin fibroblasts) using GATK best practices 

(DeBoever et al., 2017; Jakubosky et al., In preparation; McKenna et al., 2010), including indel-realignment, base-

recalibration, genotyping using HaplotypeCaller, as well as joint genotyping using GenotypeGVCFs (DePristo et 

al., 2011; Van der Auwera et al., 2013). 

Somatic SNVs and indel calling 

We used Mutect (Cibulskis et al., 2013) to detect somatic SNVs and Strelka (Saunders et al., 2012) to detect SNVs 

and small indels that were present in DNA isolated from the 18 iPSC lines but not in the DNA isolated from 

matched blood. Results from the two variant callers were intersected and only SNVs called with both methods were 

considered as valid somatic mutations. DNVs were identified by merging two SNVs with distance = 1 bp between 

each other. For indels, it was not possible to accurately estimate allelic fraction from Strelka calls, so they were not 

included in the analysis of subclonal variants. Additional filters were added to exclude likely false positives. First, 

only variants with at least 14X coverage in iPSCs, 8X in the matched blood and with an allelic fraction higher than 

10% in the iPSC line were retained. Second, since a visual inspection of the variants with low allelic fraction 

(<30%) showed that several occur next to homonucleotide stretches (Supplementary Figure 4), all variants with 

allelic fraction <30% that were next to a sequence of five or more identical nucleotides were considered as false 

positives and eliminated from the analysis. We identified 603 SNVs and DNVs with allelic fraction > 80%, of 

which 513 are hemizygous and occurred on chromosome X or Y in iPSCs derived from males, 18 were in regions 
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where the sister chromosome contained a large CNA deletion (Supplementary Table 2), and 72 of which were 

likely false positives given the extremely low likelihood that two independent events would cause the same 

mutation on both alleles.  

Somatic CNA detection  

To investigate the effects of somatic CNAs on gene expression, we used the population level read-depth and split-

read caller Genome STRiP (svtoolkit 2.00.1611) to discover and genotype CNAs (duplications, deletions and multi-

allelic CNAs) in the 18 iPSCs and their matched blood genomes (Handsaker et al., 2015). We ran Genome STRiP 

using the suggested settings for high coverage genomes (window size: 1000 bp, window overlap: 500 bp, minimum 

refined length: 500 bp, boundary precision: 100 bp, reference gap length: 1000). We considered the CNAs as 

somatic mutations if they: 1) were present in the iPSC line but not the matched blood genome and; 2) they were 

singleton, i.e. present only in one iPSC genome and not present in any of the additional 256 genomes without 

matched iPSCs (Jakubosky et al., In preparation). 

Detection of CNAs using HumanCoreExome array 

The detection of CNAs in iPSC lines in the iPSCORE resource using the HumanCoreExome BeadChip has been 

previously described (Panopoulos et al., 2017). Briefly, genomic DNA from the iPSCs and from their matched 

blood samples, was normalized to 200 ng, hybridized in pairs to Illumina HumanCoreExome arrays (Illumina), and 

stained per Illumina’s standard protocol. BeadChips were scanned on the Illumina HiScan and processed in 

GenomeStudio (v 1.9.4) using the supplied cluster files for SNP calling on the HumanCoreExome arrays (average 

call rate 0.99, GenCall threshold 0.15). Processed SNP array data for all 18 iPSCs underwent both computerized 

and manual analysis for CNA detection. Computerized analysis was performed using Nexus CN (version 7.5). We 

used the following Nexus files and settings: Systematic Correction File: Catlg_ILM_HumanCoreExome-12v1-

1_B_20140311.bed_hg19_ilum_correction.txt (as supplied by Biodiscovery Inc), Recenter Probes to Median, 

Analysis performed with the SNPRank Segmentation algorithm. Significance threshold 5.0 x 10-9, Min Number of 

probes per segment = 7, High Gain 0.75, Gain 0.22, Loss -0.2, Big Loss -1.1. CNAs shorter than 100 kb were 

removed. All Nexus calls underwent systematic manual inspection of B allele frequencies and log R rations. All 

Nexus calls that were not visually consistent with a CNA based on B allele frequencies and log R ratios were 

removed. Manual inspection of the entire genome was also performed for each iPSC line and its associated blood 

sample.  

Somatic mutations in adult stem cells and cancer 

Somatic mutations in adult stem cells (ASCs) from three different tissue types (liver, small intestine and colon) 

derived from 45 subjects were obtained from Blokzijl et al. (Blokzijl et al., 2016). Since the number of somatic 

mutations in ASCs depends on the subject’s age, we divided ASCs in three categories: 1) ASCs from 11 young 

subjects (< 15 years old); ASCs from 19 subjects between 16 and 60 years old; and 3) ASCs from 15 subjects older 

than 60 years.  
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The number of somatic mutations in each subject for each tumor were obtained from three collections: 1) 507 

tumors (four tumor types) from Alexandrov et al. (Alexandrov et al., 2013a); 2) 25 melanomas from Berger et al. 

(Berger et al., 2012); and 3) 3,011 tumors (11 tumor types) from the International Cancer Genomics Consortium 

(ICGC) (Alexandrov et al., 2013a; International Cancer Genome et al., 2010; Nik-Zainal et al., 2016). Tumors are 

divided into mutagens, adult solid tumors, liquid and pediatric following the same criteria as in Vogelstein et 

al.(Vogelstein et al., 2013). 

Comparing the mutational landscape of iPSCs with 30 cancer mutational signatures 

Somatic SNVs were divided into 96 substitution classes defined by the substitution type (C>A, C>G, C>T, T>A, 

T>C or T>G) and the sequence context immediately upstream and downstream of the mutated base. The total 

possible number of 96 substitution classes is given by the number of substitution types (6), multiplied by four 

possible upstream bases and four possible downstream bases. The distribution of mutations across the 96 

substitution classes was compared with their associated distributions in 30 different mutational signatures included 

in COSMIC (Alexandrov et al., 2013a; Alexandrov et al., 2013b) (http://cancer.sanger.ac.uk/cosmic/signatures). 

Correlation was calculated between the mutational landscape of each of the 18 iPSC lines and each of the 30 

mutational signatures.  

Annotation of functional effects of somatic SNVs and DNVs  

Mutations were annotated using SnpEff v. 4 (Cingolani et al., 2012). Gene and transcript data were derived from 

Gencode v. 19(Harrow et al., 2012), while transcription factor binding sites were derived from the default 

annotations included in SnpEff. Mutations were grouped according to their impact, as defined by SnpEff 

(Supplementary Table 6), and lists of mutated genes group for each impact category were retrieved from SnpEff 

annotations (Supplementary Table 7).  

Cancer gene enrichment analysis 

We downloaded a list of 248 known cancer genes from the Cancer Gene Census (frozen at April 21 2016), 

including 141 tumor suppressors and 110 oncogenes (Forbes et al., 2015; Futreal et al., 2004). Three genes are 

considered both as oncogenes and tumor suppressors and are included in both lists. These gene lists were 

intersected with the mutated genes in Supplementary Table 7. GOseq v. 1.24.0 (Young et al., 2010) was used to 

examine if cancer genes were enriched for being mutated in the iPSC lines.  

Detection of associations between mutations and chromatin states 

The whole genome was divided into 200-bp bins and the bins with similar sequence characteristics (and thus 

similar mutation rates) were clustered together using four covariates (D'Antonio et al., 2017; Lawrence et al., 

2013): 1) DNA replication timing derived from the ENCODE wgEncodeUwRepliSeq track on the UCSC Genome 

browser (Hansen et al., 2010; Thurman et al., 2007); 2) open vs. closed chromatin status as measured by Hi-C 

mapping (Lawrence et al., 2013; Lieberman-Aiden et al., 2009) in iPSCs (see ”Hi-C data processing” section 

below); 3) GC content; and 4) gene density, measured as the number of base-pairs that overlap Gencode V. 19 
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genes (Harrow et al., 2012) in the 500 kb surrounding each bin. The values of all covariates were normalized to 

have mean = 0 and standard deviation = 1. Normalized covariate values were used to cluster all 200-bp bins in each 

chromosome using k-means clustering, where k was selected to have on average 200 bins in each cluster. A BED 

file was created for each cluster. Each somatic variant (including SNVs and small indels) was assigned to its 200 bp 

bin and its position was permuted 100 times within all the sequences in its cluster. The number of variants 

associated with each chromatin mark was determined in all permutations, then mean and standard deviation were 

calculated. Enrichment for each mutation class in each chromatin state was determined on a per tissue basis as Z-

scores against the 100 permutations by subtracting from the observed value its corresponding mean across the 100 

permutations and dividing by the standard deviation.  

Hi-C data processing for clustering of 200-bp bins 

To use open vs. closed chromatin status as a covariate for clustering of the 200-bp bins, we processed Hi-C data as 

described by the MutSigCV method (Lawrence et al., 2013). Hi-C experiments were performed as described (Li et 

al., In preparation) in iPSCs from 7 individuals in Family 2 of the iPSCORE resource (Panopoulos et al., 2017). 

Sequencing data from the Hi-C experiments for all 7 individuals were combined for analysis and a total of ~3 

billion raw reads were obtained. We applied the Juicer pipeline (Rao et al., 2014) to align and quality check (QC) 

the read pairs. After QC, ~1 billion intra-chromosome read pairs were kept for the analysis, resulting in map 

resolutions of 2kb, defined as > 80% of the bins with > 1000 contacts. Contact domains were determined using the 

Arrowhead algorithm in Juicer at 5 kb-resolution (Durand et al., 2016; Rao et al., 2014). Chromatin contact 

intensity for each contact domain was used as a measure of open vs. closed chromatin status, as defined by the 

MutSigCV method (Lawrence et al., 2013; Lieberman-Aiden et al., 2009).  

RNA-seq data processing and gene expression analysis 

To analyze the effects of somatic mutations on gene expression in the 18 iPSC lines, we relied on our previously 

published collection of RNA-seq data in iPSC lines at passage 12 (DeBoever et al., 2017). Briefly, we determined 

total RNA quality using an Agilent Tapestation, and samples determined to have an RNA Integrity Number (RIN) 

of 7 or greater were used to generate RNA libraries using Illumina’s TruSeq Stranded Total RNA Sample Prep Kit. 

RNA libraries were multiplexed and sequenced with 125 bp paired end reads (PE100) to a depth of approximately 

25 million reads per sample on an Illumina HiSeq2500. We aligned RNA-seq reads to the human genome (hg19) 

with STAR 2.4.0h (outFilterMultimapNmax 20, outFilterMismatchNmax 999, outFilterMismatchNoverLmax 0.04, 

outFilterIntronMotifs RemoveNoncanonicalUnannotated, outSJfilterOverhangMin 6 6 6 6, seedSearchStartLmax 

20, alignSJDBoverhangMin 1) using a splice junction database constructed from Gencode v19 (Dobin et al., 2013; 

Harrow et al., 2012). Reads overlapping genes were counted using HTSeq-count (-s reverse -a 0 -t exon -i gene_id -

m union) (Anders et al., 2015; Anders et al., 2012). For each gene, TPM values were normalized using the 

calcNormFactors function in the preprocessCore package in R, which resulted in having all genes with mean 

expression = 0 and standard deviation = 1. For 18,284 genes with mean TPM >0, we calculated the distance 

between their TSS and their closest upstream mutation. For each gene, we determine the normalized expression 
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value in the mutated sample, expressed in Z-scores (defined as the number of standard deviations from the mean).  

To determine enrichment between different mutational classes, we calculated the fraction of genes with Z-score >2 

or < -2 and compared it with clonal SNVs for all mutations within 500 kb from the TSS.   

Somatic CNA impact on gene expression 

To assess overlap between CNAs and genes, first, we intersected the coordinates of each CNA with the coordinates 

of GENCODE genes using Bedtools intersect and found 1,325 genes that overlapped the 255 CNAs, of which 

1,049 overlapped the 50 Mb chromosome 1q duplication in iPSCORE_3_4 (Supplementary Table 10). For each 

gene that overlapped a CNA, we compared its normalized expression level (calculated for each gene by subtracting 

its mean expression level and dividing by the standard deviation across all samples) in the iPSC line that harbored 

the CNA with respect to all other lines. 

To analyze the large duplication on chromosome 1, allelic-bias was determined using WASP (van de Geijn et al., 

2015) and allele specific expression was calculated using MBASED (Mayba et al., 2014) as described in DeBoever 

et al. (DeBoever et al., 2017) .  

Assessing clonal evolution of iPSCs using RNA-seq 

To assess evolution of somatic mutations in iPSCs, we used 71 independent RNA-seq data sets from three other 

iPSCORE studies (Benaglio et al., Submitted; DeBoever et al., 2017; Panopoulos et al., 2017). The RNA-seq data 

were generated from iPSCs at varying passages ~12-25, and iPSC-derived cardiomyocytes (iPSC-CMs) at 

differentiation day 15 for four subjects (iPSCORE_2_1, iPSCORE_2_2, iPSCORE_2_3 and iPSCORE_2_9) and a 

time course analysis of iPSC-CM differentiation (days 2, 5 and 9) in three subjects (iPSCORE_2_2, iPSCORE_2_3 

and iPSCORE_2_9) (Supplementary Table 11). In order to examine the evolution of subclonal mutations at 

different iPSC passages and during differentiation, we used the RNA-seq approach recently developed to study 

subclonal somatic mutations in embryonic stem cells (ESCs) (Merkle et al., 2017), on the basis of the observation 

that the allelic fraction of coding mutations from RNA-seq is highly correlated with the allelic fraction determined 

with WGS for the same mutations. For each of the 71 RNA-seq BAM files associated with the four subjects, we 

used Samtools mpileup (Li et al., 2009) at the positions of all somatic mutations to derive read count and allelic 

fraction (determined as the ration between the number of reads with non-reference nucleotides divided by the total 

number of reads at a mutated position). Only 146 mutations with read count > 10 were considered. Cochran-

Armitage Test for trend (R package DescTools V. 0.99.23, https://CRAN.R-project.org/package=DescTools) was 

performed on reference and alternative read counts for each mutation to determine whether allelic frequency 

changed over time. Heatmaps in Figure 7 were made using the pheatmap package in R. 

Data availability 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/334870doi: bioRxiv preprint 

https://cran.r-project.org/package=DescTools
https://doi.org/10.1101/334870
http://creativecommons.org/licenses/by-nd/4.0/


18 

 

Phenotype, array genotypes, RNA-seq data, and whole genome sequence genotypes are available through dbGaP 

(dbGaP: phs000924 and phs001325). The 222 iPSC lines are available through WiCell Research Institute 

(www.wicell.org; NHLBI Next Gen Collection). 
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Figures 

Figure 1: Frequency of somatic mutations in iPSCs 

 

Figure 1: Frequency of somatic mutations in iPSCs. (A) Number of somatic mutations per iPSC line, divided 

into four types: SNVs, DNVs, small insertions and deletions. The family and subject IDs are shown (for example, 

3_1 = family 3 and subject 1). (B) Boxplots showing the mutation rate (including SNVs, DNVs and small insertions 

and deletions) in the 18 iPSCORE iPSCs, in iPSCs from two previous studies (Bhutani et al., 2016; Cheng et al., 

2012), adult stem cells (ASCs) (Blokzijl et al., 2016) and in 16 different cancer types (Alexandrov et al., 2013a; 

Berger et al., 2012). Tumors are divided into mutagens, adult solid tumors, liquid and pediatric as in Vogelstein et 

al. (Vogelstein et al., 2013).   
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Figure 2: Evidence of UV damage in iPSCs 

 

Figure 2: Evidence of UV damage in iPSCs. (A, B) Plots showing the percentage of mutations in each of the 96 

substitution classes defined by the substitution type and one base sequence context immediately 3’ and 5’ to the 

mutated base. (A) Example iPSC line with UV damage (sample 3_1); (B) Example of iPSC line without UV 

damage (72_1). (C) Heatmap showing the correlation between the mutational profiles of the 18 iPSC lines and 30 

mutational signatures derived from 40 tumor types (Alexandrov et al., 2013b). The number of SNVs, CC>TT 

DNVs and CNAs are shown. (D) Distribution of SNV types in each of the 18 iPSC lines. (E) The fraction of all 

mutations in each of the 18 iPSC lines that are DNVs. Eight iPSC lines have a high incidence of CC>TT DNVs 
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(4.8% of all point and indel mutations in the eight most mutated iPSC lines), while the number of the other DNVs is 

low and constant in all 18 iPSCs (0.4-1.2% of all somatic mutations).   
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Figure 3: Clonal and subclonal SNVs 

 

Figure 3: Clonal and subclonal SNVs. Density plot of the allelic fraction distribution of SNVs for each iPSC line, 

showing that the vast majority of mutations are heterozygous. The peak at 20% allelic fraction corresponds to 

subclonal variants that occurred during early stages of reprogramming. The peak at 100% corresponds to 

hemizygous mutations.   
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Figure 4: Functional characterization of somatic SNVs and DNVs 

 

Figure 4: Functional impact of four classes of somatic mutations on gene structure. (A) For the four somatic 

mutation classes, the variants are grouped based on impact determined via SnpEff (Cingolani et al., 2012). P-value 

shows the enrichment of low impact mutations in subclonal SNVs compared with clonal SNVs (Fisher’s exact test). 

(B) Enrichment analysis for clonal (the union of the three classes of clonal variants) and subclonal variants in 

cancer genes. The horizontal dashed line shows the p-value threshold of significance for Bonferroni correction 

(FDR < 0.2). 
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Figure 5: Associations between somatic mutations and chromatin states 

 

Figure 5: Associations between four classes of somatic mutations and chromatin states. (A) Scatterplots 

showing the enrichment Z-score of each chromatin mark in the 22 stem cell lines from Roadmap and ENCODE for 

clonal SNVs (X axis in all three plots) compared with clonal C>T SNVs (Y axis), clonal CC>TT DNVs (Y axis) 

and subclonal SNVs (Y axis). (B) The enrichment of clonal C>T SNVs, CC>TT DNVs and subclonal SNVs 

mutations compared with clonal SNVs in each of 15 ChromHMM chromatin states for 22 stem cell lines are shown 

as a plot of the distribution of Z-scores differences (each class of mutations – clonal SNVs). P-values were 

calculated for each chromatin mark by comparing the Z-score distributions between clonal SNVs and the other 

classes of mutations across the 22 stem cell lines using paired t-test and FDR-adjusted using Bonferroni’s method. 
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Figure 6: Differential effects of somatic mutations on gene expression 

 

Figure 6: Differential effects of mutations on gene expression. (A) Relative enrichment for clonal C>T SNVs, 

clonal CC>TT DNVs and subclonal SNVs compared with clonal SNVs. Enrichment was calculated as ratio 

between the fraction of differentially expressed (Z-score >2 or < -2) mutated genes in each mutational class and 

clonal SNVs in 1-kb bins. (B, C) Density plots showing the TPM distribution across 222 iPSC lines in the 
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iPSCORE collection for (B) MYCL and (C) IRF2. Red arrows represent the expression levels in the samples 

harboring the mutation. (D,E) Effects of a 50 Mb duplication of chromosome 1 on gene expression. The expression 

levels of genes in iPSCORE_3_4 are shown in red, while the expression of these genes in the other iPSCs are 

shown as gray lines. The X axis is ordered according to the location of the genes on chromosome 1 based on 

genomic coordinate. (D) Normalized expression levels, calculated as Z-scores of all genes on chromosome 1. (E) 

Major allele expression frequency for all genes on chromosome 1, as calculated by MBASED(Mayba et al., 2014), 

the large CNA results in a major allele expression frequency of ~0.67, consistent with the presence of three copies 

of the q arm. (F) Normalized expression levels of genes overlapping the other 254 CNAs divided into four 

categories, based on whether they are a duplication or deletion and their overlap with genes: 1) deletions that 

overlap an entire gene (dark red); 2) deletions that partially overlap a gene (light red); 3) duplications that overlap 

an entire gene (dark green); and 4) duplications that partially overlap a gene (light green). (G-K) Comparison 

between the mean expression levels of genes overlapping CNAs (colored as in panel F) and the mean expression 

levels of the same genes in iPSC lines that do not carry the CNA (gray); (G) genes completely included within a 

large duplication; (H) genes partially overlapped by a large duplication; (I) absolute value of the normalized 

expression levels of genes partially overlapped by a duplication; (J) genes completely included within a large 

deletion; (K) genes partially overlapped by a large deletion. Gene expression was normalized to have mean = 0 and 

standard deviation = 1 for each gene. 
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Figure 7: Subclonal evolution of somatic mutations 

 

Figure 7: Subclonal evolution of somatic mutations. Heatmaps showing the allelic frequency for all point and 

indel mutations in four subjects with RNA-seq at multiple iPSC passages and during iPSC-CM differentiation. 

Each row in the heatmaps represents a somatic mutation in a transcribed region (146 mutations in total); each 

column represents a different time point. For each individual, mutations were sorted from the highest allelic 

fraction to the lowest. Barplots next to each mutation represent Cochran-Armitage p-values adjusted for FDR 

(Bonferroni’s method), showing that allelic frequency changes only for four mutations across different passages 

and differentiation.  
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