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Abstract 26 

Working memory (WM) is a key component of human memory and cognition. Computational models 27 
have been used to study the underlying neural mechanisms, but neglected the important role of 28 
short- and long-term memory interactions (STM, LTM) for WM. Here, we investigate these using a 29 
novel multi-area spiking neural network model of prefrontal cortex (PFC) and two parieto-temporal 30 
cortical areas based on macaque data. We propose a WM indexing theory that explains how PFC 31 
could associate, maintain and update multi-modal LTM representations. Our simulations 32 
demonstrate how simultaneous, brief multi-modal memory cues could build a temporary joint 33 
memory representation as an “index” in PFC by means of fast Hebbian synaptic plasticity. This index 34 
can then reactivate spontaneously and thereby reactivate the associated LTM representations. 35 
Cueing one LTM item rapidly pattern-completes the associated un-cued item via PFC. The PFC-STM 36 
network updates flexibly as new stimuli arrive thereby gradually over-writing older representations. 37 

Introduction  38 

By working memory (WM), we typically understand a flexible but volatile kind of memory capable of 39 
holding a small number of items over short time spans, allowing us to act beyond the immediate here 40 
and now. WM is thus a key component in cognition and is often affected early on in neurological and 41 
psychiatric conditions, e.g. Alzheimer’s disease and schizophrenia (Slifstein et al. 2015). Prefrontal 42 
cortex (PFC) has consistently been implicated as a key neural substrate for WM in humans and non-43 
human primates (Fuster 2009; D’Esposito & Postle 2015). 44 

Computational models of WM have so far focused mainly on its short-term memory aspects, 45 
explained either by means of persistent activity (Funahashi et al. 1989; Goldman-Rakic 1995; Camperi 46 
& Wang 1998; Compte et al. 2000) or more recently fast synaptic plasticity (Mongillo et al. 2008; 47 
Fiebig & Lansner 2017; Lundqvist et al. 2011) as the underlying neural mechanism. The nature of 48 
neural mechanisms involved in WM processes in PFC and, consequently, their neural manifestations 49 
have strong implications for the dynamic interaction between short- and long-term memory (STM, 50 
LTM). Although this operational STM-LTM coupling has been often missing in computational and 51 
empirical studies, it is critical to WM function as it enables to activate or “bring online” a small set of 52 
WM task relevant LTM representations (Eriksson et al. 2015).  This prominent effect is envisaged to 53 
underlie complex cognitive phenomena, which have been characterized extensively in experiments 54 
on humans as well as animals. Nevertheless, the neural mechanisms involved remain elusive. 55 

Here we present a large-scale spiking neural network model of WM and focus on investigating the 56 
neural mechanisms behind the fundamental STM-LTM interactions critical to WM function. In this 57 
context, we introduce a WM indexing theory, inspired by the predecessor hippocampal memory 58 
indexing theory (Teyler & DiScenna 1986) originally proposed to account for the role of hippocampus 59 
in storing episodic memories (Teyler & Rudy 2007). Notably, Teyler and Rudy (2007) emphasized the 60 
role of rapid hippocampal synaptic plasticity for indexing to work. We propose that Hebbian plasticity 61 
in PFC could be even faster and serve as a key mechanism in synaptic WM. The phenomena of 62 
binding and indexing of neural representations have been a common recurring theme in memory 63 
research, in particular in relation to the role of hippocampus and surrounding structures (Teyler & 64 
Rudy 2007; Squire 1992; O’Reilly & Frank 2006). Our main novel contribution here is to show that a 65 
neurobiologically constrained large-scale spiking neural network model of interacting cortical areas 66 
can function as a robust WM, including its important role of bringing relevant LTM representations 67 
temporarily on-line by means of “indexing”. In addition, the model replicates many experimentally 68 
observed phenomena in terms of oscillations, coherence and latency within and between cortical 69 
regions.  70 
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The core idea of our theory rests on the concept of cell assemblies formed in the PFC by means of 71 
fast Hebbian plasticity that serve as “indices” linking LTM representations. Our model comprises a 72 
subsampled PFC network model of STM that is reciprocally connected with two LTM component 73 
networks representing different sensory modalities (e.g. visual and auditory) in temporal cortical 74 
areas. This new model builds on and extends our recent PFC-dependent STM model of human word-75 
list learning (Fiebig & Lansner 2017), shown to reproduce a range of patterns of mesoscopic neural 76 
activity observed in WM experiments, and it employs the same fast Hebbian plasticity as a key neural 77 
mechanism, intrinsically within PFC but also in PFC backprojections that target parieto-temporal LTM 78 
stores. This novel concept, at the heart of our WM indexing theory, has strong implications for WM 79 
function and results in large-scale inter-network dynamics as a neural correlate of WM phenomena, 80 
which offers macroscopic predictions for experimental validation. Plasticity in this functional context 81 
needs to be Hebbian, i.e. associative, and has to be induced and expressed on a time-scale of a few 82 
hundred milliseconds. Recent experiments have demonstrated the existence of fast forms of Hebbian 83 
synaptic plasticity, e.g. short-term potentiation (STP, or Labile LTP) (Erickson et al. 2010; Park et al. 84 
2014; Kauer et al. 2018), which lends credibility to this type of WM mechanism. 85 

We hypothesize that activity in parieto-temporal LTM stores targeting PFC via fixed patchy synaptic 86 
connections triggers an activity pattern in PFC, which is rapidly connected by means of fast Hebbian 87 
plasticity to form a cell assembly displaying attractor dynamics. The connections in backprojections 88 
from PFC to the same LTM stores are also enhanced and provide a functional link specifically with the 89 
triggering cell assemblies there. Our simulations demonstrate that such a composite WM model can 90 
function as a robust and flexible multi-item and cross-modal WM that maintains a small set of 91 
activated task relevant LTM representations and associations. Transiently formed cell assemblies in 92 
PFC serve the role of indexing and temporary binding of these LTM representations, hence giving rise 93 
to the name of the proposed theory. The PFC cell assemblies can activate spontaneously and thereby 94 
reactivate the associated long-term representations. Cueing one LTM item rapidly activates the 95 
associated un-cued item via PFC by means of pattern completion. The STM network flexibly updates 96 
WM content as new stimuli arrive whereby older representations gradually fade away. Interestingly, 97 
this model implementing the WM indexing theory can also explain the so far poorly understood 98 
cognitive phenomenon of variable binding or object – name association, which is one key ingredient 99 
in human reasoning and planning (Cer & O’Reily 2012; van der Velde & de Kamps 2015; Pinkas et al. 100 
2013).  101 

Materials & Methods 102 

Neuron Model 103 

We use an integrate-and-fire point neuron model with spike-frequency adaptation (Brette & 104 
Gerstner 2005) which was modified (Tully et al. 2014) for compatibility with a custom-made BCPNN 105 
synapse model in NEST (see Simulation Environment) through the addition of the intrinsic excitability 106 
current 𝐼𝛽𝑗

. The model was simplified by excluding the subthreshold adaptation dynamics. Membrane 107 

potential 𝑉𝑚 and adaptation current are described by the following equations: 108 

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= −𝑔𝐿(𝑉𝑚 − 𝐸𝐿) + 𝑔𝐿Δ𝑇𝑒

𝑉𝑚−𝑉𝑡
Δ𝑇 − 𝐼𝑤(𝑡)−𝐼𝑡𝑜𝑡(𝑡) + 𝐼𝛽𝑗

+ 𝐼𝑒𝑥𝑡  (1) 109 

𝑑𝐼𝑤(𝑡)

𝑑𝑡
=

−𝐼𝑤(𝑡)

𝜏𝐼𝑤

+ 𝑏𝛿(𝑡 − 𝑡𝑠𝑝)  (2) 110 

The membrane voltage changes through incoming currents over the membrane capacitance 𝐶𝑚. A 111 
leak reversal potential 𝐸𝐿 drives a leak current through the conductance 𝑔𝐿, and an upstroke slope 112 
factor Δ𝑇 determines the sharpness of the spike threshold 𝑉𝑡. Spikes are followed by a reset of 113 
membrane potential to 𝑉𝑟. Each spike increments the adaptation current by 𝑏, which decays with 114 
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time constant 𝜏𝐼𝑤
. Simulated basket cells feature neither the intrinsic excitability current 𝐼𝛽𝑗

 nor this 115 

spike-triggered adaptation. 116 

Besides external input 𝐼𝑒𝑥𝑡 (Stimulation Protocol) neurons receive a number of different synaptic 117 
currents from its presynaptic neurons in the network (AMPA, NMDA and GABA), which are summed 118 
at the membrane accordingly: 119 

𝐼𝑡𝑜𝑡𝑗
(𝑡) = ∑ ∑ 𝑔𝑖𝑗

𝑠𝑦𝑛(𝑡) (𝑉𝑚𝑗
− 𝐸𝑖𝑗

𝑠𝑦𝑛
) = 𝐼𝑗

𝐴𝑀𝑃𝐴(𝑡) + 𝐼𝑗
𝑁𝑀𝐷𝐴(𝑡) + 𝐼𝑗

𝐺𝐴𝐵𝐴(𝑡)

𝑖𝑠𝑦𝑛

           (3) 120 

Synapse Model 121 

Excitatory AMPA and NMDA synapses have a reversal potential 𝐸𝐴𝑀𝑃𝐴 = 𝐸𝑁𝑀𝐷𝐴, while inhibitory 122 

synapses drive the membrane potential toward 𝐸𝐺𝐴𝐵𝐴. Every presynaptic input spike (at 𝑡𝑠𝑝
𝑖  with 123 

transmission delay 𝑡𝑖𝑗) evokes a transient synaptic current through a change in synaptic conductance 124 

that follows an exponential decay with time constants 𝜏𝑠𝑦𝑛 depending on the synapse type 125 

(𝜏𝐴𝑀𝑃𝐴 ≪   𝜏𝑁𝑀𝐷𝐴). 126 

𝑔𝑖𝑗
𝑠𝑦𝑛(𝑡) = 𝑥𝑖𝑗

𝑑𝑒𝑝(𝑡)𝑤𝑖𝑗
𝑠𝑦𝑛

𝑒−
𝑡−𝑡𝑖−𝑡𝑖𝑗

𝜏𝑠𝑦𝑛 𝐻(𝑡 − 𝑡𝑠𝑝
𝑖 − 𝑡𝑖𝑗)          (4) 127 

𝐻(·) is the Heaviside step function. 𝑤𝑖𝑗
𝑠𝑦𝑛

 is the peak amplitude of the conductance transient, learned 128 

by the Spike-based BCPNN Learning Rule (next Section). Plastic synapses are also subject to synaptic 129 
depression (vesicle depletion) according to the Tsodyks-Markram formalism (Tsodyks & Markram 130 

1997), modeling the transmission-dependent depletion of available synaptic resources 𝑥𝑖𝑗
𝑑𝑒𝑝

 by a 131 

utilization factor U, and a depression/reuptake time constant 𝜏𝑟𝑒𝑐: 132 

𝑑𝑥𝑖𝑗
𝑑𝑒𝑝

𝑑𝑡
=

1−𝑥𝑖𝑗
𝑑𝑒𝑝

𝜏𝑟𝑒𝑐
− 𝑈𝑥𝑖𝑗

𝑑𝑒𝑝 ∑ 𝛿(𝑡 − 𝑡𝑠𝑝
𝑖 − 𝑡𝑖𝑗𝑠𝑝 )          (5) 133 

Spike-based BCPNN Learning Rule 134 

Plastic AMPA and NMDA synapses are modeled to mimic short-term potentiation (STP) (Erickson et 135 
al. 2010) with a spike-based version of the Bayesian Confidence Propagation Neural Network 136 
(BCPNN) learning rule (Wahlgren & Lansner 2001; Tully et al. 2014). For a full derivation from Bayes 137 
rule, deeper biological motivation, and proof of concept, see Tully et al. (2014) and the earlier STM 138 
model implementation (Fiebig & Lansner 2017).  139 

Briefly, the BCPNN learning rule makes use of biophysically plausible local traces to estimate 140 
normalized pre- and post-synaptic firing rates, as well as co-activation, which can be combined to 141 
implement Bayesian inference because connection strengths and neural unit activations have a 142 
statistical interpretation (Sandberg et al. 2002; Fiebig & Lansner 2014; Tully et al. 2014). Crucial 143 
parameters include the synaptic activation trace Z, which is computed from spike trains via pre- and 144 

post-synaptic time constants 𝜏𝑧𝑖

𝑠𝑦𝑛
, 𝜏𝑧𝑗

𝑠𝑦𝑛
, which are the same here but differ between AMPA and 145 

NMDA synapses: 146 

𝜏𝑧𝑖
𝐴𝑀𝑃𝐴 = 𝜏𝑧𝑗

𝐴𝑀𝑃𝐴 = 5𝑚𝑠,   𝜏𝑧𝑖
𝑁𝑀𝐷𝐴 = 𝜏𝑧𝑗

𝑁𝑀𝐷𝐴 = 100𝑚𝑠        (6) 147 

The larger NMDA time constant reflects the slower closing dynamics of NMDA-receptor gated 148 
channels. All excitatory connections are drawn as AMPA and NMDA pairs, such that they feature both 149 
components. Further filtering of the Z traces leads to rapidly expressing memory traces (referred to 150 
as P-traces) that estimate activation and coactivation: 151 
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𝜏𝑝

𝑑𝑃𝑖

𝑑𝑡
= 𝜅(𝑍𝑖 − 𝑃𝑖),          𝜏𝑝

𝑑𝑃𝑗

𝑑𝑡
= 𝜅(𝑍𝑗 − 𝑃𝑗),          𝜏𝑝

𝑑𝑃𝑖𝑗

𝑑𝑡
= 𝜅(𝑍𝑖𝑍𝑗 − 𝑃𝑖𝑗)    (7) 152 

These traces constitute memory itself and decay in a palimpsest fashion. STP decay is known to take 153 
place on timescales that are highly variable and activity dependent (Volianskis et al. 2015); see 154 
Discussion – The case for Hebbian plasticity.  155 

We make use of the learning rule parameter 𝜅 (Equation 7), which may reflect the action of 156 
endogenous neuromodulators, e.g.  dopamine acting on D1 receptors that signal relevance and thus 157 
modulate learning efficacy. It can be dynamically modulated to switch off learning to fixate the 158 
network, or temporarily increase plasticity (𝜅𝑝, 𝜅𝑛𝑜𝑟𝑚𝑎𝑙 , Table 1). In particular, we trigger a transient 159 

increase of plasticity concurrent with external stimulation. 160 

Tully et al. (2014) showed that Bayesian inference can be recast and implemented in a network using 161 
the spike-based BCPNN learning rule. Prior activation levels are realized as an intrinsic excitability of 162 
each postsynaptic neuron, which is derived from the post-synaptic firing rate estimate pj and 163 
implemented in the NEST neural simulator (Gewaltig & Diesmann 2007) as an individual neural 164 
current Iβj

with scaling constant βgain   165 

Iβj
= βgain log(Pj)    (8) 166 

 Iβj
 is thus an activity-dependent intrinsic membrane current to the neurons, similar to the A-type 167 

potassium channel (Hoffman et al. 1997) or TRP channel (Petersson et al. 2011). Synaptic weights are 168 
modeled as peak amplitudes of the conductance transient (Equation 4) and determined from the 169 

logarithmic BCPNN weight, as derived from the P-traces with a synaptic scaling constant 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

.  170 

𝑤𝑖𝑗
𝑠𝑦𝑛

= 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

log
𝑃𝑖𝑗

𝑃𝑖𝑃𝑗
          (9) 171 

In our model, AMPA and NMDA synapses make use of 𝑤𝑔𝑎𝑖𝑛
𝐴𝑀𝑃𝐴 and 𝑤𝑔𝑎𝑖𝑛

𝑁𝑀𝐷𝐴 respectively. The 172 

logarithm in Equations 8,9 is motivated by the Bayesian underpinnings of the learning rule, and 173 

means that synaptic weights 𝑤𝑖𝑗
𝑠𝑦𝑛

 multiplex both the learning of excitatory and di-synaptic inhibitory 174 

interaction. The positive weight component is here interpreted as the conductance of a 175 
monosynaptic excitatory pyramidal to pyramidal synapse (Figure 1, plastic connection to the co-176 
activated MC), while the negative component (Figure 1, plastic connection to the competing MC) is 177 
interpreted as di-synaptic via a dendritic targeting and vertically projecting inhibitory interneuron like 178 
a double bouquet and/or bipolar cell (Tucker 2002; Ren et al. 2007; Silberberg & Markram 2007; 179 
Kapfer et al. 2007). Accordingly, BCPNN connections with a negative weight use a GABAergic reversal 180 
potential instead, as in previously published models (Tully et al. 2016; Tully et al. 2014; Fiebig & 181 
Lansner 2017). Model networks with negative synaptic weights have been shown to be functionally 182 
equivalent to ones with both excitatory and inhibitory neurons with only positive weights (Parisien et 183 
al. 2008).  184 

Code for the NEST implementation of the BCPNN synapse is openly available (see Simulation 185 
Environment). 186 
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 187 
 188 
 189 
Figure 1. Local columnar 190 
connectivity within STM and LTM. 191 
Connection probabilities are given 192 
by the percentages, further details 193 
in Tables 1-3. The strength of plastic 194 
connections develops according to 195 
the synaptic learning rule described 196 
in Spike-based BCPNN Learning 197 
Rule.  Initial weights are low and 198 
distributed by a noise-based 199 
initialization procedure (Stimulation 200 
protocol). LTM however, dashed 201 
connections are not plastic in LTM 202 
(besides the STD of Equation 4), but 203 
already encode memory patterns 204 
previously learned through an LTP 205 
protocol, and loaded before the 206 
simulation using receptor-specific 207 
weights found in Table 2.  208 
 209 
 210 
 211 
 212 
 213 
 214 
 215 
 216 
 217 

Axonal Conduction Delays 218 

We compute axonal delays 𝑡𝑖𝑗  between presynaptic neuron i and postsynaptic neuron j, based on a 219 

constant conduction velocity 𝑉 and the Euclidean distance between respective columns. Conduction 220 
delays were randomly drawn from a normal distribution with mean according to the connection 221 
distance divided by conduction speed and with a relative standard deviation of 15% of the mean in 222 
order to account for individual arborization differences. Further, we add a minimal conduction delay 223 
𝑡𝑚𝑖𝑛

𝑠𝑦𝑛 of 1.5 ms to reflect not directly modeled delays, such as diffusion of transmitter over the synaptic 224 
cleft, dendritic branching, thickness of the cortical sheet, and the spatial extent of columns:  225 

𝑡𝑖𝑗 =  
√(𝑥𝑖−𝑥𝑗)

2
+(𝑦𝑖−𝑦𝑗)

2

𝑉
+ 𝑡𝑚𝑖𝑛

𝑠𝑦𝑛  𝑚𝑠                   𝑡𝑖𝑗  ~ 𝑁(𝑡𝑖𝑗  , .15𝑡𝑖𝑗)         (10) 226 

STM Network Architecture 227 

The model organizes cells in the three simulated cortical areas into grids of nested hypercolumns 228 
(HCs) and minicolumns (MCs), sometimes referred to as macro columns, and “functional columns” 229 

respectively. The STM network is simulated with nHC
STM = 25 HCs spread out on a grid with spatial 230 

extent of 17x17 mm. This spatially distributed network of columns has sizable conduction delays due 231 
to the distance between columns and can be interpreted as a spatially distributed subsampling of 232 
columns from the extent of dorsolateral PFC (such as BA 46 and 9/46, which also have a combined 233 
spatial extent of about 289 mm² in macaque). 234 

Each of the non-overlapping HCs has a diameter of about 640 µm, comparable to estimates of 235 
cortical column size (Mountcastle 1997), contains 48 basket cells, and its pyramidal cell population 236 
has been divided into twelve MC’s. This constitutes another sub-sampling from the roughly 100 MC 237 
per HC when mapping the model to biological cortex. We simulate 20 pyramidal neurons per MC to 238 
represent roughly the layer 2 population of an MC, 5 cells for layer 3A, 5 cells for layer 3B, and 239 
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another 30 pyramidal cells for layer 4, as macaque BA 46 and 9/46 have a well-developed granular 240 
layer (Petrides & Pandya 1999). The STM model thus contains about 18,000 simulated pyramidal cells 241 
in four layers (although layers 2, 3A, and 3B are often treated as one layer 2/3).  242 

243 
Figure 2. Schematic of modeled connectivity within and across representative STM and LTM areas in macaque. STM features 25 244 
hypercolumns (HC), whereas LTMa and LTMb both contain 16 simulated HCs. Each network spans several hundred mm² and the simulated 245 
columns constitute a spatially distributed subsample of biological cortex, defined by conduction delays. Pyramidal cells in the simulated 246 
supragranular layers form connections both within and across columns. STM features an input layer 4 that shapes the input response of 247 
cortical columns, whereas LTM is instead stimulated directly to cue the activation of previously learned long-term memories. Additional 248 
corticocortical connections (feedforward in brown, feedback in dashed blue) are sparse (<1% connection probability) and implemented 249 
with terminal clusters (rightmost panels) and specific laminar connection profiles (bottom left). The connection schematic illustrates 250 
laminar connections realizing a direct supragranular forward-projection, as well as a common supragranular backprojection. Layer 2/3 251 
recurrent connections in STM (dashed green) and corticocortical backprojections (dashed blue) feature fast Hebbian plasticity. For an in-252 
depth model description, including the columnar microcircuits, please refer to Methods and Figure 1. 253 

STM Network Connectivity 254 

The most relevant connectivity parameters are found in Tables 1-3. Pyramidal cells project laterally 255 
to basket cells within their own HC via AMPA-mediated excitatory projections with a connection 256 
probability of 𝑝𝑃−𝐵, i.e. connections are randomly drawn without duplicates until the target fraction 257 
of all possible pre-post connections exist. In turn, they receive GABAergic feedback inhibition from 258 
basket cells (𝑝𝐵−𝑃) that connect via static inhibitory synapses rather than plastic BCPNN synapses. 259 
This strong loop implements a competitive soft-WTA subnetwork within each HC (Douglas & Martin 260 
2004). Local basket cells fire in rapid bursts, and induce alpha/beta oscillations in the absence of 261 
attractor activity and gamma, when attractors are present and active.  262 

Pyramidal cells in layer 2/3 form connections both within and across HCs at connection probability 263 
𝑝𝐿23𝑒−𝐿23𝑒. These projections are implemented with plastic synapses and contain both AMPA and 264 
NMDA components, as explained in subsection Spike-based BCPNN Learning Rule. Connections 265 
across columns and areas may feature sizable conduction delays due to the implied spatial distance 266 
between them (Table 1) 267 

Pyramidal cells in layer 4 project to pyramidal cells of layer 2/3, targeting 25% of cells within their 268 
respective MC only. Experimental characterization of excitatory connections from layer 4 to layer 2/3 269 
pyramidal cells have confirmed similarly high fine-scale specificity in rodent cortex (Yoshimura & 270 
Callaway 2005) and in-turn, full-scale cortical simulation models without functional columns have 271 
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found it necessary to specifically strengthen these connections to achieve defensible firing rates 272 
(Potjans & Diesmann 2014). 273 

In summary, the STM model thus features a total of 16.2 million plastic AMPA- and NMDA-mediated 274 
connections between its 18,000 simulated pyramidal cells, as well as 67,500 static connections from 275 
9,000 layer 4 pyramidals to layer 2/3 targets within their respective MC, and 1.2 million static 276 
connections to and from 1,200 simulated basket cells. 277 

LTM network 278 

We simulate two structurally identical LTM networks, referred to as LTMa, and LTMb. LTM networks 279 
may be interpreted as a spatially distributed subsampling of columns from areas of the parieto-280 
temporal cortex commonly associated with modal LTM stores. For example Inferior Temporal Cortex 281 
(ITC) is often referred to as the storehouse of visual LTM (Miyashita 1993). Two such LTM areas are 282 
indicated in Figure 2.  283 

We simulate nHC
LTM = 16 HCs in each area and nine MC per HC (further details in Tables 1-3). Both 284 

LTM networks are structurally very similar to the previously described STM, yet they do not feature 285 
plasticity among their own cells, beyond short-term dynamics in the form of synaptic depression. 286 
Unlike STM, LTM areas also do not feature an input layer 4, but are instead stimulated directly to cue 287 
the activation of previously learned long-term memories (Stimulation Protocol). Various previous 288 
models with identical architecture have demonstrated how attractors can be learned via plastic 289 
BCPNN synapses (Tully et al. 2016; Lansner et al. 2013; Tully et al. 2014; Fiebig & Lansner 2017). We 290 
load each LTM network with nine orthogonal attractors (ten in the example of Figure 4B, which 291 
features two sets of five memories each). Each memory pattern consists of 16 active MCs, distributed 292 
across the 16 HCs of the network. We load-in BCPNN weights from a previously trained network 293 
(Table 2), but thereafter set 𝜅 = 0 to deactivate plasticity of recurrent connections in LTM stores.  294 

In summary, the two LTM models thus feature a total of 7.46 million connections between 8.640 295 
pyramidal cells, as well as 435.456 static connections to and from 1152 basket cells. 296 

Inter-area Connectivity 297 

In our model, as in previous work, we focus on layers 2/3, as their high degree of recurrent 298 
connectivity (Thomson 2002; Yoshimura & Callaway 2005) supports attractor function. The high fine-299 
scale specificity of dense stellate cell (Yoshimura et al. 2005) and double-bouquet cell inputs 300 
(DeFelipe et al. 2006; Chrysanthidis et al. 2018) enable strongly coding sub-populations in the 301 
superior layers of functional columns. This fits with the general observation that layers 2/3 are more 302 
input selective than the lower layers (Sakata & Harris 2009; Crochet & Petersen 2009) and thus of 303 
more immediate concern to our computational model. 304 

The recent characterization of supragranular feedforward and feedback projections (from large cells 305 
in layer 3B and 3A, respectively), between association cortices and at short and medium cortical 306 
distances (Markov et al. 2014), allows for the construction of a basic cortical hierarchy without 307 
explicit representation of infragranular layers (and its long-range feedback projections from large 308 
cells in layer 5 and 6). This is not to say that nothing would be gained by explicitly modeling infra-309 
granular layers, but it would go beyond the scope of this model. 310 

Accordingly, our model implements supragranular feedforward and feedback pathways between 311 
cortical areas that are at a medium distance in the cortical hierarchy. The approximate cortical 312 
distance between Inferior Temporal Cortex (ITC) and dlPFC in macaque is about 40 mm and with an 313 
axonal conductance speed of 2 m/s, distributed conduction delays in our model (Equation 10) 314 
average just above 20 ms between these areas (Girard et al. 2001; Thorpe & Fabre-Thorpe 2001; 315 
Caminiti et al. 2013). 316 
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In the forward path, layer 3B cells in LTM project towards STM (Figure 2). We do not draw these 317 
connections one-by-one, but as branching axons targeting 25% of the pyramidal cells in a randomly 318 
chosen MC (the chance of any layer 3B cell to target any MC in STM is only 0.15%). The resulting split 319 
between targets in layer 2/3 and 4 is typical for feedforward connections at medium distances in the 320 
cortical hierarchy (Markov et al. 2014) and has important functional implications for the model (LTM-321 
to-STM Forward Dynamics). We also branch off some inhibitory corticocortical connections as 322 
follows: for every excitatory connection within the selected targeted MC, an inhibitory connection is 323 
created from the same pyramidal layer 3B source cell onto a randomly selected cell outside the 324 
targeted MC, but inside the local HC. This way of drawing random forward-projections retains a 325 
degree of functional specificity due to its spatial clustering and yields patchy sparse forward-326 
projections as observed in the cortex (Houzel et al. 1994; Voges et al. 2010) with a resulting inter-327 
area connection probability of only 0.0125% (648 axonal projections from L3B cells to STM layers 2/3 328 
and 4 results in ~20k total connections after branching as described above. 329 

In the feedback path, we draw sparse plastic connections from layer 3A cells in STM to layer 2/3 cells 330 
in LTM: branching axons target 25% of the pyramidal cells in a randomly chosen HC in LTM, 331 
simulating a degree of axonal branching found in the literature (Zufferey et al. 1999). Using this 332 
method, we obtain biologically plausible sparse and structured feedback projections with an inter-333 
area connection probability of 0.66%, which – unlike the forward pathway – do not have any built-in 334 
MC-specificity but may develop such through activity-dependent plasticity. More parameters on 335 
corticocortical projections can be found in Table 3. On average, each LTM pyramidal cell receives 336 
about 120 corticocortical connections from STM. Because about 5% of STM cells fire together during 337 
memory reactivation (see Results), this means that a mere 6 active synapses per target cell are 338 
sufficient for driving (and thus maintaining) LTM activity from STM (there are 96 active synapses from 339 
coactive pyramidal cells in LTM). 340 

Notably LTMa and LTMb have no direct pathways connecting them in our model since we assume the 341 
use of previously not associated stimuli in our simulated multi-modal tasks and further, that plasticity 342 
of biological connections between them are likely too slow (LTP timescale) to make a difference in 343 
WM dynamics. This arrangement also guarantees that any binding of long-term memories across 344 
LTM areas must be the result of interaction via STM instead. Overall in our model, corticocortical 345 
connectivity is very sparse, below 1% on a cell-to-cell basis.  346 

Stimulation Protocol 347 

The term 𝐼𝑒𝑥𝑡 in Equation 1 subsumes specific and unspecific external inputs. To simulate unspecific 348 
input from non-simulated columns, and other areas, pyramidal cells are continually stimulated with a 349 
zero mean noise background throughout the simulation. In each layer, two independent Poisson 350 

sources generate spikes at rate 𝑟𝑏𝑔
𝑙𝑎𝑦𝑒𝑟

 , and connect onto all pyramidal neurons in that layer, via non-351 

depressing conductances ±𝑔𝑏𝑔
𝑙𝑎𝑦𝑒𝑟

 (Table 2). Before each simulation, we distribute the initial values 352 

of all plastic weights in the process of learning induced by 1.5 s low background activity (Table 2, 353 
𝒓𝒃𝒈−𝒍𝒐𝒘

𝑳𝟐𝟑 ). To cue the activation of a specific memory pattern (i.e. attractor), we excite LTM pyramidal 354 

cells belonging to a memory patterns component MC with an additional excitatory Poisson spike 355 
train (rate 𝑟𝑐𝑢𝑒, length 𝑡𝑐𝑢𝑒, conductance 𝑔𝑐𝑢𝑒). As LTM patterns are strongly encoded in each LTM, a 356 
brief 50 ms stimulus is usually sufficient to activate any given memory.  357 

Spike Train Analysis and Memory Activity Tracking 358 

We track memory activity in time by analyzing the population firing rate of pattern-specific and 359 
network-wide spiking activity usually using an exponential moving average filter time-constant of 20 360 
ms. We do not use an otherwise common low-pass filter with symmetrical window, because we are 361 
particularly interested in characterizing activation onsets and onset delays. As activations are 362 
characterized by sizable gamma-like bursts, a simple threshold detector can extract candidate 363 
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activation events and decode the activated memory. This is trivial in LTM due to the known nature of 364 
its patterns. In STM we decode the stimulus-specificity of each cell individually by finding the 365 
maximum correlation between input pattern and the untrained STM spiking response in the 320 ms 366 
(which is the stimulation interval during plasticity-modulated stimulation period, shown in e.g. Figure 367 
3D) following the pattern cue to LTM. Thereafter we can filter the population response of cells in 368 
STM with the same selectivity on that basis to obtain a more robust readout. We validate the 369 
specificity by means of cross-correlations, which reveal that the pattern specific populations are 370 
rather orthogonal according to the covariance matrix (off-diagonal magnitude < 0.1). In all three 371 
networks, we measure onset and offset of pattern activity by thresholding each individual activation 372 
at half of its population peak firing rate. In LTM, we further check pattern completion by analyzing 373 
component MC activation. Whenever targeted stimuli are used, we analyze peri-stimulus activation 374 
traces. When activation onsets are less predictable, such as during free STM-paced maintenance, we 375 
extract activation candidates via a threshold detector trained at the 50th percentile of the cumulative 376 
distribution of the population firing rate signal.  377 

Synthetic field potentials and spectral analysis 378 

We estimate local field potentials (LFPs) by calculating a temporal derivative of the average low-pass 379 
filtered (with the cut-off frequency at 250 Hz) potential for all pyramidal cells in local populations at 380 
every time step, similarly to the approach adopted by (Ursino & La Cara 2006). Although LFP is more 381 
directly linked to the synaptic activity (Logothetis 2003), the averaged membrane potentials have 382 
been reported to be correlated with LFPs (Okun et al. 2010). In particular, low-pass-filtered 383 
components of synaptic currents reflected in differentiated membrane potentials appear to carry the 384 
portion of the power spectral content of extracellular potentials that is relevant to our key findings 385 
(Lindén et al. 2010). As regards the phase response of estimated extracellular potentials, the delays 386 
of different frequency components are spatially dependent (Lindén et al. 2010). However, 387 
irrespective of the LFP synthesis, phase-related phenomena reported in this study remain 388 
qualitatively unaffected since they hinge on relative rather than absolute phase values.  389 

Most spectral analyses have been conducted on the synthesized field potentials with the exception of 390 
population firing rates, shown in Fig. 3B and S1A. Spectral information is extracted with a multi-taper 391 
approach using a family of orthogonal tapers produced by Slepian functions (Slepian 1978; Thomson 392 
1982), with frequency-dependent window lengths corresponding to 5-8 oscillatory cycles and 393 
frequency smoothing corresponding to 0.3-0.4 of the central frequency, which was sampled with the 394 
resolution of 1 Hz (this configuration implies that 2-3 tapers are usually used). To obtain the spectral 395 
density, spectro-temporal content is averaged within a specific time interval. 396 

The coherence for a pair of synthesized field potentials at the spatial resolution corresponding to a 397 
hypercolumn was calculated using the multi-taper auto-spectral and cross-spectral estimates. The 398 
complex value of coherence (Carter 1987) was evaluated first based on the spectral components 399 
averaged within 0.5 s windows. Next, its magnitude was extracted to produce the time-windowed 400 
estimate of the coherence amplitude. In addition, phase locking statistics were estimated to examine 401 
synchrony without the interference of amplitude correlations (Lachaux et al. 1999; Palva 2005). In 402 
particular, phase locking value (PLV) between two signals with instantaneous phases Φ1(t) and Φ2(t) 403 
was evaluated within a time window of size N=0.5 s as follows: 404 

   1 2

1

1
PLV exp ( ) ( ) .

N

i i

i

j Φ t Φ t
N 

    405 

The instantaneous phase of the signals was estimated from their analytic signal representation 406 
obtained using a Hilbert transform. Before the transform was applied the signals were narrow-band 407 
filtered with low time-domain spread finite-impulse response filters (in the forward and reverse 408 
directions to avoid any phase distortions). The analysis was performed mainly for gamma-range 409 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/334821doi: bioRxiv preprint 

https://doi.org/10.1101/334821
http://creativecommons.org/licenses/by/4.0/


11 
 

oscillations. Continuous PLV estimate was obtained with a sliding window approach, and the average 410 
along with standard error were calculated typically over 25 trials.    411 

Simulation Environment and Code Accessibility 412 

We use the NEST simulator (Gewaltig & Diesmann 2007) version 2.2 for our simulations, running on a 413 
Cray XC-40 Supercomputer of the PDC Centre for High Performance Computing. The custom-build 414 
spiking neural network implementation of the BCPNN learning rule for MPI-parallelized NEST is 415 
available on github: https://github.com/Florian-Fiebig/BCPNN-for-NEST222-MPI 416 

Parameter Tables 417 

 418 
Adaptation 
current 

b 86 
pA 

Depression time 
constant 

𝜏𝑟𝑒𝑐 500 
ms 

BCPNN 
AMPA gain 

𝑤𝑔𝑎𝑖𝑛
𝐴𝑀𝑃𝐴 3.93 

nS 
Adaptation 
time constant 

𝜏𝐼𝑤
 500 

ms 
AMPA synaptic 
time constant 

𝜏𝐴𝑀𝑃𝐴 5 ms BCPNN  
NMDA gain 

𝑤𝑔𝑎𝑖𝑛
𝑁𝑀𝐷𝐴 0.21 

nS 
Membrane 
Capacity 

𝐶𝑚 280 
pF 

NMDA synaptic 
time constant 

𝜏𝑁𝑀𝐷𝐴 100 
ms 

BCPNN bias 
current gain  

β
gain

 90 𝑝𝐴 

Leak Reversal 
Potential 

𝐸𝐿 -70 
mV 

GABA synaptic 
time constant 

𝜏𝐺𝐴𝐵𝐴 5 ms BCPNN lowest 
rate  

𝑓𝑚𝑖𝑛 0.2 Hz 

Leak 
Conductance 

𝑔𝐿 14 
pS 

AMPA Reversal 
Potential 

𝐸𝐴𝑀𝑃𝐴 0 mV BCPNN 
highest rate 

𝑓𝑚𝑎𝑥 20 Hz 

Upstroke 
slope factor 

Δ𝑇 3 
mV 

NMDA Reversal 
Potential 

𝐸𝑁𝑀𝐷𝐴 0 mV BCPNN lowest 
probability 

ε 0.01 

Spike 
Threshold 

𝑉𝑡 -55 
mV 

GABA Reversal 
Potential 

𝐸𝐺𝐴𝐵𝐴 -75 
mV 

BCPNN Spike 
event duration 

∆𝑡 1 ms 

Spike Reset 
Potential 

𝑉𝑟 -80 
mV 

Dopaminergic 
Modulation 

𝜅𝑝 6.0 P-Trace time 
constant 

𝜏𝑝 5 s 

Utilization 
factor 

𝑈 .33 Regular 
Plasticity 

𝜅𝑛𝑜𝑟𝑚𝑎𝑙 1.0    

Table 1. Neurons, synapses, and plasticity. 419 

STM patch size  17 x 17 mm Initialization Input rate layer 2/3  𝑟𝑏𝑔−𝑙𝑜𝑤
𝐿23  550 Hz 

Simulated HCs 𝑛𝐻𝐶
𝑆𝑇𝑀 25 Background activity rate layer 2/3 𝑟𝑏𝑔

𝐿23 625 Hz 

Simulated MC per HC  𝑛𝑀𝐶
𝑆𝑇𝑀 12 Background activity rate layer 4 𝑟𝑏𝑔

𝐿4 300 Hz 

LTM patch size 25 x 25 mm High Background activity rate 
layer 2/3 (e.g. STM Maintainance) 

𝑟𝑏𝑔−ℎ𝑖𝑔ℎ
𝐿23  950 Hz 

Simulated HCs 𝑛𝐻𝐶
𝐿𝑇𝑀 16    

Simulated MC per HC  𝑛𝑀𝐶
𝐿𝑇𝑀 9 Background conductance 𝑔𝑏𝑔  ±1.5 nS 

Axonal Conduction Speed 𝑉 2 
𝑚

𝑠
    

Minimal conduction delay 𝑡𝑚𝑖𝑛
𝑠𝑦𝑛

 1.5 
ms 

Cue stimulus duration 𝑡𝑐𝑢𝑒 50 ms 

STM – LTM distance 𝑑𝑆𝑇𝑀−𝐿𝑇𝑀 40 
mm 

Stimulation rate 𝑟𝑐𝑢𝑒 650 Hz 

Hypercolumn diameter 𝑑𝐻𝐶  0.64 
mm 

Cue stimulus conductance 𝑔𝑐𝑢𝑒  +1.5 nS 

Layer 2 pyramidal per MC 𝑛𝑀𝐶
𝑃𝑌𝑅−𝐿2 20 LTM Intra HC – Intra MC weight 𝑤𝐼𝑛𝑡𝑟𝑎𝑀𝐶

𝐼𝑛𝑡𝑟𝑎𝐻𝐶  3.36 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

 

Layer 3A pyramidal per MC 𝑛𝑀𝐶
𝑃𝑌𝑅−𝐿3𝐴 5 LTM Intra HC – Inter MC weight 𝑤𝐼𝑛𝑡𝑒𝑟𝑀𝐶

𝐼𝑛𝑡𝑟𝑎𝐻𝐶  -4.82 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

 

Layer 3B pyramidal per MC 𝑛𝑀𝐶
𝑃𝑌𝑅−𝐿3𝐵 5    

Layer 4 pyramidal per MC 𝑛𝑀𝐶
𝑃𝑌𝑅−𝐿4 30 LTM Inter HC –Coactive MC weight 𝑤𝐶𝑜𝑎𝑐𝑡𝑖𝑣𝑒𝑀𝐶

𝐼𝑛𝑡𝑒𝑟𝐻𝐶  3.08 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

 

Basket cells per MC 𝑛𝑀𝐶
𝑏𝑎𝑠𝑘𝑒𝑡 4 LTM Inter HC – Competing MC weight 𝑤𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑛𝑔𝑀𝐶

𝐼𝑛𝑡𝑒𝑟𝐻𝐶  -4.28 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

 

Table 2. Network size, Conduction delay, Stimulation, LTM Preload BCPNN weights. Layer 4 not simulated in 420 
LTM. 421 

 422 

 423 
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Scope Source Target Type Symbol Value 
C

o
rt

ic
a
l 
A

re
a
 

Pyramidal Basket probability 𝑝𝑃−𝐵 0.7 

Pyramidal Basket condnductance (static) 𝑔𝑃−𝐵 +3.5 nS 

Basket Pyramidal probability 𝑝𝐵−𝑃 0.7 

Basket Pyramidal conductance (static) 𝑔𝐵−𝑃 -20 nS 

L23e L23e probability 𝑝𝐿23𝑒−𝐿23𝑒 0.2 

L23e L23e AMPA gain (BCPNN) 𝑤𝑔𝑎𝑖𝑛
𝐴𝑀𝑃𝐴 3.93nS 

L23e L23e NMDA gain (BCPNN) 𝑤𝑔𝑎𝑖𝑛
𝑁𝑀𝐷𝐴 0.21nS 

L4e L23e probability 𝑝𝐿4𝑒−𝐿23𝑒 0.25 

L4e L23e conductance (static) 𝑔𝐿4𝑒−𝐿23𝑒 25 nS 

F
e

e
d

 

fo
rw

a
rd

 LTM L3Ae STM MC probability  𝑝𝐿3𝐴𝑒−𝑀𝐶
𝐹𝐹  0.0015 

LTM L3Ae STM MC branching factor 𝑏𝐿3𝐴𝑒−𝑀𝐶
𝐹𝐹  0.25 

LTM L3Ae STM L23e conductance (static) 𝑔𝐿3𝐴𝑒−𝐿23𝑒
𝐹𝐹  ±7.2 nS 

LTM L3Ae STM L4e conductance (static) 𝑔𝐿3𝐴𝑒−𝐿4𝑒
𝐹𝐹  ±7.2 nS 

F
e

e
d

b
a

c
k
 STM PYR LTM PYR probability  𝑝𝑃−𝑃

𝐹𝐵  0.0066 

STM L3Be LTM HC branching factor 𝑏𝐿3𝐵𝑒−𝐻𝐶
𝐹𝐵  0.25 

STM L3Be LTM L23e AMPA gain (BCPNN) 𝑤𝐹𝐵
𝐴𝑀𝑃𝐴 7.07 nS 

STM L3Be LTM L23e NMDA gain (BCPNN) 𝑤𝐹𝐵
𝑁𝑀𝐷𝐴 0.4 nS 

Table 3. Projections 424 

Results 425 

Our model implements WM function arising from the interaction of STM and LTM networks, which 426 
manifests itself in multi-modal memory binding phenomena. To this end, we simulate three cortical 427 
patches with significant biophysical detail: one STM and two LTM networks (LTMa, LTMb), 428 
representing PFC and parieto-temporal areas, respectively (Figure 2). The computational network 429 
model used here represents a detailed modular cortical microcircuit architecture in line with previous 430 
models (Lundqvist, Rehn, Djurfeldt, & Lansner, 2006; Tully et al., 2016; Lundqvist et al., 2011). Like 431 
those models, the new model can reproduce a wide range of meso- and macroscopic biological 432 
manifestations of cortical memory function including complex oscillatory dynamics and 433 
synchronization effects (Lundqvist et al. 2011; Lundqvist et al. 2013; Silverstein & Lansner 2011). The 434 
current model is built directly upon a recent STM model of human word-list learning (Fiebig & 435 
Lansner 2017). The associative cortical layer 2/3 network of that model was sub-divided into layers 2, 436 
3A, and 3B. Importantly, in this work we extend this model with an input layer 4 and corticocortical 437 
connectivity to LTM stores in temporal cortical regions. This large, multi-area network model 438 
synthesizes many different anatomical and electrophysiological cortical data and produces complex 439 
output dynamics. Here, we specifically focus on the dynamics of memory specific subpopulations in 440 
the interaction of STM and LTM networks. 441 

We introduce the operation of the WM model in several steps. First, we take a brief look at 442 
background activity and active memory states in isolated cortical networks of this kind to familiarize 443 
the reader with some of its dynamical properties. Second, we describe the effect of memory 444 
activation on STM with and without plasticity. Third, we add the plastic backprojections from STM to 445 
LTM and monitor the encoding and maintenance of several memories in the resulting STM-LTM loop. 446 
We track the evolution of acquired cell assemblies with shared pattern-selectivity in STM and show 447 
their important role in WM maintenance (aka delay activity). We then demonstrate that the 448 
emerging WM network system is capable of flexibly updating the set of maintained memories. 449 
Finally, we simulate multi-modal association and analyze its dynamical correlates. We explore 450 
temporal characteristics of network activations, the accompanying oscillatory behavior of the 451 
synthesized field potentials, cross-cortical delays as well as gamma-band coupling (coherence and 452 
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phase synchronization) between LTM networks during WM encoding, maintenance, and cue-driven 453 
associative recall of multi-modal memories (LTMa-LTMb pairs of associated memories). 454 

 455 
Figure 3. Basic Network behavior in spike rasters and population firing rates. A: Activity in the untrained network under strong 456 
background input.  A: Subsampled spike raster of STM (top) and LTM (bottom) layer 2/3 activity. HCs are separated by grey horizontal 457 
lines. Global oscillations in the alpha range (10-13 Hz) characterize this activity state in both STM (top) and LTM (bottom) in the absence of 458 
attractors. Inset: Power Spectral Density of each network’s LFP. B: Cued LTM memory activation express as fast oscillation bursts of 459 
selective cells (50-80 Hz), organized into a theta-like envelope (4-8 Hz), see also Power Spectrum Inset. The gamma-band is broad due to 460 
varying length of the underlying cycles, i.e. noticeably increasing over the short memory activation period. The underlying spike raster 461 
shows layer 2/3 activity of the activated MC in each HC, revealing spatial synchronization. The brief stimulus is a memory specific cue. C: 462 
LTM-to-STM forward dynamics as shown in population firing rates of STM and LTM activity following LTM-activation induced by a 50 ms 463 
targeted stimulus at time 0. LTM-driven activations of STM are characterized by a feedforward delay (FF). Shadows indicate the standard 464 
deviation of 100 peri-stimulus activations in LTM (blue) and STM with (orange) and without plasticity enabled (dashed, dark orange). 465 
Horizontal bars indicate the activation half-width (Methods). Onset is denoted by vertical dashed lines. The stimulation of LTM and 466 
activation of plasticity is denoted underneath. D: Subsampled spike raster of STM (top) and LTM (middle) during forward activation of the 467 
untrained STM by five different LTM memory patterns, triggered via specific memory cues in LTM at times marked by the vertical dashed 468 
lines. Bottom spike raster shows LTM layer 2/3 activity of one selective MC per activated pattern (colors indicate different patterns). Top 469 
spike raster shows layer 2/3 activity of one HC in STM. STM spikes are colored according to each cells dominant pattern-selectivity (based 470 
on the memory pattern correlation of individual STM cell spiking during initial pattern activation, see Methods, Spike Train Analysis and 471 
Memory Activity Tracking). Bottom: The five stimuli to LTM (colored boxes) and modulation of STM plasticity (black line). 472 
 473 

Figure Supplement 1. Basic Network behavior in spike rasters and population firing rates under low input.  474 

Figure Supplement 2. Network activity during plasticity-modulated stimulation with 20% spatial extent. 475 

Background activity and Activated memory  476 

The untrained network (see Methods) features fluctuations in membrane voltages and low-rate, 477 
asynchronous spiking activity (Figure 3 – Supplement 1). At higher background input levels, the 478 
empty network transitions into a state characterized by global oscillations of the population firing 479 
rates in the alpha/beta range (Figure 3A). This is largely an effect of fast feedback inhibition from 480 
local basket cells (Figure 1), high connection density within MCs, and low latency local spike 481 
transmission (Lundqvist et al. 2010).  If the network has been trained with structured input so as to 482 
encode memory (i.e. attractor states), background noise or a specific cue (Methods) can trigger 483 
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memory item reactivations accompanied by fast broad-band oscillations modulated by an underlying 484 
slow oscillation in the lower theta range (~4-8 Hz) (Lundqvist et al. 2011; Herman et al. 2013) (Figure 485 
3B). The spiking activity of memory activations (aka attractors) is short-lived due to neural adaptation 486 
and synaptic depression. When unspecific background excitation is very strong, this can result in a 487 
random walk across stored memories (Fiebig & Lansner 2017; Lundqvist et al. 2011).   488 

LTM-to-STM Forward Dynamics  489 

We now consider cued activation of several memories embedded in LTM. Each HC in LTM features 490 
selectively coding MCs for given memory patterns that activate synchronously in theta-like cycles 491 
each containing several fast oscillation bursts (Figure 3B). Five different LTM memory patterns are 492 
triggered by brief cues, accompanied by an upregulation of STM plasticity, see Figure 3D (bottom).  493 
To indicate the spatio-temporal structure of evoked activations in STM, we also show a simultaneous 494 
subsampled STM spike raster (Figure 3D top). STM activations are sparse (ca 5%), but despite this, 495 
nearby cells (in the same MC) often fire together. The distributed, patchy character of the STM 496 
response to memory activations (Figure 3D top) is shaped by branching forward-projections from 497 
LTM layer 3B cells, which tend to activate close-by cells. STM input layer 4 receives half of these 498 
corticocortical connections and features very high fine-scale specificity in its projections to layer 2/3 499 
pyramidal neurons, which furthers recruitment of local clusters with shared selectivity. STM cells 500 
initially fire less than those in LTM because the latter received a brief, but strong activation cue and 501 
have strong recurrent connections if they code for the same embedded memory pattern. STM spikes 502 
in Figure 3D are colored according to the cells’ dominant memory pattern selectivity (Methods, Spike 503 
Train Analysis and Memory Activity Tracking), which reveals that STM activations are mostly non-504 
overlapping as well. Unlike the organization of LTM with strictly non-overlapping memory patterns, 505 
MC activity in STM is not exclusive to any given input pattern. Nevertheless, nearby STM cells often 506 
develop similar pattern selectivity. On the other hand, different stimulus patterns typically develop 507 
quite non-overlapping STM representations. This is due to the randomness in feed-forward LTM to 508 
STM connectivity, competition via basket cell feedback inhibition, and short-term dynamics, such as 509 
neural adaptation and synaptic depression. STM neurons that have recently been activated by a 510 
strong, bursting input from LTM are refractory and thus less prone to spike again for some time 511 
thereafter (𝜏𝑟𝑒𝑐  and 𝜏𝐼𝑤

, Table 1), further reducing the likelihood of creating overlapping STM 512 

representations for different patterns. 513 

Figure 3C shows peri-stimulus population firing rates of both STM and LTM networks (mean across 514 
100 trials with five triggered memories each). There is a bottom-up response delay between stimulus 515 
onset at t=0 and LTM activation, as well as a substantial forward delay. Oscillatory activity in STM is 516 
lower than in LTM mostly because the untrained STM lacks strong recurrent connections. It is thus 517 
less excitable, and therefore does not trigger its basket cells (the main drivers of fast oscillations in 518 
our model) as quickly as in LTM. Fast oscillations in STM and the amplitude of their theta-like 519 
envelope build up within a few seconds as new cell assemblies become stronger (e.g. Figure 4A and 520 
Figure 4 - Supplement 1). As seen in Figure 3B, bursts of co-activated MCs in LTM can become 521 
asynchronous during activation. Dispersed forward axonal conduction delays further decorrelate this 522 
gamma-like input to STM. Activating strong plasticity in STM (𝜅 = 𝜅𝑝,  Methods and Table 1) has a 523 

noticeable effect on the amplitude of stimulus-locked oscillatory STM activity after as little as 100 ms 524 
(cf. Figure 3C, STM). 525 
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526 
Figure 4. Encoding and feedback-driven reactivation of LTM. A: Firing rates of pattern-specific subpopulations in STM and LTM during 527 
encoding and subsequent maintenance of five memories. Just as in the plasticity-modulated stimulation phase shown in Figure 2D, five 528 
LTM memories are cued via targeted 50 ms stimuli (shown underneath). Plasticity of STM and its backprojections is again elevated six-fold 529 
during the initial memory activation. Thereafter, a strong noise drive to STM causes spontaneous activations and plasticity induced 530 
consolidation of pattern-specific subpopulations in STM (lower plasticity, 𝜅 = 1). Backprojections from STM cell assemblies help reactivate 531 
associated LTM memories. B: Updating of WM. Rapid encoding and subsequent maintenance of a second group of memories following an 532 
earlier set. The LTM spike raster shows layer 2/3 activity of one LTM HC (MCs separated by grey horizontal lines), the population firing rate 533 
of pattern-specific subpopulations across the whole LTM network is seen above. Underneath we denote stimuli to LTM and the modulation 534 
of plasticity, 𝜅, in STM and its backprojections. C: STM-to-LTM loop dynamics during a spontaneous reactivation event. STM-triggered 535 
activations of LTM memories are characterized by a feedback delay and a second peak in STM after LTM activations. Horizontal bars at the 536 
bottom indicate activation half-width (Methods). Onset is denoted by vertical dashed lines. 537 

Figure 4 – Supplement 1. Spikeraster during encoding and feedback-driven reactivation of long-term memories. 538 

Figure 4 – Supplement 2. Spike rater during WM updating. 539 

Figure 4 – Supplement 3. Spike rates during WM updating. 540 

Multi-item Working Memory 541 

In Figure 3D, we have shown pattern-specific subpopulations in STM emerging from feedforward 542 
input. Modulated STM plasticity allows for the quick formation of rather weak STM cell assemblies 543 
from one-shot learning. When we include plastic STM backprojections, these assemblies can serve as 544 
an index for specific LTM memories and provide top-down control signals for memory maintenance 545 
and retrieval. STM backprojections with fast Hebbian plasticity can index multiple activated 546 
memories in the closed STM-LTM loop. In Figure 4A, we show network activity following targeted 547 
activation of five LTM memories (Spike raster in Figure 4 - Supplement 1). Under an increased 548 

unspecific noise-drive (𝑟𝑏𝑔−ℎ𝑖𝑔ℎ
𝐿23 , Table 2), STM cell assemblies, formed during the brief plasticity-549 

modulated stimulus phase (cf. Figure 3D) may activate spontaneously. These brief bursts of activity 550 
are initially weak and different from the theta-like cycles of repeated fast bursting seen in LTM 551 
attractor activity. 552 
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STM recurrent connections remain plastic (𝜅 = 1) throughout the simulation, so each reactivation 553 
event further strengthens memory-specific cell assemblies in STM. As a result, there is a noticeable 554 
ramp-up in the strength of STM pattern-specific activity over the course of the delay period (cf. 555 
increasing burst length and amplitude in Figure 4A, or Figure 4 - Supplement 2). STM backprojections 556 
are also plastic and thus acquire memory specificity from STM-LTM co-activations, especially during 557 
the initial stimulation phase. Given enough STM cell assembly firing, their sparse but potentiated 558 
backprojections can trigger associated memories in LTM. Weakly active assemblies may fail to do so. 559 
In the example of Figure 4A, we can see a few early STM reactivations that are not accompanied (or 560 
quickly followed) by a corresponding LTM pattern activation (of the same color) in the first two 561 
seconds after the plasticity-modulated stimulation phase. When LTM is triggered, there is a 562 
noticeable feedback delay (Figure 4C), which we will address together with aforementioned feed 563 
forward delays in the analysis of recall dynamics during a multi-item, multi-modal recall task. 564 

Cortical feedforward and feedback pathways between LTM and STM form a loop, so each LTM 565 
activation will again feed into STM, typically causing a second peak of activation in STM 40 ms after 566 
the first (Figure 4C). The forward delay from LTM to STM, which we have seen earlier in the stimulus-567 
driven input phase (Figure 3C), is still evident here in this delayed secondary increase of the STM 568 
activation following LTM onset. The reverberating cross-cortical activation extends/sustains the 569 
memory activation and thus helps stabilize item-specific STM cell assemblies and their specificity. 570 
This effect may be called auto-consolidation and it is an emergent feature of the plastic STM-LTM 571 
loop in our model. It occurs on a timescale governed by the unmodulated plasticity time constant 572 
(𝜅 = 𝜅𝑛𝑜𝑟𝑚𝑎𝑙,  𝜏𝑝 = 5 𝑠, Table 1). After a few seconds, the network has effectively stabilized and 573 

typically maintains a small set of 3-4 activated long-term memories. The closed STM-LTM loop thus 574 
constitutes a functional multi-item WM. 575 

A crucial feature of any WM system is its flexibility, and Figure 3B highlights an example of rapid 576 
updating. The maintained set of activated memories can be weakened by stimulating yet another set 577 
of input memories. Generally speaking, earlier items are reliably displaced from active maintenance 578 
in our model if activation of the new items is accompanied by the same transient elevation of 579 
plasticity  (𝜅𝑝/𝜅𝑛𝑜𝑟𝑚𝑎𝑙 , Table 1) used during the original encoding of the first five memories 580 
(Corresponding population firing rates and spike rasters are shown in Figures 4 - Supplements 2,3). 581 

In line with the earlier results (Fiebig & Lansner 2017), cued activation can usually still retrieve 582 
previously maintained items. The rate of decay for memories outside the maintained set depends 583 
critically on the amount of noise in the system, which erodes the learned associations between STM 584 
and LTM neurons as well as STM cell assemblies. We note that such activity-dependent memory 585 
decay is substantially different from time-dependent decay, as shown by Mi et al.(2017). 586 

Multi-modal, Multi-item Working Memory 587 

Next, we explore the ability of the closed STM-LTM loop system to flexibly bind co-active pairs of 588 
long-term memories from different modalities (LTMa and LTMb, respectively). As both LTM 589 
activations trigger cells in STM via feedforward projections, a unique joint STM cell assembly with 590 
shared pattern-selectivity is created. Forward-activations include excitation and inhibition and 591 
combine non-linearly with each other (Methods) and with prior STM content.  592 

Figure 5 illustrates how this new index then supports WM operations, including delay maintenance 593 
through STM-paced co-activation events and stimulus-driven associative memory pair completion. 594 
The three columns of Figure 5 illustrate three fundamental modes of the closed STM-LTM loop: 595 
stimulus-driven encoding, WM maintenance, and associative recall. The top three rows show 596 
sampled activity of a single trial (see also Figure 5 – Supplement 1), whereas the bottom row shows 597 
multi-trial averages. 598 
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599 
Figure 5. Population firing rates of networks and memory-specific subpopulations during three different modes of network activity : 600 
Top-Half: Exemplary activation of three memories (blue, green, red respectively) in STM (1st row), LTMa (2nd row), and LTMb (3rd row) 601 
during three different modes of network activity: The initial association of pairs of LTM memory activations in STM (left column), WM 602 
Maintenance through spontaneous STM-paced activations of bound LTM memory pairs (middle column), and cue-driven associative recall 603 
of previously paired stimuli (right column). Bottom-Half: Multi-trial peri-stimulus activity traces from the three cortical patches across 100 604 
trials (495 traces, as each trial features 5 activated and maintained LTM memory pairs and very few failures of paired activation). Shaded 605 
areas indicate a standard deviation from the underlying traces. Vertical dashed lines denote mean onset of each network’s activity, as 606 
determined by activation half-width (Methods), also denoted by a box underneath the traces. Error bars indicate a standard deviation from 607 
activation onset and offset. Mean peak activation is denoted by a triangle on the box, and shaded arrows to the left of the box denote 608 
targeted pattern stimulation of a network at time 0. As there are no external cues during WM maintenance (aka delay period), we use 609 
detected STM activation onset to align firing rate traces of 5168 STM-paced LTM-reactivations across trials and reactivation events for 610 
averaging. White arrows annotate feedforward (FF) and feedback (FB) delay, as defined by respective network onsets. 611 

Figure 5 - Supplement 1. Spiking activity in the three networks, during the multi-modal LTM binding task. 612 

During stimulus-driven association, we co-activate memories from both LTMs by brief 50 ms cues 613 
that trigger activation of the corresponding memory patterns. The average of peri-stimulus 614 
activations reveals 45 ± 7.3 ms LTM attractor activation delay, followed by 43 ± 7.8 ms feedforward 615 
delay (about half of which is explained by axonal conduction delays due to the spatial distance 616 
between LTM and STM) from the onset of the LTM activations to the onset of the input-specific STM 617 
response (Figure 5 top-left and bottom-left). 618 

During WM maintenance, a 10 s delay period, paired LTM memories reactivate together. Onset of 619 
these paired activations is a lot more variable than during cued activation with a feedback delay 620 
mean of 41.5 ± 15.3 ms, mostly because the driving STM-activations are of variable size and strength. 621 
Over the course of the maintenance period the oscillatory dynamics of the LTMs changes. In 622 
particular, LFP spectral power as well as coherence between LTMs in the broad gamma (30-80 Hz) 623 
band increases (p<0.001 for each of two permutation tests comparing average spectral 624 
power/coherence in the gamma band between two intervals during the delay period: 4-8 s and 8-12 625 
s; n=25 trials). To study the fast oscillatory dynamics of the LFP interactions between LTMs during the 626 
WM maintenance, mediated by STM, we follow up the coherence analysis and examine the gamma 627 
phase synchronization effect using PLV with 0.5 s sliding window (see Methods). It appears that the 628 
gamma phase coupling also increases during the second part of the WM maintenance period 629 
(p<0.001 in analogous permutation test as above; Figure 6).   630 
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Figure 6. Gamma-band Phase Locking Value (PLV) between 631 
LTMa and LTMb during WM maintenance. PLV is estimated 632 
using sliding window of size 0.5 s (the period between 4 and 12 s 633 
is shown). Two bars demonstrate the average gamma-band PLV 634 
over the first (4-8 s) and the second part (8-12 s) of the WM 635 
maintenance period. Shaded area and error bars correspond to 636 
the standard error of the mean calculated over n=25 trials.       637 

 638 

 639 

 640 

 641 

Following the maintenance period, we test the memory system’s ability for bi-modal associative 642 
recall. To this end, we cue LTMa, again using a targeted 50 ms cue for each memory, and track the 643 
systems response across the STM-LTM loop. We compute multi-trial averages of peri-stimulus 644 
activations during recall testing (Figure 5 bottom-right). Following cued activation of LTMa, STM 645 
responds with the related joint cell assembly activation as the input is strongly correlated to the 646 
learned inputs, as a result of the simultaneous activation with LTMb earlier on. Similar to the 647 
mnemonic function of an index, the completed STM pattern then triggers the associated memory in 648 
LTMb through backprojections. STM activation now extends far beyond the transient activity of LTMa 649 
because STM recurrent connectivity and the STM-LTMb recurrence re-excites it. Temporal overlap 650 
between associated LTMa and LTMb memory activations peaks around 125 ms after the initial 651 
stimulus to LTMa. 652 

Network Power Spectra and the Non Associative Control Case 653 

 Figure 7. Non-Associative Control Case 654 
and Power Spectral Analysis: Top-Half: 655 
Multi-trial peri-stimulus activity traces 656 
from the three cortical patches across 25 657 
trials following WM-encoded LTMa 658 
activations as before, but without 659 
associated LTMb memory activations. 660 
Shaded areas indicate a standard 661 
deviation from the underlying traces. 662 
Activation half-widths (Methods) 663 
denoted by a box underneath the traces. 664 
Error bars indicate a standard deviation 665 
from activation onset and offset. Mean 666 
peak activation is denoted by a triangle 667 
on the box, and shaded arrows to the left 668 
of the box denote targeted pattern 669 
stimulation of LTMa at time 0. As there 670 
are no external cues during WM 671 
maintenance (aka delay period), we use 672 
detected STM activation onset to align 673 
firing rate traces of 406 STM-paced 674 
LTMa-reactivations across trials and 675 
reactivation events for averaging. There 676 
is no evidence of associated LTMb 677 
activations in the control case (only small 678 

increases in spike rate variability). White arrows annotate feedforward (FF) and feedback (FB) delay, as defined by respective network 679 
onsets. Bottom-Half: Power spectral density of synthesized LFPs estimated over the maintenance (left) and recall (right) periods for STM 680 
and both LTMs in two cases: with (solid lines) and without (dashed line; control case) associated LTMb memory activations. Please note the 681 
log-scale. Shaded areas correspond to the standard deviation of the mean PSD over 25 trials. The decrease in theta- and gamma-band 682 
power observed during the maintenance (left) and recall (right) periods in the LTMb in the control case is due to lack of memory pattern 683 
reactivations in LTMb as they are not associated with LTMa via STM.  684 

Figure 7 - Supplement 1. Exemplary recording of the Local Field Potential (LFP) signal in LTMb following two cued activations of LTMa 685 
after learning and maintenance of associative LTMa-LTMb memory pairs (normal) or non-associative LTMa memories without 686 
concurrent LTMb activation (control). 687 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/334821doi: bioRxiv preprint 

https://doi.org/10.1101/334821
http://creativecommons.org/licenses/by/4.0/


19 
 

Figure 7 (top) shows multi-trial peri-stimulus/peri-activation activity traces for a control task, where 688 
learned and maintained LTMa items are not associated with concurrent LTMb activations. LTMa 689 
items are still encoded in STM, maintained over the delay, and recalled by specific cues, but LTMb 690 
now remains silent throughout the maintenance period (Figure 7 top-left) and as expected does not 691 
show any evidence of memory activation following LTMa-specific cues during recall testing (Figure 7 692 
top-right, see also LFP signal in Figure 7 – Supplement 2). The logarithmic power spectra (Figure 7 693 
bottom) show a noticeable difference between the normal associative and the non-associative 694 
control trials. The latter displays a significant drop in LTMb power across the board, particularly 695 
during the maintenance period. This can be explained by the overall lower number of memory 696 
reactivations in STM during the non-associative control task (2.58±0.28 vs 1.62±0.47 reactivations/s). 697 

Top-Down and Bottom-Up Delays 698 

We collected distributions of feedforward and feedback delays during associative recall (Figure 8). To 699 
facilitate a more immediate comparison with biological timing data we also computed the Bottom-Up 700 
and Top-Down response latency of the model in analogy to Tomita et al. (1999). Their study explicitly 701 
tested widely held beliefs about the executive control of PFC over ITC in memory retrieval. To this 702 
end, they identified and recorded neurons in ITC of monkeys trained to memorize several visual 703 
stimulus-stimulus associations. They employed a posterior-split brain paradigm to cleanly 704 
disassociate the timing of the bottom-up (contralateral stimuli) and top-down response (ipsilateral 705 
stimuli) in 43 neurons significantly stimulus-selective in both conditions. They observed that the 706 
latency of the top-down response (178 ms) was longer than that of the bottom-up response (73 ms). 707 

Figure 8. Comparison of key activation delays during associative 708 
recall in model and experiment following a cue to LTMa. Top-Left: 709 
Feedforward delay distribution in the model, as defined by the 710 
temporal delay between LTMa onset and STM onset (as shown in 711 
Figure 4, Bottom-right). Top-Right: Bottom-up delay distribution in 712 
the model, as defined by the temporal delay between stimulation 713 
onset and LTMa peak activation. The red line denotes the mean 714 
bottom-up delay, as measured by Tomita et al.(1999). Bottom-Left: 715 
Feedback delay distribution in the model, as defined by the 716 
temporal delay between STM onset and LTMb onset (measured by 717 
half-width, as shown in Figure 4, Bottom-right). Bottom-Right: Top-718 
Down delay distribution in the model, as defined by the temporal 719 
delay between stimulation onset and LTMb peak activation. The 720 
red line denotes the mean bottom-up delay, as measured by 721 
Tomita et al.(1999). Model delays were averaged over 100 trials 722 
with 5 paired stimuli each. 723 

 724 

 725 

 726 

 727 

Our simulation is analogous to this experimental setup with respect to some key features, such as the 728 
spatial extent of memory areas (STM/dlPFC about 289 mm²) and inter-area distances (40 mm cortical 729 
distance between PFC and ITC). These measures heavily influence the resulting connection delays 730 
and time needed for information integration. In analogy to the posterior-split brain experiment, our 731 
model’s LTMa and LTMb are unconnected. However, we now have to consider them as ipsi- and 732 
contralateral visual areas in ITC. The display of a cue in one hemi-field in the experiment then 733 
corresponds to the LTMa-sided stimulation of an associated memory pair in the model. This 734 
arrangement forces any LTM interaction through STM (representing PFC), and allows us to treat the 735 
cued LTMa memory activation as a Bottom-up response, whereas the much later activation of the 736 
associated LTMb representation is related to the Top-down response in the experimental study. 737 
Figure 8 shows the distribution of these latencies in our simulations, where we also marked the mean 738 
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latencies measured by Tomita et al. The mean of our bottom-up delay (72.9 ms) matches the 739 
experimental data (73 ms), whereas the mean of the broader top-down latency distribution (155.2 740 
ms) is a bit lower than in the monkey study (178 ms). Of these 155.2 ms, only 48 ms are explained by 741 
the spatial distance between networks, as verified by a fully functional alternative model with 0 mm 742 
distance between networks. 743 

Discussion  744 

In this work, we have proposed and studied a novel theory for WM that rests on the dynamic 745 
interactions between STM and LTM stores shaped by fast synaptic plasticity. In particular, it 746 
hypothesizes that activity in parieto-temporal LTM stores targeting PFC via fixed or slowly plastic and 747 
patchy synaptic connections triggers an activity pattern in PFC, which then gets rapidly encoded by 748 
means of fast Hebbian plasticity to form a cell assembly. Equally plastic backprojections from PFC to 749 
the LTM stores are enhanced as well, thereby associating the formed PFC “index” specifically with the 750 
active LTM cell assemblies. This rapidly but temporarily enhanced connectivity produces a functional 751 
WM system capable of encoding and maintaining multiple individual LTM items, i.e. bringing these 752 
LTM representations “on-line”, and forming novel associations within and between several 753 
connected LTM areas and modalities. The PFC cell assemblies themselves do not encode much 754 
information but act as indices into LTM stores, which contain additional information that is also more 755 
permanent. The underlying highly plastic connectivity and thereby the WM itself is flexibly 756 
remodeled and updated as new incoming activity gradually over-writes previous WM content. 757 

We have studied the functional and dynamical implications of this theory by implementing and 758 
evaluating a special case of a biologically plausible large-scale spiking neural network model 759 
representing PFC reciprocally connected with two LTM areas (visual and auditory) in temporal cortex. 760 
We have shown how a number of single LTM items can be encoded and maintained “on-line” and 761 
how pairs of simultaneously activated items can become jointly indexed and associated. Activating 762 
one pair member now also activates the other one indirectly via PFC with a short latency. We have 763 
further demonstrated that this kind of WM can readily be updated such that as new items are 764 
encoded, old ones are fading away whereby the active WM content is replaced. 765 

Recall dynamics in the presented model are in most respects identical to our previous cortical 766 
associative memory models (Lansner 2009). Any activated memory item, whether randomly or 767 
specifically triggered, is subject to known and previously well characterized associative memory 768 
dynamics, such as pattern completion, rivalry, bursty reactivation dynamics, oscillations in different 769 
frequency bands, etc. (Lundqvist et al. 2010; Silverstein & Lansner 2011; Lundqvist et al. 2013; 770 
Herman et al. 2013). Moreover, sequential learning and recall could readily be incorporated (Tully et 771 
al. 2013). This could for example support encoding of sequences of items in WM rather than a set of 772 
unrelated items, resulting in reactivation dynamics reminiscent of e.g. the phonological loop 773 
(Baddeley et al. 1998; Burgess & Hitch 2006).  774 

The Case for Hebbian Plasticity 775 

The underlying mechanism of our model is fast Hebbian plasticity, not only in the intrinsic PFC 776 
connectivity, but also in the projections from PFC to LTM stores. The former has some experimental 777 
support (Volianskis & Jensen 2003; Volianskis et al. 2015; Erickson et al. 2010; Park et al. 2014; Kauer 778 
et al. 2018) whereas the latter remains a prediction of the model. Dopamine D1 receptor (D1R) 779 
activation by dopamine (DA) is strongly implicated in reward learning and synaptic plasticity 780 
regulation in the basal ganglia (Wickens 2009). In analogy we propose that D1R activation is critically 781 
involved in the synaptic plasticity intrinsic to PFC and in projections to LTM stores, which would also 782 
explain the comparatively dense DA innervation of PFC and the prominent WM effects of PFC DA 783 
level manipulation (Arnsten & Jin 2014; Goto et al. 2010). In our model, the parameter 𝜅 represents 784 
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the level of DA-D1R activation, which in turn regulates its synaptic plasticity. We typically increase 785 
kappa 4-8 fold temporarily in conjunction with stimulation of LTM and WM encoding, in a form of 786 
attentional gating. Larger modulation limits WM capacity to 1-2 items, while less modulation 787 
diminishes the strength of cell assemblies beyond what is necessary for reactivation and LTM 788 
maintenance. 789 

When the synaptic plasticity WM hypothesis was first presented and evaluated, it was based on  790 
synaptic facilitation (Mongillo et al. 2008; Lundqvist et al. 2011). However, such non-Hebbian 791 
plasticity is only capable of less specific forms of memory. Activating a cell assembly, comprising a 792 
subset of neurons in an untrained STM network featuring such plasticity, would merely facilitate all 793 
outgoing synapses from active neurons. Likewise, an enhanced elevated resting potential resulting 794 
from intrinsic plasticity would make the targeted neurons more excitable. In either case, there would 795 
be no coordination of activity specifically within the stimulated cell assembly. Thus, if superimposed 796 
on an existing LTM, such forms of plasticity may well contribute to WM, but they are by themselves 797 
not capable of supporting encoding of novel memory items or the multi-modal association of already 798 
existing ones. In contrast, in our previous work (Fiebig & Lansner 2017) we showed that fast Hebbian 799 
plasticity similar to STP (Erickson et al. 2010) allows effective one-shot encoding of novel STM items. 800 
In the extended model proposed here, PFC can additionally bind and bring on-line existing but 801 
previously unassociated LTM items across multiple modalities by means of the same kind of plasticity 802 
in backprojections from PFC to parieto-temporal LTM stores. 803 

On a side note, our implementation of fast Hebbian plasticity reproduces a remarkable aspect of STP 804 
or Labile LTP: it decays in an activity-dependent manner rather than with time (Volianskis & Jensen 805 
2003; Volianskis et al. 2015; Kauer et al. 2018). Although we used the BCPNN learning rule to 806 
reproduce these effects, we expect that other Hebbian learning rules allowing for neuromodulated 807 
fast synaptic plasticity could give comparable results.  808 

Experimental support and Testable predictions 809 

Our model has been built from available relevant microscopic data on neural and synaptic 810 
components as well as modular structure and connectivity of selected cortical areas in macaque 811 
monkey. The network so designed generates a well-organized macroscopic dynamic working memory 812 
function, which can be interpreted in terms of manifest behavior and validated against cognitive 813 
experiments and data. Our model provides a powerful tool to investigate and examine the link 814 
between microscopic and macroscopic level processes and data. It suggests novel mechanistic 815 
hypotheses and inspiration for planning and performing experiments that can develop further the 816 
model, or potentially falsify it. 817 

Unfortunately, the detailed neural processes and dynamics of our new model are not easily 818 
accessible experimentally as they are intrinsically expressed at multiple scales, e.g. mesoscopic field 819 
potentials and population spiking at macroscopic spatial scales. In consequence, it is difficult to find 820 
direct and quantitative results to validate the model. Yet, in analyzing our resulting bottom-up and 821 
top-down delays we drew an analogy to a split-brain experiment (Tomita et al. 1999) because of its 822 
clean experimental design (even controlling for subcortical pathways) and found similar temporal 823 
dynamics in our highly subsampled cortical model. The timing of inter-area signals also constitutes a 824 
testable prediction for multi-modal memory experiments. Furthermore, reviews of intracranial as 825 
well as electroencephalography (EEG) recordings conclude that theta band oscillations play an 826 
important role in long-range communication during successful memory retrieval (Johnson & Knight 827 
2015; Sauseng et al. 2004). With respect to theta band oscillations in our model, we have shown that 828 
STM leads the LTM networks during maintenance, engages bi-directionally during recall (due to the 829 
STM-LTM loop), and lags during stimulus-driven encoding and LTM activation, reflecting 830 
experimental observations (Anderson et al. 2010). These effects are explained by our model 831 
architecture, which imposes delays due to the spatial extent of networks and their distances from 832 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/334821doi: bioRxiv preprint 

https://doi.org/10.1101/334821
http://creativecommons.org/licenses/by/4.0/


22 
 

each other. Fast oscillations in the broad gamma band, often nested in the theta cycle, are strongly 833 
linked to local processing and activated memory items in our model, also matching experimental 834 
findings (Canolty & Knight 2010; Johnson & Knight 2015). Local frequency coupling is abundant with 835 
significant phase-amplitude coupling (e.g. Figure 3B), and was well characterized in related models 836 
(Herman et al. 2013). 837 

The most critical requirement and thus prediction of our theory and model is the presence of fast 838 
Hebbian plasticity in the PFC backprojections to parieto-temporal memory areas. Without such 839 
plasticity, our model cannot explain the necessary STM-LTM binding. This plasticity is likely to be 840 
subject to neuromodulatory control, presumably with DA and D1R activation involvement. Since STP 841 
decays with activity, a high noise level could be an issue since it could shorten WM duration (see The 842 
Case for Hebbian Plasticity). The evaluation of this requirement is hampered by little experimental 843 
evidence and a general lack of experimental characterization of the synaptic plasticity in long-range 844 
corticocortical projections. 845 

One of the neurodynamical manifestations of the fast associative plasticity in the PFC backprojections 846 
is a functional coupling between LTM stores. Importantly, this long-range coupling in our model is 847 
mediated by the PFC network alone, as manifested during delay period free of any external cues, and 848 
is reflected in the synchronization of fast gamma oscillations. Although the predominant view has 849 
been that gamma is restricted to short distances, there is growing evidence for cortical long-distance 850 
gamma phase synchrony between task-relevant areas as a correlate of cognitive processes (Tallon-851 
Baudry et al. 1998; Doesburg et al. 2008) including WM (Palva et al. 2010). In this regard, our model 852 
generates even a more specific prediction about the notable temporal enhancement of gamma 853 
phase coupling over the delay period, which could be tested with macroscopic human brain 854 
recordings, e.g. EEG or magnetoencephalography (MEG), provided that a WM task involves a 855 
sufficiently long delay period.  856 

Finally, our model suggests the occurrence of a double peak of frontal network activation in 857 
executive control of multi-modal LTM association (see STM population activity during WM 858 
Maintenance in Figure 5). The first one originates from the top-down control signal itself, and the 859 
second one is a result of corticocortical reentry and a successful activation of one or more associated 860 
items in LTM. As such, the second peak should also be correlated with successful memory 861 
maintenance or associative recall.  862 

Furthermore, our model also makes specific predictions of neuroanatomical nature about the density 863 
of corticocortical long-range connectivity. For example, as few as six active synapses (Methods) onto 864 
each coding pyramidal neuron are sufficient to transfer specific memory identities across the cortical 865 
hierarchy and to support maintenance and recall.  866 

Role of fast Hebbian plasticity in Variable Binding 867 

The “binding problem” is a classical and extensively studied problem in perceptual and cognitive 868 
neuroscience, see e.g. Zimmer et al. (2012). Binding occurs in different forms and at different levels, 869 
from lower perceptual to higher cognitive processes (Reynolds & Desimone 1999; Zimmer et al. 870 
2006). At least in the latter case, WM and PFC feature quite prominently (Cer & O’Reily 2012) and 871 
this is where our WM model may provide further insight. 872 

Variable binding is a special case and a cognitive kind of neural binding in the form of a variable – 873 
value association of items previously not connected by earlier experience and learning (Cer & O’Reily 874 
2012; Garnelo & Shanahan 2019). A simple special case is the association of a mathematical variable 875 
and its value “The value of x is 2”, i.e. x = 2. More generally, an object and a name property can be 876 
bound like in “Charlie is my parrot” such that <name> = “Charlie” (Figure 9). This and other more 877 
advanced forms of neural binding are assumed to underlie complex functions in human cognition 878 
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including logical reasoning and planning (Pinkas et al. 2012), but have been a challenge to explain by 879 
neural network models of the brain (Legenstein et al. 2016; van der Velde & de Kamps 2015).  880 

Figure 9. Variable-value binding via PFC. Initially the 881 
representation of “parrot” exists in LTM comprising symbolic and 882 
sub-symbolic components. When it is for the first time stated that 883 
“Charlie is my parrot”, the name “Charlie” is bound reciprocally by 884 
fast Hebbian plasticity via PFC to the parrot representation, thus 885 
temporarily extending the composite “parrot” cell assembly. 886 
Pattern completion now allows “Charlie” to trigger the entire 887 
assembly and “flying” or the sight of Charlie to trigger “Charlie”. If 888 
important enough or repeated a couple of times this association 889 
could consolidate in LTM. 890 

 891 

 892 

Based on our WM model, we propose that fast Hebbian plasticity provides a neural mechanism that 893 
mediates such variable binding. The joint index to LTM areas formed in PFC/STM during presentation 894 
of a name – image stimulus pair serves to bind the corresponding LTM stored variable and value 895 
representations in a specific manner that avoids mixing them up. Turning to Figure 5 above, imagine 896 
that one of the LTMa patterns represent the image of my parrot and one pattern in LTMb, now a 897 
cortical language area, represents his name “Charlie”. When this and two other image – name pairs 898 
are presented they are each associated via specific joint PFC indices. Thereafter “Charlie” will trigger 899 
the visual object representation of a parrot, and showing a picture of Charlie will trigger the name 900 
“Charlie” with a dynamics as shown in the right-most panels of Figure 5. Here as well, flexible 901 
updating of the PFC index will avoid confusion even if in the next moment my neighbor shouts 902 
“Charlie” to call his dog, also named Charlie. 903 

Recent experiments have provided support for the involvement of PFC in such memory related forms 904 
of feature binding (Zmigrod et al. 2014). Gamma band oscillations, frequently implicated when 905 
binding is observed, are also a prominent output of our model (Tallon-Baudry & Bertrand 1999). 906 
Work is in progress to uncover how such variable binding mechanisms can be used in neuro-inspired 907 
models of more advanced human logical reasoning (Pinkas et al. 2013). 908 

Conclusions 909 

We have formulated a novel indexing theory for WM and tested it by means of computer 910 
simulations, which demonstrated the versatile WM properties of a large-scale spiking neural network 911 
model implementing key aspects of the theory. Our model provides a new mechanistic 912 
understanding of the targeted WM and variable binding phenomena, which connects microscopic 913 
neural processes with macroscopic observations and cognitive functions in a way that only 914 
computational models can do. While we designed and constrained this model based on macaque 915 
data, the theory itself is quite general and we expect our findings to apply also to mammals including 916 
humans, commensurate with changes in key model parameters (cortical distances, axonal 917 
conductance speeds, etc.). Many aspects of WM function remains to be tested and incorporated, e.g. 918 
its close interactions with basal ganglia (O’Reilly & Frank 2006). 919 

WM dysfunction has an outsized impact on mental health, intelligence, and quality of life. Progress in 920 
mechanistic understanding of its function and dysfunction is therefore very important for society. We 921 
hope that our theoretical and computational work provides inspiration for experimentalists to 922 
scrutinize the theory and model, especially with respect to neuromodulated fast Hebbian synaptic 923 
plasticity and large-scale network architecture and dynamics. Only in this way can we get closer to a 924 
more solid understanding and theory of WM, and position future computational research 925 
appropriately even in the clinical and pharmaceutical realm. 926 
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Supplementary Information  927 

Model Robustness  928 

Our model incorporates a plethora of biological constraints, such as estimates on the extent and 929 
distance of areas (e.g. STM patch size approximates macaque dlPFC, and is 40mm from ITC), laminar 930 

cell distributions (𝑛𝑀𝐶
𝑃𝑌𝑅−𝐿2, 𝑛𝑀𝐶

𝑃𝑌𝑅−𝐿3𝑏 ,…), hypercolumnar size, etc. The model also abides by various 931 
electrophysiological constraints, such as plausible EPSP, IPSP sizes, estimates on laminar connection 932 
densities, characterization of cortical FF/FB pathways, estimates on axonal conductance speeds, 933 
dendritic arbor sizes (branching factors), commonly accepted synaptic time-constants for various 934 
receptor types, depression, adaptation, and builds on top of established models we adapted, such as 935 
the neuron model or the synaptic resource model. References to many of these constraints can be 936 
found throughout the Method Section. 937 

Because our model is quite complex and synthesizes many different components and processes it is 938 
beyond the scope of this work to perform a detailed parameter sensitivity analysis. However, from 939 
our extensive simulations we conclude that it is robust and degrades gracefully. Almost all uncertain 940 
parameters can be varied ±30% without breaking WM function. The model is dramatically 941 
subsampled and scaling up would be possible. This could be expected to further improve overall 942 
robustness. Highly related modular cortical network models have been studied extensively 943 
elsewhere(Lundqvist et al. 2010; Tully et al. 2013; Lundqvist et al. 2011; Fiebig & Lansner 2017; Tully 944 
et al. 2014), so here we prioritize novel aspects, namely the parameterization of corticocortical 945 
connectivity and spatial scale. 946 

In the feedback pathway, a mere 0.6% connectivity is sufficient to support LTM activation in 947 
maintenance and recall. As rigorous testing (not shown here) revealed, lower connectivity degrades 948 
WM capacity, unless we increase the total number of co-active STM cells by other means. Forward 949 
connectivity can be even lower (0.015% in this model), because terminal clusters in STM are smaller 950 
and provide more information contrast (Corticocortical Connectivity). In both cases, our model uses 951 
these low density values, but they could be increased or decreased if single synaptic currents are 952 
reduced/increased respectively. Somewhat peculiarly, we also found that we needed to increase the 953 
corticocortical conductance of the backprojections (𝑤𝐹𝐵

𝑠𝑦𝑛) by the same factor 1.8 (over the local 954 
conductance gain 𝑤𝑔𝑎𝑖𝑛

𝑠𝑦𝑛 ) as another detailed model account of macaque visual cortex(Schmidt et al. 955 

2015) to achieve functional WM at the stated long-distance connection probabilities. 956 

There is an upper, but no lower limit on corticocortical distances in our model. When conduction 957 
delays exceed 65 ms (130 mm), STM feedback can no longer activate the LTM network, because 958 
bursts desynchronize before they arrive. On the other hand, STM and LTM could even be adjacent as 959 
we briefly mentioned at the end of the result section. Additionally, there is a minimum spatial scale 960 
to each component network.  If we reduce the spatial extent (and thus the connection delays 961 
between HCs) by 45%, theta-like oscillations degrade and break at 20%, when the largest inter-HC 962 
delays fall below 5 ms. Spiking activity of activated memories collapses into a single brief burst 963 
(Figure 3 – Supplement 2, cf. Figure 3D), which degrades learning and effective information 964 
transmission both within and across networks. Networks may be much smaller however, if this is 965 
compensated by slower axonal conductance velocities (<2 mm/ms). 966 
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Supplementary Figures+legends 967 

 968 
Figure 3 – Supplement 1. Basic Network 969 
behavior in spike rasters and population 970 
firing rates under low input. The untrained 971 
networks STM (top) and LTM (bottom) 972 
feature low rate, asynchronous activity 973 
(CV2 = 0.7±0.2). The underlying spike raster 974 
shows layer 2/3 activity in each HC 975 
(separated by grey horizontal lines) in the 976 
simulated network. 977 
 978 
 979 
 980 
 981 
 982 
 983 
 984 
 985 
 986 
 987 

 988 
 989 
 990 

 991 
Figure 3 – Supplement 2. Network activity 992 
during plasticity-modulated stimulation 993 
with 20% spatial extent.   Subsampled spike 994 
raster of the layer 2/3 population in a 995 
Hypercolumn of STM (top), and five coding 996 
minicolumns in LTMa (2nd row) and LTMb (3rd 997 
row) respectively during plasticity-998 
modulated stimulation (i.e. encoding) of five 999 
paired LTM patterns. Without sufficient 1000 
conduction delays, memory activations 1001 
collapse into very brief bursts (with the 1002 
exception of the last pattern here) and STM 1003 
cannot effectively activate from or 1004 
subsequently encode such brief activations 1005 
(cf. Figure 2D, and Supplementary Figure 6).  1006 

 1007 

 1008 

 1009 
 1010 
 1011 

 1012 
 1013 
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 1014 

Figure 4 – Supplement 1. Encoding and feedback-driven reactivation of long-term memories. Subsampled spike raster of STM (top) and 1015 
LTM (bottom) during encoding and subsequent maintenance of five memories (the first pattern is not maintained in this simulation). 1016 
During the initial plasticity-modulated stimulation phase, five LTM memories are cued via targeted 50 ms stimuli (shown underneath). 1017 
Plasticity of STM and its backprojections is modulated during this initial memory activation (cf. Figure3D). Thereafter, a strong noise drive 1018 
to STM causes spontaneous activations and plasticity-induced consolidation of pattern-specific subpopulations in STM. Backprojections 1019 
reactivate associated LTM memories. Top: STM spike raster shows layer 2/3 activity in a single HC. MCs are separated by grey horizontal 1020 
lines. STM spikes are colored according to each cell’s dominant LTM pattern-correlation, similar to Figure 2D. Bottom: LTM spike raster only 1021 
shows the activity of five coding MC in a single LTM HC, but indicates the activation of distributed LTM memory patterns. LTM spikes are 1022 
colored according to the pattern-specificity of each cell. 1023 
 1024 
 1025 

 1026 
Figure 4 – Supplement 2. Spike rates during WM updating. Population firing rates of pattern-specific subpopulations in STM and LTM 1027 
during encoding and subsequent maintenance of two sets of five LTM memories. After encoding and 10 s maintenance of the first set, WM 1028 
contents are overwritten with the second set of memories, maintained thereafter in spontaneous reactivation events. Bottom: Stimuli to 1029 
LTM and modulation of plasticity. 1030 
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 1031 
Figure 4 – Supplement 3. Spike raster during WM updating. Subsampled spike raster of the layer 2/3 population in a Hypercolumn of STM 1032 
(top) and LTM (bottom) respectively during encoding and subsequent maintenance of two sets of five LTM memories. STM spikes are 1033 
colored according to each cells dominant pattern-selectivity. LTM spikes are colored according to the pattern-specificity of each cell. After 1034 
encoding and 10 s maintenance of the first set, WM contents are overwritten with the second set of memories, maintained thereafter. 1035 
Plasticity is temporarily boosted during the initial activation of LTM attractors (see preceding figure). Strong noise drive to STM causes 1036 
spontaneous reactivations and consolidation of pattern-specific subpopulations in STM following each stimulation period.  1037 

 1038 

Figure 7 – Supplement 1. Exemplary recording of the 1039 
Local Field Potential (LFP) signal in LTMb following two 1040 
cued activations of LTMa after learning and maintenance 1041 
of associative LTMa-LTMb memory pairs (normal) or non-1042 
associative LTMa memories without concurrent LTMb 1043 
activation (control). While the LFP signal shows clear 1044 
activation of associated LTMb items, LTMa specific cues do 1045 
not elicit memory activations in LTMb in the control case. 1046 

 1047 

 1048 

 1049 

 1050 
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1051 
Figure 5 - Supplement 1. Spiking activity in the three networks, during the multi-modal LTM binding task.  Subsampled spike raster of the 1052 
layer 2/3 population in a Hypercolumn of STM (top), and five coding minicolumns in LTMa (2nd row) and LTMb (3rd row) respectively during 1053 
plasticity-modulated stimulation (i.e. encoding), subsequent maintenance, and associative cued recall of five paired LTM patterns 1054 
(orange,purple,blue,green,red). Minicolumns are separated by grey horizontal lines. STM spikes are colored according to each cells 1055 
dominant memory pair-selectivity. LTM Spikes are colored according to the memory pair-specificity of each cell in slightly shifted hues to 1056 
illustrate that LTMa and LTMb code for different, but associated memories. Bottom: Stimuli to LTM and modulation of plasticity. Note the 1057 
cued recall of all five memories at the end. 1058 
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