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ABSTRACT

Identifying combinations of taxa distinctive for microbiome-associated diseases is considered key to
the establishment of diagnosis and therapy options in precision medicine and imposes high demands
on accuracy of microbiome analysis techniques. We propose subsequence based 16S rRNA data
analysis, as a new paradigm for microbiome phenotype classification and biomarker detection. This
method and software called DiTaxa substitutes standard OTU-clustering or sequence-level analysis by
segmenting 16S rRNA reads into the most frequent variable-length subsequences. These subsequences
are then used as data representation for downstream phenotype prediction, biomarker detection and
taxonomic analysis. Our proposed sequence segmentation called nucleotide-pair encoding (NPE) is an
unsupervised data-driven segmentation inspired by Byte-pair encoding, a data compression algorithm.
The identified subsequences represent commonly occurring sequence portions, which we found to be
distinctive for taxa at varying evolutionary distances and highly informative for predicting host pheno-
types. We compared the performance of DiTaxa to the state-of-the-art methods in disease phenotype
prediction and biomarker detection, using human-associated 16S rRNA samples for periodontal disease,
rheumatoid arthritis and inflammatory bowel diseases, as well as a synthetic benchmark dataset. DiTaxa
identified 17 out of 29 taxa with confirmed links to periodontitis (recall= 0.59), relative to 3 out of 29 taxa
(recall=0.10) by the state-of-the-art method. On synthetic benchmark data, DiTaxa obtained full precision
and recall in biomarker detection, compared to 0.91 and 0.90, respectively. In addition, machine-learning
classifiers trained to predict host disease phenotypes based on the NPE representation performed
competitively to the state-of-the art using OTUs or k-mers. For the rheumatoid arthritis dataset, DiTaxa
substantially outperformed OTU features with a macro-F1 score of 0.76 compared to 0.65. Due to the
alignment- and reference free nature, DiTaxa can efficiently run on large datasets. The full analysis of a
large 16S rRNA dataset of 1359 samples required ~1.5 hours on 20 cores, while the standard pipeline
needed ~6.5 hours in the same setting.

Availability: An implementation of our method called DiTaxa is available under the Apache 2 licence at
http:/llp.berkeley.edu/ditaxa.

1 Introduction

Microbial communities vary widely in their taxonomic structures and compositions [1, 2, 3]. The human
microbiota fulfills important functions in supporting, regulating, and causing adverse conditions in their
environment, motivating methods for inferring relationships between microbial taxa or functions associated
with certain host phenotypes. Due to its low cost, a popular data type generated in microbiome studies,
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is 16S rRNA amplicon data. The 16S rRNA gene includes both variable and conserved regions and is
universally present in archaeal and bacterial microorganisms [4, 5, 6]. Particular regions of the 16S rRNA
gene are amplified from degenerate primers and sequenced. After sequencing, reads are typically clustered
based on their sequence similarity to each other and the resulting clusters are referred to as operational
taxonomic units (OTUs). Three main strategies for creating OTUs have been developed: in the de novo
OTU clustering scheme, input sequences are aligned against one another and OTU clusters created based
on a user-specified percent identity cutoff (in practice mostly 97%) without comparisons to reference
databases. The implementation of the de novo strategy is difficult to parallelize and therefore limited
to small-scale datasets. Variations of this method, such as sub-sample open-reference OTU picking [7]
or centroid-based greedy clustering approaches [8] accelerate this process and enable their application
to larger datasets. Alternatively, in closed-reference OTU clustering, input reads are aligned to a set of
cluster centroids defined in a reference database (containing clusters of previously identified OTUs) and
will be reported as an OTU, if they align at a given threshold. This strategy will not report OTUs for
novel taxa that are not part of the reference database, though. An advantage is the usual high quality of
taxonomic assignments of the reference database, which can be used for taxonomic assignment of the
OTUs from the community of interest. Finally, the open-reference OTU clustering scheme combines de
novo and closed-reference picking, where input sequences are aligned against a reference database (such
as Greengenes [9]) and sequences that fail to match the reference are subsequently clustered de novo
in a serial process [7]). Individual algorithms for OTU clustering, post- and pre-processing have been
combined to pipelines such as mothur [10], QIIME [11, 12], USEARCH [13] and LotuS [14].

Although OTU clustering has simplified 16S rRNA processing by substituting the analysis of millions
of reads by analysis of only thousands of OTUs, it still has several disadvantages: OTUs do not necessarily
represent meaningful taxonomic units, such as e.g. species, and sequencing errors may inflate diversity
estimates by orders of magnitude [15]. To prevent diversity overestimates, OTU based approaches require
a highly stringent quality control and relaxed clustering at < 97% similarity. While this approach limits
the inflation of OTUs by potential sequencing errors, it comes at the expense of taxonomic resolution and
may combine organisms with distinct biological properties and capabilities into a single OTU. A further
disadvantage is that OTU calling requires extensive sequence alignment efforts. All of the above mentioned
OTU-picking strategies involve sequence alignments either to the reference genomes or to the sample
sequences, which is computationally expensive and cannot be easily extended to further samples. It was
shown that OTUs were generally ecologically consistent across habitats, but observed OTU content can
differ substantially between clustering methods [16]. Since the number of obtained OTUs and their content
is dependent on the pipeline and the parameter settings, reproducing the same analysis is difficult [17].
An alternative solution is the analysis of individual 16S rRNA gene sequence [18, 19, 20], which is
computationally challenging, as each 16S rRNA sample may contain 10,000s of sequences.

Popular machine learning tasks over 16S rRNA gene sequencing data are taxonomic classification,
host phenotype prediction, as well as biomarker detection. Although k-mer features and some other
non-OTU features have been also used [18, 21], the most common representation of 16S rRNA gene
sequences is based on OTUs. Random Forest was reported as the most effective classification approach
for several diseases [2, 3, 21, 22, 23]. Recently, we have shown that using k-mer representations of
shallow-subsamples is computationally inexpensive (being reference- and alignment-free) and marginally
outperforms OTUs in host phenotype and environment classification tasks [21]. However, a disadvantage
of k-mer features is that short k-mers cannot easily be mapped to a taxonomy to obtain taxonomic
biomarkers. Microbiome studies often aim to identify OTUs, taxa, or clades that differ in their abundance
across two or more subsets of the input samples (e.g. between diseased and healthy states), here referred
as biomarker discovery [24, 25]. Identifying these biological informative taxa that are enriched in only
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a subset of phenotypes (e.g. diseased subjects or patients that better respond to a certain treatment) is a
challenging task, in particular for metagenomic samples, because of their high-dimensionality, sequencing
errors, as well as other systematic biases, such as the presence of chimeric sequences [15]. One prominent
biomarker example is the over-representation of the Firmicutes phylum in obese individuals compared
to lean controls [26, 27, 28]. In case the over-representations are causal for the aetiology of the diseases,
detection of such biomarkers might have potential therapeutic implications if disease progression can be
reversed by targeting over-expressed causative species using emerging technologies such as CRISPR/Cas9
or phage-based targeting [29, 30, 31]. This is also true for biomarkers that are inversely related to disease
progression, such as the over-representation of Akkermansia muciniphila in individuals with a healthier
metabolic status and better clinical outcome after caloric restriction [32]. For many other diseases where a
microbiological component is expected, such (combinations) of biomarkers yet have to be found. Even
when the biomarkers fail to be causal, they may enable prediction of the disease state or disease sub-types,
or suggest suitable therapies in personalized medical interventions.

Different methods have been developed to identify OTU-based biomarkers [33]. The most widely used
method is linear discriminant analysis effect size (LEfSe), which has a particular focus on high-dimensional
class comparison for metagenomic analysis and determines features (such as taxa, OTUs, genes or clades)
most likely to explain differences between two or more classes from relative OTU abundances [34]. This
method uses the non-parametric factorial Kruskal-Wallis (KW) sum rank test [35]. Several other with
similar functionality exist that use different statistical tests over sample profiles based on OTU features,
such as STAMP [36], MetaStats [34] and MetagenomeSeq [33]).

In this paper, we propose DiTaxa, an alignment- and reference- free, subsequence based paradigm for
processing of 16S rRNA microbiome data for phenotype and biomarker detection. DiTaxa substitutes
standard OTU-clustering by segmenting 16S rRNA sequences into variable length subsequences. The
obtained subsequences are then used as data representation for downstream phenotype and biomarker
detection. We show that DiTaxa outperforms the state-of-the-art approach in biomarker detection for
synthetic and a number of disease-related datasets. In addition, DiTaxa performs competitively with the
k-mer based state-of-the-art approach, outperforming OTU-features, in phenotype prediction.

2 Material and Methods

2.1 Datasets

Inflammatory Bowel Diseases

We use the largest pediatric Crohn’s disease dataset available to date, described in [37] I which covers
different types of Inflammatory Bowel Diseases (IBD). This is a dataset of 1359 labeled 16S rRNA samples
from 731 pediatric (< 17 years old) patients diagnosed with Crohn’s disease (CD), 219 with ulcerative
colitis (UC), 73 with indeterminate colitis (IC), and 336 samples verified as healthy. Sequencing was
targeted towards the V4 hypervariable region of the 16S rRNA gene. We downloaded OTU representations
of the samples from Qiita repository > obtained using QIIME pipeline [7].

Rheumatoid arthritis

We downloaded read data (454 platform) of the 16S rRNA gene sequences of V1 and V2 rRNA for
114 fecal DNA samples of a rheumatoid arthritis (RA) study [38] from SRA (ID: SRP023463). OTU
clustering was performed based on filtered reads (365.7k,23.0%) of which 140,382 were unique and

! Available at: https://www.ncbi.nlm.nih.gov/bioproject/PRJEB13679
2 Available at https:/giita.ucsd.edu/study/description/1939
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119,217 singletons and resulted in 949 OTUs based on 97% identity. The OTU clustering pipeline is
detailed in §2.3.

Periodontal disease

We use the data provided by Jorth, et al. [39] to differentiate between healthy and diseased periodontal
microbiota®. This dataset consists of microbial samples collected from subgingival plaques from 10
healthy and 10 patients diagnosed with periodontitis. Sequencing was targeted towards the (V4 —V5)
hypervariable region of the 16S rRNA gene. Similar to the RA dataset, we obtain the OTU features using
the clustering pipeline detailed in §2.3.

Synthetic dataset

To evaluate DiTaxa in a known setting, we generated a dataset with synthetic samples using Grinder v.
0.5.3 [40] based on 1000 V4 regions of different genera of Green-genes (GG) sequences [9]. V4 regions
were extracted from the Green-genes 13.8 databases using the forward and reverse primer sequences
GTGCCAGC[AC]JGCCGCGGTAA and ATTAGA[AT]ACCC[CGT][AGT]GTAGTCC. To generate 16S
rRNA datasets, the lengthyias parameter was set to zero and the unidirectional parameter was set to
one. To cover the full V4 region, the amplicon read length distribution was set to 300 and the fold
coverage of the input reference sequence was set to 30. We specified the percent of reads in the amplicon
libraries that should be chimeric sequences to 10%. We used default parameters for the specification
of the chimera distribution resulting in 89% bimeras, 11% trimeras and 0.3% quadmeras. Sequencing
errors were introduced in the reads, at positions that follow a uniform model using the default ratio of
substitutions to the number of indels (4 substitutions for each indel). Two sets of samples were created,
denoted as case and control samples with an average number of sequences in both groups of 29,204
reads. While in the control set all 1000 genera were set to the same abundance (mean abundance set
to 0.1%, 500 randomly selected GG V4 sequences (corresponding to unique genera) were enriched at
equal levels in the case dataset (i of non-selected genera set to 0.05%; u of selected genera set to 0.15;).
For both, the control and the case settings, 100 samples were generated, each with variations under the
normal distribution (o = 0.02). We processed the synthetic dataset using a standard pipeline consisting of
USEARCH and UPARSE and generated 1,041 OTUs at 97% identity similarity, detailed in §2.3.

2.2 Nucleotide-pair Encoding
The idea of Nucleotide-pair Encoding (NPE) is inspired by the Byte Pair Encoding (BPE) algorithm, a
simple universal text compression scheme [41, 42], which has been also used for compressed pattern
matching in genomics [43]. Although BPE had lost its popularity for a long time in compression, only
recently it again became popular, but for a different reason, i.e. word segmentation in machine translation
in natural language processing (NLP). BPE became a common approach for a data-driven unsupervised
segmentation of words into their frequent subwords, which facilitate open vocabulary neural network
machine translation and improve the quality of translation by reducing the vocabulary size [44, 45]. In
this work, we adapt the BPE algorithm for splitting biological sequences into frequent variable length
subsequences called Nucleotide-pair Encoding (NPE). We propose NPE as general purpose segmentation
for the biological sequence (DNA, RNA, and proteins). In contrast to the use of BPE in NLP for vocabulary
size reduction, we use this method to increase the size of symbols from 4 nucleotides to a large set of
variable length biomarkers.

The input to NPE is a set of sequences. We treat each sequence as a list of characters (nucleotides
in the case of 16S rRNA gene sequences). The algorithm finds the most frequently occurring pair of

3Downloaded from http://datadryad.org/resource/doi: 10.5061/dryad.d41v4
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Data: Segs = Set of 16S sequences from all samples, V = vocabulary size
Result: S = Divided sequences into variable subsequences, Merge_opt = merging operations
Sym = {A,T,C,G},;

S = list of Segs, where each sequence is list of symbols € Sym;
Merge_opt = stack();

SymbFreq = mapping symbol pairs in S to their frequencies;

while |Sym| <V do

syml, sym2 = argmax (SymbFreq);

S = merge all consecutive sym1 & sym?2 into < syml1,sym2 > in S;
Sym.push(< syml,sym2 >);

Merge_opt.push(syml,sym2);

update(SymbFreq) ; // For efficiency purpose we only update the
symbol pairs that overlap with occurrences of the affected
pairs

end

Algorithm 1: Adapted Byte-pair algorithm (BPE) for segmentation of biological sequences (NPE)

adjacent symbols in the sequences. On the next, we replace all instances of the selected pair with a new
subsequence (merged pair as a new symbol). The algorithm repeats this process until reaching a certain
vocabulary size or when no more frequently occurring pairs of symbols available. The obtained merging
operations can be inferred once from a large set of sequences in an offline manner and then applied to an
unseen set of sequences. A simple pseudo-code of NPE is provided in Algorithm 1.

2.3 Standard 16S rRNA gene processing workflow

To evaluate the performance of DiTaxa against the state-of-the-art, we used a standard 16S rRNA gene
processing workflow employed in previous studies on 16S rRNA data [46, 47, 48]. Note that throughout
this paper “the standard pipeline (STDP)” refers to this workflow:

1. Obtained 16S rRNA gene sequencing reads are quality controlled and clustered using the Usearch
8.1 software package ¢, where quality filtering is done with fastq_f ilter(— fastq_maxeel).

2. The OTU clusters and representative sequences are determined using the UPARSE algorithm
(derep_fulllength : minuniquesize2;cluster _otus : otu_radius_pct3) [49].

3. The next step is taxonomy assignment using the EZtaxon database [50] as the reference database,
and the decision is made by RDP Classifier [51].

4. The OTU absolute abundance table and mapping file are used for statistical analyses in LDA Effect
Size (LEfSe) [34].

2.4 DiTaxa computational workflow

The DiTaxa computational workflow has three main components; (i) NPE representation creation, (ii)
phenotype prediction, and (iii) biomarker detection and taxonomic analysis (shown in Figure 1). In this
section, these components are described in details.

“http://www.driveS.com/usearch/
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Figure 1. Computational workflow of DiTaxa, DiTaxa has three main components: (i) NPE
representation, (ii) Phenotype prediction, (ii) Biomarker detection and taxonomic analysis. The purple
boxes denote the outputs of the approach.

NPE representation

The first component of DiTaxa is the NPE representation creation. The 16S rRNA gene sequences
aggregated from all samples from all phenotypes go through the NPE algorithm 1 for training segmentation
operations. Then the segmentation will be applied on sequences to segment sequences into variable length
subsequences. We pick the vocabulary size large enough to obtain discriminative 16S rRNA subsequences
considered as biomarkers. Each sample will be presented as a count distribution of its subsequences. We
propose a bootstrapping scheme to investigate the sufficiency of shallow sub-samples to produce proper
representation.

In a previous study, using a bootstrapping framework we showed that shallow sub-samples of 16S
rRNA gene sequences are sufficient to produce a proper k-mer presentation of data for phenotype pre-
diction [21]. Similarly, here we use bootstrapping to investigate sufficiency and consistency of NPE
representation, when only a small portion of the sequences are used. This has two important implications,
first, sub-sampling reduces the preprocessing run-time, second, it shows that even a shallow 16S rRNA
sequencing is enough for the phenotype prediction. We use a resampling framework to find a proper
sampling size. Let O4,,.(X;) be the normalized NPE (with vocabulary size of #npe) distribution of X;, a set
of sequences in the " 16S rRNA sample. We investigate whether only a portion of X;, which we represent
as X;j, i.e. J' " resample of X; with sample size N, would be sufficient for producing a proper representation
of X;. To find a sufficient sample size for X; quantitatively, we propose the following formulation in
a resampling scheme. (i) Self-consistency: resamples for a given size N from X; produce consistent
Osnpe(Xij)’s, i.e. resamples should have similar representations.(ii) Representativeness: resamples for a
given size N from X; produce Oy, p.(X;;)’s similar to O4,,.(X;), i.e. similar to the case where all sequences
are used. As presented in [21], we measure the self-inconsistency (Ds) of the resamples’ representations
by calculating the average Kullback Leibler divergence among normalized NPE distributions for Ng
resamples (here Ng=10) with sequences of size N from the /" 16S rRNA sample:

1

Ds;(N,#npe,Ng) = Ne(Ne—1)

Z DKL(O#npe(fip), e#npe(fiq))y

(g <12 )

where |x;| = N; VI € {1,2,--- ,Ng}. We calculate the average of the values of Dg;(N npe ,Ng) over
the M different 16S rRNA samples:
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S

1

ljS(Nv#npeaNR) — M D_Si(Ny#npe7NR)~
i

1

We measure the unrepresentativeness (D) of the resamples by calculating the average Kullback Leibler
divergence between normalized NPE distributions for Ng resamples (Ng=10) with size N and using all the
sequences in X; for the i 16S rRNA sample:

1

D_Ri(Nv#npe 7NR) = DKL(O#npe ()/Zip% 6#npe (Xi)>7

NR pe (12 Ne)

where |x;| = N; VI € {1,2,--- ,Ng}. We calculate the average over Dg;(N,k)’s for the M 16S rRNA
samples:

1
M !
l

Mx

D_R(Na#npe 7NR) — l)_Ri(Nu#npe 7NR)-

1

For the experiments on the datasets presented in §2.1, we measure self-inconsistency Dg and unrepresen-
tativeness Dy for Ng = 10 and M = 10 for #npe € {10000,20000,50000} with sampling sizes ranging
from 20 to 20000.

As shown in Figure 1, the obtained NPE representation in the first component will be then used for
two main use cases, i.e. phenotype prediction and biomarker detection.

Phenotype prediction

We used Random Forest (RF) classifiers [52], which have shown a superior performance over deep
neural network (deep multi-layer perceptron) and support vector machine (SVM) classifiers in phenotype
classification for the size of datasets we use here [21, 22]. However, the provided implementation provides
deep learning and SVM classifiers as well. For the disease phenotype prediction, Random Forest classifiers
were tuned for (i) the number of decision trees in the ensemble, (ii) the number of features for computing
the best node split, and (iii) the function to measure the quality of a split. We evaluate and tune the model
parameter using stratified 10 fold cross-validation and optimize the classifiers for the harmonic mean of
precision and recall, i.e. the F1-score, as a trade-off between precision and recall. We provide both micro-
and macro- F1 metrics, which are averaged over instances and over categories, respectively.

We performed phenotype classification for a synthetic dataset (binary classification of 100 case
samples and 100 control samples), a Crohn’s disease dataset (binary classification of 731 Crohn’s disease
samples from 628 control or other diseases), and a Rheumatoid Arthritis (RA) dataset (44 RA disease
subjects versus 70 control/treated/Psoriatic arthritis subjects). In order to evaluate the performance of
NPE representation, we compare the classification performance of RFs over NPE features versus using
OTUs, as well as k-mer features, which are considered as state-of-the-art approaches for disease phenotype
prediction [21, 22].

Biomarker detection and taxonomic analysis
The designed steps in DiTaxa for detection of differently expressed markers in the phenotype of interest
are shown in the light purple background in Figure 1:

1. The first step is finding discriminative markers between two phenotype states using false discovery
rate corrected two-sided ¥ test over the median-adjusted presence of markers in the samples. Thus
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if a marker is presented within a sample at least as frequent as the median frequency across samples,
we consider it as present, otherwise as absent. We discard insignificant markers using a threshold
for the p-value of < 0.05. For the multi-phenotype case, a one-versus-all policy is used. In addition,
markers shorter than a certain threshold (< 50bps) will be discarded to ensure the markers are
specific enough for a downstream taxonomic assignment.

2. The filtered markers go through a local BLAST [53] with EzBioCloud database as a local reference
dataset [50], covering 62,362 quality controlled reference sequences. We assign the taxon corre-
sponding to the Lowest Common Ancestor (LCA) of the taxa annotated for the best hits of a marker
in a reference taxonomy. The markers that cannot be aligned to the references will be marked as
‘Novel’” markers.

3. In the third step, we remove redundant markers based on their co-occurrence information using
symmetric Kullback—Leibler divergence [54]:

Po(i)
P, (i)

Pa(i)
Py(i)’

+ P, (i) log

DKLsym (PmHPn) = me<l) log
i

where P,, and P, are respectively normalized frequency distributions of /" and n'"* markers across
all samples. Using (DkL,,,, = 0) to find identical markers, split the set of markers into equivalence
classes. Subsequently, from each class we pick only one representative marker with the most specific
taxonomy level, which its taxonomy information is confirmed by the majority of markers within the
class. The selected markers at this step are our final set of biomarkers.

4. Our approach has three main outputs, first, a taxonomic tree for significant discriminative biomarkers,
where identified taxa to the positive and negative class are colored according to their phenotype
(red for positive class and blue for negative class). The DiTaxa implementation for taxonomic tree
generation uses a Phylophlan-based backend [55]. Second, a heatmap of top biomarkers occurrences
in samples, where the rows denote markers and the columns are samples is generated. Such a
heatmap allows biologists to obtain a detailed overview of markers’ occurrences across samples
(e.g., Figure 10 and Figure 11). The heatmap shows number of distinctive sequences hit by each
biomarker in different samples and stars in the heatmap denote hitting unique sequences, which
cannot be analyzed by OTU clustering approaches. The third output is a list of novel markers for
further analysis of the potential novel organisms.

To compare the performance of our approach with a standard workflow (defined in §2.3) for real
datasets, we used the scientific literature as the ground-truth. We extracted a list of organisms which are
experimentally identified by previous studies to be associated with or cause periodontal disease. Then we
evaluate the recall for DiTaxa and the standard workflow in the detection of the confirmed organisms.

To quantify the performance of DiTaxa in a known synthetic setting versus the standard pipeline, we
generated two high-dimensional synthetic datasets denoted as ‘case’ and ‘control’, as described in §2.1.
The description of the standard pipeline is provided in §2.3 generating a list of significant differently
expressed OTUs for both phenotypes. We then compare the significantly enriched OTU sequences (FDR
corrected P values < 0.05, LEfSe) and significant (FDR < 0.05) subsequences determined by DiTaxa as
biomarkers with the ground-truth 16S V4 region using global nucleotide alignment with blastn v. 2.7.1+
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(i) Self-inconsistency Dg, with respect to sample size (N) (i) Unrepresentativeness Dy, with respect to sample size (N)
demonstrated for different #npe in the rheumatoid arthritis dataset demonstrated for different #npe in the rheumatoid arthritis dataset
—— F#npe = 10000 —— F#npe = 10000
—— F#npe = 20000 —— ##npe = 20000
——  #npe = 50000 —— F#npe = 50000

Dg(N, #npe)

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 ) 10000 12500 15000 17500 20000

Resample size (N) Resample size (N)

Figure 2. Measuring (i) self-inconsistency (Ds), and unrepresentativeness (Dg) for the arthritis disease dataset.
Each point represents an average of 100 resamples belonging to 10 randomly selected 16S rRNA samples. Higher
vocabulary size require higher sampling rates to produce self-consistent and representative samples.

with parameters “—perc_identityl00 — ungapped”. We quantified the number of false positives (FP),
true positives (TP), false negatives (FN) and true negatives (TN) based on the presence of significant
alignments of potential biomarkers sequences (OTU or DiTaxa markers) to each of the 500 differentially
expressed GG 16S regions. TPs were calculated as the number of GG sequences (n = 500) with at least
one marker hit from the positive marker list. FNs were calculated using case GG sequences (n = 500)
without at least one marker hit from the marker collection found to be significantly enriched in the case set.
TNs are the number of control GG sequences (n = 500) with at least one marker hit from the marker list
that are significant in the control set. FPs were quantified as the number of low abundant GG sequences
(n = 500) without at least one marker hit from the set of markers found in the control sample. Recall was
calculated as TP/(TP + FN) while precision was calculated as TP/(TP+ FP).

3 Results

3.1 Phenotype prediction
Bootstrapping for sample size selection
We picked a stable sample size for each NPE vocabulary size based on the output of bootstrapping
in phenotype prediction. Each point in Figure 2 represents the average of 100 (M x Ng) resamples
belonging to M randomly selected 16S rRNA samples, each of which is resampled Nz = 10 times. As
shown in Figure 2, a larger vocabulary size require higher sampling rates to produce self-consistent and
representative representations. As the structure of the curve does not vary a lot from dataset to dataset, to
avoid redundancy, we only show the bootstrapping results for the rheumatoid arthritis dataset.

The classification results for different NPE vocabulary sizes on the synthetic, Crohn’s disease, and
rheumatoid arthritis datasets using RF classifiers are presented in Table 1. All methods could reliably
predict the affected cases in the synthetic dataset without any error. For the Crohn’s disease dataset k-mers
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Table 1. Results for NPEs, OTUs, and k-mer features in performing phenotype classification over the synthetic,
rheumatoid arthritis, and Crohn’s disease datasets in a 10-fold cross-validation framework using random forest
classifiers.

. . . . Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Dataset Representation | Classifier | Feature-size | Resample size Precision Recall T Precision Recall Fi
10000 5000 1.0 £ 0.0 1.0+£0.0 1.0 £ 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0
Synthetic NPE RF 20000 10000 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0
50000 All sequences | 1.0 + 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0
6-mer 4096 5000 1.0+ 0.0 1.0+ 0.0 1.0 +0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0
OTU 1041 - 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0 1.0+ 0.0
10000 5000 0.74 +0.04 | 0.74 £ 0.04 | 0.74 £0.04 || 0.74 £0.04 | 0.73 £ 0.04 | 0.73 + 0.04
NPE 20000 10000 0.75+0.04 | 0.75+0.04 | 0.75 £ 0.04 || 0.75 £0.04 | 0.74 £ 0.04 | 0.74 + 0.04
Crohn’s disease RF 50000 All sequences | 0.74 +0.04 | 0.74 £0.04 | 0.74 £0.04 || 0.74 £0.04 | 0.74 £ 0.04 | 0.74 £ 0.04
6-mer 4096 5000 0.76 +0.04 | 0.76 +0.04 | 0.76 £0.04 || 0.76 £0.04 | 0.75 £ 0.04 | 0.75 £+ 0.04
OTU 9511 - 0.74 +0.04 | 0.74 +0.04 | 0.74 £0.04 || 0.74 £0.04 | 0.74 £ 0.04 | 0.74 £+ 0.04
10000 5000 0.78+0.1 | 0.78+0.1 | 0.78 £0.1 || 0.78 +0.11 | 0.76 £0.13 | 0.76 £ 0.12
Rheumatoid Arthritis NPE RF 20000 10000 0.78 £0.09 | 0.78 £0.09 | 0.78 £0.09 || 0.78 £0.11 | 0.76 £ 0.11 | 0.75 £ 0.11
50000 All sequences | 0.78 £0.1 | 0.78 £0.1 | 0.78 £ 0.1 || 0.79 £0.11 | 0.76 £ 0.13 | 0.75 £ 0.12
6-mer 4096 5000 0.78+0.1 | 0.78+0.1 | 0.78 £0.1 || 0.78 +0.12 | 0.76 £ 0.12 | 0.76 + 0.12
OTU 949 - 0.69 +£0.12 | 0.69 £0.12 | 0.69 £ 0.12 || 0.73 £ 0.16 | 0.65 +0.12 | 0.65 £+ 0.11

with the MicroPheno approach [21] achieved a slightly better prediction performance while using NPE and
OTU features achieved the same macro-F1 of 0.74. In rheumatoid arthritis prediction, NPE and k-mers
achieved a macro-F1 of 0.76, outperforming the use of OTU features by 11 percent. Changes in sample
size did not substantially affect the prediction performance, suggesting sufficiency of shallow sub-samples
in phenotype prediction using the NPE representation (Table 1).

3.2 Biomarker detection and taxonomic analysis

Marker detection results for synthetic data

In the biomarker detection for the synthetic dataset, DiTaxa did not report erroneous (neither FN nor
FP) biomarkers, which resulted in a recall and precision value of 1. In comparison, the biomarkers
detected with a standard pipeline, using OTU clustering and LEfSe, included 51 false negative and 47
false positive instances, resulting in a recall and precision value of 0.898 and 0.905, respectively (Table 2).
This evaluation demonstrated the superiority of DiTaxa for biomarker discovery compared to OTU-based
approaches in both recall and precision.

Table 2. The results of DiTaxa and the standard pipeline Table 3. The results of DiTaxa and the

(STDP) in marker detection for the synthetic dataset. standard pipeline (STDP) in marker detection
in comparison with literature of periodontal
’ Method \ Precision \ Recall \ F1 ‘ disease.
DiTaxa 1 1 1 _
STDP 0.905 0.898 1 0901 ’ Method \ True Positive Count \ Recall ‘
DiTaxa 13 out of 29 0.59
STDP 3 out of 29 0.10

Biomarker detection results for periodontal disease

We next assessed the performance of DiTaxa and a standard pipeline (STDP; section 2.3) in detecting
otherwise confirmed taxa for periodontal disease (Table 4). DiTaxa performed better in the detection of
relevant taxa (Table 3). Of 29 taxa identified as relevant in other studies, 17 were detected by DiTaxa,
while the standard approach detected only 3 from the same dataset. Notably, experimentally verified taxa
shown to alter the disease phenotype in mouse models, Fusobacterium nucleatum [56] and Porphyromonas
gingivalis [56, 57, 58], were only detected by Ditaxa. Since periodontitis is a polymicrobial disease and
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Table 4. Comparison of a standard pipeline (STDP) and DiTaxa performance in detecting 29 taxa with
confirmed links to periodontitis. The upwards arrow denotes upregulation in the diesease group compared
to samples from healthy subjects. A checkmark denotes presence of marker by DiTaxa method.

Literature information Detection results
Genus Species Direction | Description and reference DiTaxa STDP
. 16S rRNA sequencing of supragingival plaque samples, t-test [60],
Actinomyces na. + Periodontal d?scasc vf. hcaltiygcongtrol gpin;iva, t-tczts [61] not found | not found
Aggregatibacter | A. actinomycetemcomitans T Used for mixed infections for murine back abscess model [62] not found | not found
Anaeroglobus n.a. T Periodontal disease vs. healthy control gingiva, t-tests [61] not found | not found
Corynebacterium | n.a. 1 Periodontal disease vs. healthy control gingiva, t-tests [61] not found | not found
Campylobacter C. gracilis T 16S rRNA sequencing [63] v not found
Campylobacter C. rectus 1 16S rRNA sequencing [63] not found | not found
Campylobacter C. showae T 16S rRNA sequencing [63] not found | not found
Dialister n.a. T Periodontal disease vs. healthy control gingiva, t-tests [61] not found | not found
Eubacterium E. nodatum T 16S rRNA sequencing [63] v not found
Fusobacterium F. nucleatum T Mouse model [56], Whole genomic DNA probes of subgingival plaque samples [64], and dot blot hybridization [65] v not found
Fusobacterium F. periodonticum T microbial co-localization in images of subgingival biofilm species [66] not found | not found
Gamella n.a. 1 16S study of plague samples from healthy individuals [67] not found | not found
Granulicatella na 1 16$ study of Plague samples from health.y ir.ldividuu]s [67], not found | not found
Periodontal disease vs. healthy control gingiva, t-tests [61]
Leptotrichia n.a. T 16S rRNA sequencing of supragingival plaque samples, t-test [60] v not found
. . Periodontal disease vs. healthy control gingiva, t-tests [61 L
Neisseria na. b1 ‘Whole genomic DNA probes if subgingivfl plaque sarglp]]e:[iﬁ)S](T) (M not found
Parvimonas P. micra T 16S rRNA sequencing [59] v not found
Porphyromonas | n.a. T Mouse model [58] and Periodontal disease vs. healthy control gingiva, t-tests [61] v not found
- Mouse model [56, 57], Whole genomic DNA probes of subgingival plaque samples[64], .
Porphyromonas P. gingivalis T Used for monomicrobial infeclti’ons for murinepback abscessgmfdel [52]q " v not found
Prevotella na. + 16$ rRNA sequencing of supragingival P]L\que samples, t-test [60], v not found
Periodontal disease vs. healthy control gingiva, t-tests [61]
Prevotella P. intermedia T ‘Whole genomic DNA probes of subgingival plaque samples [64] and dot blot hybridization [65] v not found
Prevotella P. nigrescens T 16S rRNA sequencing [63] not found | not found
Schwartzia n.a. T Periodontal disease vs. healthy control gingiva, t-tests [61] v v
Selenomonas n.a. T Periodontal disease vs. healthy control gingiva, t-tests [61] v v
16S rRNA sequencing of supragingival plaque samples, t-test [60],
Streptococeus na + 168 study of glague sgampleffrfm iealt}lljy iqndividu:]s [67] i v not found
Streptococcus S. constellatus T 16S rRNA sequencing of supragingival plaque samples, t-test [69] v not found
Tannerella T. forsythia T Whole genomic DNA probes of subgingival plaque samples [64], 16S rRNA squencing [70] v not found
Treponema n.a. 1 Periodontal disease vs. healthy control gingiva, t-tests [61] v v
Treponema T. denticola T ‘Whole genomic DNA probes of subgingival plaque samples [64], nested PCR[59] v not found
Veillonella n.a. 1 16S study of plague samples from healthy individuals [67] not found | not found

the oral biofilms are extremely diverse [59], detecting all relevant taxa confirmed by the literature from
a single dataset is not feasible. For instance, A. actinomycetemcomitans is specifically associated with
juvenile aggressive periodontists in Moroccan population, which can be hardly found in the population
from Turkey [39]. However, relative comparison of recall for different methods on the same dataset
is still meaningful. A higher recall of DiTaxa in confirming the literature links, in comparison with a
standard pipeline shows that DiTgxa can be more accurate in detecting disease-specific biomarkers. A
detailed comparison of the predicted taxa with different methods and taxa with confirmed links by the
literature is also shown in Figure 3. The red color shows the disease associated taxa found by DiTaxa and
the blue color indicates the up-regulated taxonomy in the healthy samples. The up-regulated organisms
found by standard pipeline are colored in yellow and down-regulated organisms are colored to green. The
intersection of DiTaxa and the standard approach is colored in orange for up-regulation and cyan denotes
for the consensus of methods in down-regulation.

Taxonomy of discriminative biomarkers for rheumatoid arthritis
Comparative taxonomic visualization of detected differentially expressed markers for DiTaxa and a
common workflow are shown in Figure 4 for samples from patients with untreated rheumatoid arthritis
(new onset RA) versus healthy individuals. Taxa predicted by DiTaxa for samples from patients with
untreated rheumatoid arthritis (new onset RA) versus healthy individuals had Prevotella copri as the
most significantly ranked, which was confirmed based on shotgun metagenome analysis and in mouse
experiments [71], while the standard workflow only predicted the genus of this taxon as relevant [71].
DiTaxa also predicted Prevotella stercorea as implicated in new onset RA.

The DiTaxa results for patient samples from several other diseases versus healthy individuals are
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Extracted links using computational methods: DiTaxa and standard pipeline (STDP) Confirmed links by the literature using different technologies and experiments

DiTaxa: down-regulated in disease
D 9 * mouse model @ other studies
D STDP: down-regulated in disease

Agreement in down-regulation in disease

|:| DiTaxa: up-regulated in disease
STDP: down-regulated in disease
Agreement in up-regulation in disease

Figure 3. Taxonomy of differently expressed markers for samples from patients with periodontal disease
versus healthy patients. The red color shows the disease associated taxa found by DiTaxa and the blue
color indicates the up-regulated taxonomy in the healthy samples. The up-regulated organisms found by
standard pipeline (STDP) are colored in yellow and down-regulated organisms are colored to green. The
intersection of DiTaxa and the standard approach is colored in orange for up-regulation and cyan denotes
for the consensus of methods in down-regulation. When two methods disagree the organism is colored in
gray. The node size is proportional to the number of markers confirming the taxa and the border boldness
is proportional to the negative log of the markers’ p-value. The taxa names are only provided for the nodes
that are either confirmed by the literature or the nodes denoting agreements of DiTaxa and STDP. 12/25
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|:| DiTaxa: down-regulated in disease

D DiTaxa: up-regulated in disease
STDP: down-regulated in disease | | STDP: down-regulated in disease

Agreement in up-regulation in disease Agreement in down-regulation in disease

Disagreements of DiTaxa and STDP

Figure 4. Taxonomy of differently expressed markers for new onset rheumatoid arthritis versus healthy
samples. The red color shows the disease-associated taxa found by DiTaxa and the blue color denotes the
up-regulated taxa in the samples from healthy individuals. The up-regulated organisms found by the
standard pipeline are colored in yellow and down-regulated organisms are colored green. The agreements
of DiTaxa and the standard approach are colored in orange for up-regulation and cyan denotes the
consensus of both methods in down-regulated taxa. When the two methods disagree, the taxon is colored
in gray. The node size is proportional to the number of markers confirming the taxa and the border
boldness is proportional to the negative log of the markers’ p-value.
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Table 5. Runtimes of DiTaxa and a common 16S processing pipeline for the periodontal, synthetic, rheumatoid
arthritis and IBD datasets. The (||) sign denotes steps that are parallelized and run on multiple cores (here 20 cores).
STDP stands for standard pipeline, using OTU clustering and LEfSe for marker detection.

Dataset Number of samples Segmentation or clustering || Representation Creation Biomarker detection Total
DiTaxa | STDP () DiTaxa () [ STDP DiTaxa([[) | STDP (|]) DiTaxa | STDP
Periodontal dataset 20 3,37 min 0,34 min 1,84 min 0,43 min 1,58 min 0,10 min 6,79 min 0,87 min
Rheumatoid Arthritis dataset 114 23,86 min 1,33 min 0,61 min 5,10 min 1,73 min 0,11 min 26,19 min | 6,54 min
Synthetic dataset 200 19 min 0.81 min 1,8 min 0,78 min 1,76 min 0,55 min 22,56 min | 2,14 min
IBD dataset 1359 82,05 min 23,52 min 9,13 min 5,66 min 2,75 min | 356,48 min || 93,93 min | 385,66 min

provided in Figure 5 (for CD versus healthy), Figure 7 (for indeterminate colitis versus healthy), Figure 6
(for ulcerative colitis versus healthy), Figure 9 (for treated rheumatoid arthritis versus healthy), Figure 8
(for psoriatic versus healthy).

Biomarker heatmaps

Visualization of the occurrence pattern of the identified biomarkers is another output of DiTaxa. Examples
of such a visualization for rheumatoid arthritis (Figure 10) and periodontal disease (Figure 11) are
provided. The rows represent inferred biomarker sequences and are sorted based on the taxonomic marker
assignments. The columns represent patient samples and are sorted firstly based on their phenotype and
secondly based on their pattern similarity. ‘Novel’ organisms are shown in the top rows, denoting the
markers that could not be aligned to any reference sequence and are therefore potentially novel taxa. The
cell colors on the heatmap show the percentage of distinct marker sequences matching a biomarker per
sample on a log scale. Markers targeting a single 16S sequence only are marked by a star.

The plots clearly show the varying “generality” of the inferred marker sequences, with some matching
only to unique 1S sequences, and others found across larger numbers, indicating representation of different
levels of evolutionary relatedness of the underlying targeted organisms. For instance, of the inferred
markers assigned Prevotella copri, while some markers match multiple distinct 16S genes across patient
samples, indicating the presence of strain-level diversity evident from 16S within this species, while other
markers targeting predominantly single 16S copies across patients samples within this species, indicating
the existence of disease-associated subspecies diversity, that can be discovered with this technique.

3.3 Runtime analysis

To assess computational efficiency, we compared the runtimes of DiTaxa versus the standard workflow
(Table 5). For both DiTaxa and the standard workflow 20 cores were used in computations. Workflow parts
that could be parallelized for both pipelines are denoted with “||” in Table 5. The bottleneck for DiTaxa
computation is the segmentation training, which cannot be parallelized. However, the segmentation needs
to be trained only once for a dataset and then any combinations of phenotype analysis can use the trained
segmentation and the subsequent representation. Although the standard pipeline for datasets of less than
200 samples has been few minutes faster than DiTaxa, DiTaxa can run faster for the dataset of 1359
samples (total of 93,93 min), while the standard pipeline tool 385,66 min using the same computational
setting.

4 Discussion and conclusions

We describe DiTaxa, a method implementing a new paradigm for host disease status prediction and
biomarker detection from 16S rRNA amplicon data. The main distinction of this approach from existing
methods is substituting standard OTU-clustering [49] or sequence-level analysis [18] by segmenting 16S
rRNA reads into the most frequent variable-length subsequences of a dataset. The proposed sequence
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Figure 5. Taxonomy of differently expressed markers for Crohn’s disease versus healthy using DiTaxa.
The red color shows the disease associated taxa found by DiTaxa and the blue color shows the
up-regulated taxonomy in the healthy samples.
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Figure 6. Taxonomy of differently expressed markers for ulcerative colitis disease versus healthy using
DiTaxa. The red color shows the disease associated taxa found by DiTaxa and the blue color shows the
up-regulated taxonomy in the healthy samples.
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Figure 7. Taxonomy of differently expressed markers for indeterminate colitis disease versus healthy

using DiTaxa. The red color shows the disease associated taxa found by DiTaxa and the blue color shows
the up-regulated taxonomy in the healthy samples.
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Figure 8. Taxonomy of differently expressed markers for psoriatric disease versus healthy using DiTaxa.
The red color shows the disease associated taxa found by DiTaxa and the blue color shows the
up-regulated taxonomy in the healthy samples.
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Figure 9. Taxonomy of differently expressed markers for treated rheumatoid Arthritis versus healthy
samples using DiTaxa. The red color shows the treated associated taxa found by DiTaxa and the blue

shows the up-regulated taxonomy in the healthy samples.
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Figure 10. Heatmap of markers occurrences across samples for rheumatoid arthritis.
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Sorted markers by taxonomy

Figure 11. Heatmap of markers occurrences across samples for periodontal disease.
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segmentation, called Nucleotide-pair Encoding, is an unsupervised approach inspired by Byte-pair Encod-
ing, a data compression algorithm that recently became popular in deep natural language processing. The
identified subsequences represent commonly occurring sequence portions, which we found to be distinctive
for taxa at varying evolutionary distances and highly informative for predicting host disease phenotypes.
We compared the performance of DiTaxa to the state-of-the-art in disease phenotype prediction and
biomarker detection, using human 16S datasets from metagenomic samples of periodontal, rheumatoid
arthritis, and inflammatory bowel diseases, as well as a synthetic benchmark dataset. DiTaxa identified 17
of 29 taxa with confirmed links to periodontitis (recall= 0.59), while the OTU-based approach could only
detect 3 of 29 organisms (recall= 0.10). In addition, we show that for the rheumatoid arthritis dataset,
machine-learning classifiers trained to predict host disease phenotypes based on the NPE representation
substantially outperformed OTU features (macro-F1 =0.76 compared to 0.65) and performed competitively
for Crohn’s disease and synthetic datasets. Taxa predicted by DiTaxa for samples from patients with
untreated rheumatoid arthritis (new onset RA) versus healthy individuals had Prevotella copri as the
most significantly ranked, which was confirmed based on shotgun metagenomic analysis and in mouse
experiments [71], while the standard workflow only predicted the genus of this taxon as relevant [71].
Due to the alignment- and reference free nature, DiTaxa can efficiently run on large datasets. The full
analysis of a large 16S rRNA dataset of 1359 samples required ~1.5 hours, where the standard pipeline
took ~/26.5 hours with the same number of cores (20 cores). Although on smaller datasets the conventional
workflow was faster than DiTaxa, the run-time difference of less than 30 minutes for those settings is
worth the performance gain in phenotype prediction and biomarker detection. The applications of NPE
representation are not limited to 16S rRNA data and it can be also applied to shotgun metagenomics or
any other biological sequences to infer intrinsic features from data, instead of using parameter-dependent
representations. Taken together, DiTaxa seems to provide a better solution for biomarker and phenotype
detection than OTU-based methods. It thus could contribute to a better understanding of the microbial
organisms associated with microbiome-related diseases and the development of personalized diagnostics
and therapy procedures.
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