bioRxiv preprint doi: https://doi.org/10.1101/334656; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Genetic, biochemical, and molecular characterization of Methanosarcina barkeri
2	mutants lacking three distinct classes of hydrogenase
3	
4	
5	Thomas D. Mand, ^a Gargi Kulkarni, ^{a*} William W. Metcalf ^a #
6	
7	^a Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana,
8	Illinois, USA
9	
10	Running Head: Analysis of <i>M. barkeri</i> hydrogenase mutants
11	
12	#Address correspondence to William W. Metcalf, <u>metcalf@life.illinois.edu</u> .
13	*Present address: Gargi Kulkarni, California Institute of Technology, Pasadena,
14	California, USA
15	T.D.M. and G.K. contributed equally to this work.
16	

17 ABSTRACT

The methanogenic archaeon *Methanosarcina barkeri* encodes three distinct 18 19 types of hydrogenase, whose functions vary depending on the growth substrate. 20 These include the F420-dependent (Frh), methanophenazine-dependent (Vht), and 21 ferredoxin-dependent (Ech) hydrogenases. To investigate their physiological roles, 22 we characterized a series of mutants lacking each hydrogenase in various 23 combinations. Mutants lacking Frh, Vht, or Ech in any combination failed to grow on 24 H_2/CO_2 , whereas only Vht and Ech were essential for growth on acetate. In contrast, 25 a mutant lacking all three grew on methanol with a final growth yield similar to 26 wild-type, produced methane and CO_2 in the expected 3:1 ratio, but had a *ca*. 33% 27 slower growth rate. Thus, hydrogenases play a significant, but non-essential, role 28 during growth on this substrate. As previously observed, mutants lacking Ech fail to 29 grow on methanol/ H_2 unless supplemented with biosynthetic precursors. 30 Interestingly, this phenotype was abolished in the $\Delta ech/\Delta frh$ and $\Delta ech/\Delta frh/\Delta vht$ 31 mutants, consistent with the idea that hydrogenases inhibit methanol oxidation in 32 the presence of H_2 , which prevents production of reducing equivalents needed for 33 biosynthesis. Quantification of methane and CO₂ produced from methanol by 34 resting cell suspensions of various mutants supports this conclusion. Based on 35 global transcriptional profiles, none of the hydrogenases are upregulated to 36 compensate for loss of the others. However, transcript levels of the F420 37 dehydrogenase operon were significantly higher in all strains lacking *frh*, suggesting 38 a mechanism to sense the redox state of F420. The roles of the hydrogenases in 39 energy conservation during growth with each methanogenic pathway are discussed.

IMPORTANCE

42	Methanogenic archaea are key players in the global carbon cycle due to their
43	ability to facilitate the remineralization of organic substrates in many anaerobic
44	environments. The consequences of biological methanogenesis are far reaching,
45	with impacts on atmospheric methane and CO_2 concentrations, agriculture, energy
46	production, waste treatment and human health. The data presented here clarify the
47	in vivo function of hydrogenases during methanogenesis, which in turn deepens our
48	understanding of this unique form of metabolism. This knowledge is critical for a
49	variety of important issues ranging from atmospheric composition to human health.
50	
51	INTRODUCTION
52	The ability to metabolize molecular hydrogen (H_2) is a key metabolic feature
52 53	The ability to metabolize molecular hydrogen (H ₂) is a key metabolic feature in methanogenic Archaea (1). This trait is conferred by a class of enzymes known as
53	in methanogenic Archaea (1). This trait is conferred by a class of enzymes known as
53 54	in methanogenic Archaea (1). This trait is conferred by a class of enzymes known as hydrogenases, which catalyze the reversible oxidation of H ₂ coupled to various
53 54 55	in methanogenic Archaea (1). This trait is conferred by a class of enzymes known as hydrogenases, which catalyze the reversible oxidation of H ₂ coupled to various electron donors/acceptors (2, 3). At least five distinct types of hydrogenases are
53 54 55 56	in methanogenic Archaea (1). This trait is conferred by a class of enzymes known as hydrogenases, which catalyze the reversible oxidation of H ₂ coupled to various electron donors/acceptors (2, 3). At least five distinct types of hydrogenases are found in methanogenic archaea. These enzymes differ with respect to their redox
53 54 55 56 57	in methanogenic Archaea (1). This trait is conferred by a class of enzymes known as hydrogenases, which catalyze the reversible oxidation of H ₂ coupled to various electron donors/acceptors (2, 3). At least five distinct types of hydrogenases are found in methanogenic archaea. These enzymes differ with respect to their redox partners, their cellular localization, and whether their activity is linked to
53 54 55 56 57 58	in methanogenic Archaea (1). This trait is conferred by a class of enzymes known as hydrogenases, which catalyze the reversible oxidation of H ₂ coupled to various electron donors/acceptors (2, 3). At least five distinct types of hydrogenases are found in methanogenic archaea. These enzymes differ with respect to their redox partners, their cellular localization, and whether their activity is linked to production or consumption of membrane potential (4). Biochemical

bioRxiv preprint doi: https://doi.org/10.1101/334656; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

62	Methanogens without cytochromes produce at least four types of
63	hydrogenase; including (i) the electron-bifurcating Mvh hydrogenase, which couples
64	oxidation of hydrogen to reduction of ferredoxin and a mixed coenzyme M-
65	coenzyme B disulfide, (<i>ii</i>) the coenzyme F420-dependent hydrogenase, (<i>iii</i>) the [Fe]
66	hydrogenase, which couples hydrogen oxidation to reduction of
67	methenyltetrahydromethanopterin, and (<i>iv</i>) the ferredoxin-dependent, energy-
68	converting hydrogenases (4). The first three are cytoplasmic enzymes, which supply
69	the electrons needed to reduce CO_2 to methane. The last is a membrane bound
70	multi-subunit complex that couples hydrogenase activity to the
71	production/consumption of the ion-motive force across the cell membrane (hence
72	the designation as "energy-converting"). In non-cytochrome-containing
73	methanogens, these energy-converting hydrogenases are believed to provide low-
74	potential electrons, in the form of reduced ferredoxin, needed for anaplerotic
75	reactions (6).
76	Methanogens with cytochromes, typified by Methanosarcina barkeri, encode
77	a different set of hydrogenases that includes one cytoplasmic and two membrane-
78	bound enzymes (Fig 1) (7). Like the non-cytochrome containing methanogens, <i>M</i> .
79	barkeri produces a cytoplasmic, three-subunit F_{420} -dependent hydrogenase known
80	as Frh (for <u>F</u> 420- <u>r</u> educing <u>h</u> ydrogenase). Frh is encoded by the four-gene <i>frhADGB</i>
81	operon, which encodes the α,β and γ subunits (FrhA, FrhB and FrhG, respectively),
82	along with the maturation protease FrhD (8). A second locus, <i>freAEGB</i> , encodes
83	proteins that are 86-88% identical to FrhA, FrhB and FrhG, but lacks the gene for the
84	maturation protease FrhD, instead encoding a small protein of unknown function

85	(FrhE). It is not known whether the <i>fre</i> operon is capable of producing an active
86	hydrogenase (8-11). A membrane-bound hydrogenase linked to the quinone-like
87	electron carrier methanophenazine has, to date, been found only in Methanosarcina
88	species. This enzyme, known as Vht because it was initially identified as a <u>v</u> iologen-
89	reducing <u>h</u> ydrogenase, is encoded by the <i>vhtGACD</i> operon, which encodes the
90	biochemically characterized enzyme comprised of VhtA and VhtG, along with a
91	putative membrane-bound cytochrome, VhtC, that does not co-purify with the active
92	enzyme, and a maturation protease, VhtD (7). As with the F420-reducing
93	hydrogenase, a second locus that lacks the maturation protease is encoded in <i>M</i> .
94	barkeri strains. This operon (vhxGAC) encodes proteins that display ca. 50% amino
95	acid identity with those encoded by <i>vhtGACD</i> . Like <i>freAEGB</i> , it is not known whether
96	the <i>vhx</i> operon produces an active hydrogenase (7). Finally, <i>M. barkeri</i> encodes a
97	membrane-bound, ferredoxin-dependent <u>e</u> nergy- <u>c</u> onverting <u>h</u> ydrogenase (Ech)
98	(12). This five-subunit enzyme complex is much simpler than, and only distantly
99	related to, the energy-converting hydrogenases of the non-cytochrome
100	methanogens, which typically contain more than a dozen subunits (3). Homologs of
101	the electron bifurcating- and methenyltetrahydromethanopterin-reducing
102	hydrogenases are not known to occur in cytochrome-containing methanogens.
103	A key difference between the cytochrome-containing and non-cytochrome-
104	containing methanogens is the ability of the former to use one-carbon (C-1)
105	compounds and acetic acid, in addition to H_2/CO_2 , as growth substrates. Catabolism
106	of these chemically diverse substrates involves four distinct methanogenic
107	pathways: the CO_2 reduction pathway, the methyl reduction pathway, the

108	methylotrophic pathway and the aceticlastic pathway (13, 14). While several of
109	these pathways share common steps, they differ substantially with respect to
110	involvement of key enzymes and the direction of metabolic flux during methane
111	production (Fig 2). Surprisingly, it now appears that some Methanosarcina species
112	(e.g. M. barkeri) use hydrogenases in each of the four pathways, regardless of
113	whether external H_2 is provided as a growth substrate (15).
114	During the CO_2 reduction pathway, wherein CO_2 is reduced to CH_4 in a
115	stepwise manner, hydrogenases produce the electron-donating cofactors required
116	for four distinct reduction steps (Fig 2) (5). Initial reduction of CO_2 to formyl-
117	methanofuran requires reduced Fd (Fd $_{red}$), which is produced by Ech. This reaction
118	is dependent on ion-motive force because reduction of Fd by H_2 is endergonic under
119	physiological conditions (16). Subsequent reduction of methenyl-
120	tetrahydrosarcinapterin (H ₄ SPT) to methylene-H ₄ SPT, and of methylene-H ₄ SPT to
121	methyl-H ₄ SPT, requires reduced coenzyme F420 (F420 $_{\rm red}$), which is supplied by Frh.
122	Finally, reduction of a methyl group to methane using coenzyme B produces a
123	heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB), which must be
124	reduced to produce the free CoM and CoB needed for continued methanogenesis.
125	This reaction is catalyzed by a membrane bound heterodisulfide reductase (HdrED),
126	which uses the reduced form of a membrane-bound cofactor, methanophenazine, as
127	the source of electrons (17). H_2 , in turn, serves as the reductant for generation of
128	reduced methanophenzaine via membrane-bound Vht hydrogenase. Thus, all three
129	types of hydrogenase are predicted to be required for growth via CO_2 reduction, a

130 conclusion that has been validated by the phenotypic analysis of single mutants (11,131 15, 16).

132	In contrast, methanogenesis via the methyl reduction pathway is expected to
133	require only Vht. In this pathway, methyl-CoM derived from C-1 compounds, such as
134	methanol or methylamines, is directly reduced to methane using CoB as the electron
135	donor. As with the CO_2 reduction pathway, this produces a CoM-S-S-CoB disulfide
136	that must be regenerated in a pathway requiring HdrDE and reduced
137	methanophenazine, which is presumably generated by Vht (Fig 2). This idea is
138	supported by the analysis of conditional <i>vht</i> mutants (15). Neither Frh nor Ech is
139	required for methanogenesis in this model, a finding that is consistent with
140	experimental data from Δfrh and Δech mutants (11, 16). Nevertheless, the <i>M. barkeri</i>
141	Δech strain cannot grow via the methyl reduction pathway unless the media are
142	supplemented with acetate and/or pyruvate. Thus, Ech plays an essential
143	biosynthetic role under these conditions, which is probably the H_2 -dependent
144	synthesis of reduced ferredoxin needed for synthesis of acetyl-CoA and pyruvate
145	(16).
146	During aceticlastic methanogenesis, both the Ech and Vht hydrogenases play
147	a critical role in methanogenesis. In this pathway, acetyl-CoA is split into methyl-
148	$ m H_4SPT$ and enzyme-bound [CO] by the acetyl-CoA decarbonylase/synthase (ACDS)
149	enzyme complex. CO is then further oxidized to CO_2 with concomitant reduction of

150 ferredoxin (12, 16). It is believed that the exergonic oxidation of ferredoxin by Ech

151 produces H₂ and contributes to the proton motive force by transferring protons

152 across the membrane. The proton motive force is further enhanced by a putative H_2

154	where it is oxidized by Vht to produce reduced methanophenazine. This unusual
155	electron transport chain is completed when the reduced methanophenazine
156	produced by Vht is used by HdrDE to regenerate free CoM and CoB from the CoM-S-
157	S-CoB heterodisulfide (Fig 2) (18). Participation of these hydrogenases in the
158	aceticlastic pathway is supported by mutagenic studies showing that <i>ech</i> and <i>vht</i>
159	mutants do not grow with acetate as the sole substrate, regardless of whether
160	biosynthetic precursors were supplied (15, 16).
161	Finally, all three types of hydrogenases are thought to be involved in
162	methylotrophic methanogenesis via a H_2 cycling mechanism similar to that
163	described for aceticlastic growth (15). In this pathway, F420 $_{red}$ and Fd $_{red}$, produced
164	by the stepwise oxidation of methyl groups to CO_2 , are converted to molecular H_2 by
165	Frh and Ech, respectively (Fig 2). H_2 then diffuses to the outer surface of the cell
166	membrane where it is oxidized by Vht, releasing protons on the outside of the cell
167	and contributing to the generation of an ion-motive force (Fig 3) (15). Nevertheless,
168	<i>M. barkeri</i> Δfrh and Δech strains are capable of methylotrophic growth, indicating
169	the presence of alternative pathways for transfer of electrons from $F420_{red}$ and Fd_{red}
170	to the electron transport chain (11, 16). The membrane-bound F420 dehydrogenase
171	complex (Fpo) has been identified as the alternate mechanism of electron transfer
172	from F420 $_{red}$ (11). This enzyme couples the exergonic reduction of
173	methanophenazine by $F420_{red}$, with the generation of proton motive force in a H_2
174	independent manner. However, the <i>M. barkeri</i> Δfrh strain exhibits slower growth
175	rates than wild type <i>M. barkeri</i> , showing that the H_2 -independent electron transport

176	chain is less effective than electron transport via H_2 cycling. The observation that
177	$\Delta fpo/\Delta frh$ double mutants are incapable of methylotrophic growth shows that
178	additional electron transport routes are either not present, or not sufficient for
179	methylotrophic growth (11). Mutants lacking Vht are inviable under all growth
180	conditions, including methylotrophic growth, unless Frh is also removed. This
181	phenotype is probably due the inability to recapture H_2 produced in the cytoplasm,
182	which causes redox imbalance and cell lysis (15).
183	Although the three <i>M. barkeri</i> hydrogenases have been studied <i>in vitro</i> and in
184	certain mutants, a complete analysis of their role during growth on various
185	substrates has yet to be reported. In this study, all five hydrogenase operons were
186	systematically deleted in all viable combinations, and the physiological ramifications
187	of these mutations examined by measuring growth, methanogenesis and
188	hydrogenase activity on various growth substrates. We also performed global
189	transcriptional profiling to assess the possibility that alternate electron transport
190	chain components might be upregulated to compensate for the loss of specific
191	hydrogenases. The data suggest that hydrogenases are not required for
192	methylotrophic methanogenesis, but are essential for CO_2 reductive, methyl
193	reductive, and acetoclastic methanogenesis. Additionally, an inhibitory effect of H_2
194	on the methyl oxidative pathway appears to be mediated by all three hydrogenases.
195	
196	RESULTS
197	Construction of hydrogenase deletion mutants. To assess the role of the <i>M</i> .

barkeri hydrogenases during growth on various substrates, we constructed mutants

199 lacking the <i>frhADGB</i> , <i>freAEGB</i> , <i>vhtGACD</i> , <i>vhxGAC</i> and <i>echABCDEF</i> operons	199	lacking the <i>frhADGB</i> ,	freAEGB, vhtGACD	, vhxGAC and echABCDEF op	erons,
---	-----	------------------------------	------------------	---------------------------	--------

200	individually and in all possible combinations (Fig S1). Because mutants lacking <i>vht</i>
201	are only viable in Δfrh mutants (15), we also created a series of conditional mutants
202	that have the <i>vht</i> promoter replaced by the synthetic P_{tet} promoter, which is
203	expressed in the presence of tetracycline and tightly repressed in its absence (19).
204	To simplify the isolation of strains lacking the adjacent <i>vht</i> and <i>vhx</i> loci, we
205	constructed a mutant allele (denoted Δvht - vhx) that deleted both operons along
206	with two intervening genes that encode a putative peptidoglycan binding protein
207	(Mbar_A1842) and an uncharacterized hypothetical protein (Mbar_A1843). The full
208	set of strains containing deletions for hydrogenase operons in all possible
209	combinations were successfully generated and verified by either Southern
210	hybridization or PCR (Figures S2-S5).
211	Characterization of growth phenotypes in hydrogenase deletion

212**mutants.** The generation time, growth yield and duration of lag phase for each213mutant was determined by monitoring optical density during growth in a variety of214media, providing clues as to the function of each hydrogenase during utilization of215various carbon and energy sources (Table 1). With the exception of the Δfre and216 Δvhx mutations, which had no discernable phenotypes alone or in combination with217other gene deletions, each of the mutations caused significant growth defects in one218or more media.

219 Strains containing the Δech mutation were unable to grow in either H₂/CO₂ 220 or acetate media, regardless of whether the other hydrogenase genes were deleted. 221 However, with the exception of the P_{tet}vht/ Δech mutant discussed below, these

222	mutants all grew on methanol medium, albeit with reduced growth rates. Consistent
223	with previous reports (16), the Δech single mutant was unable to grow on
224	unsupplemented methanol/H ₂ /CO ₂ medium. Interestingly, the $\Delta ech/\Delta frh$ double
225	mutant regained the ability to grow in this medium, but with diminished rate and
226	yield and the longest lag phase observed in any of our experiments. These
227	phenotypes were substantially minimized in the $\Delta ech/\Delta frh/\Delta vht$ triple mutant,
228	suggesting that both Frh and Vht inhibit methanol oxidation, which is needed to
229	provide reducing equivalents for biosynthesis, when H_2 is present.
230	As previously reported, we were unable to obtain a mutant lacking only <i>vht</i> ,
231	suggesting that loss of this locus is lethal in otherwise wild-type strains (15). This
232	conclusion was supported by the phenotype of the $P_{tet}vht$ and $P_{tet}vht/\Delta ech$ mutants,
233	which were incapable of growth on any medium when tetracycline is absent (<i>i.e.</i>
234	under repressing conditions). However, as previously noted, when cells were grown
235	on methanol it was possible to delete the <i>vht</i> operon if <i>frh</i> was deleted first. The
236	$\Delta frh/\Delta vht$ strains, including ones that also carried an <i>ech</i> deletion, had methanol
237	growth phenotypes similar to that of the wild type. Thus, hydrogenases are not
238	required for growth on methanol, although <i>vht</i> -deficient strains are inviable in the
239	presence of an active Frh hydrogenase. In contrast, strains lacking <i>vht</i> alone or in
240	combination with other mutations were unable to grow on either H_2/CO_2 or acetate
241	media. A more graded response was observed when various <i>vht</i> mutants were
242	grown on methanol/ H_2/CO_2 . Accordingly, on this substrate combination, the <i>vht</i>
243	single mutant was inviable, while the $\Delta frh/\Delta vht$ double mutant grew very poorly
244	and the $\Delta ech/\Delta frh/\Delta vht$ strain had phenotypes that were nearly wild-type. Again,

245 these data are consistent with the idea that with certain mutant backgrounds Frh, 246 Vht and Ech inhibit methanol oxidation in the presence of H₂. 247 Finally, mutants lacking only the *frh* operon grew on three out of four 248 substrates tested, failing to grow only on H_2/CO_2 medium. When methanol was the 249 sole substrate, the Δfrh mutant had an extended lag phase and a generation time 250 approximately double that of the parental strain. However, during growth on either 251 acetate or methanol/ H_2/CO_2 the growth phenotypes of this strain were equivalent 252 to the parental strain, suggesting Frh enhances growth on methanol, but is not 253 required for growth on the two latter substrate combinations. 254 Methane and CO₂ production by hydrogenase deletion mutants. To 255 probe the underlying mechanisms behind the growth phenotypes, we also examined 256 production of methane and CO_2 by resting cell suspensions incubated with various 257 substrates (Tables 2 & 3). The $P_{tet}vht$ and $P_{tet}vht/\Delta ech$ mutants were not examined 258 because they do not grow in any medium under non-inducing conditions. Similarly, 259 we did not assay production of methane from acetate, because prior growth on 260 acetate is required to induce the enzymes needed for this activity and most of the 261 hydrogenase mutants are unable to grow under these conditions (20, 21). 262 Consistent with their lack of growth phenotypes, the Δfre and Δvhx single 263 mutations did not affect the levels of methane produced from any substrate tested. 264 Neither did these mutations affect the ratio of methane/CO₂ produced from 265 methanol or from methanol/H₂. However, the Δvhx mutation slowed the rate of 266 methane production. The Δfre mutation also slowed the rate of methane production, 267 but only when combined with the Δfrh mutation.

268	As seen in previous studies, Δech mutants produced only minor amounts of
269	methane from H_2/CO_2 (<2% relative to the parental strain), but produced wild-type
270	levels from both methanol and methanol/ H_2 . During incubations with methanol,
271	methane and CO_2 were produced in a 3:1 ratio, consistent with disproportionation
272	of the substrate via the methylotrophic pathway (Fig 2). Cell suspensions incubated
273	with methanol and H_2 produced only methane, showing that addition of hydrogen
274	inhibits methanol oxidation. The rate of methane production by the Δech mutant
275	was somewhat slower than wild-type using both methanol and methanol/ H_2 . This
276	rate was further reduced when the <i>ech</i> deletion was combined with mutations
277	removing the <i>frh</i> or <i>vht</i> operons. Accordingly, the $\Delta ech/\Delta frh$ double mutant
278	produced methane nearly 5 times slower than the wild-type strain. Interestingly,
279	this mutant produced a small amount of CO_2 in addition to the wild-type level of
280	methane, indicating a small amount of methanol was oxidized. When the ech, frh,
281	and <i>vht</i> hydrogenases were deleted together, the quantity and stoichiometry of
282	methane and CO_2 production was identical to that observed on methanol alone.
283	The Δfrh single mutant produced similar levels and ratios of methane and
284	CO_2 relative to the parental strain with methanol or methanol/H ₂ . When H ₂ /CO ₂ was
285	the substrate, methane production was reduced <i>ca.</i> 10-fold, but, significantly, not
286	abolished. Combining the Δfrh mutation with deletions of <i>vht</i> and <i>ech</i> reduced
287	methane production from H_2/CO_2 to negligible levels. In contrast, minimal affects on
288	methane and CO_2 production or stoichiometry were observed when methanol was
289	the sole substrate. However, when combined with deletions of <i>vht</i> or <i>ech</i> , the Δfrh
290	mutants produced significant levels of CO_2 when incubated with methanol/H ₂ , and

291 the triple $\Delta ech/\Delta frh/\Delta vht$ mutant produced similar levels to that seen in assays 292 incubated with methanol alone. Rates of methane production were substantially 293 slower than wild-type for all Δfrh mutants.

294 Enzyme activity in hydrogenase mutants. The hydrogenase activity for 295 selected deletion mutants was measured in the forward direction (H₂ oxidation) to 296 allow estimation of the contributions of each enzyme to overall activity (Table 4). 297 The hydrogenase activity of mutants lacking Fre or Vhx was not statistically 298 different from the parental strain. Moreover, hydrogenase activity of the 299 $\Delta ech/\Delta frh/\Delta vht$ mutant, which still encodes Fre and Vhx, was not statistically 300 different than the $\Delta ech/\Delta frh/\Delta fre/\Delta vht$ -vhx mutant that lacks all five hydrogenase 301 operons. Thus, the *freAEGB* and *vhxGAC* operons do not, by themselves, produce 302 detectable levels of hydrogenase. Because Fre and Vhx are essentially inactive, the 303 hydrogenase levels in the $\Delta frh/\Delta vht$ and $\Delta ech/\Delta frh$ strains can be attributed solely 304 to Ech and Vht, respectively. Accordingly, Ech has the lowest activity of the three 305 hydrogenases, accounting for *ca.* 4% of total activity, and with Vht activity being *ca.* 306 6-fold higher. Consistent with this conclusion, deletion of *ech* did not significantly 307 affect hydrogenase activity, whereas the Δfrh strain had drastically diminished 308 activity as compared to the parental strain. Additionally, activity from the Δfrh 309 strain, which encodes both Vht and Ech, is roughly equivalent to the combined 310 activities of strains encoding only Vht or only Ech. Because strains expressing only 311 Frh hydrogenase are inviable, the activity of this hydrogenase cannot be directly 312 determined from a mutant strain. However, the relative contribution of Frh can be 313 estimated from the hydrogenase activities of other mutants. Thus, by subtracting

the activities of Vht and Ech from that of the parental strain, we estimate that

roughly 75% of hydrogenase activity can be attributed to Frh.

316 Effect of hydrogenase deletions on mRNA abundance. Our estimate of the 317 relative activities of the individual hydrogenases assumes that the expression levels 318 for each hydrogenase are unaffected by deletion of the others. To explicitly examine 319 this possibility, we determined the global mRNA abundance profiles for each mutant 320 using RNA seq (Table S4 and Dataset S1). Importantly, the RNA used in this analysis 321 was isolated from the same cultures that were assayed for hydrogenase activity. 322 As expected, the mRNA levels for the deleted genes in each mutant were 323 significantly and substantially lower than the parental strain, providing an 324 important validation that the correct strains were used in these assays. Moreover, 325 no significant differences in mRNA abundance from the parent were observed for 326 the remaining hydrogenases in any strain, showing that the expression of individual 327 hydrogenase operons is not regulated by the presence/absence of other 328 hydrogenase genes. Thus, the hydrogenase activities found in the various mutants 329 accurately reflect the combined activities of each enzyme in all strains. 330 Large numbers of *M. barkeri* genes showed significant changes in mRNA 331 abundance in the hydrogenase mutants, relative to the parental strain. Accordingly, 332 2.7% of all genes were differently regulated in strains with one or two deleted 333 hydrogenases, whereas the $\Delta ech/\Delta frh/\Delta vht$ and $\Delta ech/\Delta frh/\Delta fre/\Delta vht$ -vhx strains 334 showed in 17.4% and 22.5% differently regulated genes, respectively (Dataset S1). 335 Of these, most encode proteins with unknown functions or with annotated functions 336 that do not appear to be related to energy conservation. One exception was the F420

337 dehydrogenase (*fpo*), whose mRNA abundance increased significantly in all strains

lacking *frh* (Table S4). This result suggests that the cell has a mechanism to sense

the redox state of F420, which is altered upon deletion of *frh*.

340

341 **DISCUSSION**

342 While fully consistent with the proposed functions of the *M. barkeri* 343 hydrogenases, our phenotypic characterization of mutants lends new insight into 344 the flexibility and interconnected nature of methanogenic metabolism. For example, 345 reduction of CO₂ to CH₄ is expected to require three kinds of electron donors: Fd_{red}, 346 F420_{red}, and reduced methanophenazine (1). Consistent with this idea, mutants 347 lacking hydrogenases that reduce Fd (Ech), F420 (Frh) or methanophenazine (Vht) 348 are unable to grow on H_2/CO_2 . Thus, we were surprised to observe production of 349 methane from H_2/CO_2 in cell suspensions of Δfrh mutants. Assuming this process 350 involves the standard CO₂ reduction pathway, this would require an alternative 351 source of F420_{red} for reduction of methenyl- and methylene-tetrahydrosarcinapterin 352 (Fig 2). Two alternative sources can be envisioned: first, Fpo could produce F420_{red} 353 using reduced methanophenazine as the electron donor via reverse electron 354 transport driven by proton motive force; second, a soluble heterodisulfide reductase 355 could produce F420_{red} via electron bifurcation using CoM-S-S-CoB and Fd_{red} as 356 substrates (as suggested in (22, 23)). In the former mechanism, reduced 357 methanophenazine would be derived from H₂ using Vht; in the latter, Fd_{red} would be 358 derived from H₂ via Ech. Interestingly, double mutants lacking Frh and either Ech or 359 Vht produce much less methane than the Δfrh single mutant, thus both alternate

360 pathways may contribute to this phenotype. The inability of the Δfrh mutant to grow 361 on H_2/CO_2 suggests that this alternate methane-producing pathway does not 362 provide sufficient energy for growth, or that it fails to provide an essential 363 biosynthetic precursor. 364 Similar metabolic flexibility is seen during methylotrophic methanogenesis, 365 which can occur via H_2 -dependent or -independent mechanisms (Figures 2, 3) (11, 366 12. 15. 16). We previously showed that a hydrogen cycling mechanism involving Frh 367 and Vht is the preferred mode of electron transport in *M. barkeri*. Nevertheless, *M.* 368 barkeri is also capable of methylotrophic growth in the absence of Frh and Vht (11, 369 15). Data reported here reveal that methylotrophic growth in *M. barkeri* is possible 370 when all three hydrogenases are deleted. Thus, we have created an *M. barkeri* strain 371 similar to *Methanosarcina acetivorans*, which has no detectable hydrogenase activity, 372 but which grows well on methylotrophic substrates (7, 14). During methylotrophic 373 growth in *M. acetivorans*, an electron transport chain comprised of Fpo and HdrDE is 374 used to capture energy from F420_{red} produced by the oxidative branch of the 375 methanogenic pathway (Figures 2, 3). Our genetic analyses suggest that Fpo is also 376 used to metabolize F420_{red} in *M. barkeri* $\Delta frh/\Delta vht$ mutants (11, 15). The oxidative 377 branch of the methylotrophic pathway also produces Fd_{red}, which in *M. acetivorans* 378 is oxidized by membrane-bound, ion-pumping Fd_{red}:methanophenazine 379 oxidoreductase known as Rnf (24). However, because *M. barkeri* does not encode 380 Rnf, this energy-conserving electron transport pathway in not available to the Ech 381 mutants characterized here. Thus, an alternative Fd_{red}:heterodisulfide 382 oxidoreductase system must exist to allow growth of these mutants on methanol. It

383 has been suggested that this alternate Fd_{red}:heterodisulfide oxidoreductase activity

is catalyzed by a cytoplasmic, electron-bifurcating heterodisulfide reductase

385 (HdrABC), similar to the electron-bifurcating heterodisulfide reductase of non-

386 cytochrome containing methanogens (Fig 3) (22). Biochemical data from a

387 homologous *M. acetivorans* enzyme supports this possibility (23).

388 Interestingly, the stoichiometry of methane and CO₂ produced from 389 methanol/H₂ in $\Delta frh/\Delta vht$ and $\Delta frh/\Delta fre/\Delta vht$ -vhx mutants lends additional support 390 for an alternate Fd_{red}:heterodisulfide oxidoreductase. These strains, which encode 391 only Ech, might be expected to disproportionate methanol to CH₄ and CO₂ in a 3:1 392 ratio, as was seen in the strains lacking all three active hydrogenases. Instead, they 393 produced CH_4 and CO_2 at an approximate ratio of 10:1, suggesting that a substantial 394 portion of methanol was reduced directly to CH₄ using electrons obtained by H₂ 395 oxidation. Because Ech is the sole remaining hydrogenase in these strains, electrons 396 from Fd_{red} must be involved in this process.

397 H₂ also inhibits oxidation of methanol when both substrates are present, via 398 a mechanism that is clearly mediated by hydrogenase activity. Accordingly, in the 399 presence of H₂, methanol is solely reduced to methane by cell suspensions of strains 400 that contain all three hydrogenases, while it is disproportionated to methane and 401 CO_2 in a 3:1 ratio when all three are absent. The hydrogenase-mediated inhibition of 402 methanol oxidation is graded, with Vht having the largest effect and Ech the least. 403 Similarly, Ech mutants are only able to grow on methanol/ H_2 when supplemented 404 with acetate and pyruvate, which has been interpreted to mean they cannot produce 405 the reducing equivalents needed for biosynthesis by oxidizing methanol to CO_2 (16).

406 We showed here that this effect is alleviated by deletion of genes encoding Frh and 407 Vht, with the Δvht mutation having a much larger effect. Because protein synthesis 408 was blocked by addition of puromycin in the cell suspension experiments, these 409 effects cannot have been mediated by changes in the concentration of enzymes in 410 the methanogenic pathways. Moreover, because inhibition requires the 411 hydrogenase enzymes to be present, it is likely that a product of the enzymatic 412 reaction mediates inhibition: namely the reduced enzyme cofactors. Thus, in the 413 presence of high H_2 partial pressures and the appropriate hydrogenase, we would 414 expect the levels of oxidized methanophenazine, $F420_{0x}$ and Fd_{0x} to be kept at very 415 low levels. Interestingly, the graded inhibition in response to loss of Vht, Frh and 416 Ech mimics the thermodynamics of the hydrogenase reactions, with 417 methanophenazine being the most energetically favorable electron acceptor and Fd 418 being the least. This suggests at least two possible mechanisms that might account 419 for the inhibition: i) allosteric inhibition or covalent inactivation of a key enzymatic 420 step in the oxidative branch of the pathway could be triggered by one or more 421 reduced cofactors, or *ii*) simple changes in the availability of $F420_{0x}$ and Fd_{0x} , which 422 are needed for three discrete steps in the oxidative branch of the methyloptrophic 423 pathway (Fig 2). Note that in the second mechanism, the major inhibitory effect of 424 Vht on methyl oxidation can only be explained if high levels of reduced 425 methanophenazine influence the levels of F420_{ox}, which could occur by changing the 426 equilibrium of the Fpo reaction (Fig 2, 3). 427 In addition to affecting flux through methanogenic pathways, the levels of

428 reduced or oxidized cofactors may be used as a sensory input to modulate gene

429	regulation. Transcriptional profiling of hydrogenase mutants showed that in all
430	strains lacking <i>frh</i> , the <i>fpo</i> operon was significantly up-regulated. Without Frh, Fpo
431	is solely responsible for the $F420_{red}$:methanophenazine oxidoreductase activity
432	required to transfer electrons from the oxidative to reductive portions of the
433	methylotrophic electron transport pathway. Elevated abundance of <i>fpo</i> mRNA in
434	Δfrh strains indicates that the cell has a mechanism to sense and respond to F420
435	redox imbalance. A previous study identified MreA as a global regulator in
436	Methanosarcina with the ability to bind and repress the fpo promoter region during
437	aceticlastic growth (25). This regulator was shown to affect gene expression based
438	on growth substrate, however the mechanism and sensory input are unknown.
439	Systems for gene regulation based on detected redox imbalance of F420 and other
440	electron carriers are a potential source for future studies.
441	The levels of hydrogenase activity for the three enzyme types have
442	significant ramifications for the hydrogen cycling model on energy conservation
443	(15). We have shown that Δvht mutations are lethal when Frh is present, but not
444	when it is absent. Moreover, when <i>vht</i> expression is turned off using a regulated
445	promoter, cell lysis is concomitant with H_2 accumulation, implying that the inability
446	to recapture H_2 produced in the cytoplasm is responsible for the lethal phenotype.
447	With this in mind, it seems clear that the cytoplasmic activities of Frh must be
448	carefully balanced against the periplasmic activity of Vht. Interestingly, our data
449	show that Frh activity is ca. 3-fold higher than that of Vht. Thus, it appears that
450	ability of Frh to produce H_2 is much higher than the ability of Vht to take it up. We
451	recognize that our assays were not conducted with the native substrates (which are

452	not commercially available), therefore we approximated the <i>in vivo</i> activity of each
453	enzyme based on available literature values in which a variety of natural and
454	artificial cofactors were used (Table S5). These data suggest that the relative
455	activities of Frh and Vht are more similar than our assay data suggest, with Frh
456	activity ca. 1.5-fold higher than Vht. While this extrapolation must be interpreted
457	with caution, it still suggests that Frh capacity is higher than that of Vht. In this
458	regard, both Vht and Ech are coupled to ion-motive force; thus, activity in whole,
459	metabolically active cells could be substantially different.
460	Finally, unlike Frh and Vht, Fre and Vhx are not able to provide sufficient
461	levels of F420 $_{red}$ and reduced methanophenazine, respectively, for growth via CO_2
462	reduction. Additionally, the $\Delta ech/\Delta frh/\Delta vht$ strain that only encoded for the Fre and
463	Vhx hydrogenases had no detectable hydrogenase activity. This could be due to low
464	expression of <i>fre</i> and <i>vhx</i> operons, absence of post-translational processing,
465	mutations in structural or catalytic residues or some combination of these (7).
466	Analysis of RNA sequencing data from wild type <i>M. barkeri</i> grown
467	methylotrophically indicated the abundance mRNA for <i>fre</i> approximately 50-lower
468	than <i>frh</i> (Dataset S1), similar to the relative abundance observed by Vaupel and
469	Thauer (8). Additionally, the abundance of <i>vhx</i> transcripts was more than 200-fold
470	lower than those of <i>vht</i> . We note that our enzymatic assays would have easily
471	detected hydrogenase activity at levels 200-fold lower than we observed for the
472	strains encoding only <i>vht</i> . Thus, poor gene expression cannot explain the lack of
473	activity in strains expressing only Fre of Vhx. Hydrogenases require several
474	maturation steps to become active enzymes, including processing by the maturation

475 proteases encoded by the *frhD* and *vhtD* genes. Thus, it remains possible that Fre

476 and Vhx could encode active enzymes if FrhD and VhtD are *trans*-acting maturation

477 proteases. Given that the mutants characterized here removed the entire *frh* and *vht*

- 478 operons, our data do not address this possibility.
- 479

480 MATERIALS AND METHODS

481 Media and growth conditions

482 *Methanosarcina* strains were grown as single cells (26) at 37 °C in high salt 483 (HS) broth medium (27) or on agar-solidified medium as described (28). Growth 484 substrates provided were methanol (125 mM in broth medium and 50 mM in agar-485 solidified medium) or sodium acetate (120 mM) under a headspace of N₂:CO₂ (80:20 486 v/v) at 50 kPa over ambient pressure, H₂:CO₂ (80:20 v/v) at 300 kPa over ambient 487 pressure, or a combination of methanol plus hydrogen. Cultures were supplemented 488 as indicated with 0.1% yeast extract (YE), 0.1% casamino acids (CAA), 10 mM 489 sodium acetate, 10 mM pyruvate or 100 mM pyruvate. Puromycin (CalBioChem, San 490 Diego, CA) was added at 2 mg ml⁻¹ for selection of the puromycin transacetylase 491 (pac) gene (29). 8-Aza-2,6-diaminopurine (8-ADP) (Sigma, St Louis, MO) was added 492 at 20 mg ml⁻¹ for selection against the presence of *hpt* (29). Tetracycline (Tc) was 493 added at 100 mg ml⁻¹ to induce the tetracycline-regulated PmcrB(tetO1) promoter 494 (19). Standard conditions were used for growth of *Escherichia coli* strains (30) 495 DH5 α / λ -*pir* (31) and DH10B (Stratagene, La Jolla, CA), which were used as hosts for 496 plasmid constructions.

497 **DNA methods and plasmid constructions**

498 Standard methods were used for plasmid DNA isolation and manipulation in

499 E. coli (32). Liposome mediated transformation was used for Methanosarcina as

500 described (33). Genomic DNA isolation and DNA hybridization were as described

501 (27, 28, 34). DNA sequences were determined from double-stranded templates by

502 the W.M. Keck Center for comparative and functional genomics, University of Illinois.

503 Plasmid constructions are described in Tables S1 and S2.

504 Strain construction in M. barkeri

505 The construction and genotype of all *Methanosarcina* strains is presented in

506 Table S3. Hydrogenase encoding genes were deleted sequentially in a specific order

507 (Figure S1) because certain hydrogenase deletion mutants are only viable when

508 other hydrogenase genes are deleted first (15). To simplify isolation of strains that

509 lack hydrogenase operons *vhxGAC* and *vhtGACD*, the genes between the two operons

510 (*Mbar_A1842* and *Mbar_A1843*) were also deleted (Figure 1). All mutants were

511 confirmed by either PCR or DNA hybridization (Figures S2-S5).

512 **Determination of growth characteristics**

513 For growth rate determinations, cultures were grown on methanol or

methanol plus H_2/CO_2 (Δfrh and $\Delta frh/\Delta fre$) to mid-log phase (optical density at 600

515 nm [OD₆₀₀] *ca.* 0.5). Approximately 3% inoculum of the culture (or 10%, in case of

acetate) was then transferred to fresh medium in at least four replicates and

517 incubated at 37 °C. Growth was quantified by measuring OD₆₀₀. With the exception

- of samples grown on acetate, all OD_{600} were measured with a Spectronic 20
- 519 spectrophotometer (Thermo Fisher Scientific, Waltham, MA); those grown on
- 520 acetate were measured with a Hewlett Packard 8453 spectrophotometer (Agilent,

521 Santa Clara, CA). Note that an OD of 1.0 on the Hewlett Packard 8453 is equivalent to 522 an OD of ~ 0.2 on the Spectronic 20. Generation times were calculated during 523 exponential growth phase and lag phase was defined as the time required to reach 524 half-maximal OD₆₀₀. 525 **Cell suspension experiments** 526 Cells grown on methanol or methanol plus H₂/CO₂ (Δfrh and $\Delta frh/\Delta fre$) were 527 collected in late exponential phase ($OD_{600} = 0.6-0.7$) by centrifugation at 5,000 x g 528 for 15 minutes at 4 °C. The cells were washed once with anaerobic HS PIPES buffer 529 (50 mM PIPES at pH 6.8, 400 mM NaCl, 13 mM KCl, 54 mM MgCl₂, 2 mM CaCl₂, 2.8 530 mM cysteine, 0.4 mM Na₂S) and resuspended in the same buffer to a final 531 concentration of 10⁹ cells/ml. Cells were counted visually using the Petroff-Hausser 532 counting chamber (Hausser Scientific, PA). All assay mixtures contained 2 ml of the

533 suspension and were conducted under strictly anaerobic conditions in 25 ml Balch

tubes sealed with butyl rubber stoppers using 250 mM methanol as the

535 methanogenic substrate under a headspace of N₂, H₂, or H₂/CO₂ (80/20%) at 250

536 kPa over the ambient pressure, as indicated. Puromycin (20 μ g/ml) was added to

537 prevent protein synthesis. Cells were held on ice until initiation of assay by transfer

to 37 °C. For rate determination, gas phase samples were withdrawn at various time

points and assayed for CH₄ by gas chromatography at 225 °C in a Hewlett Packard

540 gas chromatograph (5890 Series II) equipped with a flame ionization detector. The

541 column used was stainless steel filled with 80/120 CarbopackTM B/3% SPTM-1500

542 (Supelco, Bellefonte, PA) with helium as the carrier gas. For total CH₄ and CO₂

543 production, assays were incubated at 37 °C for 36 hours prior to withdrawal of gas

phase samples for analysis by GC at 225 °C in a Hewlett Packard gas chromatograph
(5890 Series II) equipped with a thermal conductivity detector. A stainless steel
60/80 Carboxen-1000 column (Supelco, Bellefonte, PA) with helium as the carrier
gas was used. Total cell protein was determined using the Bradford method (35)
after 1 ml of the cells was lysed by resuspension in ddH₂0 with 1 mg/ml RNase and
DNase.

550 Hydrogenase assays

Strains were grown at 37 °C in HS medium supplemented with 125 mM 551 552 methanol and cells were harvested from 10 ml mid-exponential phase culture at 553 1228 x g for 15 min in an IEC MediSpin (Needham Heights, MA) benchtop centrifuge. 554 Preparation of cell extract was performed in an anaerobic chamber under an 555 atmosphere of H_2/N_2 (4/96%). Cells were washed once in 10 ml HS-MOPS [2 mM 556 dithiothreitol (DTT), 400 mM NaCl, 13 mM KCl, 54 mM MgCl₂, 2 mM CaCl₂, 50 mM 557 MOPS, pH 7.0] and lysed in 1 ml lysis buffer (2 mM DTT, 0.5% *n*-dodecyl β-D-558 maltoside, ca. 50 Kunitz units bovine pancreas deoxyribonuclease I, 50 mM MOPS, 559 pH 7.0) on ice for 30 min. Enzyme-containing supernatant was separated from cell 560 debris by centrifugation at 13600 x g for 2.5 min (Fisher Scientific Micro Centrifuge 561 Model 235C, Waltham, MA). Protein concentration was measured via the Bradford 562 method (35).

Assays were performed anaerobically in 1.7 ml quartz cuvettes sealed with rubber stoppers. A total reaction volume of 1 ml was used, and included cell extract mixed with 50 mM MOPS buffer (pH 7.0) containing 2 mM DTT and 2 mM benzyl viologen (BV). The cuvette headspace was pressurized to 30 kPa with 100% H₂ after

567	being flushed for 2 min. Cuvettes with reaction mixture were pre-warmed to 30 $^{\circ}$ C
568	before the reaction was initiated by the addition of BV. Hydrogenase activity was
569	determined by quantifying the change in absorbance of BV at 578 nm (extinction
570	coefficient, 8.65 cm $^{-1}$ mM $^{-1}$) with a Cary 50 UV-Vis Spectrophotometer (Agilent,
571	Santa Clara, CA). One unit (U) of hydrogenase activity was defined as the oxidation
572	of 1 $\mu mol~H_2$ per minute, based on the fact that 2 $\mu mol~BV$ are reduced for each H_2
573	oxidized. A minimum of three independent measurements from biological replicates
574	was performed for each strain.
575	RNA sequencing
576	Immediately prior to cell harvest for hydrogenase assays, 2.5 ml of the same
577	culture was harvested for total RNA isolation. An equal volume of TRIzol reagent
578	(Ambion, Carlsbad, CA) was added to the culture to lyse cells and samples were
579	incubated at room temperature for 5 min. RNA was then isolated with a Direct-zol
580	RNA MiniPrep kit from Zymo Research (Irvine, CA) according to the manufacturer's
581	directions. RNA samples were stored at -80 °C.
582	To increase coverage of mRNA during sequencing, rRNA was removed from
583	samples via subtractive hybridization. The method of Stewart et al. (36) was utilized
584	with the following modifications. Templates for 16S and 23S rRNA probes were
585	generated by PCR from strain WWM85 with primers 16SFor, T716SRev, 23SFor, and
586	T723SRev. In vitro transcription with the MEGAscript High Yield Transcription kit
587	(Ambion) was used for the production of biotinylated antisense rRNA probes from
588	400 ng of the purified PCR products in separate reactions. After removal of template
589	with DNAseI, probes were purified with the Zymo Research RNA Clean &

590	Concentrator kit. Hybridization reactions (30 μ l) for each sample contained the
591	following: 20% formamide, 1X SSC buffer, 20 U SUPERase inhibitor, 2 μg total RNA,
592	$4~\mu g$ 16S probe, and $4~\mu g$ 23S probe. Reactions were denatured at 70 °C for 10 min,
593	ramped down to 25 °C (-0.1 °C sec ⁻¹), and incubated at room temperature for 10 min.
594	rRNA hybridized to biotinylated probe was removed via streptavidin-coated
595	magnetic beads (New England Biolabs, Ipswich, MA). Beads (500 μ l per sample)
596	were washed twice with 500 μl 1X SSC buffer prior to the addition of hybridized
597	RNA sample diluted to 250 μl in 1X SSC buffer with 20% formamide. Samples were
598	incubated for 1 hour at room temperature with gentle shaking before separation of
599	beads on a magnetic rack. The supernatant was removed, beads were washed with
600	250 μl 1X SSC, and supernatant and wash were pooled and cleaned with the Zymo
601	Research RNA Clean & Concentrator kit.
602	Preparation and sequencing of RNAseq libraries was performed at the Roy J.
603	Carver Biotechnology Center at the University of Illinois at Urbana-Champaign.
604	Libraries were made with the TruSeq Stranded mRNA Sample Prep kit, sequenced
605	with a HiSeq 2000 using the TruSeq SBS v3 kit, and processed with Casava 1.8.2, all
606	per the manufacturer's directions (Illumina, San Diego, CA). All sequencing data was

607 further processed and analyzed as previously described (37) with CLC Genomics

608 Workbench 7 (Qiagen). Within this program, the Empirical analysis of Differential

- 609 Gene Expression (EDGE) tool was used for statistical analysis (38). Differently
- 610 regulated genes were considered significant when up- or down-regulated at least 3-
- fold with a p-value \leq 0.05. Three biological replicates were sequenced and analyzed

- 612 for each strain. Raw and processed data have been deposited in the Gene Expression
- 613 Omnibus (GEO) under the accession number GSE98441.
- 614

615 **ACKNOWLEDGEMENTS**

- 616 The authors acknowledge the Division of Chemical Sciences, Geosciences, and
- 617 Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- 618 through Grant DE-FG02-02ER15296 for funding of this work.

619 **REFERENCES**

620	1.	Thauer RK, Hedderich R, Fischer R. 1993. Reactions and Enzymes Involved in
621		Methanogenesis from CO_2 and H_2 , p 209-252. <i>In</i> Ferry JG (ed),
622		Methanogenesis: Ecology, Physiology, Biochemistry & Genetics. Chapman &
623		Hall, New York, NY.
624	2.	Vignais PM, Billoud B, Meyer J. 2001. Classification and phylogeny of
625		hydrogenases. FEMS Microbiol Rev 25:455-501.
626	3.	Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW,
627		Adams MWW. 2015. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism,
628		and maturation. Biochim Biophys Acta 1853:1350-1369.
629	4.	Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S. 2010.
630		Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H_2
631		storage. Annu Rev Biochem 79:507-536.
632	5.	Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R. 2008.
633		Methanogenic archaea: ecologically relevant differences in energy
634		conservation. Nat Rev Microbiol 6:579-591.
635	6.	Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA. 2012. Essential
636		anaplerotic role for the energy-converting hydrogenase Eha in
637		hydrogenotrophic methanogenesis. Proc Natl Acad Sci U S A 109:15473-
638		15478.
639	7.	Guss AM, Kulkarni G, Metcalf WW. 2009. Differences in hydrogenase gene
640		expression between Methanosarcina acetivorans and Methanosarcina barkeri.
641		J Bacteriol 191:2826-2833.

642	8.	Vaupel M, Thauer RK. 1998. Two F_{420} -reducing hydrogenases in
643		Methanosarcina barkeri. Arch Microbiol 169:201-205.
644	9.	Fiebig K, Friedrich B. 1989. Purification of the F_{420} -reducing hydrogenase
645		from <i>Methanosarcina barkeri</i> (strain Fusaro). Eur J Biochem 184:79-88.
646	10.	Michel R, Massanz C, Kostka S, Richter M, Fiebig K. 1995. Biochemical
647		characterization of the 8-hydroxy-5-deazaflavin-reactive hydrogenase from
648		Methanosarcina barkeri Fusaro. Eur J Biochem 233:727-735.
649	11.	Kulkarni G, Kridelbaugh DM, Guss AM, Metcalf WW. 2009. Hydrogen is a
650		preferred intermediate in the energy-conserving electron transport chain of
651		Methanosarcina barkeri. Proc Natl Acad Sci U S A 106:15915-15920.
652	12.	Meuer J, Bartoschek S, Koch J, Künkel A, Hedderich R. 1999. Purification and
653		catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur J
654		Biochem 265:325-335.
655	13.	Liu Y, Whitman WB. 2008. Metabolic, Phylogenetic, and Ecological Diversity
656		of the Methanogenic Archaea. Ann N Y Acad Sci 1125:171-189.
657	14.	Guss AM, Mukhopadhyay B, Zhang JK, Metcalf WW. 2005. Genetic analysis of
658		mch mutants in two Methanosarcina species demonstrates multiple roles for
659		the methanopterin-dependent C-1 oxidation/reduction pathway and
660		differences in H_2 metabolism between closely related species. Mol Microbiol
661		55:1671-1680.
662	15.	Kulkarni G, Mand TD, Metcalf WW. 2018. Energy conservation via hydrogen
663		cycling in the methanogenic archaeon Methanosarcina barkeri. bioRxiv
664		https://doi.org/.

665	16.	Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW. 2002. Genetic
666		analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role
667		for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation.
668		Proc Natl Acad Sci U S A 99:5632-5637.
669	17.	Deppenmeier U. 2004. The membrane-bound electron transport system of
670		Methanosarcina species. J Bioenerg Biomembr 36:55-64.
671	18.	Welte C, Deppenmeier U. 2014. Bioenergetics and anaerobic respiratory
672		chains of aceticlastic methanogens. Biochim Biophys Acta 1837:1130-1147.
673	19.	Guss AM, Rother M, Zhang JK, Kulkarni G, Metcalf WW. 2008. New methods
674		for tightly regulated gene expression and highly efficient chromosomal
675		integration of cloned genes for <i>Methanosarcina</i> species. Archaea 2:193-203.
676	20.	Krzycki JA, Wolkin RH, Zeikus JG. 1982. Comparison of unitrophic and
677		mixotrophic substrate metabolism by acetate-adapted strain of
678		Methanosarcina barkeri. J Bacteriol 149:247-254.
679	21.	Jablonski PE, DiMarco AA, Bobik TA, Cabell MC, Ferry JG. 1990. Protein
680		content and enzyme activities in methanol- and acetate-grown
681		Methanosarcina thermophila. J Bacteriol 172:1271-1275.
682	22.	Buan NR, Metcalf WW. 2010. Methanogenesis by Methanosarcina acetivorans
683		involves two structurally and functionally distinct classes of heterodisulfide
684		reductase. Mol Microbiol 75:843-853.
685	23.	Yan Z, Wang M, Ferry JG. 2017. A Ferredoxin- and $F_{420}H_2$ -Dependent,
686		Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the
687		Domains Bacteria and Archaea. mBio 8: e02285-16.

688	24.	Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG. 2006. Electron transport
689		in the pathway of acetate conversion to methane in the marine archaeon
690		Methanosarcina acetivorans. J Bacteriol 188:702-710.
691	25.	Reichlen MJ, Vepachedu VR, Murakami KS, Ferry JG. 2012. MreA functions in
692		the global regulation of methanogenic pathways in Methanosarcina
693		acetivorans. mBio 3:e00189-12.
694	26.	Sowers KR, Boone JE, Gunsalus RP. 1993. Disaggregation of Methanosarcina
695		spp. and Growth as Single Cells at Elevated Osmolarity. Appl Environ
696		Microbiol 59:3832-3839.
697	27.	Metcalf WW, Zhang JK, Shi X, Wolfe RS. 1996. Molecular, genetic, and
698		biochemical characterization of the serC gene of Methanosarcina barkeri
699		Fusaro. J Bacteriol 178:5797-5802.
700	28.	Boccazzi P, Zhang JK, Metcalf WW. 2000. Generation of dominant selectable
701		markers for resistance to pseudomonic acid by cloning and mutagenesis of
702		the <i>ileS</i> gene from the archaeon <i>Methanosarcina barkeri</i> Fusaro. J Bacteriol
703		182:2611-2618.
704	29.	Pritchett MA, Zhang JK, Metcalf WW. 2004. Development of a markerless
705		genetic exchange method for Methanosarcina acetivorans C2A and its use in
706		construction of new genetic tools for methanogenic archaea. Appl Environ
707		Microbiol 70:1425-1433.
708	30.	Wanner BL. 1986. Novel regulatory mutants of the phosphate regulon in
709		Escherichia coli K-12. J Mol Biol 191:39-58.

710	31.	Miller VL, Mekalanos JJ. 1988. A novel suicide vector and its use in
711		construction of insertion mutations: osmoregulation of outer membrane
712		proteins and virulence determinants in <i>Vibrio cholerae</i> requires <i>toxR</i> . J
713		Bacteriol 170:2575-2583.
714	32.	Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K.
715		1992. Current Protocols in Molecular Biology. Wiley & Sons, New York.
716	33.	Metcalf WW, Zhang JK, Apolinario E, Sowers KR, Wolfe RS. 1997. A genetic
717		system for Archaea of the genus Methanosarcina: liposome-mediated
718		transformation and construction of shuttle vectors. Proc Natl Acad Sci U S A
719		94:2626-2631.
720	34.	Zhang JK, White AK, Kuettner HC, Boccazzi P, Metcalf WW. 2002. Directed
721		mutagenesis and plasmid-based complementation in the methanogenic
722		archaeon Methanosarcina acetivorans C2A demonstrated by genetic analysis
723		of proline biosynthesis. J Bacteriol 184:1449-1454.
724	35.	Bradford MM. 1976. A rapid and sensitive method for the quantitation of
725		microgram quantities of protein utilizing the principle of protein-dye binding.
726		Anal Biochem 72:248-254.
727	36.	Stewart FJ, Ottesen EA, DeLong EF. 2010. Development and quantitative
728		analyses of a universal rRNA-subtraction protocol for microbial
729		metatranscriptomics. ISME J 4:896-907.
730	37.	Fu H, Metcalf WW. 2015. Genetic basis for metabolism of methylated sulfur
731		compounds in <i>Methanosarcina</i> species. J Bacteriol 197:1515-1524.

- 732 38. Robinson MD, Smyth GK. 2008. Small-sample estimation of negative binomial
- dispersion, with applications to SAGE data. Biostatistics 9:321-332.

736 FIGURE LEGENDS

737 Fig 1. Hydrogenase operons of *Methanosarcina barkeri*. Three distinct types of

738 hydrogenase are encoded by *M. barkeri*. Two potential methanophenazine-

- dependent hydrogenases are encoded by the adjacent *vhtGACD* and *vhxGAC* operons,
- 740 while two potential F420-dependent hydrogenases are encoded by the unlinked
- 741 *frhADGB* and *freAEGB* operons. The energy-converting, ferredoxin-dependent
- 742 hydrogenase is encoded by the *echABCDEF* operon. Locus Tags are shown below

each gene, in some cases the "Mbar_" prefix was omitted (shown by an asterisk) due

- to space constraints.
- 745

746 Fig 2. Four methanogenic pathways of Methanosarcina. Each pathway shares a 747 common step in the reduction of methyl-CoM to methane; however, they differ in 748 the route used to form methyl-CoM and in the source of electrons used for its 749 reduction to methane. The CO₂ reduction pathway (red arrows) involves reduction 750 of CO₂ to methane using electrons derived from the oxidation of H₂, while the 751 methylotrophic pathway (light blue arrows) involves disproportionation of C-1 752 substrates to methane and CO₂. These two pathways share many steps, with overall 753 metabolic flux in opposite directions (shown by red/light blue shaded arrows). In 754 the aceticlastic pathway (green arrows), acetate is split into a methyl group and an 755 enzyme-bound carbonyl moiety (shown in brackets) by the enzyme acetyl-CoA 756 decarbonylase/synthase (ACDS). The latter is oxidized to CO_2 , producing reduced 757 ferredoxin that provides electrons for reduction of methyl group to methane. Lastly, 758 in the methyl reduction pathway (dark blue arrows) C-1 compounds are reduced to

759	CH_4 using electrons derived from H_2 oxidation. Dashed lines depict diffusion of H_2 ,
760	which occurs during the transfer of electrons between oxidative and reductive
761	portions of methylotrophic and aceticlastic pathways. The steps catalyzed by Frh,
762	Vht, Ech hydrogenases are indicated. Note that in wild-type <i>M. barkeri</i> hydrogenases
763	are involved in all four pathways. Abbreviations used are: Hdr, heterodisulfide
764	reductase; MF, methanofuran; H_4 SPT, tetrahydrosarcinapterin; CoM, coenzyme M;
765	CoB, coenzyme B; CoM-S-S-CoB, heterodisulfide of CoM and CoB; Fd_{ox}/Fd_{red} ,
766	oxidized and reduced ferredoxin; F420 $_{\rm ox}/$ F420 $_{\rm red}$, oxidized and reduced cofactor
767	F420; MP_{ox}/MP_{red} , oxidized and reduced methanophenazine.
768	
769	Fig 3. The branched electron transport systems of Methanosarcina barkeri and
770	Methanosarcina acetivorans. During methylotrophic methanogenesis, M. barkeri
771	can utilize H_2 -dependent or H_2 -independent electron transport systems. The H_2 -
772	dependent pathway involves the use of hydrogenases Frh, Ech, and Vht in a H_2
773	cycling mechanism to transfer electrons from $F420_{red}$ or Fd_{red} to methanophenazine
774	(MP). <i>M. acetivorans</i> does not utilize hydrogenases, and is therefore incapable of H_2
775	
	cycling. Both organisms can conserve energy via a H_2 -independent pathway,
776	cycling. Both organisms can conserve energy via a H_2 -independent pathway, wherein electrons are transferred from $F420_{red}$ to MP by way of the F420
776 777	
	wherein electrons are transferred from $F420_{red}$ to MP by way of the F420
777	wherein electrons are transferred from F420 _{red} to MP by way of the F420 dehydrogenase (Fpo). Additionally, the electron transport system in <i>M. acetivorans</i>
777 778	wherein electrons are transferred from F420 _{red} to MP by way of the F420 dehydrogenase (Fpo). Additionally, the electron transport system in <i>M. acetivorans</i> includes the Na ⁺ -translocating Rnf enzyme complex that serves as a Fd:MP
777 778 779	wherein electrons are transferred from F420 _{red} to MP by way of the F420 dehydrogenase (Fpo). Additionally, the electron transport system in <i>M. acetivorans</i> includes the Na ⁺ -translocating Rnf enzyme complex that serves as a Fd:MP oxidoreductase. Both membrane-bound electron transport systems converge at the

translocated across the cell membrane in both systems, thereby conserving energy

in the form of an ion motive force. An additional heterodisulfide reductase,

- HdrA1B1C1, has been proposed to function in the energy conservation pathways for
- both organisms. This electron bifurcating enzyme potentially reduces both the CoM-
- 786 S-S-CoB heterodisulfide and F420 with electrons from Fd_{red} at a stoichiometric ratio
- 787 of 2 Fd_{red} oxidized for the reduction of 1 CoM-S-S-CoB to CoM-SH/CoB-SH and
- reduction of 1 F420_{ox} to F420_{red}. Abbreviations used are: Fd_{ox}/Fd_{red}, oxidized and
- reduced ferredoxin; MP/MPH₂, oxidized and reduced methanophenazine;
- 790 F420_{ox}/F420_{red}, oxidized and reduced F420; CoM, coenzyme M; CoB, coenzyme B;
- 791 CoM-S-S-CoB, heterodisulfide of CoM and CoB; FeS, iron-sulfur cluster; FAD, flavin
- adenine dinucleotide; FMN, flavin mononucleotide; NiFe, nickel-iron active site of
- 793 hydrogenases; cytb₁/cytb₂/cyt c, cytochromes.
- 794

TABLES

Table 1. Growth of *M. barkeri* **mutant strains on various methanogenic substrates.**

		H ₂ /CO ₂			Methanol		М	ethanol/H2/C	02		Acetate	
Genotype	Gen. (h) ^d	Max. ODe	Lag (h)	Gen. (h) ^d	Max. ODe	Lag (h)	Gen. (h) ^d	Max. ODe	Lag (h)	Gen. (h) ^d	Max. OD ^f	Lag (h)
$\Delta hpt^{ m a}$	10.4 ± 0.7	0.42 ± 0.04	49 ± 11	8.9 ± 0.3	0.85 ± 0.05	36 ± 1	6.2 ± 0.5	0.77 ± 0.03	33 ± 1	43.6 ± 2.2	1.65 ± 0.04	195 ± 11
Δfre	10.3 ± 0.6	0.35 ± 0.03	59 ± 1	8.8 ± 0.4	0.78 ± 0.04	37 ± 1	7.0 ± 0.4	0.68 ± 0.01	38 ± 4	38.6 ± 2.3	1.68 ± 0.05	200 ± 13
Δvhx	10.7 ± 0.5	0.45 ± 0.02	60 ± 3	8.5 ± 0.2	0.78 ± 0.08	36 ± 2	7.5 ± 0.5	0.69 ± 0.04	51 ± 3	47.2 ±3.8	1.70 ± 0.08	181 ± 22
Δech	NG	NA	NA	12.2 ± 0.9	0.69 ± 0.05	46 ± 1	NG	NA	NA	NG	NA	NA
$\Delta ech/\Delta frh$	NG	NA	NA	12.1 ± 0.7	0.80 ± 0.05	54 ± 2	13 ± 2	0.54 ± 0.03	248 ± 17	NG	NA	NA
$\Delta ech/\Delta frh/\Delta vht$	NG	NA	NA	10.8 ± 0.2	0.71 ± 0.06	48 ± 3	9.0 ± 0.4	0.61 ± 0.02	48 ± 2	NG	NA	NA
$\Delta ech/\Delta frh/\Delta fre/\Delta vht-vhx^{c}$	NG	NA	NA	12.1 ± 0.2	0.84 ± 0.06	54 ± 2	9.3 ± 0.1	0.68 ± 0.03	45 ± 1	NG	NA	NA
$P_{tet}vht^b$	NG	NA	NA	NG	NA	NA	NG	NA	NA	NG	NA	NA
$P_{tet}vht/\Delta ech^{b}$	NG	NA	NA	NG	NA	NA	NG	NA	NA	NG	NA	NA
$\Delta frh/\Delta vht$	NG	NA	NA	11.7 ± 0.7	0.89 ± 0.01	54 ± 2	35 ± 3	0.33 ± 0.03	151 ± 4	NG	NA	NA
$\Delta frh/\Delta fre/\Delta vht$ -vhx ^c	NG	NA	NA	12.3 ± 0.6	0.84 ± 0.07	58 ± 2	29 ± 2	0.43 ± 0.03	116 ± 3	NG	NA	NA
Δfrh	NG	NA	NA	19.5 ± 1.0	0.69 ± 0.05	122 ± 6	7.4 ± 0.6	0.64 ± 0.14	45 ± 3	38.2 ± 1.7	1.71 ± 0.03	219 ± 11
$\Delta frh/\Delta fre$	NG	NA	NA	16.5 ± 0.8	0.80 ± 0.00	89 ± 2	7.7 ± 0.2	0.74 ± 0.01	48 ± 1	39.6 ± 2.9	1.63 ± 0.07	170 ± 13

^a *M. barkeri* Fusaro parental strain; ^b Growth in the absence of tetracycline; ^c *Mbar_A1842* and *Mbar_1843* also deleted; ^d
Generation (doubling) time; ^e Optical Density was measured on a Spectronic 20 spectrophotometer at 600 nm; ^f Optical
Density was measured on a Hewlett Packard 8453 spectrophotometer at 600 nm. Note that an OD of 1.0 on the Hewlett
Packard 8453 is equivalent to an OD of ~0.2 on the Spectronic 20. NG, no growth for at least 6 months of incubation; NA, not
applicable.

	H ₂ /CO) ₂		Methano	1	Methanol/H ₂			
Genotype	CH4 ^a	CO ₂ ^a	CH ₄ a	$CO_2^{\ a}$	CH ₄ : CO ₂	CH ₄ a	CO ₂ ^a	CH ₄ : CO ₂	
$\Delta hpt^{ m b}$	307 ± 24	NA	339 ± 6	118 ± 2	2.9:1	458 ± 6	< 1		
Δfre	316 ± 16	NA	339 ± 7	117 ± 2	2.9:1	442 ± 24	< 1		
Δvhx	328 ± 21	NA	329 ± 7	113 ± 3	2.9:1	453 ± 6	< 1		
Δech	5 ± 1	NA	331 ± 6	109 ± 2	3.0:1	460 ± 12	< 1		
$\Delta ech/\Delta frh$	3 ± 0	NA	328 ± 7	107 ± 2	3.1:1	440 ± 14	4 ± 1	110:1	
$\Delta ech/\Delta frh/\Delta vht$	1 ± 0	NA	315 ± 5	93 ± 1	3.4:1	313 ± 5	92 ± 2	3.4:1	
$\Delta ech/\Delta frh/\Delta fre/\Delta vht-vhx^{c}$	1 ± 0	NA	314 ± 2	94 ± 1	3.3:1	315 ± 8	93 ± 3	3.4:1	
Δfrh	34 ± 1	NA	310 ± 8	96 ± 2	3.2:1	442 ± 4	< 1		
$\Delta frh/\Delta fre$	10 ± 2	NA	298 ± 13	98 ± 4	3.0:1	436 ± 8	< 1		
$\Delta frh/\Delta vht$	6 ± 1	NA	311 ± 5	92 ± 1	3.4:1	225 ± 16	20 ± 1	11:1	
$\Delta frh/\Delta fre/\Delta vht-vhx^{c}$	5 ± 0	NA	309 ± 6	92 ± 2	3.4:1	300 ± 8	19 ± 1	16:1	

803 Table 2. Production of CH₄ and CO₂ from resting cell suspensions of *M. barkeri* mutant strains.

- ^a μmol product observed; ^b *M. barkeri* Fusaro parental strain; ^c *Mbar_A1842* and *Mbar_1843* also deleted; NA, not applicable as
- 805 produced CO₂ could not be differentiated from CO₂ that was added to the headspace. When relevant, ratio of CH₄:CO₂ is shown.
- CH_4 and CO_2 quantities were below $4 \pm 1 \mu$ mol for each strain when measured in cell suspensions without substrate.

807 Table 3. Rate of CH₄ production^a from resting cell suspensions of *M. barkeri*

Genotype	Methanol	Methanol & H_2
$\Delta hpt^{ m b}$	86 ± 7	132 ± 18
Δfre	84 ± 1	123 ± 16
Δvhx	71 ± 2	74 ± 12
Δech	57 ± 5	122 ± 7
$\Delta ech/\Delta frh$	20 ± 1	27 ± 3
$\Delta ech/\Delta frh/\Delta vht$	31 ± 2	30 ± 3
$\Delta ech/\Delta frh/\Delta fre/\Delta vht-vhx^{c}$	19 ± 2	19 ± 2
Δfrh	23 ± 1	136 ± 9
$\Delta frh/\Delta fre$	14 ± 1	87 ± 3
$\Delta frh/\Delta vht$	38 ± 8	36 ± 4
$\Delta frh/\Delta fre/\Delta vht$ -vhx ^c	32 ± 10	34 ± 13

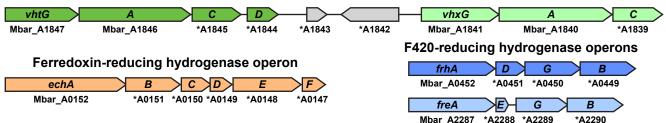
808 mutant strains.

^a nmol methane produced min⁻¹ mg⁻¹; ^b *M. barkeri* Fusaro parental strain; ^c

.

- 810 *Mbar_A1842* and *Mbar_1843* also deleted.
- 811

813	Table 4. Hydrogenase activity of <i>M. barkeri</i> mutant strains.
-----	--


	-
Genotype	Specific Activity ^a
$\Delta hpt^{ m b}$	11.10 ± 4.29
Δfre	9.18 ± 4.38
Δvhx	8.51 ± 3.93
$\Delta ech/\Delta frh/\Delta vht$	0.01 ± 0.00^{d}
$\Delta ech/\Delta frh/\Delta fre/\Delta vht-vhx^{c}$	0.02 ± 0.00
Δech	17.13 ± 4.90
$\Delta frh/\Delta vht$	0.42 ± 0.09
$\Delta ech/\Delta frh$	2.60 ± 1.36
Δfrh	3.12 ± 1.89

^aμmol H₂ oxidized min⁻¹ mg⁻¹; ^b *M. barkeri* Fusaro parental strain; ^c *Mbar_A1842* and

815 *Mbar_A1843* also deleted; ^d values that are significantly different (p-value < 0.01)

816 than the Δhpt parental strain are indicated in bold.

Methanophenazine-reducing hydrogenase operons

Fig 1. Hydrogenase operons of *Methanosarcina barkeri***.** Three distinct types of hydrogenase are encoded by *M. barkeri*. Two potential methanophenazine-dependent hydrogenases are encoded by the adjacent *vhtGACD* and *vhxGAC* operons, while two potential F420-dependent hydrogenases are encoded by the unlinked *frhADGB* and *freAEGB* operons. The energy-converting, ferredoxin-dependent hydrogenase is encoded by the *echABCDEF* operon. Locus Tags are shown below each gene, in some cases the "Mbar_" prefix was omitted (shown by an asterisk) due to space constraints.

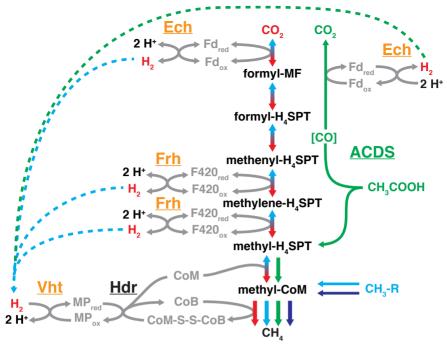
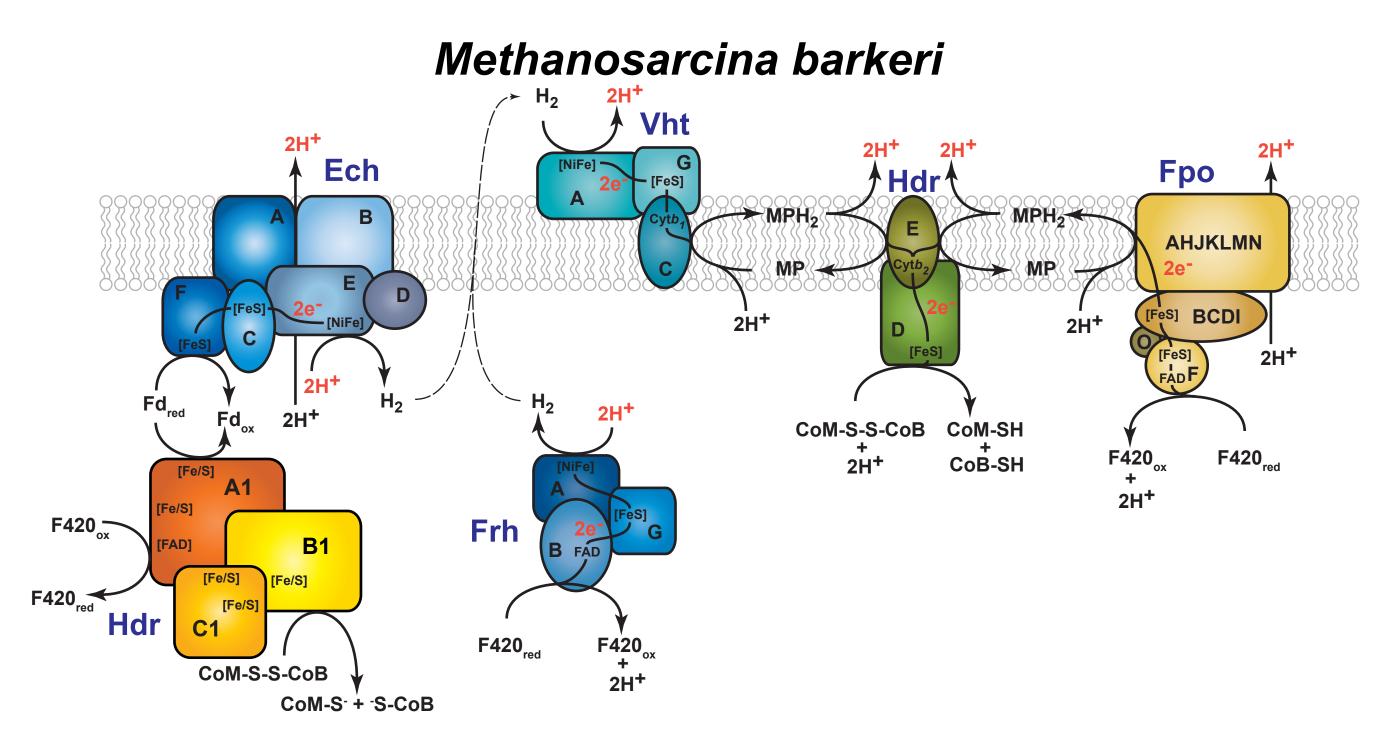
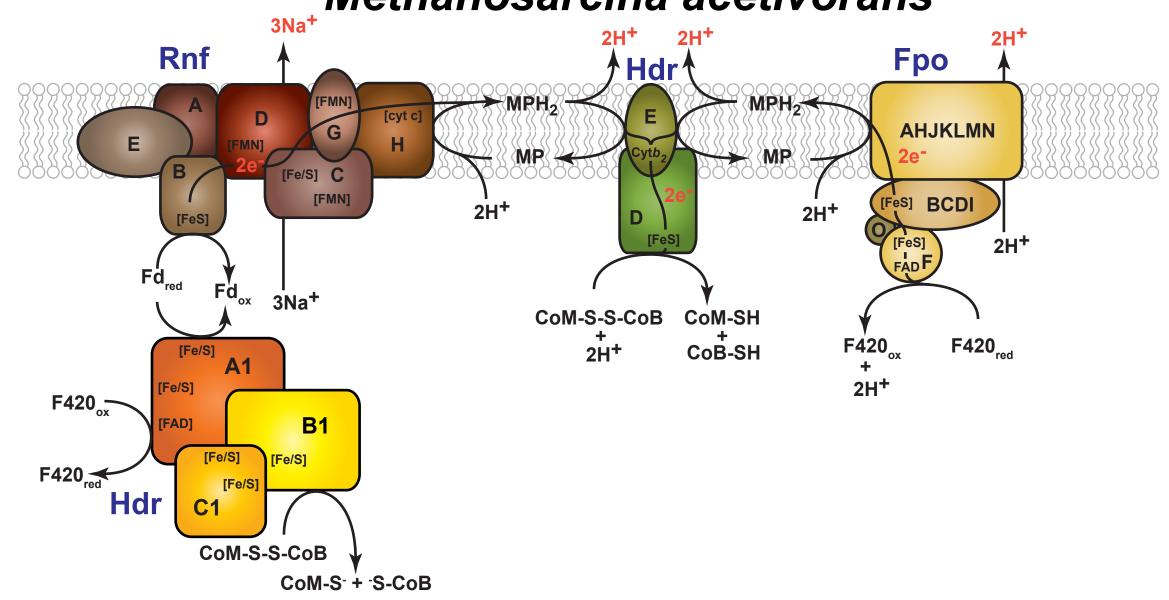




Fig 2. Four methanogenic pathways of Methanosarcina. Each pathway shares a common step in the reduction of methyl-CoM to methane; however, they differ in the route used to form methyl-CoM and in the source of electrons used for its reduction to methane. The CO, reduction pathway (red arrows) involves reduction of CO, to methane using electrons derived from the oxidation of H,, while the methylotrophic pathway (light blue arrows) involves disproportionation of C-1 substrates to methane and CO₂. These two pathways share many steps, with overall metabolic flux in opposite directions (shown by red/light blue shaded arrows). In the aceticlastic pathway (green arrows), acetate is split into a methyl group and an enzyme-bound carbonyl moiety (shown in brackets) by the enzyme acetyl-CoA decarbonylase/synthase (ACDS). The latter is oxidized to CO_a, producing reduced ferredoxin that provides electrons for reduction of methyl group to methane. Lastly, in the methyl reduction pathway (dark blue arrows) C-1 compounds are reduced to CH, using electrons derived from H, oxidation. Dashed lines depict diffusion of H₂, which occurs during the transfer of electrons between oxidative and reductive portions of methylotrophic and aceticlastic pathways. The steps catalyzed by Frh, Vht, Ech hydrogenases are indicated. Note that in wild-type M. barkeri hydrogenases are involved in all four pathways. Abbreviations used are: Hdr, heterodisulfide reductase; MF, methanofuran; H_ASPT, tetrahydrosarcinapterin; CoM, coenzyme M; CoB, coenzyme B; CoM-S-S-CoB, heterodisulfide of CoM and CoB; Fd_{ox}/Fd_{red} , oxidized and reduced ferredoxin; $F420_{ox}/F420_{red}$, oxidized and reduced cofactor F420; MP, /MP, oxidized and reduced methanophenazine.

bioRxiv preprint doi: https://doi.org/10.1101/334656; this version posted May 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights restrict the author author

Fig 3. The branched electron transport systems of Methanosarcina barkeri and **Methanosarcina acetivorans.** During methylotrophic methanogenesis, *M. barkeri* can utilize H₂-dependent or H₂-independent electron transport systems. The H₂-dependent pathway involves the use of hydrogenases Frh, Ech, and Vht in a H₂ cycling mechanism to transfer electrons from F420_{red} or Fd_{red} to methanophenazine (MP). *M. acetivorans* does not utilize hydrogenases, and is therefore incapable of H₂ cycling. Both organisms can conserve energy via a H₂-independent pathway, wherein electrons are transferred from F420_{red} to MP by way of the F420 dehydrogenase (Fpo). Additionally, the electron transport system in *M. acetivorans in*cludes the Na⁺-translocating Rnf enzyme complex that serves as a Fd:MP oxidoreductase. Both membrane-bound electron transport systems converge at the reduction of the CoM-S-S-CoB heterodisulfide with electrons from reduced MP_{red} via the cytochrome-containing HdrDE enzyme. Protons (or Na⁺ in the case of Rnf) are translocated across the cell membrane in both systems, thereby conserving energy in the form of an ion motive force. An additional heterodisulfide reductase, HdrA1B1C1, has been proposed to function in the energy conservation pathways for both organisms. This electron bifurcating enzyme potentially reduces so the CoM-S-S-CoB heterodisulfide and F420 with electrons from Fd_{red} at a stoichiometric ratio of 2 Fd_{red} oxidized for the reduction of 1 CoM-S-S-CoB to CoM-SH/CoB-SH and reduction of 1 F420_{red}. Abbreviations used are: Fd₀/Fd_{red}, oxidized and reduced ferredoxii, MP/MPH₂, oxidized and reduced methanophenazine; F420_{ox}/F420_{red}, oxidized and reduced FeS, iron-sulfur cluster; FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide; NiFe, nickel-iron active site of hydrogenases; cytb1/cytb2/cyt c, cytochromes.