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 2 

Abstract 22 

Primate cortical evolution has been characterized by massive and disproportionate 23 

expansion of a set of specific regions in the neocortex. The associated increase in neocortical 24 

neurons comes with a high metabolic cost, thus the functions served by these regions must 25 

have conferred significant evolutionary advantage. Here, across a series of experiments, we 26 

show that the evolutionary high-expanding 'hotspots' – as estimated from patterns of 27 

evolutionary expansion from several primate species – share functional connections with 28 

different brain networks in a context-dependent manner. This capacity of the hotspots to 29 

connect flexibly with various specialized brain networks depending on particular cognitive 30 

requirements suggests that their selective growth and sustainment in evolution has been 31 

linked to their involvement in supramodal cognition. In accordance with an evolutionary-32 

developmental view, we find that this ability to flexibly modulate functional connections as a 33 

function of cognitive state emerges gradually through childhood, with a prolonged 34 

developmental trajectory plateauing in young adulthood.  35 

 36 
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The most striking feature of the human brain when compared with brains of other primates, 41 

is its massively expanded cerebral cortex, mainly due to a higher number of cortical neurons 42 

(Herculano-Houzel 2012; Buckner and Krienen 2013). The growth of the primate cortex has 43 

not been uniform, however, with a set of 'hotspot' regions in lateral temporal, parietal and 44 

prefrontal cortex showing disproportionally high expansion (Hill et al. 2010; Chaplin et al. 45 

2013). Well-supported models suggest that this non-uniform growth has followed allometric 46 

scaling laws, and that the hotspots' massive expansion in evolution therefore is a predicted 47 

consequence of growing a bigger brain (Finlay and Darlington 1995; Toro et al. 2008; 48 

Herculano-Houzel 2012; Chaplin et al. 2013; Rilling 2014; Amlien et al. 2016; although see 49 

e.g. Smaers et al. 2017). Nevertheless, the metabolic costs associated with sustaining a 50 

higher number of neurons are high (Ringo 1991; Herculano-Houzel 2011) and impose 51 

limitations on the growth of other, non-neuronal, physical capacities such as body size 52 

(Fonseca-Azevedo and Herculano-Houzel 2012). An intriguing question is therefore: what 53 

functions do the high-expanding regions in primate brain evolution serve, which may have 54 

offset these potential natural selection costs? 55 

 56 

Expansion hotspots refer to the cortical regions that differ the most between extant 57 

primates of different brain sizes (Chaplin et al. 2013), and are considered a useful proxy for 58 

the parts of cortex that have undergone the most expansion during evolution (Hill et al. 59 

2010; Buckner and Krienen 2013). As prototypical members of association cortex, the 60 

evolutionary hotspots are involved in various tasks and functional systems, and have been 61 

theorized to serve relational reasoning and integrative higher-order cognition (Krienen et al. 62 

2014; Vendetti and Bunge 2014). In support of these views, measures of general cognitive 63 

abilities in human adults have been shown to correlate positively with cortical surface-area 64 
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within high-expanding regions (Fjell et al. 2015), associations not found within low-65 

expanding cortex (Vuoksimaa et al. 2016). Furthermore, when compared with brain regions 66 

showing less evolutionary expansion, the hotspots show higher growth of the surface area 67 

during human development (Hill et al. 2010; Amlien et al. 2016), and this pattern is more 68 

pronounced in individuals with high intelligence (Schnack et al. 2015).  69 

 70 

In the current study, we tested the hypothesis that the emergence and sustainment of the 71 

expansion hotspots have facilitated supramodal cognition (Goldman-Rakic 1988), 72 

conceptualized as the integration of information from across the brain in a flexible manner. 73 

By taking advantage of recent developments in brain network analysis (Rubinov and Sporns 74 

2010), and applying these to histological data and magnetic resonance imaging (MRI) scans 75 

of multiple primate brains, as well as a large sample of humans during different cognitive 76 

states and at different stages in development, we were able to directly test the predictions 77 

that high-expanding cortex 1) has broad functional connections with different specialized 78 

brain networks; 2) is flexibly engaged by a diverse set of cognitive tasks; 3) is more central to 79 

communication flow in the brain during states requiring multimodal integration than during 80 

low-demand states; 4) increases functional coupling preferentially with regions engaged by 81 

the current cognitive demands. Moreover, given the correlation between morphological 82 

changes in primate brain evolution and human development, we predict that the 83 

connectivity that enables supramodal cognition develops gradually, and fully emerges 84 

relatively late in postnatal life.  85 
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Materials and Methods 86 

Human subjects 87 

RsfMRI-data were collected in 221 healthy young adults (age range 18-38, mean age 23.8; 88 

142 females). Task-fMRI data were collected in 105 of the same participants (age range 18-89 

38, mean age 25.3; 69 females), as well as in 46 children and adolescents (age range 6-17, 90 

mean age 12.9; 21 females). The study was approved by the Regional Ethical Committee of 91 

South Norway, and participants provided written informed consent. Participants were 92 

required to be right-handed, speak Norwegian fluently and have (corrected to) normal 93 

hearing and vision. Clinical sequences (T2-FLAIR) were inspected by a neuroradiologist and 94 

deemed free of significant injuries or conditions. 95 

 96 

Non-human primates 97 

Evolutionary cortical expansion was calculated from the brains of four simian primates: 98 

marmoset (Callithrix jacchus), capuchin (Cebus apella), macaque (Macaca mulatta) and 99 

human. Details about the calculations have been described in a previous publication (Chaplin 100 

et al. 2013). Briefly, surface models of the cerebral cortex of the four species were registered 101 

by deforming the models to align a set of landmarks, consisting of well-established 102 

homologous cortical regions, using the CARET software package (Van Essen et al. 2001). 103 

Expansion was calculated as the change in size of each mesh polygon, and was averaged 104 

across the marmoset to capuchin, marmoset to macaque, and macaque to human 105 

deformations. All tests involving comparisons with evolutionary expansion were restricted to 106 

measures extracted from right-hemispheric nodes. 107 

 108 
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Experimental design  109 

RsfMRI was collected during eyes-closed rest. The participants were instructed to not fall 110 

asleep, and confirmed compliance following the scan. During the fMRI-task, participants 111 

sequentially viewed 100 line drawings of objects and immediately produced a motor 112 

response indicating whether the object was congruent with a spoken action (either "Can you 113 

eat it" or "Can you lift it"; SFig. 2). The task is described in detail elsewhere (Sneve et al. 114 

2015). 115 

 116 

MRI acquisition 117 

Imaging was performed at a Siemens Skyra 3T MRI unit with a 24-channel head coil. For the 118 

fMRI scans (rest and task), 43 slices (transversal, no gap) were measured using T2* BOLD EPI 119 

(TR=2390 ms; TE=30 ms; flip angle=90°; voxel size=3x3x3 mm; FOV=224x224; interleaved 120 

acquisition; GRAPPA=2). The rsfMRI run produced 150 volumes and lasted ≈6 min. The task 121 

data were collected over 2 runs, each consisting of 131 volumes and lasting ≈5.2 min. Three 122 

dummy volumes were collected at the start of each fMRI scan to avoid T1 saturation effects 123 

in the analyzed data. A standard double-echo gradient-echo field map was acquired for 124 

distortion correction of the EPI images. Anatomical T1-weighted MPRAGE images consisting 125 

of 176 sagittally oriented slices were obtained using a turbo field echo pulse sequence 126 

(TR=2300 ms, TE=2.98 ms, flip angle=8°, voxel size=1×1×1 mm, FOV=256×256 mm).  127 

 128 

MRI preprocessing  129 

Cortical reconstruction of the T1-weighted scans was performed with Freesurfer 5.3's recon-130 

all routines, and included surface inflation (Fischl et al., 1999a) and registration to a spherical 131 

atlas which utilized individual cortical folding patterns to match cortical geometry across 132 
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subjects (Fischl et al., 1999b).  FMRI-data were corrected for B0 inhomogeneity, motion and 133 

slice timing corrected, and smoothed (5mm FWHM) in volume space using FSL 134 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Next, FMRIB’s ICA-based Xnoiseifier (FIX; Salimi-135 

Khorshidi et al. 2014) was used to auto-classify noise components and remove them from 136 

the fMRI data. Different classifiers were used for rsfMRI and task-fMRI data. Classifiers were 137 

trained on scanner-specific datasets in which rsfMRI/task-fMRI data from 16 participants 138 

had been manually classified into signal and noise components (fMRI acquisition parameters 139 

identical to the current study). Motion confounds (24 parameters) were regressed out of the 140 

fMRI data as a part of the FIX routines. Freesurfer-defined individually estimated anatomical 141 

masks of cerebral white matter (WM) and cerebrospinal fluid / lateral ventricles (CSF) were 142 

resampled to each individual’s functional space. Following FIX, average time series were 143 

extracted from functional WM- and CSF-voxels, and were regressed out of the FIX-cleaned 144 

4D volume. Following recent recommendations (Hallquist et al. 2013) we band-pass filtered 145 

the rsfMRI data (.009-.08Hz) after regression of confound variables. Task-fMRI data were 146 

detrended and highpass filtered with a .01Hz cutoff. 147 

 148 

Network analysis of rsfMRI data 149 

A custom cortical parcellation was created in Freesurfer's average surface space (fsaverage), 150 

using a modified N-cut algorithm (Craddock et al. 2012), consisting of 340 (170 per 151 

hemisphere) spatially contiguous, approximately equally sized nodes covering the entire 152 

cerebral cortex. The parcellation was resampled into each participant’s functional volume 153 

space using a projection factor of 0.5, i.e., half way into the cortical sheet. For each 154 

participant, we extracted mean pre-processed rsfMRI time series from all nodes and 155 

calculated a 340x340 connectivity matrix consisting of the Pearson's r correlations between 156 
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nodal time series. Next, we Fisher-transformed all participants' connectivity matrices, and 157 

averaged across participants to create a “grand average” connectivity matrix on which 158 

network analysis was performed. The grand average connectivity matrix was thresholded at 159 

5, 6, 7, 8, 9, 10, 15, and 20% edge densities. For all thresholded weighted graphs, the optimal 160 

modular resolution parameter (gamma) promoting stable decomposition results, was 161 

calculated using the Versatility approach (Shinn et al. 2017; see SFig1). Next, modular 162 

decomposition was performed with the Louvain algorithm (Blondel et al. 2008) as 163 

implemented in the Brain Connectivity Toolbox (BCT) (Rubinov and Sporns 2010), and 164 

consensus clustering (Sporns and Betzel 2016). Briefly, this involved calculating an 165 

agreement matrix from 10000 independent Louvain partitions, thresholding this empirical 166 

agreement matrix by the maximum agreement observed over 10000 randomly generated 167 

null association matrices and running clustering on the thresholded empirical agreement 168 

matrix. In the case of singleton partitions, i.e., network modules consisting of one node only 169 

– typically consisting of low signal-to-noise regions such as the temporal pole and 170 

orbitofrontal cortex – these modules were excluded from the remaining network analyses. 171 

Finally, we used the thresholded graphs' optimal community structures to calculate two 172 

nodal network measures per graph: participation coefficient and within-module degree, 173 

representing a node's intermodular and intramodular centrality, respectively (Rubinov and 174 

Sporns 2010). Two additional measures not requiring information about the underlying 175 

community structures were also calculated: betweenness centrality, representing the 176 

fraction of all shortest paths in the network that contains a given node, and strength, the 177 

sum of a given node's connectivity weights to every other node (Rubinov and Sporns 2010). 178 

 179 

 180 
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Community density analyses 181 

To investigate high-expanding nodes' anatomical centrality, we used a recent parcellation of 182 

human cortical intrinsic connectivity into 17 canonical networks, estimated from 1000 183 

participants (Yeo et al. 2011). First, we extracted MNI-coordinates for every vertex in the 184 

right hemisphere in a downsampled Freesurfer surface representation (fsaverage5; 10242 185 

vertices). Next, for each vertex, we counted the number of canonical networks present 186 

within a radius of 5, 10, 15, 20, 25, and 30mm (Euclidean distance). For each radius, the 187 

number of networks at every vertex was normalized (0-1) by the maximum number of 188 

networks found across all vertices (Power et al. 2013). Finally, the normalized community 189 

density values were averaged across radii at each vertex and correlated with evolutionary 190 

expansion estimates at the same locations. 191 

 192 

Flexibility analyses  193 

The functional flexibility of each vertex on the cortical surface of the right hemisphere was 194 

estimated from publicly available data 195 

(https://surfer.nmr.mgh.harvard.edu/fswiki/BrainmapOntology_Yeo2015). Here, an author-196 

topic hierarchical Bayesian model was used to classify 10449 experimental contrasts from 197 

fMRI experiments found in the BrainMap database (Fox and Lancaster 2002) into 12 198 

underlying cognitive components and corresponding brain activity patterns (Yeo et al. 2015). 199 

Flexibility was defined as the number of cognitive components activating a voxel. To account 200 

for non-integer values due to projections from volume to surface space we rounded surface 201 

flexibility estimates to the nearest integer. 202 

 203 

 204 
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Task-state connectivity  205 

Following preprocessing, volumetric task-fMRI data were brought to fsaverage surface 206 

space. Here, for each participant, we extracted mean BOLD time series from all nodes in the 207 

custom 340-node cortical parcellation. Next, psychophysiological interaction (PPI) terms 208 

representing nodal task-related activity modulations were calculated using the generalized 209 

PPI-toolbox for Matlab (McLaren et al. 2012). For each node, this involved: 1) deconvolving 210 

the mean BOLD time series into estimates of neural events (Gitelman et al. 2003); 2) setting 211 

up a task-regressor representing the combined auditory-visual-motor-event (2s trial 212 

duration, 50 trials per fMRI run) 3) convolving the product of step 1 and 2 with a canonical 213 

hemodynamic response function (cHRF). Finally, to establish task-related functional 214 

connectivity between nodes, we estimated pairwise interactions between all nodes’ PPI-215 

terms (concatenated over runs) using partial correlations. For each pairwise correlation, we 216 

controlled for background noise and task stimulation effects using the nodes’ mean BOLD 217 

time series and the cHRF-convolved task-regressor, respectively. This “correlational PPI” 218 

approach has been described in detail elsewhere (Fornito et al. 2012). 219 

 220 

State-dependent coupling analyses 221 

105 adult participants were represented with 340x340 connectivity matrices from a resting-222 

state and a task-state. First, the individual connectivity matrices were thresholded to only 223 

contain edges surviving FDR-correction (q<.05). Next, to allow comparison of connectivity 224 

data from different states, edge-wise connectivity weights were normalized by the average 225 

weight in the matrix (Opsahl et al. 2010). After mapping from weights to lengths (inversing 226 

the connection-weights matrices), shortest path lengths were calculated using Dijkstra's 227 
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algorithm (Dijkstra 1959). A node's closeness centrality was calculated as the inverse of the 228 

average of its shortest path length to every other node. 229 

 230 

Correction for Euclidean distance 231 

Euclidean distance between two nodes was calculated as the average distance in mm 232 

between the locations of their constituent vertices converted to MNI305 space. To correct 233 

the connectivity matrices, the Euclidean distance matrix was normalized to fall between 0 234 

and 1 and multiplied, element-by-element, with the connectivity matrices across states and 235 

participants. 236 

 237 

Analyses of the developmental sample 238 

The developmental sample consisted of the 105 adult participants described in the section 239 

"State-dependent coupling analyses" and 46 participants below 18 years of age (see "Human 240 

subjects" section). All non-adult participants were preprocessed and analyzed as described 241 

for the adult sample. One participant (age 9.3 years) was excluded from the sample due to 242 

high levels of motion (mean absolute motion over two task runs > 1.5mm). A significant 243 

positive Pearson correlation (r = .23, p = .005) was found in the remaining developmental 244 

sample (N=150) between estimated motion (mean absolute motion over two task runs) 245 

during the task-state and global closeness centrality (average closeness centrality over all 246 

170 nodes, corresponding to the graph theoretical measure global efficiency (Rubinov and 247 

Sporns 2010)). A similar positive relationship between levels of motion and global closeness 248 

centrality estimates was found when investigating the adult sample in isolation (p = .04), but 249 

not in development sample (p > .40). The positive correlation between subject motion and 250 

global closeness centrality indicated that participants with relatively high levels of motion 251 
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(which is a charateristic of young samples (Satterthwaite et al. 2012)) also tended to show 252 

high closeness centrality estimates. To allow for comparisons of closeness centrality 253 

estimates across age groups, unbiased by motion, we therefore standardized (z-scored) the 254 

estimates on a within-subject basis before comparing relative coupling differences across 255 

groups. Scores on the matrix reasoning and vocabulary subtests of the Wechsler's 256 

Abbreviated Scale of Intelligence (WASI; Wechsler 1999) were available from 140 of the 257 

participants in the developmental sample (age range 7-38 years). Principal component 258 

analysis was run on the raw scores of the two subtests, and the first component, which 259 

explained 95.5% of the total variance, was used as a representative measure of general 260 

intelligence across participants.  261 

 262 

Statistical analyses  263 

Details about quantification and the statistical analyses run are presented in the figures and 264 

the associated figure legends. The specific statistical tests used were chosen after the 265 

following considerations:  266 

 267 

For data in Fig. 1b&c, nonparametric Spearman correlations were calculated to test for 268 

monotonic relationships between variables due to non-normal distributions (assayed using 269 

Q-Q plots). A nonparametric Kruskal-Wallis was used to compare central tendencies in 270 

evolutionary expansion across flexibility group (Fig. 1d) due to unequal variances across 271 

groups (significant Bartlett's test: c2 (8) = 3549, p < 1e-10) 272 

 273 

In Fig. 2a, a repeated measures ANOVA was run with two within-subject factors: "expansion 274 

bin" (5 levels) and "state" (2 levels). The reported "expansion bin x state" interaction was 275 
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Greenhouse-Geisser corrected following a signficant Mauchly's test of sphericity: c2 (9) = 276 

129, p < 1e-10). In Fig. 2a-d, all reported p-values following multiple comparisons have been 277 

corrected using Benjamini & Yekutieli's method for controlling the False Discovery Rate 278 

(FDR) (Yekutieli and Benjamini 2001). 279 

 280 

In Fig. 3a, a repeated measures ANOVA was run with one within-subject factor: "expansion 281 

bin" (5 levels), and one between-subject factor: "age group" (2 levels), including subject 282 

motion (mean absolute motion over two task runs) as a covariate. The reported "expansion 283 

bin x age group" interaction was Greenhouse-Geisser corrected following a signficant 284 

Mauchly's test of sphericity: c2 (9) = 63.4, p < 4e-10). Nonparametric Wilcoxon rank sum 285 

tests were used for post-hoc testing due to unequal variances across groups (Bartlett's test: 286 

c2 (1) = 20.8, p < 6e-06). Significance of the post hoc tests was assessed following FDR-287 

correction for multiple comparisons. In investigating the correlation between individual 288 

centrality-expansion resemblance (y-axis in Fig. 3b) and general intelligence (first principal 289 

component of raw scores from two WASI subtests), partial Spearman correlations were used 290 

with age as covariate to control for nonlinear relationships between the correlated variables 291 

and age. 292 

 293 

Across analyses, all performed tests were two-tailed.  294 
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Results 295 

High-expanding cortex has broad functional connections and is engaged flexibly across 296 

different cognitive tasks 297 

First, we tested whether high-expanding nodes communicate more broadly across human 298 

brain networks than low-expanding nodes. Investigations in the macaque monkey have 299 

demonstrated strong positive relationships between dendritic complexity at the microscale 300 

neuronal level, and broadness of cortico-cortical neuronal connectivity profiles at the 301 

macroscale network level (Scholtens et al. 2014). Therefore, we tested whether high-302 

expanding nodes are characterized by high participation coefficients, a graph theoretical 303 

measure that quantifies the degree to which a node participates in many of the brain’s 304 

subnetworks (Guimerà and Nunes Amaral 2005). Functional connectivity between nodes 305 

covering the entire cerebral cortex was calculated from resting-state functional MRI (rsfMRI) 306 

data from 221 healthy young adults. We estimated optimal community structures, i.e. the 307 

brain's subnetworks, through modular decomposition of the group-averaged connectivity 308 

graph thresholded at different edge densities (SFig. 1a&b). Next, for each threshold, we 309 

calculated every node's participation coefficient – a high value indicating that it 310 

communicates broadly and outside its own community. Finally, we extracted average nodal 311 

expansion between three non-human simian primates and humans from estimates of 312 

evolutionary cortical scaling (Chaplin et al. 2013) (Fig. 1a). A positive relationship was found 313 

between nodal participation coefficient values and estimates of evolutionary expansion at all 314 

edge densities (Fig. 1b and SFig. 1c), suggesting that high-expanding regions function as 315 

integrative connector nodes in the information flow between more specialized modules in 316 

human cortex (Power et al. 2013). In line with this observation, nodal betweenness centrality 317 
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also correlated positively with expansion (SFig. 1c), demonstrating that high-expansion 318 

regions often participate in the shortest, most efficient, path between any two other nodes 319 

in the brain network (Rubinov and Sporns 2010).  320 

 321 

Next, we tested whether the topologically broad and central connectivity profiles of high-322 

expanding nodes – as indicated by high participation coefficient and betweenness centrality, 323 

respectively – were reflected in their anatomical centrality relative to the canonical 324 

functional networks of the human brain (Yeo et al. 2011). The measure community density 325 

represents the number of different networks present within a given radius from a cortical 326 

location (Power et al. 2013). We observed a positive relationship between local surface 327 

expansion and community density, indicating that high-expanding parts of the cortex have 328 

access to multiple networks present in their immediate vicinity (Fig. 1c). This closeness, both 329 

at the anatomical and the network topology-level, between high-expanding parts of the 330 

cortex and the brain's different networks, makes high-expanding cortex ideally situated to 331 

engage in a variety of cognitive processes. To test this hypothesis, we took advantage of 332 

Figure 1. High-expanding cortex has broad functional connections and is flexibly engaged across different cognitive tasks. (a) Estimates of 
evolutionary expansion for 170 similarly sized nodes covering the right hemisphere. (b) Spearman correlation between node expansion and 
node participation coefficient. The presented values are averaged across thresholds and ranked – plotted linear relationship represent the 
Spearman correlation. Traditional hub-measures not incorporating integrative aspects of nodal communication (within-module degree, 
node strength), did not show any relationships with node expansion (SFig. 1c). (c) Density plot showing the Spearman correlation between 
vertices' normalized community density (calculated over 5-30mm radius in 5mm steps and averaged) and estimated evolutionary expansion. 
(d) Violin plots showing the relationship between cortical expansion and cognitive flexibility at the vertex level. Median expansion is shown 
as horizontal lines. A Kruskal-Wallis test confirmed that expansion differed across flexibility groups. Post-hoc pairwise comparisons 
demonstrated that cortical locations involved in five or more cognitive components were more expanded than locations involved in four or 
less components (p<1.25e-07). All reported p-values are corrected for multiple tests. 
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recent work on the BrainMap database, in which data from ≈10.000 fMRI-experiments have 333 

been merged to establish brain activity patterns common to specific types of tasks (Yeo et al. 334 

2015). We grouped cortical surface locations based on the number of task-types (“cognitive 335 

components”) they were associated with, and then compared expansion across these levels 336 

of cognitive flexibility. In line with our hypothesis, highly flexible nodes were found 337 

predominantly in high-expanding cortex (Fig. 1d).  338 

 339 

High-expanding cortex communicates preferentially with regions engaged by the current 340 

cognitive demands 341 

The above findings suggest that a key role of high-expanding cortical regions may be 342 

integration of different cognitive processes. To test this proposal directly, we estimated the 343 

closeness centrality of cortical nodes in 105 participants scanned using fMRI during two 344 

states: unconstrained rest, and a task-state requiring audio-visuo-motor processing (SFig. 2). 345 

Closeness centrality represents the average shortest path-length from one node to all other 346 

nodes in a network, and thus indicates how tight the functional coupling of a node is to the 347 

rest of the network (Rubinov and Sporns 2010). Expansion hotspot regions showed higher 348 

closeness centrality during the task-state than during rest and were also more tightly 349 

coupled to the rest of the network than lower-expanding nodes (Fig. 2a). Critically, this was 350 

also true when accounting for physical distance between nodes, demonstrating that the 351 

tight coupling of high-expanding nodes to the rest of the network during multimodal 352 

integration is independent of their physical locations on the cortical surface (Liu et al. 2014) 353 

(SFig. 3). The higher closeness centrality during the task-state was distributed across all 354 

expansion hotspot regions (Fig. 2b), suggesting that stronger functional coupling during 355 
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effortful task-operations is a general property of high-expanding cortex and not driven by a 356 

subset of cortical regions.  357 

 358 

To test the key proposal that hotspot regions play a central role in supramodal cognition – 359 

and thus interact flexibly with different parts of cortex depending on particular cognitive 360 

Figure 2. High-expanding cortex communicates differently depending on the current cognitive demands, and 
preferentially with regions engaged by those demands. Cortical nodes were binned per evolutionary expansion (SFig. 
4). We considered the 20% highest-expanding nodes ‘hotspot’ regions, and this definition revealed three separate 
clusters commonly discussed in the literature (Hill et al. 2010; Chaplin et al. 2013). (a) Average closeness centrality for 
five expansion bins during resting- and task-state (dark blue: 20% least expanding nodes, yellow: expansion hotspots; 
intermediate colors: intermediate expansion levels). Following a significant "expansion bin X state" repeated measures 
ANOVA, paired-samples t-tests showed significant increase in closeness centrality in task- compared to resting-state for 
the highest-expanding nodes only: t(104)=4.27, pFDR < 5.0e-04. (b) Nodes within hotspot regions (indicated by yellow 
lines) showing significant (paired-samples t-tests, pFDR < .05) changes in closeness centrality from rest to task. (c) Nodes 
showing significant change (paired-samples t-tests, pFDR < .05) in functional coupling (inverse of shortest path length) 
with expansion hotspots from rest to task across participants. (d) Mean coupling between nodes showing negative 
(blue) / positive effect (yellow) in panel c. Nodes falling within the hotspot regions were excluded when calculating the 
mean. Nodes more strongly coupled with hotspots during rest (R>T) showed higher coupling with each other during 
rest than during task: paired-samples t-test, t(104)=-10.56, pFDR < 3.7e-18. The opposite effect was observed between 
nodes more strongly coupled with hotspots during the task-state (T>R): paired-samples t-test, t(104)=13.25, pFDR < 4.4e-
24. The presented data have been corrected for Euclidean distance between nodes. Uncorrected data show similar 
effects (SFig. 5). Error bars represent SEM. 
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demands – we calculated functional coupling change (resting-state to task-state) between 361 

the expansion hotspots and all cortical nodes. During the multimodal task-state, hotspot 362 

coupling increased (i.e. path length decreased) most prominently with posterior visual 363 

perceptual regions, auditory cortex and motor cortex (Fig. 2c). In support of the hypothesis 364 

that high-expanding cortex connects with regions engaged during a given cognitive state, 365 

these regions also showed upregulated functional coupling between themselves during the 366 

task state when compared with rest (Fig. 2d). Critically, medial temporal cortex and 367 

ventromedial prefrontal cortex, regions found to be involved in memory consolidation 368 

processes during offline rest (van Kesteren et al. 2010; Euston et al. 2012), showed the 369 

opposite pattern: stronger hotspot coupling during rest than during the task state (Fig. 2c). 370 

Moreover, and in direct accordance with the proposal that the expansion hotspots interact 371 

flexibly with regions engaged in a given cognitive state, coupling between these regions was 372 

upregulated during rest when compared with the task-state (Fig. 2d). 373 

 374 

Human development of neocortical functional coupling patterns follows evolutionary 375 

expansion trajectories  376 

Recent investigations of neocortical morphometry have found similarities between cortical 377 

expansion in human development and primate evolution (Fjell et al. 2015). Evolutionary 378 

high-expanding cortex, in particular, shows protracted development, and undergoes larger 379 

increases in surface area between infancy and adulthood than lower-expanding regions (Hill 380 

et al. 2010; Amlien et al. 2016). Notably, this pattern of surface change during development 381 

is more pronounced in high-intelligence samples (Schnack et al. 2015), lending support to 382 

the idea that similar developmental and evolutionary trajectories of neocortical change – 383 
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albeit at very different scales – may promote the same phenotypic characteristics of higher 384 

intellectual abilities and supramodal cognition.  385 

 386 

To test whether such correspondence exists between neocortical evolution and functional 387 

supramodal cognition characteristics in human cortical development, we collected task-state 388 

fMRI data from 46 children and adolescents (6-17 years of age, one excluded due to 389 

excessive motion), and compared closeness centrality estimates from regions differing in 390 

evolutionary expansion. As found in the adult sample, the hotspots' closeness centrality was 391 

higher during the multimodal task state also in the developmental sample when compared 392 

with lower-expanding parts of cortex (Fig. 3a). Additionally, an interaction was observed 393 

between age group and regional expansion, indicating that the relative coupling differences 394 

Figure 3. Human development of neocortical multimodal coupling patterns follows evolutionary expansion trajectories. (a) To compare 
the hotspot's coupling across age groups, we standardized individual closeness centrality measures across nodes into units of standard 
deviation. This step was performed to account for higher levels of motion in the younger participants, which correlated positively with 
individual estimates of global efficiency (i.e., average closeness centrality) and thus made comparisons of absolute coupling values between 
age groups difficult. The hotspots showed stronger relative coupling than lower-expanding regions in both age groups (children: t(44)>8.09, 
pFDR < 3.0e-10; adults: t(104)>23.73, pFDR < 1.0e-10). Following the significant "age group x expansion bin" interaction, post hoc Wilcoxon 
rank sum tests showed lower relative coupling of high-expanding nodes in the development sample compared to the adults (Z = -2.68, pFDR < 
.037). Lower-expanding nodes did not show significant differences in relative coupling between age groups (pFDR > .093). Error bars 
represent SEM. (b) Individual correlation between nodal closeness centrality and evolutionary expansion plotted as a function of age. The 
black line represents the best fitting smoothing spline (minimizing the Bayesian information criterion, BIC). Red lines represent the 
bootstrapped 95% confidence interval of the fit. Blue dotted line shows the correlation coefficient at which a correlation with 169 degrees 
of freedom is significant at p < .05 (abs(rho) > .151). Note that the BIC of a linear fit was 8.7 higher than the BIC for the optimal smoothing 
spline, indicating that the depicted age trajectories are curvelinear. (c) First principal component calculated from raw scores on two WASI 
subtests plotted as a function of age. Optimal fit estimated as in Fig. 3b. Spearman correlations revealed significant relationships between 
this measure of general intelligence and individual differences in closeness centrality-vs-expansion correlation (i.e. correlating datapoints in 
Fig. 3b and 3c: Spearman's rho = .32, p < 9.4e-5). Importantly, this relationship remained when controlling for nonlinear influences of age 
using partial Spearman correlations (rho = .18, p = .037). 
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between higher- and lower-expanding regions change during development. Specifically, the 395 

expansion hotspots' closeness centrality relative to the typical (average) centrality across all 396 

nodes, i.e. their relative coupling, was found to be less developed in the young sample when 397 

compared with the adults (Fig. 3a). Importantly, less-expanding regions did not show 398 

significant differences in coupling between the two age groups. This observation fits well 399 

with recent reports of protracted surface area development of high-expanding cortex, 400 

reaching maximum expansion in adolescence (Amlien et al. 2016; Walhovd et al. 2016), and 401 

suggests that the hotspots' roles as multimodal integrating hubs follow related 402 

developmental trajectories. 403 

 404 

Finally, if evolutionary factors have shaped ontogenetic cortical development, we would 405 

expect the mature human brain to reflect the changes that have occurred in primate 406 

evolution to a higher degree than the immature brain (e.g. Rakic 2009). For all 150 407 

participants in the adult and development sample, we calculated task-state closeness 408 

centrality for each of the 170 nodes in the custom neocortical parcellation and correlated 409 

these with evolutionary expansion estimates for the same nodes. Next, we fitted a 410 

nonparametric local smoothing model (Fjell et al. 2010) to delineate the age trajectory of the 411 

relationship between closeness centrality and evolutionary expansion. The relationship was 412 

found to be not significant until approximately eighteen years of age, at which point the fit 413 

revealed positive correlations between neocortical coupling pattern and expansion (Fig. 3b). 414 

Interestingly, and in line with previous morphometric reports (Fjell et al. 2015; Schnack et al. 415 

2015), participants showing higher similarity between their nodal centrality maps and the 416 

evolutionary expansion map were characterized by higher scores on measures of general 417 

intelligence (Fig. 3c). This suggests that evolutionary concepts resonating in the functional 418 
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coupling of the human neocortex are relevant for the characteristic human phenotype of 419 

higher intellectual function. 420 

 421 

Discussion 422 

Our findings point to a central role of evolutionary high-expanding cortex in integrative 423 

operations during a variety of cognitive states. The functional signature of such supramodal 424 

cognition matures throughout childhood, suggesting that the hotspots develop their 425 

characteristic of broad functional connections to many of the brain's networks in tandem 426 

with the emergence and refinement of central human cognitive skills. Their postulated 427 

overarching function in facilitating supramodal and flexible cognition is supported by the 428 

reported links between individual differences in hotspot surface area and general 429 

intelligence (Fjell et al. 2015; Schnack et al. 2015). Moreover, the functional connectivity 430 

'fingerprints' of high-expanding cortex have been shown to be highly variable from 431 

participant to participant, and this characteristic overlaps well with the degree to which a 432 

brain region can be used to predict performance during different types of cognition (Mueller 433 

et al. 2013). The hotspots' underlying cellular machinery appears optimized to support such 434 

supramodal processes: neuromorphological investigations of primate cortex have found 435 

more elaborate dendritic layouts in high-expanding compared with low-expanding regions 436 

(Elston et al. 1999), and these structural properties are more pronounced in humans than in 437 

non-human primates (Bianchi et al. 2013; Geschwind and Rakic 2013; Donahue et al. 2018).  438 

 439 

In the current study, we interpret cortical regions demonstrating the capacity to integrate 440 

information from across the brain in a flexible manner as to take part in supramodal 441 
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cognition. The claim that certain parts of the cortex, and in particular prefrontal regions, play 442 

such flexible integrative roles is hardly new (e.g., Goldman-Rakic 1988), however we believe 443 

there is novelty in linking these broad functions to evolutionary morphological changes and 444 

their candidate behavioral phenotypes. Our results suggest that, when analyzed as a unit, 445 

high-expanding cortex shows both integrative and supramodal characteristics. However, the 446 

regions constituting the 'hotspots' are spread in a partly discontinuous manner across large 447 

portions of the cortex, and may show different characteristics and specializations when 448 

investigated in a more fine-grained fashion (Chaplin et al. 2013). A fascinating venue for 449 

further research could be to collect data on unimodal in addition to multimodal tasks in an 450 

attempt to disentangle modality-specific from integrative functions. Specifically, regions 451 

showing increased task-related recruitment and/or functional coupling during multimodal 452 

states when compared to unimodal states could be said to be integrative, while regions 453 

demonstrating differential coupling patterns over varying task-requirements would support 454 

supramodal flexibility. The current results suggest that one would find regions fulfilling both 455 

criteria primarily within evolutionary high-expanding cortex. 456 

 457 

While functional connectivity measures are reflective of underlying anatomical connectivity 458 

(Vincent et al. 2007; Honey et al. 2009; Hermundstad et al. 2013), they are nevertheless 459 

estimated from covariations in signal time-series and can thus be affected by mechanisms 460 

other that direct interactions between neuronal populations. In the current study, we do not 461 

base any conclusions on observations from single edges (i.e., simple bivariate correlations 462 

between two regions), but rely on graph theoretical nodal summary measures – such as 463 

closeness centrality – and regions’ relative roles in the brain network along these measures. 464 

Moreover, due to the within-subject nature of our coupling analyses, we base our 465 
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conclusions about hotspot supramodality on the observed consistent modulations in 466 

functional coupling across states, not the presence/absence of specific connections. Finally, 467 

while based on functional connectivity, our claims are strengthened by the observed 468 

consistencies across modalities (Community Density analyses) and with independent 469 

datasets (Flexibility analyses), as well as by the replication of selective increase in functional 470 

hotspot coupling during multimodal requirements across two independent groups of 471 

participants (Developmental Sample analyses). 472 

 473 

The present study is based on interpretation of functional data obtained in humans, 474 

correlated with estimates of the differential expansion of parts of the cerebral cortex in 475 

primate evolution. To date, these estimates have been derived from careful histological 476 

reconstruction of single individual brains from different species, followed by computational 477 

registration of 3-dimensional models (Chaplin et al. 2013). The reliance of these estimates 478 

on individual brains, rather than population averages, represents a possible limitation of the 479 

precision of the present analyses. It should be noted, however, that the differences in 480 

expansion that underlie our conclusions are very substantial, relative to the likely degree of 481 

individual variation, or errors derived from incorrect assignment of cytoarchitectural 482 

boundaries. For example, the differential expansion between the most notable hotspots 483 

(temporoparietal junction, ventrolateral prefrontal cortex, and dorsal anterior cingulate 484 

cortex) and other regions, such as the primary visual cortex and parahippocampal gyrus, is as 485 

high as 16-fold between macaque and human (Hill et al. 2010), which is well beyond the 486 

variation observed in the volumes of cytoarchitectural areas between individuals of a single 487 

primate species (cf. Majka et al. 2016; Woodward et al. 2018). Moreover, although 488 

quantitative details of the expansion of different cortical nodes vary slightly depending on 489 
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which species are used for comparison, the locations of the hotspots are remarkably stable 490 

(Chaplin et al. 2013). Finally, although some controversy remains about the relative 491 

expansion of some regions of the cerebral cortex in primate evolution (e.g. frontal lobe; 492 

Barton and Venditti 2013; Sherwood and Smaers 2013), it must be noted that the estimates 493 

used in the present study are based on quantitative analyses of species to species 494 

registration that took into consideration cytoarchitectural boundaries of areas that are well-495 

defined, rather than gross morphological features of the brain; recent studies that also used 496 

cytoarchitecture to guide registration have confirmed that differential expansion exists 497 

(Mansouri et al. 2017; Donahue et al. 2018). 498 

 499 

In conclusion, the present results add to existing knowledge by showing how the hotspot 500 

regions change in their role as communication hubs in different cognitive states, and that 501 

this power of the hotspot regions gradually emerges during childhood and adolescence 502 

development.  503 
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Figures legends 681 

Figure 1 682 

High-expanding cortex has broad functional connections and is flexibly engaged across 683 

different cognitive tasks. (a) Estimates of evolutionary expansion for 170 similarly sized 684 

nodes covering the right hemisphere. (b) Spearman correlation between node expansion 685 

and node participation coefficient. The presented values are averaged across thresholds and 686 

ranked – plotted linear relationship represent the Spearman correlation. Traditional hub-687 

measures not incorporating integrative aspects of nodal communication (within-module 688 

degree, node strength), did not show any relationships with node expansion (SFig. 1c). (c) 689 

Density plot showing the Spearman correlation between vertices' normalized community 690 

density (calculated over 5-30mm radius in 5mm steps and averaged) and estimated 691 

evolutionary expansion. (d) Violin plots showing the relationship between cortical expansion 692 

and cognitive flexibility at the vertex level. Median expansion is shown as horizontal lines. A 693 

Kruskal-Wallis test confirmed that expansion differed across flexibility groups. Post-hoc 694 

pairwise comparisons demonstrated that cortical locations involved in five or more cognitive 695 

components were more expanded than locations involved in four or less components 696 

(p<1.25e-07). All reported p-values are corrected for multiple tests. 697 

 698 

Figure 2 699 

High-expanding cortex communicates differently depending on the current cognitive 700 

demands, and preferentially with regions engaged by those demands. Cortical nodes were 701 

binned per evolutionary expansion (SFig. 4). We considered the 20% highest-expanding 702 

nodes ‘hotspot’ regions, and this definition revealed three separate clusters commonly 703 

discussed in the literature (Hill et al. 2010; Chaplin et al. 2013). (a) Average closeness 704 
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centrality for five expansion bins during resting- and task-state (dark blue: 20% least 705 

expanding nodes, yellow: expansion hotspots; intermediate colors: intermediate expansion 706 

levels). Following a significant "expansion bin X state" repeated measures ANOVA, paired-707 

samples t-tests showed significant increase in closeness centrality in task- compared to 708 

resting-state for the highest-expanding nodes only: t(104)=4.27, pFDR < 5.0e-04. (b) Nodes 709 

within hotspot regions (indicated by yellow lines) showing significant (paired-samples t-tests, 710 

pFDR < .05) changes in closeness centrality from rest to task. (c) Nodes showing significant 711 

change (paired-samples t-tests, pFDR < .05) in functional coupling (inverse of shortest path 712 

length) with expansion hotspots from rest to task across participants. (d) Mean coupling 713 

between nodes showing negative (blue) / positive effect (yellow) in panel c. Nodes falling 714 

within the hotspot regions were excluded when calculating the mean. Nodes more strongly 715 

coupled with hotspots during rest (R>T) showed higher coupling with each other during rest 716 

than during task: paired-samples t-test, t(104)=-10.56, pFDR < 3.7e-18. The opposite effect 717 

was observed between nodes more strongly coupled with hotspots during the task-state 718 

(T>R): paired-samples t-test, t(104)=13.25, pFDR < 4.4e-24. The presented data have been 719 

corrected for Euclidean distance between nodes. Uncorrected data show similar effects 720 

(SFig. 5). Error bars represent SEM. 721 

 722 

Figure 3 723 

Human development of neocortical multimodal coupling patterns follows evolutionary 724 

expansion trajectories. (a) To compare the hotspot's coupling across age groups, we 725 

standardized individual closeness centrality measures across nodes into units of standard 726 

deviation. This step was performed to account for higher levels of motion in the younger 727 

participants, which correlated positively with individual estimates of global efficiency (i.e., 728 
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average closeness centrality) and thus made comparisons of absolute coupling values 729 

between age groups difficult. The hotspots showed stronger relative coupling than lower-730 

expanding regions in both age groups (children: t(44)>8.09, pFDR < 3.0e-10; adults: 731 

t(104)>23.73, pFDR < 1.0e-10). Following the significant "age group x expansion bin" 732 

interaction, post hoc Wilcoxon rank sum tests showed lower relative coupling of high-733 

expanding nodes in the development sample compared to the adults (Z = -2.68, pFDR < .037). 734 

Lower-expanding nodes did not show significant differences in relative coupling between 735 

age groups (pFDR > .093). Error bars represent SEM. (b) Individual correlation between nodal 736 

closeness centrality and evolutionary expansion plotted as a function of age. The black line 737 

represents the best fitting smoothing spline (minimizing the Bayesian information criterion, 738 

BIC). Red lines represent the bootstrapped 95% confidence interval of the fit. Blue dotted 739 

line shows the correlation coefficient at which a correlation with 169 degrees of freedom is 740 

significant at p < .05 (abs(rho) > .151). Note that the BIC of a linear fit was 8.7 higher than 741 

the BIC for the optimal smoothing spline, indicating that the depicted age trajectories are 742 

curvelinear. (c) First principal component calculated from raw scores on two WASI subtests 743 

plotted as a function of age. Optimal fit estimated as in Fig. 3b. Spearman correlations 744 

revealed significant relationships between this measure of general intelligence and 745 

individual differences in closeness centrality-vs-expansion correlation (i.e. correlating 746 

datapoints in Fig. 3b and 3c: Spearman's rho = .32, p < 9.4e-5). Importantly, this relationship 747 

remained when controlling for nonlinear influences of age using partial Spearman 748 

correlations (rho = .18, p = .037). 749 
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