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ABSTRACT 

Can transcriptomic alterations drive the evolution of tumors? We rationalize that expressional 

changes found in all patients arise earlier in tumor development compared to alterations that 

occur only in limited subsets of patients. Our analyses of non-mutated genes from the non-

amplified regions of the genome of 158 triple negative breast cancer (TNBC) cases identified 

219 exclusively expression-altered (EEA) genes that may play important role in TNBC. 

Phylogenetic analyses of these genes predict a “punctuated burst” of multiple gene up-

regulation events occurring at early stages of tumor development, followed by minimal 

subsequent changes later in tumor progression. Remarkably, this punctuated burst of 

expressional changes is instigated by hypoxia-related molecular events, predominantly in two 

groups of genes that control chromosomal instability (CIN) and remodel tumor 

microenvironment (TME). We conclude that alterations in the transcriptome are not stochastic 

and that early stage hypoxia induces CIN and TME remodeling to permit further tumor 

evolution.  
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INTRODUCTION 

The Darwinian model of clonal selection, where a subset of genetic lesions drives tumor 

evolution and progression in a step-wise manner 1-4, is widely accepted as the mode of 

evolution of malignant cells under therapy or basal conditions 5-7. However, recent findings in 

prostate, pancreatic or triple negative breast cancer (TNBC), challenge this paradigm and 

question if gradualism is indeed the single mode of evolution 8-10. It may be instead a 

punctuated burst of molecular alterations in the early stages of cancer, where changes in 

biological environment of growing tumors require massive adaptations in the molecular 

machinery of cancer cells 11-13. Usually, normal cells respond to stress by deploying repair or 

resistance tools to maintain their genetic integrity and assure survival 14,15. In contrast, cancer 

cells typically do not have intact repair tools, which lead to genetic instability. Chromosomal 

instability (CIN) is a form of genetic instability that causes changes in both the structure and 

number of chromosomes 15-25. For example, mutations in CIN genes like BRCA1/2 increase 

the number of deletions up to 50 bps, causing multiple defects within the genome 26. 

Progressive accumulation of CIN within a tumor allows development of cell populations with 

heterogeneous properties. Some of these cells will carry selective survival advantages and 

will be responsible for further tumor progression 3. Likewise, overexpression of APOBEC3, a 

member of the cytidine deaminase gene family, may generate frequent C>T base 

substitutions also leading to tumor heterogeneity and progression along the malignancy 

pathway 27. Understanding the sequence of molecular events essential for tumor evolution 

may not only benefit early detection of malignancies, but may also allow the development of 

more effective treatment and even prevention strategies. While the role of accumulating 

genetic mutations in tumor progression has been extensively discussed, it is still not clear 

how alterations in gene expression patterns contribute to tumor evolution. 

Changes to gene expression can be brought about by number of factors, including 

epigenetic modifications, translation regulation, and differences in mRNA and protein stability 
28. For example, increased activities of growth factor, chemokine and cytokine receptors can 

set off specific signaling cascades and subsequent changes in gene expression, without any 

direct involvement of genetic mutations. However, what are the most significant changes that 

occur within the transcriptome of cancer cells and how they may contribute to tumor evolution 

is not clear. Here we use an aggressive malignancy, TNBC, as a model to explore the role of 

transcriptomic alterations during early stages that are caused not by genomic mutations, but 

exclusively by differential gene expression. We achieve this by focusing specifically on genes 
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that are heavily up-regulated in the non-amplified regions of the genome. We focused 

specifically on up-regulated genes because direct inhibition of these molecules may provide 

viable cancer treatment/prevention options at early stages of tumor development.  

Remarkably, our analysis of RNA seq data in 158 TNBC cases revealed that there is indeed a 

punctuated burst of expressional changes in two major groups of genes controlled by 

hypoxia-related factors. These two groups included molecules that regulate CIN and remodel 

tumor microenvironment (TME). This not only reveals new potential targets for TNBC therapy, 

but also indicates a critical role for hypoxia in very early stages of tumor development. 

 

RESULTS 

A Multi-step process to identify differentially expressed genes in breast cancer.  

To identify genes with aberrant expression patterns, we initially curated all the genes that are 

differentially regulated. We used the breast cancer-specific data from The Cancer Genome 

Atlas (TCGA) that represents the largest collection of patient samples with information on the 

mutation status, copy number aberrations (CNA), as well as gene expression patterns at 

different stages of tumor development. Gene expression in breast tumor samples was 

compared to the expression of the matching genes in normal samples using fold change (FC) 

and false discovery rate (FDR) after Empirical Bayes moderated t-test with Benjamini-

Hochberg correction. Genes were considered as up-regulated genes if FDR ≤ 0.01 and FC ≤ 

2. Down-regulated genes were selected if FDR ≤ 0.01 and FC ≤ -2. Our initial analyses in 

overall breast cancer identified 586 genes that were up-regulated and 1446 genes that were 

down-regulated at multiple stages of cancer progression (Supplementary Fig. 1a). The 

overlap between all stages is presented in Supplementary Table 1a. We also ran a 

complementary analysis to identify differentially regulated genes in specifically in TNBC. We 

found 1127 genes to be up-regulated and 1752 genes down-regulated across multiple stages 

of TNBC (Fig. 1a). The overlap between all stages is shown in Supplementary Table 1b. The 

Gene Set Enrichment Analysis (GSEA) indicated that the up-regulated genes in TNBC are 

enriched for molecules involved in cell cycle regulation and chromatin organization (p<0.001) 

(Fig. 1b). Results of our GSEA analysis of genes differentially up-regulated in TNBC tumors 

correlated well with the previously reported, differentially regulated genes from an 

independent cohort (p<0.001) (Fig. 1b) 29, which provides an additional support for the 

relevance of our observations. While we found a higher abundance of down-regulated genes, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2018. ; https://doi.org/10.1101/333633doi: bioRxiv preprint 

https://doi.org/10.1101/333633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

compared to the up-regulated genes, no similar significant enrichment was observed within 

the pool of the down-regulated genes. Similar results were obtained for overall breast cancer 

(Supplementary Fig. 1b). Taken together, these observations indicate that the application of 

our approach to the analysis of TCGA data allows identifying subsets of genes differentially 

regulated in TNBC tumors.  

 

Not all differentially expressed genes are equally deregulated across the population of 

breast cancer patients. 

While gene expression analysis to identify differentially regulated genes has been a common 

approach in cancer biology, we attempted to determine, how many of these genes are 

aberrantly expressed with high frequencies across the population of TNBC patients. We 

rationalized that common aberrations found in all patients should have arisen earlier in the 

development of the malignancy, compared to alterations that were found only in a subset of 

patients. Therefore, we have calculated a frequency of differential expression of each affected 

gene in TNBC tumors (Fig. 1c; Supplementary Fig. 1c). Throughout this analysis, we 

maintained a two-fold change in the expression level as a minimum requirement for a gene to 

be considered differentially regulated. The frequency of changes in each differentially 

expressed gene is calculated as a percentage of patients in whom the gene is up or down-

regulated. We found 254 genes were up-regulated and 1197 genes were down-regulated in 

almost 70% of the TNBC patients (Supplementary Table 2a,b). Similar results for overall 

breast cancer are presented Supplementary Table 3a,b. Unfortunately, there were only two 

patient samples that were available in TNBC-stage IV in TCGA dataset, which was not 

sufficient to minimize random effects. Therefore, we computed our analyses using the larger 

number of samples involved in the first three stages of TNBC. 

Changes in gene expression may not only arise from aberrant expression from an 

endogenous promoter, but also from accompanying chromosomal amplifications, deletions 

and other types of mutations. To account for this, we isolated the differentially regulated 

genes exclusively from the non-amplified/deleted regions of the genome. We identified 77 

amplified chromosome regions from the TCGA dataset based on CNA, including several 

previously reported regions in 1q, 8q, 16p and 20q (Supplementary Table 4)30, as presented 

in the circos plot for TNBC (Fig. 2a) or overall breast cancer (Supplementary Fig. 2a). We 

further evaluated the concordance of amplification and gene expression by fold change with 

FDR and Pearson’s correlation. We considered genes likely to be driven by CNA if their 
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Pearson’s correlation coefficient between expression and CNA was greater than 0.3, or they 

show significant differential CNA-associated expression change (Supplementary Fig. 2b,c; 

Supplementary Table 5a,b). Subsequently, we filtered out from our analysis 20 genes from 

TNBC patients that were in amplified regions or had strong correlations with chromosome 

amplification.  

We also used somatic mutational analyses of 560 breast cancer whole genome 

sequencing database available at COSMIC to eliminate any gene that might be differentially 

expressed because of a mutation 31. By also excluding 13 genes whose loci information was 

ambiguous, we finally identified 219 exclusively expression-altered (EEA) genes that elevated 

their expression in TNBC (Fig. 2b) and therefore, may represent good therapeutic targets. 

Interestingly, we observed multiple distinct patterns of up-regulation with varying frequencies 

across different cancer stages (Fig. 2b). For example, some genes were constitutively up-

regulated across all stages (PLK1, UBE2C or KIF4A). Similarly, certain genes were up-

regulated mostly at later stages (CCNE1, HMGB3 or NUF2). In contrast to this category, 

some genes were up-regulated selectively at early stages but were gradually down-regulated 

through the later stages (MMP1, MMP11 or MMP13). Among the 219 up-regulation events, 

majority of changes occurred in chromosome 1 and 17 (Supplementary Fig. 2d). Surprisingly, 

although the expression of some initially up-regulated genes gradually decreased, we did not 

observe any instance where their expression returned back to normal levels (Supplementary 

Fig. 3). Importantly, while we find that not all up-regulated genes are overexpressed in all 

breast tumors across all cancer stages, our analysis has generated an explicit set of genes 

that are overexpressed in over 70% of patients at all stages of both all breast cancer and 

TNBC tumors (Supplementary Table 6a,b). 

 

Lineage analysis of up-regulation profiles reveals a punctuated pattern of evolution in 

early TNBC tumors. 

Previous studies have used somatic mutations and CNA to understand tumor evolution 
8,10,11,13. However, it is not clear, how alterations in gene expression may affect tumor 

progression. To further address this, we performed a clustering analysis on the expression 

profiles of the newly identified EEA genes to describe how they may influence TNBC 

progression. After identifying distinct tumor clusters, we constructed their distance tree to gain 

insights into their relationship, analogous to a phylogenetic analysis. We generated a binary 

matrix from profiles of the 219 EEA genes (0�=�no up-regulation, 1�= up-regulation) for 
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each TNBC tumor. The pairwise Euclidian distances between samples were calculated and 

unsupervised hierarchical clustering with ward linkage32 was applied to identify homogenous 

groups, which allowed to cluster  patients with similar up-regulation profiles. This approach 

(Fig. 3a) reveals that cluster C1 is diverged at the highest overhang with the highest 

dissimilarities from the remaining samples. In addition, several distinguishable branches C2, 

C3 and C4 are also clustered. The construction of the distance tree was based on the 

neighbor-joining algorithm33 to display the lineage between the four clusters. Assuming that 

the tumor is derived from a single or a group of homogenous normal cells and the complexity 

of up-regulation in a tumor increases with time, the history of its progression can be partially 

inferred by comparing homogeneous groups.  

The phylogenetic lineage showed that cluster C1 has the shortest distance from 

normal samples, which suggests that tumors in C1 may be recorded at the early tumor stage 

and the up-regulated genes in C1 may be of importance to tumor initiation and early 

progression (Fig. 3b). The lineage shows a large distance from normal cell to C1, indicating a 

large number of up-regulatory events are required for successful tumor progression through 

very early stages. C2, C3 and C4 clusters diverged for relatively small distances from the 

common ancestor n2, which suggests less dissimilarity from C2 to C3 and C4, indicating that 

minimal changes in gene expression were required at later stages. By measuring the Consine 

similarity between mean up-regulation profile and subset vector (See Methods for details), we 

identified the 83 EEA genes that may act as potential enabling factors within the early tumor 

evolution (Supplementary Table 7).  

To confirm that the 83 up-regulation events are relevant to breast cancer progression, 

we next inquired if these changes in gene expression correlate with the loss of expression of 

known tumor suppressors. Vogelstein and colleagues identified ~70 tumor suppressor genes 

that when inactivated by intragenic mutations can promote tumorigenesis34. We found a 

strong negative correlation in the expression of the 83 EEA genes and the 74 tumor 

suppressors (Fig. 3c). In summary, our analysis revealed that a large number of EEA events 

appear at the earliest stage of tumor development with fewer subsequent events at later 

stages, reflecting an emerging pressure from rapidly changing biological environment within 

early progressing tumors. 
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TME remodeling and CIN cooperatively drive TNBC.  

Since our phylogenetic analysis indicated that the 83 up-regulated EEA genes are crucial 

early events in early tumorigenesis, we next explored the functionalities of these genes. 

Interestingly, we found a large subset of genes that are known to be involved in remodeling 

TME, including metalloproteinases (MMP1, MMP11, MMP13, ADAMDEC1, ADAMTS14), 

chemokine receptors and ligands (CXCL11, CXCL10, CCL11, CCR8), protease inhibitors 

(CST4, CST1), pH maintenance factors (CAIX), and different collagens (COL9A3, COL10A1). 

This emphasizes the critical role of extra-cellular matrix and TME remodeling at the early 

stage of tumor progression. Similarly, we also identified several of the EEA genes including, 

FOXM1, PLK1, BUB1, KIF2C, CDCA2, CDC20, CDKN3, KNL1 to name a few, that are known 

for their role in CIN and tumor development 35-43. This may reflect a selective pressure for 

additional genetic alterations in early tumors that would allow their further evolution. In 

addition, cluster 1 included genes like DEPDC1B and HMMR that have known roles in both 

TME remodeling as well as CIN associated functions 44-48. Overall, our identification of cluster 

1 genes indicates that a punctuated burst of expressional changes occurs simultaneously in 

both CIN and TME remodeling genes very early in tumor development. Supplementary Table 

8a lists literature evidence for the role of cluster 1 genes in TME and CIN.  

If both CIN and TME remodeling ensue simultaneously, we should ask what possible 

factors could drive such punctuated burst. To address this, we used recently published causal 

analyses tools 49 available in the Ingenuity Pathway Analysis. In particular, we performed 

Upstream Regulator Analysis, and Causal Network Analysis to curate all interactions of 

cluster 1 genes (Fig. 4a,b). Interestingly, a large sub-set of direct up-stream interactions as 

well as causal interactions of both the CIN and TME genes (cluster 1), are hypoxia responsive 

genes 50 (Fig. 4a,b and Supplementary Table 8b,c). Invariably, almost 50% of the cluster 1 

genes are also associated with poor prognosis (Fig.5a and Supplementary Fig. 4). This 

strongly suggests that very early in the course of tumor progression gradually increasing 

hypoxic conditions induce both CIN and TME remodeling to permit survival of cancer cells 

and their further evolution at later stages of malignancy. 

Having identified a set of 83 EEA genes that act in early TNBC tumors, we sought to 

identify drugs that can benefit TNBC treatment at early stages and may potentially be also 

used for cancer prevention. To do this, we selected breast cancer cell lines that overexpress 

cluster 1 genes and analyzed their sensitivity to drugs using the cancerRXgene database 

(http://www.cancerrxgene.org). This database provides information on cell line drug 
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sensitivity. The data for 265 drugs and multiple cell lines was examined to identify compounds 

that are more effective when used selectively with cell lines that highly express cluster 1 

genes. We found four drugs, bleomycin, pevonedistat, ponatinib, and WIKI4, that showed a 

significant decrease in the IC50, for cell lines that highly expressed cluster 1 genes (Fig. 5b). 

Consistent with our identification of several cluster 1 genes being involved in CIN (Fig. 4a), 

our drug analyses indicate that cell lines with high expression of cluster 1 genes are more 

sensitive to a DNA damaging agent, bleomycin (Fig 5b).  

 

DISSCUSSION 

Differential gene expression analyses have been traditionally used to examine fluctuations 

within the transcriptome in a given context for decades. This has been a powerful strategy to 

identify biomarkers and drug targets 51-54. However, tumor genome sequencing has provided 

new opportunities to re-examine these fluctuations in the context of tumor evolution. We 

rationalize that common aberrations detected across all patients arose earlier in the 

development of the malignancy compared to alterations that were found only in a subset of 

patients. Based on this, our strategy in this work is to explore the frequency of changes in the 

expression pattern of genes at different stages of TNBC progression. This is similar to 

previous studies that explored dynamic changes in mutations or CNA for a given patient at a 

given stage 8-10,55,56. 

Changes in gene expression, unless constitutively observed, are often ignored as 

stochastic noise, specifically those that arise from variations in transcriptional regulation or 

biochemical modifications within cells. Our analyses deliver a number of important 

observations. First, compared to mutational changes, alterations within the transcriptome are 

more common and occur at high frequency. For example, the highly significant mutations in 

genes like PIK3CA or KRAS are observed in ~30% of breast cancer patients. In contrast, 

overexpression of PLK1 or FOXM1 genes is observed in over 90% of patients 

(Supplementary Fig. 5). Second, more genes are down-regulated compared to up-regulated 

genes. Third, during tumor evolution, changes in expression pattern occur as punctuated 

bursts, where the initial singular burst results in simultaneous accumulation of overexpression 

of multiple EEA genes. Fourth, early changes in the expression of EEA molecules occur in 

genes that remodel TME and maintain chromosomal stability. This is most likely because 

survival within the progressively changing biological landscape during early stages requires 

cancer cells to both actively adjust to their microenvironment for their needs and to enhance 
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CIN to facilitate their plasticity and adapt. Indeed, our unbiased genome-wide investigation 

reveals a strong functional connection between these two mechanisms and a crucial role of 

their coordinated effort in establishing early tumors. Interestingly, some TME genes, including 

MMP1, MMP11 and MMP13 proved to be up-regulated at early stages and gradually down-

regulated through the later stages, although never achieving their normal levels. This 

suggests that their activities are essential at all stages of cancer progression, but their higher 

activity is required in early tumors, where the TME is not adjusted yet to the needs of 

malignant cells.  Fifth, while we know that hypoxic TME can trigger tumor metastasis and 

invasion at later stages of cancer progression 57,58, our causal network analyses suggest that 

increasing hypoxia may be responsible for the cooperative induction of CIN and TME 

remodeling much earlier than previously appreciated (Fig. 5c). As hypoxic environment is also 

known to promote the propagation of tumor initiating cells (TICs) 59,60, we suspect that the 

expressional changes of EEA genes may facilitate this process. This is consistent with our 

finding that drugs like bleomycin and WIKI4 that efficiently eliminate TIC-enriched cell 

populations 61,62, cause selective lethality to cancer cell lines that overexpress cluster 1 genes 

(Fig. 5b).   

Although, CIN is nearly ubiquitous in cancer cells, and is considered as an important 

factor in tumor development 63, our findings indicate that hypoxic TME of early tumor may 

function as a trigger of genetic instability. This model is consistent with previous observations, 

showing that repeated cycles of hypoxia, can down-regulate a number of DNA repair 

pathways in cancer cells, ultimately leading to genetic instability 64,65. In regards to this, the 

Glazer group has provided one of the first quantitative assessments of how genetic instability 

can be instigated by TME 66. Interestingly, several of the core EEA genes that maintain 

genome stability were experimentally shown to be involved in tumor development 35-43. 

Although some of these examples might be indicative of a direct role for CIN genes in 

tumorigenesis, in the context of our analyses, we suggest that overexpression of these genes 

may have enabled cancer cells to acquire properties that allowed them to survive at the early 

stage of cancer and thus, to develop detectable tumors (Fig.5c). In summary, our unbiased 

comprehensive analyses of the transcriptome directly link the early onset of hypoxia to the 

collective burst of CIN and TME remodeling factors in the initial stage of tumor progression, 

which highlights a therapeutic potential of targeting these molecules in TNBC tumors in their 

earliest detectable stage. 
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METHODS 

Number of patient samples analyzed 

We collected breast cancer samples from the Cancer Genome Atlas (TCGA) with information 

on the copy number aberration, gene expression as well as tumor information. According to 

the stage information, 1078 samples were classified into four tumor stages; from stage I to 

stage IV with tumors in stage V not being considered in this study. According to the IHC 

markers, 158 samples were classified as TNBC tumors in which the ER, PR and HER2 were 

all negative. With the tumor stage information, we classified TNBC tumors into TNBC-stage I, 

TNBC-stage II, TNBC-stage III and TNBC-stage IV. Similarly, TNBC tumors in stage IV were 

excluded. Moreover, 114 normal samples were collected from TCGA for comparison with 

tumor sample data. The numbers of samples in each stage and TNBC-stage specific samples 

are displayed in the Supplemental Table 9. 

 

Fold-change and FDR calculation 

We applied two criteria, fold change and FDR calculation on the selection of differentially 

expressed genes. Fold-change is a biological assessment of changes in gene expression that 

is estimated by log2 (ratio), as represented in Equation 1, where the ratio of average 

expression of gene  in patients to the average expression in normal samples is calculated.  

                                                        (1) 

Empirical Bayes moderated t-test was applied to assess the statistical significance of 

differential expression. False discover rate (FDR) was obtained after Benjamini and Hochberg 

correction. We employed the Limma package 67 to derive the two assessments of differentially 

expressed genes. 

 

Computing frequency of differential expression in stage-specific patients. 

After the identification of up/down-regulated genes in each stage and TNBC-stage patients, 

next we aimed to evaluate the frequency of identified differential expression in stage-specific 

patients. For each tumor stage, we calculated the fold change of identified up or down-

regulated gene  by comparing the expression in patient  to the average expression in 

normal samples (Equation 2). Following this, the frequency of patients in which the fold-

change of gene  is greater than 2 or less than -2 was calculated. 

i
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( )
log

( )

patients
gene i

gene i normal
gene i

ave E
Fold change

ave E
− =

i j

i

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2018. ; https://doi.org/10.1101/333633doi: bioRxiv preprint 

https://doi.org/10.1101/333633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

                                          (2) 

 

Evaluating the concordance between copy number amplification and up-regulated 

gene expression. 

 As changes in gene expression may arise from the chromosomal amplification, here we 

aimed to evaluate the associations between copy number amplification (CNA) and up-

regulations in gene expression and identify the up-regulations that are driven by CNA. We 

generated the CNA profile with patients (in rows) and genes (in columns) from the data 

obtained from TCGA. Only the data of patients whose CNA profile and up-regulation status 

are available were considered for this study. Using a scoring system, genes getting amplified 

in a patient were represented as 1 or otherwise 0 and the amplified genes were grouped 

based on the profile scoring. To avoid patient heterogeneities, only genes showing 

amplification over 40% of patients were considered as cancer relevant amplified genes. CNA 

regions were identified by calculating the percentage of amplification of genes on each 

chromosome region, and regions with at least 40% of amplification genes were identified as 

CNA regions. Then we analyzed the concordance between CNA and up-regulations in gene 

expression by two evaluation ways. Primarily, cfor each up-regulated gene  at CNA regions, 

according to the gene ’s amplification status, the patient set  were grouped into two sets

, where and denotes patients with and without gene  getting amplified 

respectively. The fold CNA-associated change was calculated by comparing the difference 

between the log2 of mean expression of gene in  and . Meanwhile empirical bayes 

moderated t-test is applied on the two groups. To correct for multiple hypothesis testing, the p 

value was converted to FDR by Benjamini-Hochberg correction. If gene  showed at least 1 

positive fold CNA-associated change and FDR smaller than 0.01, it is considered to be 

associated strongly with CNA. Secondly, Pearson’s correlation coefficient was calculated to 

quantify the correlation between CNA and gene expression. If a gene showed the value of 

Pearson’s correlation coefficient larger than 0.3, it is considered as CNA-driven genes as well.  
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TNBC subpopulations and neighboring-joining algorithm analyses  

To identify the distinguishable TNBC subpopulations, which reveal similar up-regulation 

profiles, we performed clustering analysis within TNBC patients. The binary matrix was 

generated with up-regulation status in rows and patient in columns. If a gene is up-regulated 

in a patient, it was indicated by 1, otherwise 0 using the scoring system described in the 

previous section. Then we calculated pairwise Euclidian distance between patients and 

performed hierarchical clustering that clustered TNBC patients into distinguishable clusters. 

The mean up-regulation profile for each cluster was generated to represent the up-regulation 

status. Assuming that no gene up-regulations appeared before the initiation of cancer, the 

profile with all zeros was generated to represent normal samples. The distance tree was 

constructed based on profiles in normal and mean profiles by Euclidian distance and 

neighbor-joining algorithm. 

  

Assigning genes into different subpopulations. 

To determine the appearance of up-regulations in various subsets of the four subpopulations, 

we generated the four-dimensional binary vectors to represent each of the fifteen possible 

subsets of the four subpopulations, from (0, 0, 0, 1) to (1, 1, 1, 1). Four each genei , the 

consine similarities between mean profile ip  and each subset vector 
jv is calculated by the 

Equation.3.  

 
2 2

( , ) cos( ) i j
i j

i j

p v
similarity p v

p v
θ

⋅
= =                                                         (3) 

The gene was assigned to the subset vector with the maximum similarity to its mean profile68. 

For example, if a gene has the maximum similarity with the subset vector (0, 1, 1, 1), it means 

it getting up-regulated in subpopulations 2, 3 and 4. 

 

IPA and hypoxia analysis.  

IPA analysis was performed on the genes from cluster 1 as described in Kramer et al.,49. The 

gene list was first annotated and the data set underwent various analyses including for core 

expression to study the interactions. The gene interactions were explored, built and different 

overlays including pathways, disease and function and molecule activity prediction were 

applied to obtain the required outputs. Comparison analysis was also performed among the 

different subpopulations (referred as clusters). Hypoxia analyses were performed using the 
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hypoxia database (http://www.hypoxiadb.com). This database includes 72,000 manually 

curated entries taken on 3500 proteins extracted from 73 peer-reviewed publications selected 

from PubMed. As described in Khurana et al., it provides manually curated literature 

references to support the inclusion of the protein in the database and establish its association 

with hypoxia 50. 

 

Drug Data analyses 

The cell lines from the cancerRXgene database were divided into high cluster 1 expression 

and low cluster 1 expression. This was done by creating a table where the rows were cell 

lines, the columns were cluster 1 genes and the intersection at each row and column was the 

expression value of that gene in that cell line. The expression values across all cell lines for 

each gene were then added together and the mean and standard deviation were calculated. 

Then each cell line was given a Z score for that gene � �
���

�
 where x is the value, � is the 

mean and � is the standard deviation. Each cell line then had all of its Z scores summed 

together to give the total score of c1 gene expression. The 85th percentile and the 15th 

percentile were then taken to be the cluster 1 high expression and cluster 1 low expression 

groups respectively. After grouping the cell lines into high and low expression of cluster 1, 

analysis was ran on the sensitivity of these cell lines to drugs. The drug data was obtained 

from the cancerrxgene database. For each drug, the IC50 values from the database were 

taken for each cell line of the high expression cell lines, and each of the low expression cell 

lines. The IC50 values for each group were then compared using a Mann-Whitney-U test. 

Using the percent survival, we generated the graphs and dose data from the cancerrxgene 

database and fitting a sigmoidal curve to the resulting plot, using the literature IC50 value as 

an estimator. The sigmoid curve used was of the form 
���

���
��������
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Figure Legends: 

Figure 1: Identification of up-regulated genes in TNBC. (a) Venn diagram of differentially 

expressed genes in TNBC stage-specific tumors. The number of up and down-regulated 

genes at each stage of tumor and at the intersection between different stages have been 

represented. (b) Gene set enrichment analysis for up/down-regulated genes across all TNBC 

tumor stages. Gene Set Enrichment Analysis for 244 up-regulated genes (left) and 529 down-

regulated genes (right) across four tumor stages along with previously identified, differentially 

up-regulated genes from Sotiriou et al 29. (c) Frequency distribution of differential expression 

in TNBC stage-specific tumors. Dot plot represents the fold change and the frequency range 

of TNBC stage-specific differentially expressed genes, where the red denotes up-regulated 

gene and the blue denotes down-regulated gene. 

 

Figure 2: Elimination of amplified genes to identify 219 up-regulated events. (a) 

Amplified chromosome cytobands and up-regulated genes locus. Track A displays the 

cytoband diagram where the texts in red indicate identified amplified regions. Track B and C 

displays the frequency of genes showing amplification and deletion respectively in at least in 

40% of patients in each cytoband. Genes in figure 1d were mapped to the Track D. (b) Fold 

change and frequency distribution for genes showing up-regulation in at least 70% of TNBC 

patients. Nodes in each column represent up-regulated genes with their sizes indicating the 

frequency of samples and their colors representing the fold change value in the specific tumor 

stage. 
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Figure 3: Identification of 83 up-regulation events that occur in early stages. (a) 

Hierarchical clustering of 219 EEA genes in TNBC patients. Different colors show TNBC 

patients clustered into four clusters represented as Red for Cluster 1 (C1), Purple for Cluster 

2 (C2), Blue for Cluster 3 (C3) and Green for Cluster 4 (C4). (b) The progression of gene up-

regulations in different TNBC clusters as shown by the phylogenetic tree. The figure shows 

the lineage of progression of gene up-regulations from the normal to distinct subpopulations. 

Heat maps with genes in columns and TNBC samples in rows display the up-regulation status 

(yellow: no up-regulation; blue: up-regulation) for different TNBC clusters. (c) Correlation 

clustergram of cluster 1 genes compared to known tumor suppressors. Red indicates 

negative correlation and green indicates positive correlation. The panel on the right 

represents, the significance of the correlation as a heat map.  Blue indicates significance 

(<0.05) and white indicates lack of significance (>0.05). 

 

Figure 4: IPA analyses showing extensive interaction between hypoxia responsive 

genes with members of cluster 1 genes. (a) Upstream regulator analysis was performed 

with IPA for the cluster 1 genes and all the interactions retrieved are presented. Cluster 1 

genes are classified into those that are associated with CIN or TME. The upstream genes that 

are hypoxia responsive, are highlighted in red. (b) Causal network analysis was performed 

with IPA for the cluster 1 genes and all the interactions retrieved are presented. Cluster 1 

genes are classified into those that are associated with CIN or TME. The upstream genes that 

are hypoxia responsive, are highlighted in red. 

 

Figure 5: Survival plot, Drug response and a model describing the role of cluster 1 

genes in tumor evolution. (a) Representative relapse free survival plots of breast cancer 

patients with low and high expression of cluster 1 genes (b) Dose response curves and IC50 

values of drugs targeting cell lines with low and high expression of cluster 1 genes. (c) 

Schematic model showing the effect of simultaneous burst of CIN and TME-associated genes 

in response to hypoxia during early stages of cancer initiation. 

 

Supplementary Figures: 

Supplementary Figure 1: Identification of up-regulated genes in overall breast cancer.  

(a) Venn diagram of differentially expressed genes in overall (top) and ER+ patients (bottom) 

respectively. (b) Gene set enrichment analysis for up/down-regulated genes across all tumor 
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stages. It shows the Gene Set Enrichment Analysis for 307 up-regulated genes (left) and 922 

down-regulated genes (right) across four tumor stages along with previously identified, 

differentially up-regulated genes from Sotiriou et al 29. (c) Frequency distribution of differential 

expression in overall patients. This plot represents the fold change and the frequency range 

of stage-specific differentially expressed genes, where the red denotes up-regulated gene 

and the blue denotes down-regulated gene. 

 

Supplementary Figure 2: Expression pattern of up-regulated genes. (a) Amplified 

chromosome cytobands and up-regulated genes locus. Track A displays the cytoband 

diagram where the texts in red indicate identified amplified regions. Track B and C displays 

the frequency of genes showing amplification and deletion respectively at least in 40% of 

patients in each cytoband. Genes in supplementary figure 2a were mapped to the Track D. (b 

and c) The evaluation on the concordance between gene expression and amplification. 

Nodes represent up-regulated genes in overall breast cancer cases in amplified regions, 

showing Pearson’s correlation coefficient and fold CNA-associated change. Genes in red 

were considered driven by copy number amplification either in overall breast cancer (B) or in 

TNBC (C). (d) Distribution of the 219 up-regulated events according to their chromosomal 

location.  

Supplementary Figure 3: Box plots of Cluster 1 gene expression at various stages of TNBC 

tumor. The y-axis represents log2-transformed gene expression and x-axis denotes TNBC 

stages.   

Supplementary Figure 4: Relapse free survival plot in breast cancer patients having low and 

high expression of cluster 1 genes.  

Supplementary Figure 5: Percentage of patients that either overexpress or carry mutations 

in some of the key cancer genes. 

 

Supplementary Tables: 

Supplementary Table 1: Up/down-regulated genes across all stages in overall patients, 

TNBC patients and ER+ patients, respectively. Table 1a, and 1b show up/down -regulated 

genes in different tumor stages for overall and TNBC cases, respectively. 

Supplementary Table 2: Stage-specific up/down regulated genes in at least 70% of TNBC 

patients. Table 2a and 2b show up and down regulated genes in at least 70% of TNBC 
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patients in each stage, respectively, as well as the fold change, frequency and FDR 

information. 

Supplementary Table 3: TNBC stage-specific differentially expressed genes in at least 70% 

of overall patients. Table 3a and 3b show up and down regulated genes in at least 70% of 

overall patients in each stage, respectively, as well as the fold change, frequency and FDR 

information.  

Supplementary Table 4: Identified amplified regions. Table 4 shows the identified 

chromosomal amplification regions. 

Supplementary Table 5: Evaluations on the concordances between gene expression and 

copy number amplification for up-regulated genes on amplified regions. Table 5a and 5b 

show Pearson’s correlation coefficient between gene expression and CNA, and fold CNA-

associated change with FDR, and cytoband for up-regulated genes in overall and TNBC 

patients, respectively. 

Supplementary Table 6: EEA genes in overall and TNBC patients. Table 6a and 6b show 

EEA genes in overall and TNBC patients, respectively. 

Supplementary Table 7: Gene lists in four clusters. Table 7a, 7b, 7c and 7d show genes in 

cluster 1, 2, 3 and 4, respectively. 

Supplementary Table 8: Analyses of cluster 1 genes and its interactions. Table 8a lists the 

cluster 1 genes and their association with CIN or TME. Table 8b and 8c enlist the upstream 

regulator and causal network genes respectively, along with their association with CIN or 

TME and hypoxia responsiveness. 

Supplementary Table 9: The number of genes in each tumor stage and subtype. Table 8 

shows the number of ER+, HER2+, TNBC, and overall patients in different stages. 
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