## Phosphatidylinositol 5 phosphate 4-kinase regulates plasma-membrane $\mathrm{PIP}_{3}$

 turnover and insulin sensitivity in Drosophila.

Raghu*\%
*National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.
$\wedge$ Manipal University, Madhav Nagar, Manipal 576104, Karnataka, India
${ }^{\%}$ corresponding author
Tel: +91-80-23666102

E-mail: praghu@ncbs.res.in


#### Abstract

Phosphatidylinositol-3,4,5-trisphosphate $\left(\mathrm{PIP}_{3}\right)$ generation at the plasma membrane is a key event during activation of receptor tyrosine kinases such as the insulin receptor and is critical for normal growth and metabolism. The lipid kinases and phosphatases regulating PIP $_{3}$ levels are described but mechanisms controlling their activity remain unclear. We report that in Drosophila, phosphatidylinositol 5 phosphate 4 -kinase ( $\mathrm{PIP}_{4} \mathrm{~K}$ ) function at the plasma membrane is required for normal $\mathrm{PIP}_{3}$ levels during insulin receptor activation. Depletion of $\mathrm{PIP}_{4} \mathrm{~K}$ increases $\mathrm{PIP}_{3}$ levels and augments sensitivity to insulin through enhanced Class I phosphoinositide 3-kinase (PI3K) activity. Animals lacking PIP4K show enhanced insulin signalling dependent phenotypes in vivo and are resistant to the metabolic consequences of a high-sugar diet, highlighting the importance of PIP4K in normal metabolism and development. Thus, PIP 4 Ks are key regulators of receptor tyrosine kinase signalling with implications for growth factor dependent processes including tumour growth, T -cell activation and metabolism.


## Introduction

Lipid kinases that can phosphorylate selected positions on the inositol head group of phosphatidylinositol (PI), generate second messengers that regulate multiple processes in eukaryotic cells. The generation of phosphatidylinositol 3,4,5-trisphosphate ( $\mathrm{PIP}_{3}$ ) through the action of Class $\mathrm{IPI}_{3} \mathrm{~K}$ following growth factor receptor (e.g Insulin receptor) stimulation, is a widespread signalling reaction [1] that regulates normal growth and development [2]. The role of Class I $\mathrm{PI}_{3} \mathrm{~K}$ activation in response to insulin receptor signalling is evolutionarily conserved and has been widely studied in metazoan models such as the fly, worm and mammals [3]. Robust control of the levels and the dynamics of $\mathrm{PIP}_{3}$ turnover is essential to maintain fidelity and sensitivity of information transfer during insulin signalling. This is achieved through a number of different molecular mechanisms. The Class I PI ${ }_{3} \mathrm{~K}$ enzyme is a dimer of a catalytic subunit ( p 110 ) whose activity is inhibited under unstimulated conditions by the regulatory subunit (p85/50/55/60). Upstream receptor activation and subsequent binding to p -Tyr residues on the receptor and adaptor proteins relieves this inhibition. In addition, lipid phosphatases are also important in controlling PIP $_{3}$ levels at the plasma membrane. PTEN, a 3-phosphatase, hydrolyzes $\mathrm{PIP}_{3}$ to produce $\mathrm{PI}(4,5) \mathrm{P}_{2}[4]$ while $\mathrm{SHIP}_{2}$ is a 5 phosphate that generates $\mathrm{PI}(3,4) \mathrm{P}_{2}$ from $\mathrm{PIP}_{3}$ [5]. It is well documented that mutations in genes encoding any of these enzymes can be oncogenic or result in metabolic syndromes. Loss of function in PTEN or gain of function in Class $\mathrm{I} \mathrm{PI}_{3} \mathrm{~K}$ genes results in tumour development [6] while loss of SHIP2 results in altered insulin sensitivity in mammals $[7,8]$. Thus, the control of receptor-activated $\mathrm{PIP}_{3}$ levels is vital to the regulation of events that direct cell growth and metabolism.

Class I PI ${ }_{3} \mathrm{~K}$ enzymes utilize phosphatidylinositol 4,5 -bisphosphate $\left[\mathrm{PI}(4,5) \mathrm{P}_{2}\right]$ as substrate to generate $\mathrm{PIP}_{3}$. In animal cells, the major route of $\mathrm{PI}(4,5) \mathrm{P}_{2}$ synthesis is the action of phosphatidylinositol 4 phosphate 5 -kinase (PIP ${ }_{5} \mathrm{~K}$ ), enzymes that use phosphatidylinositol 4 phosphate ( $\mathrm{PI}_{4} \mathrm{P}$ ) as substrate and phosphorylate position 5 of the inositol headgroup [9]. More
recently, Cantley and colleagues have described a distinct class of lipid kinases, the phosphatidylinositol 5 phosphate 4 -kinases (PIP4K), enzymes that utilize phosphatidylinositol 5phosphate $\left(\mathrm{PI}_{5} \mathrm{P}\right)$ as substrate and phosphorylate position 4 to generate $\mathrm{PI}(4,5) \mathrm{P}_{2}[10]$. Loss of PIP4Ks does not result in a drop in the mass of total cellular $\mathrm{PI}(4,5) \mathrm{P}_{2}$ but the levels of its preferred substrate, $\mathrm{PI}_{5} \mathrm{P}$ are elevated [[11], reviewed in [12]]. In mammalian cells, three isoforms of $\mathrm{PIP}_{4} \mathrm{Ks}$ occur, viz. $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~A}, \mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ and $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{C}$. The phenotypes of mouse knockouts in each of these genes suggest a role for $\mathrm{PIP}_{4} \mathrm{~K}$ s in regulating receptor tyrosine kinase and $\mathrm{PI}_{3} \mathrm{~K}$ signaling; deletion of $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~A}$ and $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ is able to slow tumor growth in $\mathrm{p}_{53} /-$ mice [13]; depletion of $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{C}$ results in excessive T-cell activation [14] and loss of $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ in mice results in hyper-responsiveness to insulin and a progressive loss of body weight in adults [15]. Previous studies have linked PIP4K2B to insulin and $\mathrm{PI}_{3} \mathrm{~K}$ signalling. Overexpression of $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ in CHO-IR cells (expressing extremely low levels of endogenous $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ ) results in reduced $\mathrm{PIP}_{3}$ production following insulin stimulation [16]. Similarly, in U2oS cells, acute doxycycline-induced overexpression of $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~A}$ reduces AKT activation seen on insulin stimulation although changes in $\mathrm{PIP}_{3}$ levels were not reported under these conditions [17]. By contrast, a recent study has reported that in immortalized B-cells that carry a deletion of $\mathrm{PIP} 4 \mathrm{~K}_{2} \mathrm{~A}$, there is a reduction in $\mathrm{PIP}_{3}$ levels following insulin stimulation [18]. Thus, although there are multiple lines of evidence suggesting a link between $\mathrm{PIP}_{4} \mathrm{~K}$ and Class I PI3 K signaling during insulin stimulation, the impact of the $\mathrm{PIP}_{4} \mathrm{~K}$ function on $\mathrm{PIP}_{3}$ levels remains unresolved.

It has been reported that loss of the only $\mathrm{PIP}_{4} \mathrm{~K}$ in Drosophila results in a larval growth deficit and developmental delay. These phenotypes were associated with an overall reduction in the levels of $\mathrm{pS} 6 \mathrm{~K}^{\mathrm{T}_{398}}$ and $\mathrm{pAKT}{ }^{\mathrm{S} 505}$, both outputs of mechanistic Target $\underline{O} \underline{\text { Rapamycin (mTOR) signalling. The }}$ systemic growth defect in the $\mathrm{dPIP}_{4} \mathrm{~K}$ mutants $\left(\mathrm{dPIP}_{4} K^{29}\right)$ could be rescued by enhancing mTOR complex 1 (TORC1) activity through pan-larval overexpression of its activator Rheb [11,19]. Since
then it has also been shown in mice that PIP 4 K 2 C can regulate TORC1 -mediated signalling in immune cells [14]. The loss of $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{C}$ was also shown to enhance TORC1 outputs in Tsc1/2 deficient MEFs during starvation [20]. mTOR signalling can transduce multiple developmental and environmental cues including growth factor signalling, amino acid and cellular ATP levels into growth responses [21]. However, the relationship between PIP 4 K function and its role in regulating TORC1 activity and Class $\mathrm{I}_{3} \mathrm{PI}_{3} \mathrm{~K}$ signaling remains unclear.

During Drosophila development, larval stages are accompanied by a dramatic increase in body size. Much of this growth occurs without increases in cell number but via an increase in cellular biomass that occurs in polyploid larval tissues such as the salivary gland and fat body [22]. One major mechanism that drives this form of larval growth is the ongoing insulin signalling; characterized by the endocrine secretion of insulin-like peptides (dILPs) from insulin-producing cells (IPCs) in the larval brain and their action on peripheral tissues through the single insulin receptor in flies [23]. Removal of insulin receptor (dInR) activity [24] or the insulin receptor substrate (chico) [25] results in reduced growth and delayed development through multiple mechanisms. In flies, cell size in the salivary glands can be tuned by enhancing cell-specific Class I PI 3 K -dependent $\mathrm{PIP}_{3}$ production [26]. In this study, we use salivary glands and fat body cells of Drosophila larvae to study the effect of $\mathrm{dPIP}_{4} \mathrm{~K}$ on insulin receptor activated, Class I $\mathrm{PI}_{3} \mathrm{~K}$ signalling. We find that in Drosophila larval salivary gland cells, loss of $d P I P 4 K$ enhanced the growth-promoting effects of overexpressing components of the insulin signalling pathway. $\mathrm{dPIP}_{4} \mathrm{~K}$ regulates the levels of $\mathrm{PIP}_{3}$ and the intrinsic sensitivity to insulin at the plasma membrane. Insulin signalling activity is regulated through negative feedback from TORC1 in cells $[27,28]$. This TORC1 dependent reduction in insulinstimulated $\mathrm{PIP}_{3}$ production is rendered ineffective in the absence of dPIP4K. Finally, we show that these cellular changes in insulin signalling have consequences on circulating sugar metabolism in larvae and also their susceptibility to insulin resistance on a high-sugar diet. Altogether, we
demonstrate an important physiological role for $\mathrm{dPIP}_{4} \mathrm{~K}$ as a negative regulator of Class I $\mathrm{PI}_{3} \mathrm{~K}$ signaling during insulin stimulation in Drosophila in vivo.

## Results

dPIP4K genetically interacts with the insulin receptor signalling pathway
Salivary glands are endo-replicative organs in Drosophila larvae that are composed of large polarized polyploid cells. Previously, we have demonstrated the use of this organ as a model to study changes in cell size [11,26]. Prior studies on insulin receptor signalling (scheme depicted in Fig. 1A) have revealed a role for this pathway in the autonomous control of both cell size and proliferation [23,25]. However, direct evidence for such regulation in salivary glands has not been demonstrated. Therefore, as a proof of principle, we depleted $\operatorname{dIn} R$ levels through RNA interference (RNAi) selectively in the salivary glands of $3^{\text {rd }}$ instar larvae using the driver $A B_{1} G a l_{4}$. As expected, this resulted in a reduction of the average size of salivary gland cells without a change in the number of cells (Fig. 1B, C and S1A). Likewise, overexpression of $\operatorname{dInR}$ (Fig. 1 D (i) and $\mathrm{S}_{1} \mathrm{~B}$ ) and chico (Fig. 1 E (i) and S1D) selectively in the salivary glands also results in an increase in cell size. Thus, insulin receptor signalling regulates cell size in the salivary gland.

We then compared the effect of overexpressing $d \operatorname{InR}$ in wild-type and $d P I P 4 K^{29}$ cells. When $d I n R$ was over-expressed in $d P I P_{4} K^{29}\left(A B_{1}>d I n R ; d P I P_{4} K^{29}\right)$, we also found an increase in salivary gland cell size (Fig.1D(ii) and $\mathrm{S}_{1} \mathrm{C}$ ); but the increase in cell size elicited was significantly greater than that seen in wild-type cells $\left(A B_{1}>d I n R\right)$ (Fig. 1G). Similar results were seen when comparing the effect of chico overexpression in wild-type and $d P I P 4 K^{29}$ cells; i.e. chico overexpression elicited a larger increase in cell size in $d_{P I P}{ }_{4} K^{29}$ compared to wild-type (Fig. $1 \mathrm{E}(\mathrm{ii})$ and Fig. S1E).

Further, in order to decipher how $\mathrm{dPIP}_{4} \mathrm{~K}$ specifically interacted with the insulin signalling pathway we tested if constitutively activating a downstream step will abolish the differences between wildtype and $\mathrm{dPIP}_{4} \mathrm{~K}^{29}$ cells. For this, we expressed a constitutively active form of $\underline{\text { Phosphoinositide- }}$ Dependent Kinase-1 $\left(\mathrm{PDK}_{1}\right)\left(\mathrm{PDK1}^{\mathrm{A} 467 \mathrm{~V}}\right)$ which is normally activated by $\mathrm{PIP}_{3}$ downstream of insulin receptor activation and regulates cell growth [29,30]. Expression of $\mathrm{PDK}^{\mathrm{A} 467 \mathrm{~V}}$ in salivary glands results in an increase in cell size (Fig. $1 \mathrm{~F}(\mathrm{i})$ and $\mathrm{S}_{1} \mathrm{~F}$ ) and this was also seen when $\mathrm{PDK}^{\mathrm{A} 467 \mathrm{~V}}$ was expressed in $d P I P_{4} K^{29}$ (Fig. 1 F (ii) and $\mathrm{S}_{1} \mathrm{G}$ ). However, in contrast to $d I n R$ and chico manipulations, the effect of overexpressing $\mathrm{PDK1}^{\mathrm{A} 467 \mathrm{~V}}$ resulted in an equivalent cell size increase in wild-type and $d P_{4} \mathrm{~K}^{29}$ (Fig. 1G). These findings suggest that in Drosophila larval cells dPIP 4 K modulates insulin receptor signalling at a step likely prior to $\mathrm{PDK}_{1}$ activation.

## $\mathrm{PIP}_{3}$ levels are elevated in $\mathrm{dPIP}_{4} \mathrm{~K}$ depleted larval tissues

An essential early event in InR signal transduction is the activation of Class I PI3K leading to the production of $\mathrm{PIP}_{3}$ at the plasma membrane [1]. Therefore, we measured $\mathrm{PIP}_{3}$ levels at the plasma membrane by imaging salivary glands from wandering third instar larvae expressing a $\mathrm{PIP}_{3}$-specific probe (GFP::PH-GRP1) [31]. We observed that under basal conditions, plasma membrane PIP $_{3}$ in $d P I P_{4} K^{29}$ showed a small but significant elevation compared to wild-type cells (Fig. 2A(i)and (ii)). Similar results were observed in experiments with fat body cells, i.e. $\mathrm{PIP}_{3}$ levels in $d P I P 4 \mathrm{~K}^{29}$ fat body cells were elevated compared to wild type (Fig. 2 B (i) and (ii)).

During larval development in Drosophila, nutritional cues and other signals result in the release of Drosophila Insulin-like peptides (dILPs) [32] that bind to and activate dInR triggering Class I PI3K activation and $\mathrm{PIP}_{3}$ production. The elevated $\mathrm{PIP}_{3}$ levels observed in $d P I P_{4} K^{29}$ tissues could, therefore, result from (i) enhanced production and release of dILPs (ii) upregulation in insulin receptor levels (iii) increase in activity of insulin receptor or events downstream of receptor
activation. To distinguish between these possibilities, we performed Q-PCR analysis to measure the levels of $d I L P_{2}, 3,5 \mathrm{mRNAs}$ [the levels of these are known to be transcriptionally regulated] [23]. We found that the transcript levels for these dILPs were not upregulated in $d P I P 4 K^{29}$ compared to wildtype (Fig. 2C). Since these were not altered, we tested for enhanced dILP release, by measuring the levels of $\mathrm{dILP}_{2}$ within the neurosecretory insulin-producing cells (IPCs) from the brains of wandering third instar larvae. Immunoreactivity for dILP2 produced in IPCs is expected to be lower when more of it is released into the hemolymph. We found that the average intensity of dILP 2 immunostaining in the IPCs was not lower in $\mathrm{dPIP}_{4} \mathrm{~K}^{29}$ compared to controls; instead, it showed a small increase (Fig. $2 \mathrm{E}(\mathrm{i}$ ) and (ii)). Thus, we found no evidence of elevated production and release of dILPs in $3^{\text {rd }}$ instar larvae that might explain the increased $\mathrm{PIP}_{3}$ levels observed in $d P I P 4 K^{29}$. Further, we observed that $\operatorname{InR}$ receptor mRNA levels were also not different between $d P I P_{4} K^{29}$ and wildtype indicating that levels of InR that are activated by dILPs are also not likely to be different between the two genotypes (Fig. 2D). Collectively, our experiments show plasma membrane $\mathrm{PIP}_{3}$ levels to be elevated in cells lacking dPIP4 K without an increase in dILP secretion or cellular insulin receptor levels.
$d P I P_{4} K^{29}$ cells are intrinsically more sensitive to insulin stimulation.
We developed ex-vivo assays to test the sensitivity of larval tissues to bovine insulin. It has previously been shown that Drosophila cells respond to bovine insulin using signal transduction elements conserved with those proposed for the canonical mammalian insulin signalling pathway [33]. We observed that in salivary glands and fat body dissected from $3^{\text {rd }}$ instar larvae, ex-vivo insulin stimulation triggered a rise in plasma membrane $\mathrm{PIP}_{3}$ levels, measured using the GFP::PH-GRP1 probe. Interestingly, following insulin stimulation ( $10 \mathrm{~min}, 10 \mu \mathrm{M}$ ), the rise in $\mathrm{PIP}_{3}$ levels in $d P I P 4 K^{29}$ was higher than in wild type (Fig. 3A(i), A(ii)). Selective depletion of dPIP4K protein using RNAi specifically in the salivary gland cells also produced a similar result. (Fig. ${ }_{3} \mathrm{C}$ (i) and (ii)). The
increased sensitivity of $d P I P 4 K^{29}$ cells to ex-vivo insulin stimulation could be reverted by specifically reconstituting dPIP4K in salivary gland cells (Fig. ${ }_{3} \mathrm{D}$ ). Overexpression of $\mathrm{dPIP}_{4} \mathrm{~K}$ in wild-type salivary gland cells resulted in reduced levels of insulin-stimulated $\mathrm{PIP}_{3}$ levels (Fig. 3E). A similar observation was made in fat body cells dissected from larvae where $\mathrm{PIP}_{3}$ production increased with stimulation over a wide range (100-fold) of insulin concentrations used. While 100 nM of insulin barely elicited an increase in plasma membrane $\mathrm{PIP}_{3}$ levels, we observed that $d P I P 4 \mathrm{~K}^{29}$ fat cells show a larger rise in $\mathrm{PIP}_{3}$ levels compared to the controls at higher concentrations (Fig. $3 \mathrm{C}(\mathrm{i})$-(iii)).

## Quantitative measurements of PIP $_{3}$ mass in Drosophila larvae

To test if the probe-based imaging of $\mathrm{PIP}_{3}$ in single cells indeed reflects in vivo changes across the animal, we refined and adapted existing protocols [34] to perform mass spectrometric measurements of $\mathrm{PIP}_{3}$ from Drosophila whole larval lipid extracts (Scheme depicted in Fig. 4A). The amount of $\mathrm{PIP}_{3}$ that has been detected and quantified from biological samples is in the range of a few tens of picomoles [35]. We coupled liquid chromatography to high sensitivity mass spectrometry (LCMS) and used a Multiple Reaction Monitoring (MRM) method to detect $\mathrm{PIP}_{3}$ standards for reliable quantification down to a few femtomoles (ca. 10 fmol , the lowest point in the figure inset on the standard curve in Fig. S2 (A). Since cellular lipids are composed of molecular species with varying acyl chain lengths, we first characterized the $\mathrm{PIP}_{3}$ species from Drosophila whole larval extracts through use of neutral loss scans and thereafter quantified the abundance of these species. Fig. $\mathrm{S}_{2}$ (B) depicts the elution profiles of the different $\mathrm{PIP}_{3}$ species that were reproducibly detected across samples and Fig. $\mathrm{S}_{3}(\mathrm{~A})$ shows the relative abundance of various $\mathrm{PIP}_{3}$ species. The $34: 2 \mathrm{PIP}_{3}$ species was found to be the most abundant. To standardize the procedure, we bisected whole larvae, stimulated them with insulin and measured the levels of various $\mathrm{PIP}_{3}$ species between samples with and without insulin stimulation. Our LCMS method could clearly detect an increase in the levels of several $\mathrm{PIP}_{3}$ species upon insulin stimulation (Fig. $\mathrm{S}_{3}(\mathrm{~B})$ ).

Using this method, we compared $\mathrm{PIP}_{3}$ levels from whole larval lipid extracts of various genotypes following insulin stimulation. We observed that compared to controls, $d P I P 4 K^{29}$ larvae showed higher $\mathrm{PIP}_{3}$ levels upon insulin stimulation (Fig. 4B(i), (ii)). Similarly, upon pan-larval knockdown of dPIP 4 K by RNAi enhanced $\mathrm{PIP}_{3}$ levels were observed following insulin stimulation (Fig. S3C(ii) and (iii)) although the differences were not as striking as seen in $d P I P 4 K^{29}$; presumably this reflects the residual and variable amounts of dPIP4K protein seen during RNAi based knockdown ((Fig. $\mathrm{S}_{3} \mathrm{C}(\mathrm{i})$ ). We also performed pan-larval rescue of $\mathrm{dPIP}_{4} \mathrm{~K}$ protein in $d P I P_{4} K^{29}$ larvae and observed a trend of rescue in levels of various $\mathrm{PIP}_{3}$ species (Fig. $\mathrm{S} 3 \mathrm{D}(\mathrm{i})$ and (ii)). Finally, in an alternate setting, we also depleted dPIP4K in Drosophila S2 cells (inset in Fig. $4 \mathrm{C}(\mathrm{ii})$ ) in culture using two independent dsRNA treatments and found that on insulin stimulation of serum starved cells, the total level of $\mathrm{PIP}_{3}$ was enhanced compared to that in control cells (Fig. $4 \mathrm{C}(\mathrm{i})$ ); the levels of individuals species of $\mathrm{PIP}_{3}$ underlying this elevation broadly reflected those seen in experiments with Drosophila larval extracts (Fig. 4C(ii)). Together, the observations from these two independent assays (fluorescent probe based $\mathrm{PIP}_{3}$ measurement and mass spectrometry) suggests that in dPIP4K depleted cells, increased amounts of $\mathrm{PIP}_{3}$ are produced at the plasma membrane during insulin stimulation, thus implying that $d P I P_{4} K$ negatively regulates $\mathrm{PIP}_{3}$ production.

## dPIP4K directly regulates insulin receptor signalling independent of TORC1

We had previously reported a systemic reduction in TORC1 activity in $d P I P 4 K^{29}$ larvae [11]. It is reported in mammalian cells that TORC1 activity can mediate feedback inhibition on insulin receptor substrate (IRS) to suppress insulin signalling and conversely reduced TORC1 activation can increase insulin signaling [28,36,37](Proposed feedback depicted in Fig.5 scheme 1 and 2). We tested if the increased insulin-stimulated plasma membrane $\mathrm{PIP}_{3}$ levels were a result of reduced cellular TORC1 activation in $d P I P 4 K^{29}$. We down-regulated Rheb, the GTPase that directly binds and activates TORC 1 [38] in the salivary gland. $A B_{1}>R h e b^{R N A i}$ glands have substantially reduced cell
size consistent with the known requirement for TORC1 signalling in regulating cell size (Fig. 5A (i)). Following insulin stimulation of $A B_{1}>R h e b^{R N A i}$ glands, $\mathrm{PIP}_{3}$ levels at the plasma membrane were elevated compared to controls (Fig. 5A (ii)). Conversely, we compared $\mathrm{PIP}_{3}$ production in control cells and those selectively overexpressing Rheb $\left(A B_{1}>d R h e b\right)$ that is expected to enhance TORC1 activity. Following insulin stimulation, the levels of $\mathrm{PIP}_{3}$ generated were significantly lower in $A B_{1}>d R h e b$ glands compared to controls (Fig. 5B (i), (ii)). Similarly, knockdown of TSC, the GTPase activating protein (GAP) for Rheb, expected to result in hyperactivation of Rheb [39], also reduces the $\mathrm{PIP}_{3}$ levels seen post insulin stimulation (Fig. 5 C (i), (ii)). These results demonstrate that TORC1 output can control plasma membrane $\mathrm{PIP}_{3}$ levels during insulin signaling in salivary gland cells (Fig. 4 scheme 1 and 2).

We tested the effect of dPIP4K function on TORC1-mediated control of $\mathrm{PIP}_{3}$ levels during insulin stimulation. When $\mathrm{dPIP}_{4} \mathrm{~K}$ function is reconstituted in salivary glands $\left(A B_{1}>d P_{4} P_{4} K ; d P_{4} P_{4} K^{29}\right)$, as expected, normal levels of insulin-stimulated $\mathrm{PIP}_{3}$ production were restored (refer Fig. 3D). Knockdown of $d$ Rheb in $d P I P_{4} K^{29}$ salivary glands reduced the size of cells as expected (Fig. $\mathrm{S}_{5} \mathrm{~B}(\mathrm{ii})$ ) but also resulted in a further elevation of insulin-stimulated $\mathrm{PIP}_{3}$ levels over that seen in $\mathrm{dPIP}_{4} K^{29}$ (Fig. $5 \mathrm{~B}(\mathrm{i})$, (ii)). However, when $d R h e b$ was overexpressed in $d P I P 4 K^{29}$ salivary glands; $\left(A B_{1}>d R h e b\right.$; $d P I P_{4}\left(K^{29}\right)$, surprisingly, we found that insulin-stimulated $\mathrm{PIP}_{3}$ levels were not lower than in $A B_{1}>$; $d P I P_{4} K^{29}$ (Fig. 5D (i), (ii)). Likewise, depletion of TSC in $d P I P_{4} K^{29}\left(A B_{1}>T_{s} c^{R N A i} ; d P I P_{4} K^{29}\right)$ did not lower insulin stimulated $\mathrm{PIP}_{3}$ levels (Fig. 5 F (i), (ii)). Thus, enhanced activation of TORC1 in salivary glands failed to complement the elevated $\mathrm{PIP}_{3}$ levels resulting from loss of $\mathrm{dPIP}_{4} \mathrm{~K}$. Together, our findings indicate that $\mathrm{dPIP}_{4} \mathrm{~K}$ function offers an additional mode of $\mathrm{PIP}_{3}$ regulation that acts independent of TOR1 activity during insulin signalling.
$\mathrm{PIP}_{4} \mathrm{~K}$ is required at the plasma membrane to control of insulin-stimulated $\mathrm{PIP}_{3}$ production

We and others have previously shown that $\mathrm{PIP}_{4} \mathrm{~K}$ s localize to multiple subcellular membrane compartments [11,40]. It is also reported that the substrate for this enzyme i.e. $\mathrm{PI}_{5} \mathrm{P}$ is present on various organellar membranes inside cells [41]. To further probe the mechanism of regulation of $\mathrm{PIP}_{3}$ levels by $\mathrm{dPIP}_{4} \mathrm{~K}$, we decided to identify the sub-cellular compartment at which $\mathrm{dPIP}_{4} \mathrm{~K}$ function is required to regulate $\mathrm{PIP}_{3}$ levels. We generated transgenic flies to target dPIP4K to specific subcellular compartments (Fig. 6A). Using unique signal sequences, we targeted dPIP4K specifically to the plasma membrane (Fig. 6B (ii)), endomembrane compartments viz. the ER and Golgi (Fig. 6B (iii)) and the lysosomes (Fig. 6B (iv)). Lysates from $\mathrm{S}_{2} \mathrm{R}+$ cells expressing these constructs for assayed for $\mathrm{PIP}_{4} \mathrm{~K}$ activity and we found that all of the targeted $\mathrm{dPIP}_{4} \mathrm{~K}$ enzymes were active (Fig. 6C(i)-(ii)); activity was proportional to the amount of protein expressed. Each of these targeted $\mathrm{dPIP}_{4} \mathrm{~K}$ constructs were selectively reconstituted into $\mathrm{dPIP}_{4} \mathrm{~K}$ null $\left(d P I P_{4} K^{29}\right)$ cells and tested for its ability to revert the enhanced insulin-stimulated $\mathrm{PIP}_{3}$ production of $d P I P_{4} K^{29}$. For this, we stimulated dissected salivary glands ex-vivo with insulin and measured $\mathrm{PIP}_{3}$ production using the GFP::PHGRP1 probe. Under these conditions, while endomembrane (Fig. 6E) and lysosome-targeted (Fig. $6 \mathrm{~F}) \mathrm{dPIP}_{4} \mathrm{~K}$ failed to revert the elevated $\mathrm{PIP}_{3}$ levels of $d P I P_{4} K^{29}$, reconstitution with the plasmamembrane targeted $\mathrm{dPIP}_{4} \mathrm{~K}$ completely restored the elevated $\mathrm{PIP}_{3}$ levels in $d P I P 4 K^{29}$ to that of controls (Fig. 6D). Further, overexpression of plasma-membrane targeted dPIP4K in wildtype salivary gland cells resulted in lower insulin stimulated $\mathrm{PIP}_{3}$ levels compared to the controls at 5 mins post insulin stimulation (Fig. 6G). These observations suggest that plasma membrane localized $\mathrm{dPIP}_{4} \mathrm{~K}$ is sufficient to regulate insulin-stimulated $\mathrm{PIP}_{3}$ production.

We also tested the ability of plasma membrane localized $\mathrm{PIP}_{4} \mathrm{~K}$ to regulate steps downstream of $\mathrm{PIP}_{3}$ production during insulin signalling. In a previous study, overexpression of human $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ in CHO-IR cells was shown to reduce the levels of $\mathrm{pAKT}^{\mathrm{T} 308}$, an important $\mathrm{PIP}_{3}$ dependent signalling
event during insulin stimulation [16]. We tested the effect of overexpressing plasma membrane restricted $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ in these cells on $\mathrm{pAKT}^{\mathrm{T}_{308}}$ during insulin stimulation. We generated a $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ construct with a CAAX-motif at its C-terminus (PIP4K2B::mCherry ${ }^{\mathrm{CAAX}}$ ) that localized the enzyme to the plasma membrane as expected, while the wildtype $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}\left(\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}:\right.$ :eGFP) can be seen at various subcellular compartments (Fig. $6 \mathrm{H}(\mathrm{i})$ ). CHO-IR cells transiently overexpressing either PIP4K2B::eGFP or PIP4K2B::mCherry ${ }^{\text {CAAX }}$ were serum starved, stimulated with insulin and pAKT ${ }^{T_{308}}$ was measured through immunoblotting. As previously reported, we found that PIP4K2B::eGFP overexpression resulted in a small but significant decrease in pAKT ${ }^{T_{308}}$ (Fig. 6H(ii)). Interestingly, consistent with our findings in Drosophila larval cells, we observed that over-expressed $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}::$ mCherry ${ }^{\mathrm{CAAX}}$ also caused a decrease in $\mathrm{pAKT}^{\mathrm{T} 308}$. In fact, this decrease was achieved despite lower levels of expression of $\mathrm{PIP}_{4} \mathrm{~K} 2 \mathrm{~B}::$ mCherry ${ }^{\mathrm{CAAX}}$ compared to the wildtype protein. Thus, $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ activity at the plasma membrane is sufficient to negatively regulate $\mathrm{PIP}_{3}$ dependent pAKT ${ }^{T}{ }^{308}$ levels in mammalian cells.
dPIP4K alters $\mathrm{PIP}_{3}$ turnover by modifying Class $\mathrm{I}_{\mathrm{PI}}^{3} 3 \mathrm{~K}$ activity $\mathrm{PIP}_{3}$ levels at the plasma membrane upon insulin stimulation also depend on the length of time the receptor remains activated. Our 10-min stimulation protocol was based on earlier studies performed on Drosophila $\mathrm{S}_{2}$ cell-cultures where the response to insulin was maximal at 10 min [33]. However, in order to check for any differences in the dynamics of response to insulin, we also studied the time course of $\mathrm{PIP}_{3}$ elevation following increasing times of insulin stimulation ex-vivo. Comparison of fixed preparations of salivary glands expressing GFP-PH-GRP1 probe showed a comparable time course of $\mathrm{PIP}_{3}$ elevation but higher $\mathrm{PIP}_{3}$ levels at every time point in $d P_{P} \mathrm{P}_{4} \mathrm{~K}^{29}$ than in control glands (Fig. $\mathrm{S}_{4}(\mathrm{i})$ and (ii)). To understand the effect of $\mathrm{dPIP}_{4} \mathrm{~K}$ on insulin signaling at the plasma membrane with increased temporal resolution, we developed a live-imaging assay to follow the dynamics of $\mathrm{PIP}_{3}$ turnover using the PH-GRP1 probe in salivary gland cells. A schematic of the reactions involved
in the process and the assay protocol is depicted in Fig. 7 A (i) and (ii). In this assay, during insulin stimulation, the dynamics of $\mathrm{PIP}_{3}$ turnover has three phases - (i) Rise phase - PIP ${ }_{3}$ levels increase after a stimulus owing to the activation of $\mathrm{PI}_{3} \mathrm{~K}$ and relatively lower phosphatase activity (ii) Steadystate phase - the opposing kinase and phosphatase activities regulating $\mathrm{PIP}_{3}$ levels balance out each other (iii) Decay phase - $\mathrm{PI}_{3} \mathrm{~K}$ activity is irreversibly inhibited by wortmannin while $\mathrm{PIP}_{3}$ phosphatases remain active. A single experimental trace is shown in Fig. 7B (i); insulin stimulation triggers a rise in $\mathrm{PIP}_{3}$ levels that peak and subsequently decline. Addition of wortmannin prior to addition of insulin abolished insulin stimulated $\mathrm{PIP}_{3}$ production establishing the effectiveness of Class I PI ${ }_{3} \mathrm{~K}$ inhibition in this assay (Fig. $7 \mathrm{~B}(\mathrm{ii})$ ). Under similar conditions, addition of the DMSO vehicle post insulin did not reduce $\mathrm{PIP}_{3}$ levels (Fig. 7 B (iii)).

We tested the effect of loss of dPIP4 K and tissue-specific overexpression of $\mathrm{dPIP}_{4} \mathrm{~K}$ on $\mathrm{PIP}_{3}$ turnover. Loss of dPIP4K resulted in higher steady state levels of $\mathrm{PIP}_{3}$ in salivary gland cells compared to controls (Fig. 7 C ) while overexpression of $\mathrm{dPIP}_{4} \mathrm{~K}$ resulted in lower steady-state levels of $\mathrm{PIP}_{3}$ (Fig. $\left.{ }_{7} \mathrm{D}\right)$. These findings are consistent with the results from our imaging of $\mathrm{PIP}_{3}$ levels from fixed salivary glands of these genotypes (see Fig $3 \mathrm{~A}(\mathrm{ii})$ and E ). We also analyzed the rate of change in $\mathrm{PIP}_{3}$ levels during the initial phase following insulin stimulation. This analysis clearly revealed an enhanced rate of $\mathrm{PIP}_{3}$ production on loss of $d P I P_{4} K^{29}$ relative to controls and a reduced rate of $\mathrm{PIP}_{3}$ production in cells overexpressing this enzyme (Fig. $7 \mathrm{E}(\mathrm{i})$ ). Thus, $\mathrm{dPIP}_{4} \mathrm{~K}$ has the ability to modulate the rate of $\mathrm{PIP}_{3}$ production during insulin stimulation. A similar analysis of the rate of decrease in $\mathrm{PIP}_{3}$ levels during the phase after wortmannin addition (i.e when Class $\mathrm{I}_{\mathrm{PI}}^{3} 3 \mathrm{~K}$ activity has been inhibited) showed a marginally slower rate of decay in $\mathrm{PIP}_{3}$ levels in both $\mathrm{dPIP}_{4} \mathrm{~K}$ depleted cells relative to controls but also in cells overexpressing dPIP4K (Fig. 7 E (ii)). This finding implies that while $\mathrm{dPIP}_{4} \mathrm{~K}$ function is able to modulate the $\mathrm{PIP}_{3}$ phosphatase activity operative during insulin signalling in Drosophila salivary gland cells, it has significantly greater effect on the Class I $\mathrm{PI}_{3} \mathrm{~K}$ activity.

## $d_{P I P_{4}} K$ function regulates sugar metabolism during larval development.

We tested if increased sensitivity to insulin seen in $d P I P 4 K^{29}$ had any impact on the physiological response of the animals to sugar intake. It has previously been reported that larvae raised on a high sugar diet (HSD) develop an insulin resistance phenotypes reminiscent of Type II diabetes [42,43]. At the level of the organism, this includes reduced body weight, a developmental delay and elevated levels of hemolymph trehalose, the main circulating sugar in insect hemolymph. As previously reported, we found that when grown on HSD ( 1 M sucrose), wild-type larvae show ca. 9 days delay in development compared to animals grown on normal food (o.1M Sucrose) (Fig. 8A). However, interestingly, in $d P I P 4 K^{29}$ larvae grown on HSD a delay of only 5 days was seen compared to the same genotype grown on 0.1 M sucrose (Fig. 8A). We also biochemically measured the levels of circulating trehalose in the hemolymph of wandering third instar larvae. It was observed that $d P I P 4 K^{29}$ larvae raised on normal food, showed circulating trehalose levels are $c a .40 \%$ lower compared to controls. Further, when wild-type animals were grown on HSD, circulating trehalose levels in larvae were elevated by ca. $25 \%$ compared to that on normal food (Fig. 8B). However, when $d P I P_{4} K^{29}$ larvae were raised on HSD, circulating trehalose levels remained essentially unchanged (Fig. 8B) compared to that in animals grown on normal food. Together, these observations suggest that increased insulin sensitivity occurring upon loss of $\mathrm{dPIP}_{4} \mathrm{~K}$ confers partial protection against phenotypes that arise when larvae are challenged with a high sugar diet.

## Discussion

The generation of the signalling lipid $\mathrm{PIP}_{3}$, is a conserved element of signal transduction by many growth factor receptors. The enzymes that control $\mathrm{PIP}_{3}$ levels during this process, namely Class I $\mathrm{PI}_{3} \mathrm{~K}$ and the lipid phosphatases PTEN and SHIP2 are well studied and the biological consequences of mutations in genes encoding these enzymes underscore the importance of tight regulation of $\mathrm{PIP}_{3}$ levels during growth factor signalling. While the roles of many of the core enzymes that are directly
involved in $\mathrm{PIP}_{3}$ metabolism have been studied extensively, the function of proteins that regulate their activity remains less understood; to date regulation of Class I $\mathrm{PI}_{3} \mathrm{~K}$ activity by small GTPases (Ras, Rac) and $\mathrm{G}_{\mathrm{\beta} \mathrm{\gamma}}$ subunits has been described [reviewed in [44]]. Although a role for $\mathrm{PIP}_{4} \mathrm{~K}$ enzymes in regulating growth factor signalling through $\mathrm{PIP}_{3}$ generation has been reported by earlier studies [15,16,18], the biochemical mechanism and cell-biological context in which they do so has remained obscure. $\mathrm{PIP}_{4} \mathrm{~K}$ s convert $\mathrm{PI}_{5} \mathrm{P}$ to $\mathrm{PI}(4,5) \mathrm{P}_{2}$ but to date no study has found a role for $\mathrm{PIP}_{4} \mathrm{~K}$ in regulating overall cellular $\operatorname{PI}(4,5) \mathrm{P}_{2}$ levels [reviewed in [12]]. One possibility that has been raised is that PIP 4 Ks may generate the $\mathrm{PI}(4,5) \mathrm{P}_{2}$ pool from which $\mathrm{PIP}_{3}$ is produced by Class $\mathrm{I}_{\mathrm{P}}{ }_{3} \mathrm{~K}$ activity. Although $\mathrm{PI}_{5} \mathrm{P}$, the preferred substrate of PIP 4 K , is a low abundance lipid, in principle, it is possible that a small, local pool of $\mathrm{PI}(4,5) \mathrm{P}_{2}$ is generated from $\mathrm{PI}_{5} \mathrm{P}$ by $\mathrm{PIP}_{4} \mathrm{~K}$ and the loss of this small pool of $\mathrm{PI}(4,5) \mathrm{P}_{2}$ is not detected by the mass assays for estimating total cellular levels of this lipid. Quantitatively, based on their relative abundance, the small $\mathrm{PIP}_{4} \mathrm{~K}$ generated pool of $\mathrm{PI}(4,5) \mathrm{P}_{2}$ is likely to be sufficient to serve as the substrate for $\mathrm{PIP}_{3}$ generation by Class $\mathrm{I} \mathrm{PI}_{3} \mathrm{~K}$. A recent study [18] has reported that $\mathrm{PIP}_{3}$ levels are reduced in immortalized B-cells in which PIP4K2A activity is down regulated. By contrast, it has been previously reported that loss of PIP4K2B in mice results in increased levels of insulin signalling readouts such as $\mathrm{pAKT}^{308}$ that are direct correlates of $\mathrm{PIP}_{3}$ levels [15]. The exact reasons for these conflicting results is unclear and may include the different cell types used in each study; a key reason is likely to be the overlapping function of the three PIP4K isoforms present in mammalian genomes. In this study, we found that in Drosophila, that contains only a single gene encoding $\mathrm{PIP}_{4} \mathrm{~K}$ activity (dPIP4K)[11,45], the levels of plasma membrane $\mathrm{PIP}_{3}$ in cells lacking $\mathrm{dPIP}_{4} \mathrm{~K}$ were elevated compared to controls. We established this finding using both a fluorescent reporter for plasma membrane $\mathrm{PIP}_{3}$ in single cell assays using multiple cell types and also using lipid mass spectrometry across larval tissues and cultured, $\mathrm{dPIP}_{4} \mathrm{~K}$ depleted Drosophila $\mathrm{S}_{2}$ cells. Thus, our study clearly demonstrates that in Drosophila, dPIP4K autonomously functions as a negative regulator of $\mathrm{PIP}_{3}$ production during growth factor stimulation. The elevated $\mathrm{PIP}_{3}$ levels seen
when $\mathrm{dPIP}_{4} \mathrm{~K}$ is depleted are not consistent with a role for this enzyme in generating the $\mathrm{PI}(4,5) \mathrm{P}_{2}$ at the plasma membrane used by Class $\mathrm{IPI}_{3} \mathrm{~K}$ as substrate to generate $\mathrm{PIP}_{3}$ during insulin signalling. Therefore, is likely that $\mathrm{dPIP}_{4} \mathrm{~K}$ regulates $\mathrm{PIP}_{3}$ levels through its ability to control the function of proteins that themselves regulate $\mathrm{PIP}_{3}$ levels during Class I PI3K signalling.

In an earlier study [11], we had observed $d P I P 4 K^{29}$ larvae have systemically reduced mTOR activation. In mammalian cells, reducing mTOR activity through the use of rapamycin or a loss of S6K, a direct target of TORC1, leads to increased activation of insulin signalling and obesity resistance associated with increased insulin sensitivity [46-48]. It is also reported that S6K inactivates IRS-1 by phosphorylating it on multiple serine residues [28,36]. Therefore, it is reasonable to hypothesize a scenario where the reduced TORC1 activity in $d P I P_{4} K^{29}$ cells may be the defect that drives the increase in the levels of $\mathrm{PIP}_{3}$ in $d P I P 4 K^{29}$. In wild-type larval cells, modulating TORC1 activity had expected effects on cell size (Fig. $\mathrm{S}_{5} \mathrm{~A}(\mathrm{i}), \mathrm{B}(\mathrm{i})$ and $\mathrm{C}(\mathrm{i})$ ) but also could tune $\mathrm{PIP}_{3}$ levels during insulin stimulation (Fig. 5A, C, E ); enhancing TORC1 output resulted in lower levels of insulin-induced $\mathrm{PIP}_{3}$ whereas reducing TORC1 activity caused higher levels of $\mathrm{PIP}_{3}$. By contrast, overexpression of Rheb or the down-regulation of $\mathrm{Tsc} 1 / 2$ was not able to revert the elevated plasma membrane $\mathrm{PIP}_{3}$ levels in $d P I P_{4} K^{29}$ cells (Fig. 5B, D and F) although they were able to restore the reduced cell size in $d P_{4} P_{4} K^{29}$ (Fig. $\mathrm{S}_{5} \mathrm{~A}\left(\right.$ (ii) and $\mathrm{S}_{5} \mathrm{C}(\mathrm{ii})$ ). These results imply two conclusions: 1) Decreased TORC1 activity is not sufficient to explain the enhanced $\mathrm{PIP}_{3}$ levels in $d P I P 4 \mathrm{~K}^{29}$ larval cells and 2) Efficient feedback regulation of $\mathrm{PIP}_{3}$ levels during receptor tyrosine kinase activation requires intact $\mathrm{dPIP}_{4} \mathrm{~K}$ function in addition to $\mathrm{TORC}_{1}$ activity.

Binding of insulin to its receptor triggers a signalling cascade where the initial events occur at the plasma membrane. These involve interaction of the activated insulin receptor-ligand complex with IRS followed by the recruitment and activation of Class I PI 3 K at the plasma membrane. At which
sub-cellular location is $\mathrm{dPIP}_{4} \mathrm{~K}$ activity required to regulate this process? Fractionation and immunolocalization studies in mammalian cells [40] and Drosophila [11] have indicated that PIP4K isoforms are distributed across multiple subcellular compartments including the plasma membrane, nucleus and internal vesicular compartments. In this study, using selective reconstitution of the dPIP4K to specific membrane compartments, in cells devoid of any endogenous PIP4K protein, we found that plasma membrane targeted $\mathrm{dPIP}_{4} \mathrm{~K}$ could rescue the elevated $\mathrm{PIP}_{3}$ levels in $\mathrm{dPIP}_{4} \mathrm{~K}$ null cells. This observation strongly suggests that the plasma membrane localized $\mathrm{dPIP}_{4} \mathrm{~K}$ is sufficient to control $\mathrm{PIP}_{3}$ production during insulin stimulation. Our observation that $d P I P 4 K^{29}$ cells were hypersensitive to overexpression of $d I N R$ or chico compared to wild-type cells likely reflects the loss of a dPIP4 K dependent event in the control of $\mathrm{PIP}_{3}$ levels at the plasma membrane. Overexpression of plasma-membrane localized $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ was able to reduce $\mathrm{pAKT}^{308}$ phosphorylation upon insulin stimulation in mammalian cells just as well as the wildtype $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}$ enzyme. Our finding of a role for the plasma membrane localized $\mathrm{PIP}_{4} \mathrm{~K}$ in regulating $\mathrm{PIP}_{3}$ levels in both Drosophila and mammalian cells underscores the evolutionarily conserved nature of this mechanism. Previous studies have shown that levels of $\mathrm{PI}_{5} \mathrm{P}$, the substrate for $\mathrm{PIP}_{4} \mathrm{~K}$ s, increases upon insulin stimulation and importantly, addition of exogenous $\mathrm{PI}_{5} \mathrm{P}$ can stimulate glucose uptake in a $\mathrm{PI}_{3} \mathrm{~K}$-dependent manner $[17,49]$. Therefore, plasma membrane localized $\mathrm{PIP}_{4} \mathrm{~K}$ and the levels of its substrate $\mathrm{PI}_{5} \mathrm{P}$ could be a mechanism by which early events during insulin signalling are regulated.

What molecular event involved in $\mathrm{PIP}_{3}$ turnover might dPIP4K regulate at the plasma membrane? Using live cell imaging studies of $\mathrm{PIP}_{3}$ turnover at the plasma membrane coupled with chemical inhibition of Class $\mathrm{IPI}_{3} \mathrm{~K}$, we were able to observe that $\mathrm{dPIP}_{4} \mathrm{~K}$ function has a substantial impact on the rate of $\mathrm{PIP}_{3}$ production following insulin stimulation whereas the rate of $\mathrm{PIP}_{3}$ degradation was only marginally affected. This finding suggests that $\mathrm{dPIP}_{4} \mathrm{~K}$ likely regulates the activity of Class I $\mathrm{PI}_{3} \mathrm{~K}$ either directly or by controlling its coupling to the activated insulin receptor complex at the plasma membrane; the exact mechanism by which it does so remains to be established.

What might be the physiological consequence of losing dPIP4K mediated feedback control on $\mathrm{PIP}_{3}$ production in the context of insulin signalling? Previous studies in mouse and human cells have reported that excessive activation of TORC1 signalling leads to inactivation of insulin signalling pathway and development of insulin resistance [50-52]. Since TORC1 activity is reduced [11] and $\mathrm{PIP}_{3}$ were elevated (this study) in animals lacking dPIP 4 K , it is likely that loss of dPIP4K impacts sugar metabolism in Drosophila larvae. Using a recently reported high-sugar induced obesity and Type II diabetes-like disease model in Drosophila [42], we found that $d P I P 4 K^{29}$ larvae appear resistant to a high sugar diet as measured by the elevation in the hemolymph trehalose levels and they were relatively resistant to the developmental delay seen when wild-type larvae are reared on a high-sugar diet. This observation is reminiscent of that reported for the $\mathrm{PIP}_{4} \mathrm{~K}_{2} \mathrm{~B}^{-/}$mice that have a reduced adult body weight compared to controls and clear blood glucose faster following a sugar bolus than control animals [15]. Our observation that dPIP4K at the plasma-membrane controls sensitivity to insulin receptor activation suggests a molecular basis for the physiological phenotypes observed in $d P I P_{4} K^{29}$ larvae and PIP4 $\mathrm{K}_{2} \mathrm{~B}^{--}$mice. These observations also raise the possibility that inhibition of PIP4K activity may offer a route to reducing insulin resistance in the context of Type II diabetes. Such a mechanism may explain the hyperactivation of the T -cell receptor responses in mice lacking PIP4K2C [14], since the activation of Class I $\mathrm{PI}_{3} \mathrm{~K}$ is a key element of T-cell receptor signal transduction. More generally, $\mathrm{PIP}_{4} \mathrm{~K}$ activity likely offers a novel element of regulation for Class I PI 3 K activity in the context of receptor tyrosine kinase signalling.

## Materials and Methods

## Drosophila strains and rearing -

Unless indicated, flies were grown on standard fly medium containing corn meal, yeast extract, sucrose, glucose, agar and antifungal agents. For all experiments, crosses were setup at $25^{\circ} \mathrm{C}$ in vials/bottles under non-crowded conditions.

Fly medium composition:

| Ingredients | o.1 M sucrose | 1 M sucrose |
| :--- | :---: | :---: |
|  | For 1 Litre |  |
| Corn flour | 80 g | 80 g |
| D-Glucose | 20 g | 20 g |
| Sugar | 40 g | 342 g |
| Agar | $8 \mathrm{~g}(4 \mathrm{~g})$ | 8 g |
| Yeast powder | 15 g | 15 g |
| Propionic acid | 4 ml | 4 ml |
| TEGO(Methyl | 0.7 g | 0.7 g |
| parahydroxy benzoate) |  |  |
| Orthophosphoric acid | 0.6 ml | 0.6 ml |

The following stocks were used in the study: wildtype strain Red Oregon $R$ (ROR), AB1-Gal4 (Bloomington \# 1824), UAS-dInR (Bloomington \# 8262), UAS-Rheb ${ }^{\text {RNAi }}$ (Bloomington TRiP \# 33966), UAS-Rheb (Bloomington \# 9688), UAS-TSC ${ }^{\text {RNAi }}$ (Bloomington TRiP \# 52931), P\{tGPH\}4 (Bloomington \# 8164), UAS-dPIP4K ${ }^{\text {RNAi }}$ (Bloomington TRiP \# 65891). UAS-dPIP4K::eGFP and $d P I P 4 K^{29}$ were generated in the lab and described in [11]. For $\mathrm{PIP}_{3}$ measurements in the $d P I P_{4} \mathrm{~K}^{29}$ rescue experiment (Fig. 4F) using GFP-PH-GRP1 probe, we cloned dPIP4K cDNA (BDGP clone\#

LD10864) into pUAST-attB between EcoRI and XhoI sites without the GFP tag. The generation of flies expressing dPIP4K::-mCherry-CAAX is described in Kumari $K$ et.al, 2017. For targeting dPIP4K to the endomembranes, the sequence QGSMGLPCVVM (Sato.M et. al., 2006) replaced the CAAX motif in the dPIP4K::mCherry-CAAX construct. To generate Lysosomal-dPIP4K::eGFP, the 39 amino-acid sequence from p18/LAMTOR (Menon S et.al., 2014) was used as a signal sequence. The signal sequence was commercially synthesized with a C-terminal flag tag and introduced upstream of dPIP4K::eGFP. The entire fusion construct was cloned into pUAST-attB by GIBSON assembly using NotI and XbaI sites. All molecular constructs conceptualized and analysed further with use of the molecular cloning tools available on the free online platform - Benchling.com. All transgenic lines were generated using insertions that were performed using site-specific recombination. The level of GFP fluorescence from lysosomal-dPIP4K::eGFP was observed to be very low in the salivary glands and did not interfere with our analysis $\mathrm{PIP}_{3}$ measurements using the GFP-PH-GRP1 probe in Fig. 6F. All primer sequences used for cloning the different constructs are available on request.

## Cell Culture, dsRNA treatment and Insulin stimulation assays -

CHO cell line stably expressing insulin receptor (isoform A) was a kind gift from Dr Nicholas Webster, UCSD. These were maintained at standard conditions in HF12 culture medium supplemented with $10 \%$ Fetal bovine serum and under G418 selection ( $400 \mu \mathrm{~g} / \mathrm{ml}$ ). Transfections were done 48 hrs. before the assay using FuGene, Promega Inc. as per manufacturer's protocols when the cultures were $50 \%$ confluent. For insulin stimulation assays, cells were starved overnight in HF12 medium without serum. Thereafter, the cells were de-adhered, collected into eppendorf tubes and stimulated with $1 \mu \mathrm{M}$ insulin for indicated times. Post stimulation, cells were spun down and immediately lysed.

S2R+ cells were cultured in Schneider's medium (GIBCO 21720024, HiMedia Labs IMLoo3A) supplemented with $10 \%$ non-heat inactivated fetal bovine serum (US Origin, GIBCO 16000044) and contained antibiotics - streptomycin and penicillin (SIGMA G1146). dsRNA was synthesised inhouse using Megascript RNAi Kit (Ambion, Life Technologies, AM1626) as per manufacturer's instructions. For dsRNA treatments, $0.5 \mathrm{X} 10^{6}$ cells were seeded into a 24 -well plate. Once observed to be settled, cells were incubated with incomplete medium containing $1.875 \mu \mathrm{~g}$ of dsRNA. After 1 hour, an equal amount of complete medium was added to each well. The same procedure was repeated on each well 48 hours after initial transfection after removal of the spent medium from each well. Cells were harvested by trypsinization after a total of 96 hours of dsRNA treatment. For mass spectrometric estimation of $\mathrm{PIP}_{3}, \mathrm{~S} 2 \mathrm{R}+$ cells were pelleted down and stimulated with $1 \mu \mathrm{M}$ insulin for 10 min . The reaction was stopped by the addition of ice-cold initial organic mix (described later in the section) and used for lipid extraction. The primer sequences used for dsRNA preparation are-

| Ctrl (GFP)_dsRNA_Fwd | TAATACGACTCACTATAGGGATGGTGAGCAAGGGCGAGGAG |
| :--- | :--- |
| Ctrl (GFP)_dsRNA_Rev | TAATACGACTCACTATAGGGCTTGTACAGCTCGTCCATGCCG |
| PIP4K dsRNA I F (DRSC17213) | TAATACGACTCACTATAGGGAAGTTTGATTTAAAAGGTAGCAC |
| PIP4K dsRNA I R (DRSC17213) | TAATACGACTCACTATAGGGCTCAGCGTGTCCATTAGTTT |
| PIP4K dsRNA II F (DRSC39291) | TAATACGACTCACTATAGGGAAACATGCCGTCACATTTCA |
| PIP4K dsRNA II R (DRSC39291) | TAATACGACTCACTATAGGGGAGGTAACAGCGTTTTTCCG |

## Larval growth Curve Analysis -

Adult flies were made to lay eggs within a span of 4-6 hrs on normal food. After 24 hrs , newly hatched first instar larvae were collected and transferred in batches of about 15-25 larvae per into vials containing either $0.1 / 1 \mathrm{M}$ Sucrose in the fly media with other components unaltered. The vials were then observed to count the number of pupae.

## Hemolymph Trehalose Measurements -

The measurements were done exactly as described in [42]. In brief, hemolymph was pooled from five to eight larvae to obtain $1 \mu \mathrm{l}$ for assay. The reagents used porcine trehalase (SIGMA, T8778) and GO kit (SIGMA, GAGO2o)

## Cell size analysis in salivary glands -

Salivary glands were dissected from wandering third instar larvae and fixed in 4\% paraformaldehyde for 30 min at $4^{\circ} \mathrm{C}$. Post fixation, glands were washed thrice with 1 X PBS and incubated in BODIPY-FL-488 for 3 hours at room temperature. The glands were washed thrice in 1 X PBS following which nuclei were labelled (using either DAPI or $\mathrm{TOTO}_{3}$ ) for 10 mins at room temperature and washed with 1 X PBS again. The glands were then mounted in $70 \%$ glycerol and imaged within a day of mounting. Imaging was done on Olympus FV1000 Confocal LSM using a 20x objective. The images were then stitched into a 3 D projection using an ImageJ plugin. These reconstituted 3 D z-stacks were then analysed for nuclei numbers (correlate for cell number) and volume of the whole gland using Volocity Software (version 5.5.1, Perkin Elmer Inc.). The average cell size was calculated as the ratio of the average volume of the gland to the number of nuclei.

## Ex vivo insulin stimulation and $\mathrm{PIP}_{3}$ measurements in salivary glands and fat body -

For experiments with salivary glands, wandering third instar larvae were dissected one larva at a time and glands were immediately dropped into a well of a 96-well plate containing either only PBS or PBS $+10 \mu \mathrm{M}$ Insulin ( $75 \mu \mathrm{l}$ ) and incubated for 10 min at RT. Following this, $25 \mu \mathrm{l}$ of $16 \%$ PFA was added into the same well to yield a final conc. of $4 \%$ PFA. The glands were fixed in this solution for 18 min at room temperature and then transferred sequentially to wells containing PBS every 10 min for 3 washes. Finally, glands were mounted in $80 \%$ glycerol in PBS containing antifade ( $0.4 \%$ propylgallate). For experiments with fat body lobes, late third instar feeding larvae were starved by placing
them on a filter paper soaked in 1 X PBS for 2 hrs . Thereafter, the incubation, fixation and mounting steps were done exactly as described for salivary glands. Imaging was done on LSM 780 inverted confocal microscope with a 20X/o.8 NA Plan Apochromat objective. For quantification, confocal slices were manually curated to generate maximum z-projections of middle few planes of cells. Thereafter, line profiles were drawn across clearly identifiable plasma membrane regions and their adjacent cytosolic regions and ratios of mean intensities for these line profiles were calculated for each cell. For salivary glands, about 10-15 cells from multiple glands were analysed and used to generate statistics. For fat body, about 50 cells each from multiple animals were used for analysis.

For live imaging, salivary glands from wandering third instar larvae were dissected (glands from one larva imaged in one imaging run) and placed inside a drop of imaging buffer (1X PBS containing $2 \mathrm{mg} / \mathrm{ml}$ glucose) on a coverglass. The buffer was carefully and slowly soaked out with a paper tissue to let the glands settle and adhere to the surface. Thereafter, the glands were immediately rehydrated with $25 \mu$ l of imaging buffer. The imaging was done on Olympus FV 3000 LSM confocal system using a 10 X objective. A total of 80 frames of a single plane were acquired, with 10 intervals. While imaging, $25 \mu \mathrm{l}$ of $20 \mathrm{uM}(2 \mathrm{X})$ bovine insulin was used to stimulate the glands. After the steady state was achieved, $50 \mu \mathrm{l}$ of 8 oonM ( 2 X ) of wortmannin was added on top to inhibit $\mathrm{PI}_{3} \mathrm{~K}$ activity.
$\mathrm{PIP}_{3}$ measurement by LC-MS/MS -
The method was adopted and modified as required from [34].

## Lipid extraction -

5 larvae were dissected in 1X PBS and transferred immediately into $37.5 \mu \mathrm{l}$ of 1 X PBS in a 2 ml Eppendorf. For insulin stimulation, to this, $37.5 \mu \mathrm{l}$ of $100 \mu \mathrm{M}$ Insulin (final concentration $-50 \mu \mathrm{M}$ ) was added and the tube was incubated on a mix mate shaker for 10 min at 500 rpm . At the end of incubation time, $750 \mu$ of ice-cold 2:1 $\mathrm{MeOH}: \mathrm{CHCl}_{3}$ organic mix was added to stop the reaction.

Part of this solution was decanted and the rest of the mix containing larval tissues was transferred into a homogenization tube. Larval tissues were homogenized in 4 cycles of 10 secs with 30 sec intervals at 6000 rpm in a homogenizer (Precellys, Bertin Technologies). The tubes were kept on ice at all intervals. The entire homogenate was then transferred to a fresh eppendorf and the homogenization tube was then washed with the decanted mix kept aside earlier. $120 \mu \mathrm{l}$ of water was added to the homogenate collected in eppendorf, followed by addition of 5 ng of 17:0, 20:4 $\mathrm{PIP}_{3}$ internal standard (ISD). The mixture was vortexed and $725 \mu \mathrm{l}$ of chloroform was added to it. After vortexing again for 2 min at around $1000-1500 \mathrm{rpm}$, the phases were separated by centrifugation for 3 min at 1500 g .1 ml of lower organic phase was removed and stored in a fresh tube. To the remaining aqueous upper phase, again $725 \mu \mathrm{l}$ of chloroform was added. The mixture was vortexed and spun down to separate the phases. Again, 1 ml of the organic phase was collected and pooled with the previous collection (total of 2 ml ). This organic phase was used for measuring total organic phosphate. To the aqueous phase, $500 \mu \mathrm{l}$ of the initial organic mix was added followed by $170 \mu \mathrm{l}$ of 2.4 M HCl and $500 \mu \mathrm{l}$ of $\mathrm{CHCl}_{3}$. This mixture was vortexed for 5 min at $1000-1500 \mathrm{rpm}$ and allowed to stand at room temperature for 5 minutes. The phases were separated by centrifugation (1500g, 3 $\min )$. The lower organic phase was collected into a fresh tube by piercing through the protein band sitting at the interface. To this, $708 \mu \mathrm{l}$ of lower phase wash solution was added, the mixture was vortexed and spun down (1500g, 3 min ). The resultant lower organic phase was completely taken out carefully into an Eppendorf tube and used for derivatization reaction.

## Extraction solvent mixtures:

Initial organic mix: $\mathrm{MeOH} /$ Chloroform in the ratio of $484 / 242 \mathrm{ml}$, Lower Phase Wash Solution: Methanol/1 M hydrochloric acid/ chloroform in a ratio of $235 / 245 / 15 \mathrm{ml}$. All ratios are expressed as $\mathrm{vol} / \mathrm{vol} / \mathrm{vol}$.

## Derivatization of Lipids -

To the organic phase of the sample, $50 \mu \mathrm{l}$ of 2 M TMS-Diazomethane was added (TO BE USED WITH ALL SAFETY PRECAUTIONS!). The reaction was allowed to proceed at room temperature for 10 min at 600 rpm . After $10 \mathrm{~min}, 10 \mu \mathrm{l}$ of Glacial acetic acid was added to quench the reaction, vortexed briefly and spun down. $700 \mu$ l of post derivatization wash solvent was then added to the sample, vortexed ( $2 \mathrm{~min}, 1000-1500 \mathrm{rpm}$ ) and spun down. The upper aqueous phase was discarded and the wash step was repeated. To the final organic phase, $100 \mu \mathrm{l}$ of 9:1 $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ mix was added and the sample was dried down to about $10-15 \mu \mathrm{l}$ in a speedvac under vacuum.

## Chromatographic separation and Mass spectrometric detection -

The larval lipid extracts were re-suspended in $170 \mu \mathrm{LC}$-MS grade methanol and $30 \mu \mathrm{LC}$-MS grade water. Samples were injected as duplicate runs of $3.5 \mu$ l. Chromatographic separation was performed on an Acquity UPLC $\mathrm{BEH}_{3} 00 \mathrm{C}_{4}$ column ( $100 \times 1.0 \mathrm{~mm} ; 1.7 \mu \mathrm{~m}$ particle size) purchased from Waters Corporation, USA on a Waters Aquity UPLC system and detected using an ABSCIEX 6500 QTRAP mass spectrometer. The flow rate was $100 \mu \mathrm{~L} / \mathrm{min}$. Gradients were run starting from $55 \%$ Buffer A (Water $+0.1 \%$ Formic Acid)- $45 \%$ Buffer B (Acetonitrile $+0.1 \%$ Formic acid) to $42 \%$ B from 0-5 min; thereafter $45 \%$ B to $100 \%$ B from 5-10 min; $100 \%$ B was held from $10-15 \mathrm{~min}$; brought down from $100 \%$ B to $45 \%$ B between $15-16 \mathrm{~min}$ and held there till 20 th min to re-equilibrate the column. On the mass spectrometer, in pilot standardization experiments, we first employed Neutral Loss Scans on biological samples to look for parent ions that would lose neutral fragments of 598 a.m.u indicative of $\mathrm{PIP}_{3}$ lipid species (as described in [34]). Thereafter, these $\mathrm{PIP}_{3}$ species were quantified in biological samples using the selective Multiple Reaction Monitoring (MRM) method in the positive mode. Only those MRM transitions that showed an increase upon insulin stimulation of biological samples were used for the final experiments (depicted in figure $\mathrm{S}_{3} \mathrm{~B}$ ). The MRM transitions for the different $\mathrm{PIP}_{3}$ species quantified are listed out in the table below. Area of all the peaks was calculated on Sciex MultiQuant software. The area of the internal standard peak was used

622 to normalize for lipid recovery during extraction. The normalized for each of the species was then divided by the amount of organic phosphate measured in each of the biological samples. The other mass spectrometer parameters are as follows: ESI voltage: +4500 V Dwell time: 40 ms ; DP (Declustering Potential): 35.0 V; EP: (Entrance Potential): 10.1 V, CE (Collision Energy): 47.0 V; CXP (Collision cell Exit Potential): 11.6 V, Source Temperature : 450 C, Ion Spray Voltage - 4000 V, Curtain Gas : 35.0, GS1: 15, GS2: 16. The area under the peaks was extracted using MultiQuant v1.1 software (ABSCIEX). Numerical analysis was done in Microsoft Excel.

|  | Sample |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Drosophila Larvae |  |  | S2R+cells |  |  |
|  | PIP3 species | Parent Ion | Daughter Ion | PIP3 species | Parent Ion | Daughter Ion |
|  | 32_1 | 1145.5 | 547.5 | 30_1 | 1119.5 | 521.5 |
|  | 32_2 | 1177.5 | 579.5 | 32_0 | 1149.5 | 551.5 |
|  | 34_1 | 1175.5 | 577.5 | 32_1 | 1147.5 | 549.5 |
|  | 34_2 | 1173.5 | 575.5 | 32_2 | 1145.5 | 547.5 |
|  | 34-3 | 1171.5 | 573.5 | 34_o | 1177.5 | 579.5 |
|  | 36_1 | 1203.5 | 605.5 | 34_1 | 1175.5 | 577.5 |
|  | 36_2 | 1201.5 | 603.5 | 34_2 | 1173.5 | 575.5 |
|  | 36_3 | 1199.5 | 601.5 | 34-3 | 1171.5 | 573.5 |
|  | 36_4 | 1197.5 | 599.5 | 34_4 | 1169.5 | 571.5 |
|  |  |  |  | 34-5 | 1167.5 | 569.5 |
|  |  |  |  | 36_2 | 1201.5 | 603.5 |
|  |  |  |  | 36_3 | 1199.5 | 601.5 |
|  |  |  |  | 36_4 | 1197.5 | 599.5 |
|  |  |  |  | 36_5 | 1195.5 | 597.5 |
|  |  |  |  | 38_3 | 1227.5 | 629.5 |


|  |  |  |  | $38 \_4$ | 1225.5 | 627.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $38 \_5$ | 1223.5 | 625.5 |
|  |  |  |  | $37 \_4$ ISD | 1211.5 | 613.5 |

## Total Organic Phosphate measurement-

1 ml of the organic phase from each sample was taken into phosphate-free tubes and dried completely at $90^{\circ} \mathrm{C}$. The remaining steps were performed as described in Thakur et.al., 2016.

## Preparation of $\mathrm{S}_{2} \mathrm{R}+$ cell lysate for in vitro $\mathrm{PI}_{5} \mathrm{P}_{4}$ - kinase assay

The S2R+ cells were pelleted at 1000 g for 10 min and washed with ice-cold PBS Twice. Cells were thereafter homogenized in lysis buffer containing 50 mM Tris- $\mathrm{Cl}, \mathrm{pH}-7.5,1 \mathrm{mM}$ EDTA, 1 mM EGTA, $1 \%$ Triton-X-100, 50 mM NaF, 0.27 M Sucrose, $0.1 \% \beta$ - Mercaptoethanol and freshly added protease and phosphatase inhibitors (Roche). The lysate was then centrifuged at 1000 for 15 min at $4{ }^{\circ} \mathrm{C}$. Protein estimation was performed using the Bradford reagent according to the manufacturer's instructions.

## $\mathrm{PI}_{5} \mathrm{P}_{4}$-kinase Assay

Vacuum-dried substrate lipid $\left(6 \mu_{\mathrm{M} \mathrm{PI}}^{5} \mathrm{P}\right)$ and $20 \mu \mathrm{M}$ of phosphatidylserine were resuspended in 10 mM Tris pH 7.4 and micelles were formed by sonication for 2 min in a bath-sonicator. $50 \mu \mathrm{l}$ of $2 \times$ PIPkinase reaction buffer ( 100 mM Tris $\mathrm{pH} 7.4,20 \mathrm{mM} \mathrm{MgCl}_{2}, 140 \mathrm{mM} \mathrm{KCl}$, and 2 mM EGTA) containing $20 \mu \mathrm{M}$ ATP, $5 \mu \mathrm{Ci}\left[\gamma-{ }^{-32} \mathrm{P}\right]$ ATP and cell lysates containing $\sim 10 \mu \mathrm{~g}$ total protein was added to the micelles. The reaction mixture was incubated at $30{ }^{\circ} \mathrm{C}$ for 16 h . Lipids were extracted and resolved by one dimensional TLC (45:35:8:2 chloroform: methanol: water: $25 \%$ ammonia). The resolved lipids were imaged using phosphorImager.

## Western Blotting -

For larval western blots, lysates were prepared by homogenizing 3 wandering third instar larvae or 5 pairs of salivary glands from third instar larvae. In the case of CHO-IR cells, pelleted cells were lysed by repeated pipetting in lysis buffer (same as described above). Thereafter, the samples were heated at $95^{\circ} \mathrm{C}$ with Laemli loading buffer for 5 min and loaded onto an SDS- Polyacrylamide gel. The proteins were subsequently transferred onto a nitrocellulose membrane and incubated with indicated antibodies overnight at $4^{\circ} \mathrm{C}$ (for actin/tubulin incubation was done at room temperature for 3 hrs .). Primary antibody concentrations used were - anti- $\alpha$-actin (SIGMA A5060) 1:1000; antidPIP4K 1:1000, anti - GAPDH (Novus Biologicals, \#IM-5143A), anti-PIP4KB (Cell Signaling, \#9694), anti - pAKTT308 (Cell Signaling, \#9275), anti-AKT (Cell Signaling, \# 9272). The blots were then washed thrice with Tris Buffer Saline containing 0.1\% Tween-20 (0.1\% TBS-T) and incubated with 1:10000 concentration of appropriate HRP-conjugated secondary antibodies (Jackson Laboratories, Inc.) for 1.5 hrs . After three washes with $0.1 \%$ TBS-T, blots were developed using Clarity Western ECL substrate on a GE ImageQuant LAS 4000 system.

## Acknowledgements

This work was supported by the National Centre for Biological Sciences, TIFR, Department of Biotechnology, Ministry of Science and Technology (India); and a Wellcome Trust-DBT India Alliance Senior Fellowship to PR. S.S is a recipient of the S.P Mukherji Fellowship from CSIR and S.M an ICMR Fellowship. We thank the NCBS Drosophila, Imaging and Lipidomics Facility for support.

## References

1. Hawkins PT, Anderson KE, Davidson K, Stephens LR. Signalling through Class $\mathrm{I}_{\mathrm{PI}}^{3} \mathrm{~K}$ s in mammalian cells. Biochem Soc Trans. 2006;34: 647-62. doi:10.1042/BSTo340647
2. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. 2006;7: 606-619. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&dopt=Citatio n\&list_uids=16847462
3. Barbieri M, Bonafe M, Franceschi C, Paolisso G, Bonafè M, Franceschi C, et al. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab. 2003;285: 1064-1071. doi:doi:10.1152/ajpendo.00296.2003
4. McConnachie G, Pass I, Walker SM, Downes CP. Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids. Biochem J. 2003;371: 947-955. doi:10.1042/bj20021848
5. Pesesse X, Moreau C, Drayer AL, Woscholski R, Parker P, Erneux C. The SH2 domain containing inositol 5 -phosphatase $\mathrm{SHIP}_{2}$ displays phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate 5-phosphatase activity. FEBS Lett. 1998;437: 301-303. doi:10.1016/Soo14-5793(98)01255-1
6. Luo J, Manning BD, Cantley LC. Targeting the $\mathrm{PI}_{3} \mathrm{~K}$-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4: 257-62. Available: http://www.ncbi.nlm.nih.gov/pubmed/14585353
7. Kaisaki PJ, Delépine M, Woon PY, Sebag-Montefiore L, Wilder SP, Menzel S, et al. Polymorphisms in type II SH2 domain-containing inositol 5 -phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome. Diabetes. 2004;53: 1900-4. Available: http://www.ncbi.nlm.nih.gov/pubmed/15220217
8. Clément S, Krause U, Desmedt F, Tanti JF, Behrends J, Pesesse X, et al. The lipid phosphatase SHIP 2 controls insulin sensitivity. Nature. 2001;409: 92-7. doi:10.1038/35051094
9. Stephens LR, Hughes KT, Irvine RF. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature. 1991;351: 33-9. doi:10.1038/351033ao
10. Rameh LE, Tolias KF, Duckworth BC, Cantley LC. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997;390: 192-196.
11. Gupta A, Toscano S, Trivedi D, Jones DR, Mathre S, Clarke JH, et al. Phosphatidylinositol 5phosphate 4 -kinase $\left(\mathrm{PIP}_{4} \mathrm{~K}\right)$ regulates TOR signaling and cell growth during Drosophila development. Proc Natl Acad Sci U S A. 2013;110: 5963-5968. doi:10.1073/pnas.1219333110
12. Kolay S, Basu U, Raghu P. Control of diverse subcellular processes by a single multifunctional lipid phosphatidylinositol 4,5-bisphosphate [PI $(4,5) \mathrm{P}_{2}$ ]. Biochem J. 2016;473: 1681-92. doi:10.1042/BCJ20160069
13. Emerling BM, Hurov JB, Poulogiannis G, Tsukazawa KS, Choo-Wing R, Wulf GM, et al. Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-Null tumors. Cell. Elsevier; 2013;155: 844-857. doi:10.1016/j.cell.2013.09.057
14. Shim H, Wu C, Ramsamooj S, Bosch KN, Chen Z, Emerling BM, et al. Deletion of the gene Pip4k2c, a novel phosphatidylinositol kinase, results in hyperactivation of the immune system. Proc Natl Acad Sci. 2016;113: 7596-7601. doi:10.1073/pnas.1600934113
15. Lamia KA, Peroni OD, Kim YB, Rameh LE, Kahn BB, Cantley LC. Increased insulin sensitivity and reduced adiposity in phosphatidylinositol 5 -phosphate 4 -kinase beta-/- mice. Mol Cell Biol. 2004/05/15. 2004;24: 5080-5087. doi:10.1128/MCB.24.11.5080-5087.2004 24/11/508o [pii]
16. Carricaburu V, Lamia KA, Lo E, Favereaux L, Payrastre B, Cantley LC, et al. The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proc Natl Acad Sci. 2003;100: 9867-9872.
doi:10.1073/pnas. 1734038100
17. Jones DR, Foulger R, Keune W-J, Bultsma Y, Divecha N. PtdIns5P is an oxidative stressinduced second messenger that regulates PKB activation. FASEB J. 2013;27: 1644-56. doi:10.1096/fj.12-218842
18. Bulley SJ, Droubi A, Clarke JH, Anderson KE, Stephens LR, Hawkins PT, et al. In B cells, phosphatidylinositol 5-phosphate 4-kinase- $\alpha$ synthesizes $\operatorname{PI}(4,5) \mathrm{P}_{2}$ to impact mTORC2 and Akt signaling. Proc Natl Acad Sci. 2016;113: 10571-10576. doi:10.1073/pnas.1522478113
19. Durán R V, Hall MN. Regulation of TOR by small GTPases. EMBO Rep. 2012;13: 121-8. doi:10.1038/embor. 2011.257
20. Mackey AM, Sarkes DA, Bettencourt I, Asara JM, Rameh LE. PIP4k is a substrate for mTORC1 that maintains basal mTORC1 signaling during starvation. Sci Signal. 2014;7: ra104-ra104. doi:10.1126/scisignal. 2005191
21. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124: 471-84. doi:10.1016/j.cell.2006.01.016
22. Church RB, Robertson FW. Biochemical analysis of genetic differences in the growth of Drosophila. 1966/06/01. 1966;7: 383-407. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&dopt=Citatio n\&list_uids=5940873
23. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol. 2001;11: 213-21. Available: http://www.ncbi.nlm.nih.gov/pubmed/11250149
24. Shingleton AW, Das J, Vinicius L, Stern DL. The temporal requirements for insulin signaling during development in Drosophila. Johnston L, editor. PLoS Biol. 2005;3: e289. doi:10.1371/journal.pbio.0030289
25. Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. 1999;97: 865-875. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&dopt=Citatio n\&list_uids=10399915
26. Georgiev P, Okkenhaug H, Drews A, Wright D, Lambert S, Flick M, et al. TRPM channels mediate zinc homeostasis and cellular growth during Drosophila larval development. Cell Metab. 2010;12: 386-97. doi:10.1016/j.cmet.2010.08.012
27. Kockel L, Kerr KS, Melnick M, Brückner K, Hebrok M, Perrimon N. Dynamic switch of negative feedback regulation in Drosophila Akt-TOR signaling. PLoS Genet. 2010;6: 1-17. doi:10.1371/journal.pgen. 1000990
28. Gual P, Le Marchand-Brustel Y, Tanti J-F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 2005;87: 99-109. doi:10.1016/j.biochi.2004.10.019
29. Rintelen F, Stocker H, Thomas G, Hafen E. PDK1 regulates growth through Akt and S6K in Drosophila. Proc Natl Acad Sci U S A. 2001;98: 15020-5. doi:10.1073/pnas.011318098
30. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 $\mathrm{PI}_{3}$ kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev. 1999;13: 1438-52. Available: http://www.ncbi.nlm.nih.gov/pubmed/10364160
31. Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. 2002;2: 239-249. Available:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&dopt=Citatio n\&list_uids=11832249
32. Nässel DR, Broeck J Vanden. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol Life Sci. 2016;73: 271-290. doi:10.1007/sooo18-015-2063-3
33. Lizcano JM, Alrubaie S, Kieloch A, Deak M, Leevers SJ, Alessi DR. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B. Biochem J. 2003;374: 297-306. doi:10.1042/BJ20030577
34. Clark J, Anderson KE, Juvin V, Smith TS, Karpe F, Wakelam MJO, et al. Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat Methods. Nature Publishing Group; 2011;8: 267-272. doi:10.1038/nmeth. 1564
35. Malek M, Kielkowska A, Chessa T, Anderson KE, Barneda D, Pir P, et al. PTEN Regulates $\mathrm{PI}(3,4) \mathrm{P} 2$ Signaling Downstream of Class I PI3K. Mol Cell. 2017;68: 566-580.e10. doi:10.1016/j.molcel.2017.09.024
36. Tremblay F, Brûlé S, Hee Um S, Li Y, Masuda K, Roden M, et al. Identification of IRS-1 Ser1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2007;104: 14056-14061. doi:10.1073/pnas.0706517104
37. Zick Y. Insulin resistance: A phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol. 2001;11: 437-441. doi:10.1016/So962-8924(01)02129-8
38. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003;13: 1259-68. Available: http://www.ncbi.nlm.nih.gov/pubmed/12906785
39. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar B a, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol. 2003;5: 578-81. doi:10.1038/ncb999
40. Clarke JH, Wang M, Irvine RF. Localization, regulation and function of type II phosphatidylinositol 5-phosphate 4-kinases. Adv Enzyme Regul. Elsevier Ltd; 2010;50: 12-
41. doi:10.1016/j.advenzreg.2009.10.006
42. Sarkes D, Rameh LE. A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5 P and other phosphoinositides. Biochem J. 2010;428:37584. doi:10.1042/BJ20100129
43. Palanker Musselman L, Fink JL, Narzinski K, Ramachandran P V., Sukumar Hathiramani S, Cagan RL, et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech. 2011;4: 842-849. doi:10.1242/dmm. 007948
44. Pasco MY, Léopold P. High sugar-induced insulin resistance in Drosophila relies on the Lipocalin Neural Lazarillo. PLoS One. 2012;7: 1-8. doi:10.1371/journal.pone.0036583
45. Hawkins PT, Stephens LR. $\mathrm{PI}_{3} \mathrm{~K}$ signalling in inflammation. Biochim Biophys Acta - Mol Cell Biol Lipids. 2015;1851: 882-897. doi:10.1016/j.bbalip.2014.12.006
46. Balakrishnan SS, Basu U, Raghu P. Phosphoinositide signalling in Drosophila. Biochim Biophys Acta - Mol Cell Biol Lipids. 2015;1851: 770-784. doi:10.1016/j.bbalip.2014.10.010
47. Reilly KEO, Rojo F, She Q, Solit D, Mills GB, Lane H, et al. mTOR Inhibition Induces Upstream Receptor Tyrosine Kinase Signaling and Activates Akt. Cancer Res. 2011;66: 15001508. doi:10.1158/ooo8-5472.CAN-05-2925.mTOR
48. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, et al. Absence of S6Kı protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431: 200-205. doi:10.1038/nature02979
49. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, et al. A Rapamycin-Sensitive Pathway Down-Regulates Insulin Signaling via Phosphorylation and Proteasomal Degradation of Insulin Receptor Substrate-1. Mol Endocrinol. 2000; 783-794. doi:10.1210/mend.14.6.0446
50. Grainger DL, Tavelis C, Ryan AJ, Hinchliffe K a. Involvement of phosphatidylinositol 5phosphate in insulin-stimulated glucose uptake in the L6 myotube model of skeletal muscle. Pflugers Arch. 2011;462: 723-32. doi:10.1007/so0424-011-1008-4
51. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC12 tumor suppressor controls insulin- $\mathrm{PI}_{3} \mathrm{~K}$ signaling via regulation of IRS proteins. J Cell Biol. 2004;166: 213-23. doi:10.1083/jcb. 200403069
52. Shah OJ, Wang Z, Hunter T. Inappropriate Activation of the TSC/Rheb/mTOR/S6K Cassette Induces $\mathrm{IRS}_{1} / 2$ Depletion, Insulin Resistance, and Cell Survival Deficiencies. Curr Biol. 2004;14: 1650-1656. doi:10.1016/j.cub.2004.08.026
53. Tzatsos A, Kandror K V. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26: 63-76. doi:10.1128/MCB.26.1.63-76.2006

## Figure Legends:

Fig. 1. dPIP4K epistatically interacts with insulin receptor signalling to modulate cell size
A. Schematic depicting the components of insulin signalling cascade studied in the subsequent experiments. B-G. Salivary gland cell size measurements. B. Cell sizes upon knockdown of Insulin receptor in salivary glands. C. Quantification of the no. of nuclei. Whiskers in the box plots represent minimum and maximum values, with a line at the median. Cell size measurements in wildtype $(R O R)$ and $d P I P_{4} K^{29}$ backgrounds as indicated upon - D. Overexpression of insulin receptor (InR) E. Overexpression of insulin receptor substrate - Chico F. Overexpression of PDK1 ${ }^{\mathrm{A} 467 \mathrm{~V}}$ G. Table with differences in median values of cell sizes across different genetic manipulations. Numbers inside the parentheses below the plots indicate the no. of biological replicates used for the measurement. Mann Whitney test used for statistical analysis of the distributions. ${ }^{* *} p$-value $<0.01,{ }^{* * *} p$-value <o.oo1. Genotypes: B, C. AB1Gal4/+ and AB1Gal4; UAS-dINR ${ }^{R N A i} . ~ D(i) . A B 1 G a l_{4} /+$ and UAS$d I N R /+; A B{ }_{1} G a l_{4} /+$ and (ii). $A B_{1}$ Gal $_{4} /+; d P I P_{4} K^{29}$ and $U A S-d I N R /+; A B_{1} G_{a l 4} /+; d P I P_{4} K^{29} . \mathrm{E}(\mathbf{i})$. AB1Gal4/+ and UAS-Chico/+; AB1Gal4/+ and (ii). AB1Gal4/+; dPIP4K ${ }^{29}$ and UAS-Chico/+; AB1Gal4/+; dPIP $4 K^{29} . \mathrm{F}(\mathbf{i}) . A B_{1} G a l_{4} /+$ and $U A S-P D K^{A 67 V} /+; A B_{1} G a l_{4} /+$ and (ii). AB1Gal4/+; $d P I P 4 K^{29}$ and $U A S-P D K^{A 467 V} /+; A B 1$ Gal4/+; dPIP4K ${ }^{29}$.

Fig. 2. Plasma membrane $\mathrm{PIP}_{3}$ levels are elevated in $d P I P_{4} K$ mutant tissues without an increase in humoral dILP secretion

A-B. $\mathrm{PIP}_{3}$ quantification - Images showing the intensity and localization of the $\mathrm{PIP}_{3}$ binding probe (GFP-PH-GRP1) in larval tissues. The $\mathrm{PIP}_{3}$ levels quantified as the ratio of the probe fluorescence intensity on the plasma membrane to that in the cytosol. A(i). Representative confocal images showing the distribution of the probe in the salivary glands. A (ii). Quantification of $\mathrm{PIP}_{3}$ levels between control and $d P I P 4 K^{29}$ salivary glands for experiment depicted in $\mathrm{A}(\mathrm{i})$. (Mean fluorescence intensity ratios calculated from a minimum of 10 cells from each salivary gland). $\mathbf{B}(\mathbf{i})$. Representative
confocal images showing the distribution of the probe in the fat body and in $\mathbf{B}$ (ii) the quantification from these experiments. The ratio was calculated from about 50 cells from 12 fat body regions pooled from 5 animals for each genotype respectively. Wandering third instar larvae used for measurements. Scale: $50 \mu \mathrm{~m}$ for salivary gland images and $10 \mu \mathrm{~m}$ for fat body images C. qPCR measurements for mRNA levels of $\operatorname{dILP} 2,3$ and 5 from whole larvae. Transcript levels for each gene were normalized to the mRNA levels of $r$ p49 in the same sample. D. qPCR measurements for $d I n R$. Transcript levels for each gene were normalized to the mRNA levels of $r$ p 49 in the same sample $\mathrm{E}(\mathbf{i})$. Confocal z-projections showing immunostaining for dILP2 in larval IPCs, Scale: $50 \mu \mathrm{~m}$. $\mathrm{E}(\mathrm{ii})$. Quantification of dILP2 staining intensity in the third instar wandering larval brains. Whiskers in the box plots represent minimum and maximum values, with a line at the median. Numbers inside the parentheses below the plots indicate the no. of biological replicates used for the measurement. Mann Whitney test used for statistical analysis of the distributions. ${ }^{*} p$-value $<0.05,{ }^{* *} p$-value $<0.01$. Genotypes: A-D. $t G P H$ and $t G P H ; d P I P 4 K^{29}$. E. ROR and $d P I P 4 K^{29}$.

Fig. 3. Increased sensitivity of Drosophila larval cells to insulin upon loss of dPIP4K.
$\mathrm{A}(\mathrm{i})$. Confocal z-projections showing levels and localization of the $\mathrm{PIP}_{3}$ probe in control and $d P I P 4 K^{29}$ in salivary glands cells stimulated with $10 \mu \mathrm{M}$ insulin for 10 min and in $\mathrm{A}(\mathrm{ii})$, quantification of $\mathrm{PIP}_{3}$ levels between control and $d P I P_{4} \mathrm{~K}^{29}$ salivary glands from the same set of experiments. Immunoblot (from wandering third instar stage) showing a reduction in levels of dPIP 4 K protein in salivary gland lysates upon knockdown of $\mathrm{SPIP}_{4} \mathrm{~K}$ using $A B_{1}$ GAL4. B(ii). Relative quantification of $\mathrm{PIP}_{3}$ levels using the GFP-PH-GRP1 probe between control and $d P I P_{4} K$-knockdown salivary glands $\mathrm{C}(\mathbf{i})$. Confocal z-projections of fat body lobes expressing $\mathrm{PIP}_{3}$ binding probe from control and $d P I P 4 K^{22}$ late third instar larvae stimulated with $0.1 \mu \mathrm{M}, 1 \mu \mathrm{M}$ and $10 \mu \mathrm{M}$ insulin post 2 hr starvation. C(ii). Quantification of $\mathrm{PIP}_{3}$ for experiments in fig. C ( 50 cells from at least 3 samples in the fat body for each genotype and treatment used for analysis). Scale: $50 \mu \mathrm{~m}$. C(iii). Comparison of mean fold
change (mutant w.r.t control) in response to insulin computed from data in $\mathrm{B}(\mathrm{ii})$. Comparison of $\mathrm{PIP}_{3}$ levels between (D) mutant and rescue salivary glands and (E) wildtype and salivary glands overexpressing $\mathrm{dPIP}_{4} \mathrm{~K}$. Whiskers in the box plots represent minimum and maximum values, with a line at the median. Numbers inside the parentheses below the plots indicate the no. of biological replicates used for the measurement. Scale: $50 \mu \mathrm{M}$. Mann Whitney test used for statistical analysis of the distributions. ${ }^{*} p$-value $<0.05,{ }^{* *} p$-value $<0.01,{ }^{* * *} p$-value $<0.001$ Genotypes: A, C. $t G P H$ and $t G P H ; d P I P_{4} K^{29}$. B. $A_{1}$ 1Gal $_{4}, t G P H /+$ and $d P I P_{4} K^{R N A i} /+$; AB1Gal4, $t G P H /+$. D. $A_{1}$ Gal $_{4}, t G P H /+$; $d P I P_{4} K^{29}$ and $U A S-d P I P_{4} K /+$; AB1Gal4, $t G P H /+; d P I P_{4} K^{29}$. E. AB1Gal4, tGPH/+ and UASdPIP4K/+; AB1Gal4, tGPH/+.

Fig. 4. Quantitative biochemical measurements of $\mathrm{PIP}_{3}$ identify $\mathrm{dPIP}_{4} \mathrm{~K}$ as a negative regulator of insulin signalling.
A. Schematic outline of the steps involved in LCMS-based measurement of $\mathrm{PIP}_{3}$ lipid from larvae and cells upon insulin stimulation. $\mathrm{B}(\mathrm{i})$. Measurement of total $\mathrm{PIP}_{3}$ levels in whole larval lipid extracts from wildtype $(R O R)$ and $d P I P 4 K^{29}$ using LCMS. $\mathrm{B}(\mathrm{ii})$. Levels of various larval $\mathrm{PIP}_{3}$ species in wildtype (ROR) and $d P I P_{4} K^{29}$ whole larval lipid extracts. $\mathrm{C}(\mathrm{i})$. Measurement of total $\mathrm{PIP}_{3}$ levels using LCMS in whole cell lipid extracts from S2R+ cells treated with indicated dsRNAs. C(ii). Levels of various larval $\mathrm{PIP}_{3}$ species in whole cell lipid extracts from $\mathrm{S} 2 \mathrm{R}+$ cells. The graphs show mean $\mathrm{PIP}_{3}$ levels (normalized to spiked internal standards and total organic lipid phosphates recovered). Error bars depict SD. Inset C(ii). Immunoblot showing the knockdown of dPIP4K in $\mathrm{S}_{2} \mathrm{R}+$ cells using two different sets of dsRNAs. Student's unpaired $t$-test used for statistical analysis of the distributions. *pvalue $<0.05$. On each graph, numbers inside the parentheses indicate the no. of biological replicates used for the measurement.

Fig. 5. dPIP4K additionally regulates insulin signalling independent of TORC1-mediated negative feedback.

Scheme 1 and $\mathbf{2}$ depict the feedback regulation of insulin signalling by TORC1 activity in OFF and ON state respectively. The font and arrow sizes are indicative of the extent of molecular activity. AF. $\mathrm{PIP}_{3}$ quantification - Salivary gland images showing the distribution of the $\mathrm{PIP}_{3}$ binding probe GFP-PH-GRP1 in cells. The distribution was quantified as the ratio of probe fluorescence on the plasma membrane to that in the cytosol. In all these experiments, the genetic manipulation was restricted to the salivary glands using $A B_{1} \mathrm{Gal} 4$. A, C, E. In a wildtype background, Downregulation of TOR signalling by RNAi for Rheb [A (i and ii)]. Upregulation of TOR signalling through overexpression of Rheb [C (i and ii)], knockdown of Tsc [E (i and ii)] B, D, F. In a $d P I P 4 K^{29}$ background, Downregulation of TOR signalling by RNAi for Rheb [B (i and ii)] Upregulation of TOR signalling through overexpression of Rheb [D (i and ii)], knockdown of Tsc [F (i and ii)]. Scale: $50 \mu \mathrm{M}$. Whiskers in the box plots represent minimum and maximum values, with a line at the median. Numbers inside the parentheses below the plots indicate the no. of biological replicates used for the measurement. Mann Whitney test used for statistical analysis of the distributions. ${ }^{*} p$-value < 0.05. ${ }^{* *} p$-value <0.01. Genotypes: A. $A B_{1}$ Gal4, $t G P H /+$ and $A B 1$ Gal4, $t G P H / U A S-R h e b^{R N A i}$. B. AB1Gal4, tGPH /+; dPIP4K ${ }^{29}$ and AB1Gal4, tGPH/ UAS-Rheb ${ }^{R N A i} ; d P I P 4 K^{29}$. C. AB1Gal4, tGPH /+ and UAS-dRheb/+; AB1Gal4, tGPH/+. D. AB1Gal4, tGPH/+; dPIP4 $\mathrm{K}^{29}$ and UAS-dRheb/+; AB1Gal4,
 /+; dPIP $4 K^{29}$ and UAS-Tsc1 ${ }^{R N A i /+; ~ A B 1 G a l 4, ~ t G P H /+; ~ d P I P 4 ~} K^{29}$.

Fig. 6. PIP4K functions at the plasma membrane as a negative regulator of insulin receptor signalling
A. Schematic showing constructs that target dPIP4K to different subcellular compartments and the motifs used for targeting. B (i-iv). Representative confocal z-projections of $\mathrm{S}_{2} \mathrm{R}+$ cells with act-GAL4
expressing various $\mathrm{dPIP}_{4} \mathrm{~K}$ constructs (i) wildtype GFP-tagged dPIP4K (ii) plasma-membrane (PM) targeted mCherry-tagged $\mathrm{dPIP}_{4} \mathrm{~K}$ (iii) mCherry tagged $\mathrm{dPIP}_{4} \mathrm{~K}$ targeted to various intracellular membranes inclusive of ER, Golgi and endo-lysosomal system (iv) GFP-tagged dPIP4K targeted to the lysosome. $\mathrm{C}(\mathbf{i})$. Immunoblots from $\mathrm{S}_{2} \mathrm{R}+$ lysates showing the expression of indicated $\mathrm{dPIP}_{4} \mathrm{~K}$ constructs that were used in the in vitro assay. C(ii). In vitro kinase assay from $\mathrm{S}_{2} \mathrm{R}+$ cell lysates showing the activity of different overexpressed dPIP4K constructs. $\mathrm{PIP}_{3}$ measurement on insulin stimulation ( $10 \mu \mathrm{M}$ ) using the PH-GFP-GRP1 probe D-F. in $d P I P_{4} K^{29}$ salivary glands reconstituted with D. PM targeted dPIP4K, E. endo-membrane targeted dPIP4K, F. Lysosomal dPIP4K, G. upon overexpression of dPIP $4 \mathrm{~K}::$ mCherry ${ }^{\text {CAAX }}$ in the salivary glands. Whiskers in the box plots represent minimum and maximum values, with a line at the median. Numbers inside the parentheses below the plots indicate the no. of biological replicates used for the measurement. Mann Whitney test used for statistical analysis of the distributions. ${ }^{*} p$-value $<0.05 .{ }^{* *} p$-value $<0.01 . \mathrm{H}(\mathrm{i})$. Representative confocal z-projections of CHO-IR cells overexpressing GFP-PIP4K2B and PIP4K2B::mCherryCAAX. H(ii). Immunoblots from CHO-IR cells expressing PIP4K2B constructs stimulated with 1 $\mu \mathrm{M}$ insulin for 10 min . The values below the blots represent the mean pAKT/Total AKT ratio across three independent experiments. Genotypes: D. AB1Gal4, tGPH/+ and AB1Gal4, tGPH/+;dPIP4K ${ }^{29}$ and AB1Gal4, tGPH /dPIP4K::mCherryCAAX; dPIP4K ${ }^{29}$. E. AB1Gal4, tGPH /+ and AB1Gal4, tGPH /+; dPIP4 $K^{29}$ and $A_{1}$ Gal4 $_{4}, t_{G P H} / d_{P I P}^{4}$ K::mCherryEM; dPIP4K ${ }^{29}$. F. AB1Gal4, tGPH /+ and AB1Gal4, tGPH /+; dPIP4K ${ }^{29}$ and $A_{1} B_{1}$ Gal4, tGPH /Lysosomal-dPIP4K::eGFP; dPIP4K²9.

Fig. 7. dPIP4K influences $\mathrm{PIP}_{3}$ turnover.
(A(i)) Schematic of the reactions that determine $\mathrm{PIP}_{3}$ turnover at the plasma membrane. Insulin stimulates $\mathrm{PI}_{3} \mathrm{~K}$ activation. Wortmannin irreversibly inhibits $\mathrm{PI}_{3} \mathrm{~K}$ activity. (A(ii)) Live imaging assay protocol to follow $\mathrm{PIP}_{3}$ dynamics with three phases as depicted. ( $\mathrm{B}(\mathbf{i})$ ) A single trace from live imaging of salivary glands expressing GFP-PH-GRP1 probe showing the changes in the plasma-
membrane to cytosolic ratio of the probe fluorescence over time. (B(ii)) Wortmannin addition (400nM) completely blocks insulin ( $10 \mu \mathrm{M}$ ) induced $\mathrm{PIP}_{3}$ production (B(iii)) DMSO (vehicle) addition does not reduce $\mathrm{PIP}_{3}$ levels post-insulin $(10 \mu \mathrm{M})$ stimulation. (C) and (D) Comparison of average traces of GFP-PH-GRP1 fluorescence ratios from multiple imaging runs of control, $d P I P_{4} K^{29}$ and dPIP $_{4}$ K overexpression salivary glands ( $\mathrm{N}=7$ for all genotypes). Error bars indicate SD. The two experiments were performed at different times, hence controls samples were repeated. ( $\mathrm{E}(\mathrm{i})$ and (ii)) Curves depict changes in slopes of fluorescence calculated by taking ratios of fluorescence from test genotypes to that in controls. The maximal difference is indicated alongside the graph. Genotypes: B(i-iii). AB1Gal4, tGPH/+. C. AB1Gal4, tGPH/+ and AB1Gal4, tGPH/+; dPIP4 $K^{29}$. D. AB1Gal4, $t G P H /+$ and $U A S-d P I P_{4} K /+; A B 1$ Gal4, $t G P H /+$.

Fig. 8. dPIP4K modulates the acquisition of insulin resistance upon high dietary sugar intake.
A. The graph represents the mean percentage of pupariation (After egg laying, AEL) observed over time on indicated diets. Data collected from 3 independent batches of about 15-25 larvae per batch (for ROR and dPIP4 $K^{29}$ ). Error bars indicate SD. B. Mean hemolymph trehalose levels measured of hemolymph pooled from 5-8 larvae each per genotype ( $R O R$ and $d P I P_{4} K^{29}$ ). Whiskers in the box plots represent minimum and maximum values, with a line at the median. Numbers inside the parentheses below the plots indicate the no. of biological replicates used for the measurement. Mann Whitney test used for statistical analysis of the distributions. ${ }^{* *} p$-value <o.01. C. A model for regulation of $\mathrm{PIP}_{3}$ levels by $\mathrm{dPIP}_{4} \mathrm{~K}$ upon insulin stimulation. In wild-type cells, insulin-induced activation of the receptor triggers $\mathrm{dPIP}_{4} \mathrm{~K}$ activity. This prevents $\mathrm{PI}_{5} \mathrm{P}$ elevation at plasma membrane and also initiates events that prevent sustained Class $\mathrm{I} \mathrm{PI}_{3} \mathrm{~K}$ activity and $\mathrm{PIP}_{3}$ production. Eventually, the negative feedback via TORC1 activity also sets in. These events act together and keep $\mathrm{PIP}_{3}$ levels in check. Upon loss of $\mathrm{dPIP}_{4} \mathrm{~K}$ in cells, $\mathrm{PI}_{5} \mathrm{P}$ accumulates. Class $\mathrm{I} \mathrm{PI}_{3} \mathrm{~K}$ shows has a sustained activity
resulting increased $\mathrm{PIP}_{3}$ levels upon insulin stimulation which cannot be completely restored via TORC1-mediated negative feedback.

## Supplementary Figure Legends:

Fig. S1. Modulatory effect of dPIP4K on insulin signalling in regulation of cell size
A-G. Representative confocal sections of salivary glands of wandering third instar larvae labelled with BODIPY FL 488 (green) and TOTO3 (red) to mark the nuclei. Scale: $50 \mu \mathrm{~m}$. Genotypes: A. AB1Gal4/+ and AB1Gal4/+; UAS-dINR ${ }^{R N A i}$. B. AB1Gal4/+ and UAS-dINR/+; AB1Gal4/+. C. AB1Gal4/+; dPIP4K ${ }^{29}$ and UAS-dINR/+; AB1Gal4/+; dPIP4K ${ }^{29}$. D. AB1Gal4/+ and UAS-Chico/+; AB1Gal4/+. E. AB1Gal4/+; dPIP4 $K^{29}$ and UAS-Chico/+; AB1Gal4/+; dPIP4K ${ }^{29}$. F. AB1Gal4/+ and


## Fig. S2. Standardisation of $\mathrm{PIP}_{3}$ measurement using LCMS

A. Linearity of mass spectrometer response for increasing amounts of $\mathrm{PIP}_{3}$ standard (17:0, 20:4) injected. Each point on the curve indicates the mean $\pm$ SD of three replicate injections. B. Chromatograms showing the elution profiles and retention times for various $\mathrm{PIP}_{3}$ species detected from whole larval lipid extracts of wildtype larvae stimulated ex-vivo with $100 \mu \mathrm{M}$ insulin for 10 min . Note the changing retention times with increase in no. of double bonds and increase in length of acyl chains. Increase in double bonds for a fixed acyl chain length results in earlier elution. Increase in length of acyl chain delays elution.

## Fig. S3. Biochemical measurement of $\mathrm{PIP}_{3}$ from larval extracts using LCMS.

A. Relative abundance of various $\mathrm{PIP}_{3}$ species in whole larval lipid extracts of wildtype larvae stimulated ex-vivo with $100 \mu \mathrm{M}$ insulin for 10 min . B. An experiment showing changes in
the levels of various $\mathrm{PIP}_{3}$ species upon insulin stimulation (100 $\mu \mathrm{M}, 10 \mathrm{~min}$ ). $\mathrm{C}(\mathrm{i})$. Immunoblot from whole larval lysates showing reduction in levels of dPIP4K protein upon pan-larval RNAi for dPIP4K (UAS-dPIP4 $K^{R N A i} /+$; daGAL4/+). C(ii). Total levels of $\mathrm{PIP}_{3}$ in whole larval control and $d P I P 4 K^{R N A i}$ lipid extracts $\mathrm{C}(\mathrm{iii})$. Levels of various larval $\mathrm{PIP}_{3}$ species in whole larval control and $d P I P_{4} K^{R N A i}$ lipid extracts. Total $P_{P}$ levels $(\mathrm{D}(\mathbf{i})$ ) and levels of individual species ( $\mathbf{D}(\mathrm{ii})$ ) in GAL4-control (daGAL4/+), GAL4-control in $d_{P I P}{ }_{4} \mathrm{~K}^{29}$ background (daGAL4/+; dPIP4 $K^{29}$ ) and pan-larval rescue (daGAL4/UAS-dPIP4K::eGFP; $d P I P 4 K^{29}$ ) lipid extracts. The graphs show mean $\mathrm{PIP}_{3}$ levels (normalized to spiked internal standards and total lipid phosphates recovered). Error bars depict SD. On each panel, numbers inside the parentheses indicate the no. of biological replicates used for the measurement.

Fig. S4. $\mathrm{PIP}_{3}$ measurement with increasing time of insulin stimulation
A(i). Confocal z-projections of salivary glands expressing GFP-PH-GRP1 in wildtype and $d P I P 4 K^{29}$ backgrounds. Salivary glands dissected from wandering 3 rd instar larvae were stimulated or not with $10 \mu \mathrm{M}$ bovine insulin for indicated times, fixed and imaged. $\mathrm{A}(\mathrm{ii})$. Relative $\mathrm{PIP}_{3}$ levels were measured as a ratio of mean fluorescence intensity at the plasma membrane to that in the cytosol. Whiskers in the box plots represent minimum and maximum values, with a line at the median. Numbers inside the parentheses below the plots indicate the no. of biological replicates used for the measurement. Mann Whitney test used for statistical analysis of the distributions. ${ }^{* *} p$-value <0.01, ${ }^{* * *} p$-value < 0.001. Genotypes: $A B 1$ Gal4, tGPH/+ and AB1Gal4, $t G P H /+; \mathrm{dPIP}_{4}{ }^{29}$

Fig. S5. TORC1 activity regulates cell size in salivary glands.
Cell size measurements in salivary glands upon (A) Knockdown of Rheb (B) overexpression of dRheb (C) Knockdown of TSC in wildtype and $\mathrm{dPIP}_{4} \mathrm{~K}^{29}$ backgrounds. Whiskers in the box plots represent minimum and maximum values, with a line at the median. Numbers inside the parentheses below the plots indicate the no. of biological replicates used for the measurement. Mann Whitney test used for statistical analysis of the distributions. **p-value <o.o1, ${ }^{* * *} p$-value <0.001. Genotypes: A(i). AB1Gal4/+ and AB1Gal4/UAS-Rheb ${ }^{R N A i}$ and (ii). AB1Gal4/+; dPIP4K ${ }^{29}$ and $A B_{1} G a l_{4} / U A S-R h e b^{R N A i ; ~}{ }^{2} P_{P I P}^{4} K^{29} \mathrm{~B}(\mathbf{i}) . A B 1 G a l_{4} /+$ and UAS-dRheb/+; AB1Gal4/+ and (ii). AB1Gal4/+; dPIP4 $\mathrm{K}^{29}$ and UAS-dRheb/+; AB1Gal4/+; dPIP4 $\mathrm{K}^{29}$. C(i). AB1Gal4/+ and UAS-Tsc1 ${ }^{R N A i} /+$; AB1Gal4/+ and (ii). AB1Gal4/+; dPIP4K ${ }^{29}$ and UAS-Tsc1 ${ }^{R N A i} /+$; AB1 Gal4/+; $\mathrm{dPIP}_{4} \mathrm{~K}^{29}$. Controls for $\mathrm{A}(i i)$ and C(ii) represent values from the same dataset.


$E$
(ii)


G

| Genetic <br> manipulation | Change in cell size from GAL4 ctrl <br> (Percent difference in population medians) |  |
| :---: | :---: | :---: |
|  | In Wildtype | $\operatorname{In}$ dPIP4K ${ }^{29}$ |
| UAS-InR | 91 | 183 |
| UAS-Chico | 58 | 123 |
| UAS-PDK14467V | 211 | 233 |

Sharma, et.al. Fig. 1


Sharma, et.al. Fig. 2


Sharma, et.al. Fig. 3
A Biochemical Measurement of $\mathrm{PIP}_{3}$


B(i)


(ii)
(ii)




Sharma, et.al. Fig. 5


Sharma, et.al. Fig. 6




Sharma, et.al. Supplementary Fig. 1 (S1)

A


B



Sharma, et.al., Supplementary Fig. 3 (S3)

(ii)



Sharma, et.al., Supplementary Fig. 4 (S4)


