1	Intraspecific variation and warming have comparable effects on eco-						
2	evolutionary dynamics.						
3							
4	A. Raffard ^{1,2*} , J. Cucherousset ³ , F. Santoul ² , L. Di Gesu ¹ and S. Blanchet ^{1,3*}						
5							
6	¹ CNRS, Université Toulouse III Paul Sabatier, Station d'Écologie Théorique et						
7	Expérimentale du CNRS à Moulis, UMR-5321, F-09200 Moulis, France.						
8							
9	² EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.						
10							
11	³ Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de						
12	Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse 31062, France.						
13							
14	Classification: Biological Sciences / Ecology						
15							

16 Abstract

17 Rapid evolutionary divergences within species can affect the way organisms shape 18 their environment, which in turn can affect the evolutionary trajectories of species. 19 These eco-evolutionary feedbacks have recently been proved, but their relevance 20 compared to that of key environmental drivers in the dynamics of biological systems 21 is still unknown. Here, we filled this gap in knowledge by quantifying the effects of 22 intraspecific variation on ecological processes and evolutionary trajectories and by 23 comparing these effects to those induced by a 2°C warming. We used a common 24 gardening experiment with simultaneous variations in the genetic and phenotypic 25 characters of a widespread freshwater fish species (the European minnow, *Phoxinus* 26 phoxinus) and in the ecosystem temperature. We showed that intraspecific variation 27 led to eco-evolutionary feedbacks that were as strong as the eco-evolutionary 28 consequences of ecosystem warming. Specifically, we found that variations in two 29 heritable phenotypic traits (body size and growth rate) in adult minnows led to 30 ecological changes in the environment that subsequently modulated the evolutionary 31 trajectories of juvenile minnows. Importantly, the eco-evolutionary consequences of 32 intraspecific variation were different and independent from those induced by 33 warming. We conclude that eco-evolutionary feedbacks are not biologically 34 negligible and that intraspecific variation is an indisputable driver of both ecological 35 and evolutionary dynamics.

36

37 Significance statement

Global changes are directly modifying the functioning of ecosystems and the
evolution of species. Phenotypic and genetic variation observed within species
(intraspecific variation) has recently also been shown to alter biological dynamics and

41 is threatened by global changes. It is hence of utmost importance to quantify the 42 relative importance of intraspecific variation and global changes (here considering 43 warming) on biological dynamics. Here, we demonstrate that intraspecific variation 44 affects ecosystem functioning as intensively as a warming of 2°C. The ecosystem 45 changes induced by intraspecific variation were strong enough to generate feedbacks 46 in the evolution of organisms, with a magnitude similar to that of warming. 47 Intraspecific variation should be a major target of conservation plans because it 48 affects biological dynamics as much as contemporary warming.

50 Introduction

51 Reciprocal interactions between ecological and evolutionary dynamics occurring over contemporary time scales (eco-evolutionary dynamics) have been increasingly studied 52 in the last two decades¹⁻⁴. Theory predicts that evolutionary diversification within a 53 54 species can affect ecological processes such as primary productivity, resulting in 55 environmental changes that can act as new selective pressures modulating the evolution of organisms^{5–7}. These reciprocal interactions can generate eco-evolutionary 56 57 feedbacks linking species evolution and ecosystem functioning, providing an 58 integrative and temporally dynamic framework for understanding biological systems⁸. Although the study of eco-evolutionary feedback loops has long been conceptual^{3,5,8}, 59 recent experimental studies have demonstrated the existence of these process $^{9-12}$. 60 61 However, the relative importance of eco-evolutionary feedbacks in the dynamics of 62 natural ecosystems has been questioned^{2,3}.

To answer this question, it is important to determine whether eco-evolutionary 63 64 feedbacks are negligible compared to key environmental drivers affecting both 65 ecological and evolutionary dynamics, such as temperature, nutrient availability, predation or parasitism^{2,13}. Recent investigations have revealed that intraspecific 66 67 variation (emerging from evolutionary diversification) can affect ecological processes with an intensity similar to that of key environmental drivers $^{14-16}$. However, whether 68 69 the effects of intraspecific variation on evolutionary dynamics (mediated by the 70 effects of intraspecific variation on ecological processes) are similar to or stronger 71 than those of indisputable environmental drivers is still unknown. Addressing this 72 question is fundamental to determining the relative contribution of eco-evolutionary 73 feedbacks in driving the responses of biological systems to varying environmental conditions¹³. 74

75 Here, we experimentally quantified the consequences of intraspecific variation 76 on ecological processes and subsequent evolutionary trajectories (i.e., eco-77 evolutionary feedbacks) and then compared these consequences to the ecological and 78 evolutionary consequences of warming. Temperature is a key abiotic factor that 79 strongly varies at the landscape scale, directly affects key ecological functions such primary productivity and ecosystem respiration^{17–19}, and imposes a strong selective 80 pressure on organism traits^{20–22}. We ran a two-phase "common gardening experiment" 81 (sensu^{8,11}, Fig. 1) and manipulated (i) intraspecific variation in a freshwater fish 82 83 (European minnow, *Phoxinus phoxinus*) by selecting individuals from six 84 evolutionary and functionally distinct populations (i.e., differences in genotypes and 85 functional traits, see Methods and Fig. S1 and S2) and (ii) water temperature by 86 setting mesocosms varying by 2°C throughout the experiment (Fig. S3). An increase 87 in temperature of 2°C represents the general warming expectations for freshwaters over the next 40 years²³. During the first experimental phase (ecological effects, 10-88 89 weeks), we compared the strengths of the effects of intraspecific variation among 90 adult minnows, to the strengths of the effects of warming on prey community 91 structure and ecosystem functions (Fig. 1). Adults were then removed from the 92 mesocosms and replaced by juveniles with a common origin for the second 93 experimental phase (evolutionary effects, 11-weeks). We tested how the ecological 94 variations induced during the first phase (due to intraspecific variation and/or 95 warming) affected the evolutionary trajectories (fitness and performance) of juveniles.

96

97 **Results**

98 In the first phase, we found that the effects of intraspecific variation in adult 99 minnows on ecological processes (measured over all ecological parameters) were at

100	least as strong as those of warming on ecological processes (mean effect size (MES) \pm
101	standard error = 0.103 ± 0.018 and MES \pm SE = 0.078 ± 0.036 for intraspecific
102	variation and warming, respectively; $t = 0.624$, d.f = 18, $p = 0.540$, Fig. 2).
103	Nonetheless, the effects were heterogeneous across ecological parameters (Fig. 2b,
104	Fig. S4). For instance, intraspecific variation had the strongest ecological effect on the
105	abundance of Cladocera, whereas warming had a particularly strong ecological effect
106	on decomposition rate (Fig. 2b, Fig. S5 and S6). A single interaction term between
107	warming and intraspecific variation was significant (i.e., for benthic primary
108	productivity, $F = 10.831$, d.f = 5,52, $p = 0.022$), indicating that the ecological effects
109	of intraspecific variation were not temperature-dependent for most ecological
110	parameters. The body mass and growth rate of minnows, two functionally important
111	traits differing among minnow populations (although the later was also affected by
112	experimental temperature, Fig. S2), were included in a path analysis testing the direct
113	and indirect relationships among trait variation, warming and ecological parameters.
114	We found that intraspecific variation in these two functional traits affected ecological
115	processes as much as warming and that body mass was the most influential functional
116	trait (Fig. 3). We further found that the intraspecific trait variation acted both directly
117	and indirectly on ecological parameters (Fig. 3b). For instance, adult body mass
118	affected the abundance of Copepoda directly, subsequently leading to an indirect
119	effect on the abundance of Cladocera (Table 1, Fig. 3a). The ecological effects of
120	warming were mainly direct (67%), although some indirect effects were also observed
121	(Fig. 3b). For instance, warming directly increased Bivalvia abundance, positively
122	affecting the abundance of Copepoda and the size of Cladocera, hence representing an
123	indirect effect of warming on the zooplankton community (Fig. 3).

124 In the second phase (Fig. 1), we found that the strength of the effect sizes of 125 intraspecific variation and warming on the fitness proxies (survival, growth rate and body condition) were similar (MES \pm SE = 0.044 \pm 0.004 and MES \pm SE = 0.032 \pm 126 0.016 for intraspecific variation and warming, respectively, t = 0.665, df = 4, p =127 0.542, Fig. 2). Notably, the average effect sizes of intraspecific variation and warming 128 129 on the evolutionary parameters were half the intensity of those on ecological 130 parameters (Fig. 2), indicating that evolutionary dynamics were less affected than 131 ecological processes by the initial treatments. Nonetheless, we observed eco-132 evolutionary feedbacks since the juvenile growth rate was related to the ecological 133 parameters (benthic primary productivity, decomposition rate and Cladocera 134 abundance), which were controlled by intraspecific variation (Fig. 3a). Juvenile 135 survival was also related to juvenile growth rate (density-dependent growth rate) and 136 was indirectly related to warming. We also identified a direct relationship between adult trait variation and juvenile growth rate (Fig. 3), which was unexpected given 137 138 that the adults were removed from the tanks before the juveniles were introduced. 139 This result indicates interspecific variation had unmeasured indirect effects (mediated 140 by ecological changes) on evolutionary dynamics. Juvenile survival was positively 141 related to the body size of Cladocera and negatively related to temperature (i.e., 142 survival increased as temperature decreased). Juvenile body condition covaried with 143 both juvenile survival and growth rate and was lower when the abundance of 144 Bivalvia, which was directly affected by temperature, was high (Fig. 3).

145

```
146 Discussion
```

147 We found that the ecological consequences of intraspecific variation and148 warming were similar in strength but acted on different ecological processes. Adult

149 minnows from evolutionary and phenotypically distinct populations modulated both 150 the abundance and the size of their prey (zooplankton Cladocera), probably because 151 these populations have different prey consumption and selectivity characters. In 152 contrast, warming strongly accelerated leaf litter decomposition, probably because warmer temperatures stimulate bacterial activity^{18,20}. The evolutionary effects of 153 154 intraspecific variation (resulting from eco-evolutionary feedbacks) and warming were 155 also similar in strength, regardless of the fitness traits investigated. For instance, the 156 survival of juvenile minnows was higher the low-temperature than the high-157 temperature treatment (which is expected given that minnows inhabit relatively cold rivers²⁴), whereas the growth rate of juveniles differed depending on the adult 158 159 minnow population introduced at the onset of the experiment. Notably, the effects of 160 warming on the evolutionary trajectories of juveniles might be overestimated 161 compared to the effects of intraspecific variation, since the former represents the 162 cumulative results of both second-phase direct effects and first-phase indirect effects 163 mediated by ecological changes. Overall, our results demonstrate that intraspecific 164 variation can affect the ecological and evolutionary dynamics of biological systems as 165 much as warming does, although in different directions. Thus, eco-evolutionary 166 feedbacks occur in this type of biological system and significantly modulate the 167 whole biological dynamics of ecosystems.

Here, the eco-evolutionary feedback comprised indirect effects of intraspecific variation among adult minnows on the evolutionary trajectory of juveniles, which were mediated by the direct consequences of adult minnows on the ecological theatre. Currently, very few studies have demonstrated the existence of eco-evolutionary feedback, and most of have focused on model organisms^{9–12}. By focusing on a non model organism, our study extends the taxonomic scope of eco-evolutionary feedback

174 loops and suggests that this process does not concern only species with strong ecoevolutionary divergences⁸. We further identified two heritable traits (body mass and 175 growth rate^{25,26}) that partially initiate these eco-evolutionary feedbacks and vary 176 177 between adult minnows originating from environmentally and evolutionary distinct 178 populations. For instance, the zooplankton community was strongly impacted by trait 179 variability, probably through diet specialization. In turn, juveniles performed better 180 (i.e., higher growth rate) in the mesocosms with a higher abundance of zooplankton, 181 confirming that eco-evolutionary feedbacks could arise from a change in prey availability⁹. Previous studies have identified growth rate and body mass as important 182 traits for ecological processes^{27–29}, and we here provide novel insights into the indirect 183 184 evolutionary consequences of these traits.

185 Interestingly, intraspecific variation and warming acted additively but not 186 interactively on ecological and evolutionary dynamics. Indeed, we identified only one significant interaction between intraspecific variation and warming on benthic 187 188 primary productivity, indicating that the effect of intraspecific variation on benthic 189 primary productivity dynamics was temperature-dependent. This finding confirms 190 that the ecological consequences of intraspecific variation are often independent from the abiotic context¹⁵, which might also be the case for eco-evolutionary feedbacks. 191 192 This independence is surprising, since local adaptation for specific fitness traits and/or 193 for reaction norms often leads to strong context dependency in the responses of organisms to local abiotic conditions^{30,31}, and we may have observed cascading 194 195 interactive effects of intraspecific variation on ecological and evolutionary dynamics^{32,33}. This finding is important because the absence of strong interactive 196 197 effects reduces biological complexities and may therefore improve our ability to

198 forecast the ecological and evolutionary consequences of environmental and
 199 biodiversity changes³⁴.

200 In conclusion, we demonstrated for the first time that the magnitude of eco-201 evolutionary feedbacks was as strong as the effects of warming on ecological and 202 evolutionary dynamics; thus, eco-evolutionary feedbacks are not biologically 203 negligible. Intraspecific variation in major heritable traits such as growth rate or body 204 mass is commonplace in the wild and can arise via various evolutionary processes including natural selection and genetic drift³⁵. Our study proves that intraspecific 205 variation is an indisputable driver of biological dynamics (at both the ecological and 206 207 evolutionary scale) that should not be considered noise in ecosystems. Current environmental changes are rapid and can directly affect ecosystem functioning¹⁸. 208 209 These changes can also directly modulate the distribution of intraspecific variation in 210 landscapes and thereby indirectly effect the eco-evolutionary dynamics of biological systems^{10,11}. These results reinforce recent reports that changes in intraspecific 211 variations of wild populations (e.g., harvest³⁶ or pollution³⁷) could be as harmful as 212 considerable environmental changes (e.g., warming) to biological dynamics and that 213 this facet of biodiversity should therefore be conserved adequately 38,39 . 214

215

216 Methods

217 *Study species*

European minnow (*Phoxinus phoxinus*) was used as the model species. *P. phoxinus* is a small-bodied (maximum length: ~80 mm, mean generation time: ~2 years) cyprinid fish species widely distributed in Western Europe. *P. phoxinus* lives in relatively cold waters, mainly in streams and rivers but also in mountain lakes^{24,39}. It is a generalist

species that feeds on small invertebrates, algae, zooplankton and small fish larvae^{40–} 42 .

224 In September 2016, we collected adult minnows by electrofishing in six rivers 225 in southwestern France (Fig. S1). We selected populations that were isolated 226 geographically (minimal riparian distance among sites = 64 km, mean \pm SD = 343 km 227 \pm 182) and had distinct environments (Fig. S7) to favor both genetic and phenotypic 228 divergences among populations. Accordingly, the mean genetic divergence among 229 populations was $F_{st} = 0.162$ (measured using 17 microsatellites, min-max = 0.043-230 0.313), indicating a high evolutionary distinctiveness among the populations. The body mass (a highly heritable^{25,26} and important functional trait^{43,44}, Fig. S2) of the 231 sampled populations also varied, as did two other important functional traits^{20,45–47}: 232 the metabolic (min-max = 0.1388-0.2737 mg $O^2.g^{-1}.h^{-1}$, F = 14.599, d.f = 5,188, p < 233 0.001) and ammonium excretion (min-max = $17.02-43.48 \text{ }\mu\text{g} \text{ }\text{NH}^{4+}\text{.g}^{-1}\text{.L}^{-1}\text{.h}^{-1}$, F = 234 4.695, d.f = 5,175, p < 0.001, unpublished data) rates. All fish collections and 235 236 husbandry for adults and juveniles were conducted in accordance with sampling 237 permits obtained from local authorities (25-08-2016, 24-05-2016, 09-273, SA-013-238 PB-092, A09-3). Fish from different populations were reared separately for ~6 239 months in 1100 L outdoor tanks to minimize previous environmental effects on 240 phenotypes. During rearing, the fish were fed with a mixture of pelletized food and 241 dead chironomids until the start of the experiment.

242

243 *Phase 1: effects of intraspecific variation and temperature on ecological processes*

244 The experiment consisted of 72 replicated mesocosms placed in a greenhouse with a

245 12:12 h light-dark photoperiod. Mesocosms were filled with 100 L of tap water and 1

246 cm of gravel covering the bottom of each tank. Tanks were covered with a 1 cm 247 plastic mesh net to prevent fish escapes. Nutrients were added to the mesocosms using 5 mL of solution containing nitrogen and phosphorus (ratio N: P: K = 3.3: 1.1: 248 5.8) on December 2nd 2016. Each mesocosm was then inoculated with 200 mL of a 249 250 concentrated solution of phytoplankton from a unique lake origin (Lake Lamartine, France 43°30'21.5"N, 1°20'32.7"E) on December 12th 2016. Two months later 251 (February 15th 2017), an additional 200 mL of concentrated solution of zooplankton 252 253 from the same lake was added to each mesocosm. Finally, we inoculated each 254 mesocosm with sediment and macroinvertebrates (i.e., mainly Gastropoda and 255 Bivalvia) from Lake Lamartine.

256 Each tank was assigned to one of twelve treatments according to a full-257 factorial design with intraspecific variation (i.e., population origin, six levels 258 corresponding to each population) and temperature (two levels: low and high 259 temperature) as the main factors (Fig. 1). Each treatment was replicated six times. 260 Water temperature was controlled and adjusted using a *Blue Marine*® water chiller 261 and a stainless steel coil placed in each tank through which a flux of water 262 (independent from the water of the tanks) flowed at either 18°C or 21°C. Natural 263 seasonal temperature variations occurred; on average, the low and high water 264 temperature treatments differed by 2.08°C according to seasonal variations (Fig. S3).

In March 2017, adult fish were weighed to the nearest 0.01 g and a single fish was introduced to each mesocosm. This individual-based approach prevented the experimental ecosystems from collapsing due to the over-density of top consumers and allowed the ecological effects of individual phenotypes to be measured. After 73 days (Fig. 1), each fish was removed, weighed and euthanized in a solution of benzocaine at 25 mg.L⁻¹. The growth rate (%.day⁻¹) of the adults was calculated

as $SGR = \frac{ln(Wf) - ln(Wi)}{T} * 100$, where *Wf* and *Wi* are the final and initial body masses, respectively, and *T* is time interval between two measurements (in days). Concomitantly, we measured multiple community and ecosystem parameters to evaluate differences in ecological processes among treatments.

(i) Pelagic algae stock was assessed as a proxy of pelagic primary productivity. Measurements were performed using a portable spectrometer (AlgaeTorch, bbe Moldaenke®) to assess the chlorophyll-a concentration (μ g/L) in the water column. Two measurements were taken in each mesocosm and were averaged for the analyses.

(*ii*) Benthic algae stock was assessed as a proxy of the benthic primary productivity using a portable spectrometer (BenthoTorch, bbe Moldaenke®). The chlorophyll-a concentration (μ g/cm²) was measured on two tiles (20 x 20 cm) placed in the mesocosms the day before the start of the experiment. These measurements were averaged for analyses.

(*iii*) The abundance of filamentous algae was quantified. Filamentous algae
cover (%) was visually estimated by two operators, and values were averaged for
analyses.

(*iv*) Zooplankton community was assessed by filtering 5 L of water through a
200 µm sieve. Samples was conserved in a 70% ethanol solution and subsequently
identified to the order or family levels, including Copepoda (i.e., Cyclopoida and
Calanoida) and Cladocera (i.e., Daphniidae, Chydoridae and Bosminidae).
Zooplankton size was assessed by measuring 10 individuals of each order and family
level from each mesocosm to the nearest 0.001 mm using ImageJ®.

(v) Decomposition rate was measured by quantifying the mass loss of black
 poplar (*Populus nigra*, a dominant riparian tree in southern France) abscised leaves⁴⁸.

One day before the start of the experiment, 4 g of air-dried leaves were put in each mesocosm within a coarse mesh (1 x 1 cm) bag. At the end of the phase 1, the remaining leaf material was removed from the mesocosms, rinsed with tap water, oven dried at 60°C for three days and weighed to the nearest 0.001 g to assess the loss of biomass. The decomposition rate was calculated as $k = -\frac{\ln (X)}{t}$, where X is the proportion of litter remaining after phase 1 and *t* is the elapsed time in days.

302 (*vi*) Macroinvertebrates (> 1 mm, essentially molluscs) were collected from
303 the mesh bags used to measure decomposition rates, conserved in a 70% ethanol
304 solution, and identified as Bivalvia or Gastropoda.

305 (*vii*) Abiotic parameters of the water [pH, specific conductance (μ S), oxygen 306 concentration (mg.L⁻¹) and turbidity (NTU)] were measured with a multiparameters 307 probe (YSI Pro DSS Water Quality Meter®). We summarized these parameters using 308 principal component axis (PCA) (package ade4 in R⁴⁹). We selected the first axis of 309 the PCA as the synthetic variable. This axis explained 60% of the variance and was 310 correlated to the oxygen concentration (loading component: -0.95), pH (-0.93), 311 specific conductance (0.70) and, to a lesser extent, turbidity (0.25).

312

313 Phase 2: effect of ecological differences on juvenile evolution

After the removal of adult fish on June 13th 2017, 45 juvenile minnows were introduced to each mesocosm. We used juveniles from a unique origin (i.e., fish farm, *Amorvif EURL*) to control for potential genetic effects. Juveniles were introduced as soon as possible after hatching to increase the possibility of differential mortality and/or ontogenetic plasticity. Therefore, juveniles were introduced when they were only two weeks old as stage III larvae⁵⁰ (Fig. S8). They were not manipulated (i.e., weighted and/or measured) before being randomly introduced in the mesocosms to

321 limit potential mortality. The juveniles were removed from the mesocosms 79 days 322 later, and we measured several proxies for their fitness. Individuals were counted to 323 assess survival, weighed to the nearest 0.001 g to assess growth rate (assuming all 324 juveniles had the same initial body mass, we used the final body mass of juveniles as 325 a measure of growth rate), and measured in length to the nearest 0.1 mm (using 326 ImageJ) to assess the body condition, which was calculated as the residuals of the 327 relationship between individual body mass and length.

328

329 *Statistical analyses*

Two adult individuals died before the end of phase 1, so we discarded these two replicates from the analyses. Moreover, we identified six tanks in which crayfish had been inadvertently introduced; we discarded these six replicates because crayfish are known to have disproportionally strong impacts on ecosystems⁴⁸. As such, the final analyses were run on 64 replicates.

335 First, we compared the magnitude of the effects of intraspecific variation and 336 temperature on ecological (phase 1) and evolutionary (phase 2) dynamics. To do so, 337 we used a meta-analytic approach consisting of first running linear models linking 338 each ecological or evolutionary parameter (dependent variables) to the explicative 339 variables, i.e., intraspecific variation (categorical factor, six levels), temperature 340 (categorical factor, two levels) and the resulting two-term interaction. The interaction 341 term was removed when nonsignificant because it prevents the interpretation of simple terms⁵¹. From these linear models, we calculated the standardized effect sizes 342 eta squared⁵² (η^2) as follows: $\eta^2 = SS_x/SS_{tot}$, where SS_x is the sum of squares for the 343 344 effect of interest (intraspecific variation, temperature or the interaction term, if 345 significant) and SS_{tot} is the total sum of squares. Sums of squares were extracted from

346 type II analysis of variance when the interaction was not in the model and from type 347 III analysis of variance when the interaction was significant⁵³. Finally, the MES 348 values of intraspecific variation and temperature across the ecological or evolutionary 349 parameters were compared using t-test.

Next, we assessed the direct and indirect links between intraspecific variation, 350 351 temperature, and the ecological and evolutionary parameters using a causal analysis. 352 Since we aimed at identifying the mechanisms by which the mesocosms diverged, we 353 included the body mass and the growth rate of adult fish from phase 1 because these two traits are known to drive ecological processes⁴³. We used path analyses^{54–56} to set 354 355 a full model based on biologically rational paths and the visual inspection of the 356 variance-covariance matrix, and all variables were scaled to the mean to facilitate the 357 comparison. This full model was then simplified by removing sequentially weak and/or nonsignificant paths until reaching a model that was correct statistically (i.e., a 358 359 model that best fit the observed covariance matrix based on the maximum likelihood χ^2 statistic⁵⁵), while leading to the lowest Akaike Information Criteria (AIC) value. 360 We finally extracted the absolute values of path coefficients from the final model to 361 362 tease apart the direct and indirect effects of body mass, growth rate and temperature 363 on the ecological and evolutionary parameters. Statistical analyses were performed using R software⁵⁷, and path analyses were run using $Amos^{58}$. 364

365

366 **References**

- 367 1. Hendry, A. P. *Eco-Evolutionary Dynamics*. (2016).
- Schoener, T. W. The Newest Synthesis: Understanding the Interplay of
 Evolutionary and Ecological Dynamics. *Science* 331, 426–429 (2011).
- 370 3. Thompson, J. N. Rapid evolution as an ecological process. *Trends Ecol. Evol.* 13, 329–332 (1998).
- Whitham, T. G. *et al.* Community and ecosystem genetics: a consequence of the
 extended phenotype. *Ecology* 84, 559–573 (2003).

374 375	5.	Kokko, H. & López-Sepulcre, A. The ecogenetic link between demography and evolution: can we bridge the gap between theory and data? <i>Ecol. Lett.</i> 10 ,
376		773–782 (2007).
377	6.	Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and
378		ecosystem ecology: interactions between the ecological theatre and the
379		evolutionary play. Philos. Trans. R. Soc. B-Biol. Sci. 364, 1629-1640 (2009).
380	7.	Odling-Smee, J., Erwin, D. H., Palkovacs, E. P., Feldman, M. W. & Laland, K. N.
381		Niche Construction Theory: A Practical Guide for Ecologists. Q. Rev. Biol.
382		88, 3–28 (2013).
383	8.	Matthews, B. et al. Toward an integration of evolutionary biology and ecosystem
384		science: Integration of evolutionary biology and ecosystem science. Ecol. Lett.
385		14, 690–701 (2011).
386	9.	Best, R. J. et al. Transgenerational selection driven by divergent ecological
387		impacts of hybridizing lineages. Nat. Ecol. Evol. 1, 1757–1765 (2017).
388	10.	Brunner, F. S., Anaya-Rojas, J. M., Matthews, B. & Eizaguirre, C. Experimental
389		evidence that parasites drive eco-evolutionary feedbacks. Proc. Natl. Acad.
390		<i>Sci.</i> 114, 3678–3683 (2017).
391	11.	Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen,
392		O. Experimental Evidence of an Eco-evolutionary Feedback during Adaptive
393		Divergence. Curr. Biol. 26, 483–489 (2016).
394	12.	Turcotte, M. M., Reznick, D. N. & Daniel Hare, J. Experimental Test of an Eco-
395		Evolutionary Dynamic Feedback Loop between Evolution and Population
396		Density in the Green Peach Aphid. Am. Nat. 181, S46–S57 (2013).
397	13.	Rudman, S. M. et al. What genomic data can reveal about eco-evolutionary
398		dynamics. Nat. Ecol. Evol. 2, 9–15 (2018).
399	14.	Burkle, L. A., Souza, L., Genung, M. A. & Crutsinger, G. M. Plant genotype,
400		nutrients, and G X E interactions structure floral visitor communities.
401	1.5	<i>Ecosphere</i> 4 , UNSP 113 (2013).
402	15.	El-Sabaawi, R. W. <i>et al.</i> Intraspecific phenotypic differences in fish affect
403		ecosystem processes as much as bottom-up factors. <i>Oikos</i> 124 , 1181–1191
404 405	16	(2015).
405	10.	Des Roches, S. <i>et al.</i> The ecological importance of intraspecific variation. <i>Nat. Ecol. Evol.</i> 2, 57–64 (2018).
400	17	Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M.
407	1/.	Warming alters the metabolic balance of ecosystems. <i>Philos. Trans. R. Soc. B</i>
408		<i>Biol. Sci.</i> 365, 2117–2126 (2010).
410	18	Yvon-Durocher, G. <i>et al.</i> Five Years of Experimental Warming Increases the
411	10.	Biodiversity and Productivity of Phytoplankton. <i>PLoS Biol</i> 13 , e1002324
412		(2015).
413	19	Yvon-Durocher, G. & Allen, A. P. Linking community size structure and
414		ecosystem functioning using metabolic theory. <i>Philos. Trans. R. Soc. B Biol.</i>
415		<i>Sci.</i> 367 , 2998–3007 (2012).
416	20.	Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a
417		metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
418	21.	Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change.
419		Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
420	22.	Rey, O., Danchin, E., Mirouze, M., Loot, C. & Blanchet, S. Adaptation to Global
421		Change: A Transposable Element–Epigenetics Perspective. Trends Ecol. Evol.
422		31, 514–526 (2016).

423	23. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups
424	I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on
425	Climate Change (eds Core Writing Team, Pachauri, R.K., Meyer, L.A.).
426	(2014).
427	24. Keith, P., Persat, H., Feunteun, E. & Allardi, J. Les poissons d'eau douce de
428	France. (2011).
429	25. Heath, D. D., Fox, C. W. & Heath, J. W. Maternal effects on offspring size:
430	variation through early development of chinook salmon. Evolution 53, 1605-
431	1611 (1999).
432	26. Thériault, V., Garant, D., Bernatchez, L. & Dodson, J. J. Heritability of life-
433	history tactics and genetic correlation with body size in a natural population of
434	brook charr (Salvelinus fontinalis). J. Evol. Biol. 20, 2266–2277 (2007).
435	27. Rudolf, V. H. W. & Rasmussen, N. L. Population structure determines functional
436	differences among species and ecosystem processes. Nat. Commun. 4, (2013).
437	28. Rudolf, V. H. & Rasmussen, N. L. Ontogenetic functional diversity: Size
438	structure of a keystone predator drives functioning of a complex ecosystem.
439	<i>Ecology</i> 94, 1046–1056 (2013).
440	29. Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20,
441	402–409 (2005).
442	30. Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7,
443	1225–1241 (2004).
444	31. Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. A practical guide to
445	measuring local adaptation. Ecol. Lett. 16, 1195–1205 (2013).
446	32. Gillooly, J. F. Effects of Size and Temperature on Metabolic Rate. Science 293,
447	2248–2251 (2001).
448	33. Rosenblatt, A. E. & Schmitz, O. J. Climate Change, Nutrition, and Bottom-Up
449	and Top-Down Food Web Processes. Trends Ecol. Evol. (2016).
450	doi:10.1016/j.tree.2016.09.009
451	34. Beckage, B., Gross, L. J. & Kauffman, S. The limits to prediction in ecological
452	systems. Ecosphere 2, art125 (2011).
453	35. Lowe, W. H., Kovach, R. P. & Allendorf, F. W. Population Genetics and
454	Demography Unite Ecology and Evolution. Trends Ecol. Evol. 32, 141–152
455	(2017).
456	36. Palkovacs, E. P., Moritsch, M. M., Contolini, G. M. & Pelletier, F. Ecology of
457	harvest-driven trait changes and implications for ecosystem management.
458	Front. Ecol. Environ. 16, 20–28 (2018).
459	37. Brodin, T., Fick, J., Jonsson, M. & Klaminder, J. Dilute Concentrations of a
460	Psychiatric Drug Alter Behavior of Fish from Natural Populations. Science
461	339, 814–815 (2013).
462	38. Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic
463	diversity. (2018). doi:10.1101/105544
464	39. Mimura, M. et al. Understanding and monitoring the consequences of human
465	impacts on intraspecific variation. Evol. Appl. 10, 121-139 (2016).
466	40. Collin, H. & Fumagalli, L. Evidence for morphological and adaptive genetic
467	divergence between lake and stream habitats in European minnows (Phoxinus
468	phoxinus, Cyprinidae). Mol. Ecol. 20, 4490–4502 (2011).
469	41. Frost, W. E. The Natural History of the Minnow, Phoxinus phoxinus. J. Anim.
470	<i>Ecol.</i> 12 , 139 (1943).
471	42. Miró, A., Sabás, I. & Ventura, M. Large negative effect of non-native trout and
472	minnows on Pyrenean lake amphibians. Biol. Conserv. 218, 144-153 (2018).

473	43. Rudolf, V. H. W., Rasmussen, N. L., Dibble, C. J. & Van Allen, B. G. Resolving
474	the roles of body size and species identity in driving functional diversity.
475	Proc. R. Soc. B Biol. Sci. 281, 20133203 (2014).
476	44. Raffard, A. et al. The functional syndrome: linking individual trait variability to
477	ecosystem functioning. Proc. R. Soc. B Biol. Sci. 284, 20171893 (2017).
478	45. Bassar, R. D. et al. Local adaptation in Trinidadian guppies alters ecosystem
479	processes. Proc. Natl. Acad. Sci. 107, 3616–3621 (2010).
480	46. McIntyre, P. B. et al. Fish distributions and nutrient cycling in streams: can fish
481	create biogeochemical hotspots. Ecology 89, 2335-2346 (2008).
482	47. Hildrew, A. G., Raffaelli, D. & Edmonds-Browns, R. Body Size: the Structure
483	and Function of Aquatic Ecosystems. (2007).
484	48. Alp, M., Cucherousset, J., Buoro, M. & Lecerf, A. Phenological response of a key
485	ecosystem function to biological invasion. Ecol. Lett. 19, 519–527 (2016).
486	49. Chessel, D., Dufour, A. B. & Dray, S. ade4: Analysis of Ecological Data:
487	Exploratory and Euclidean methods in Multivariate data analysis and
488	graphical display. R package version. 1–4 (2007).
489	50. Pinder, A. Keys to larval and juvenile stages of coarse fishes from fresh waters in
490	the British isles. (2001).
491	51. Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical
492	significance: a practical guide for biologists. Biol. Rev. 82, 591-605 (2007).
493	52. Levine, T. & Hullett, C. Eta squared, partial eta squared, and misreporting of
494	effect size in communication research. Hum. Commun. Res. 28, 612-625
495	(2002).
496	53. Langsrud, O. ANOVA for unbalanced data: Use Type II instead of Type III sums
497	of squares. 5
498	54. Duffy, J. E., Lefcheck, J. S., Stuart-Smith, R. D., Navarrete, S. A. & Edgar, G. J.
499	Biodiversity enhances reef fish biomass and resistance to climate change.
500	Proc. Natl. Acad. Sci. 113, 6230–6235 (2016).
501	55. Grace, J. B. Structural equation modeling and natural systems. (2006).
502	56. Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity
503	and plant species richness. Nature 529, 390-393 (2016).
504	57. R Core Team. R: A Language and Environment for Statistical Computing. (2013).
505	58. Arbuckle, J. L. Amos (Version 23.0) [Computer Program]. (2014).
506	

507 Acknowledgements

508 We warmly thank Jose M. Montoya, Delphine Legrand and Jérôme G. Prunier for

- 509 their valuable comments on a previous version of the manuscript. We thank Lucas
- 510 Mignien, Kéoni Saint-Pe and Yoann Buoro for their help during the experimental
- 511 work. AR was financially supported by a doctoral scholarship from the Université
- 512 Fédérale de Toulouse. This work was undertaken at SETE and EDB, which is part of
- 513 the "Laboratoire d'Excellence" (LABEX) entitled TULIP (ANR-10-LABX-41).

- 515 Authors' contributions: A.R and S.B conceived the study. A.R and L.DG carried out
- 516 the experiment with contributions from S.B and J.C. A.R performed the statistical
- 517 analyses. A.R, S.B and J.C interpreted and discussed the results. A.R, S.B and J.C
- 518 wrote the article, and all authors made corrections.

519 **Table 1:** Causal pathways between variations in intraspecific traits (body mass_{adults}

520 and growth rate_{adults}), temperature and ecological and evolutionary parameters

521 obtained from path analyses.

Response	Effect	Path coefficient	S.E.	<i>p</i> -value
Growth rate _{adults}	Body mass _{adults}	-0.674	0.093	< 0.001
Cladocera abundance	Growth rate _{adults}	-0.341	0.111	0.002
	Copepod abundance	0.339	0.11	0.002
Size Cladocera	Bivalve abundance	0.428	0.114	< 0.001
Copepoda abundance	Growth rate _{adults}	0.37	0.153	0.016
	Bivalve abundance	0.311	0.113	0.006
	Body mass _{adults}	0.477	0.153	0.002
Bivalvia abundance	Temperature	0.441	0.113	< 0.001
Abiotic parameters	Body mass _{adults}	-0.289	0.124	0.019
	Filamentous algae	-0.644	0.092	< 0.001
	Growth rate _{adults}	-0.194	0.124	0.116
Pelagic prod.	Prod. benthic	0.244	0.12	0.043
Benthic prod.	Growth rate _{adults}	-0.522	0.139	< 0.001
	Bivalvia abundance	-0.228	0.118	0.054
	Body mass _{adults}	-0.486	0.139	< 0.001
	Temperature	0.292	0.132	< 0.001
	Filamentous algae	0.239	0.12	0.047
Decomposition rate	Body mass _{adults}	0.375	0.132	< 0.001
	Temperature	0.532	0.096	< 0.001
Filamentous algae	Temperature	0.554	0.118	< 0.001
	Bivalvia abundance	-0.207	0.123	0.092
	Copepoda abundance	-0.168	0.110	0.126
Survival _{juveniles}	Size Cladocera	-0.195	0.123	0.112
	Temperature	-0.183	0.123	0.135

Growth rate _{juveniles}	Body mass _{adults}	0.479	0.130	< 0.001
	Growth rate _{adults}	0.725	0.125	< 0.001
	Prod. benthic	0.332	0.092	< 0.001
	Cladocera abundance	0.250	0.089	0.005
	Survival _{juveniles}	-0.566	0.084	< 0.001
	Decomposition rate	-0.234	0.093	0.012
Body condition $_{juveniles}$	Bivalve abundance	-0.175	0.073	0.016
	Survival _{juveniles}	0.556	0.087	< 0.001
	Growth rate _{juveniles}	0.941	0.083	< 0.001

Fig. 1. Experimental design used to test the ecological (phase 1) and evolutionary
(phase 2) effects of intraspecific variation among adult minnows (*Phoxinus phoxinus*)
and warming.

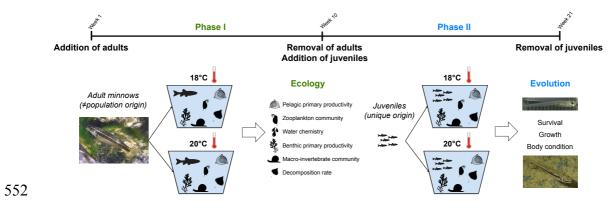
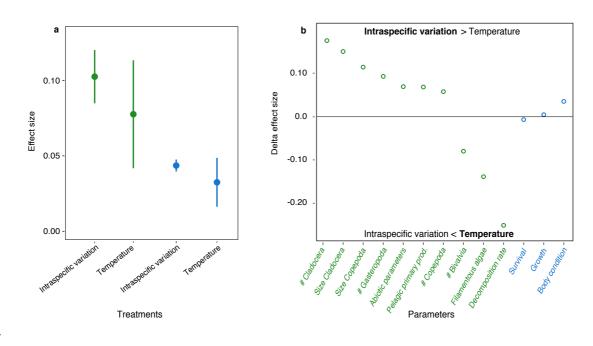
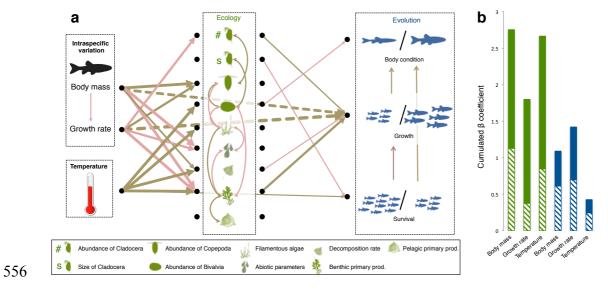

527

Fig. 2. Comparison of the ecological and evolutionary effects of intraspecific variation and warming. (a) Eta squared (η^2) effect size of the intraspecific variation among adults and temperature on ecological (green) and evolutionary (blue) dynamics. Error bars represent ± 1 SE. (b) Delta of effect sizes (η^2) of intraspecific variation and temperature on ecological and evolutionary parameters. Positive values indicate a higher effect of intraspecific variation, and negative values indicate a higher effect of temperature.


535

536 Fig. 3. Effects of intraspecific trait variation and warming on ecological and 537 evolutionary dynamics. (a) Representation of the simplified path analysis linking 538 intraspecific trait variation among adult minnows, temperature, and ecological and 539 evolutionary dynamics. The covariance structure of this simplified path model, which 540 contains both ecological and evolutionary dynamics, did not differ from that of the data ($\chi^2 = 65.373$, d.f = 72, p = 0.696), indicating that the data were well supported by 541 542 the model. The arrow line width is proportional to the β path coefficients (brown and 543 pink arrows represent positive and negative values, respectively), and the dotted lines 544 represent indirect effects of intraspecific variation on evolutionary parameters. (b) 545 Cumulated absolute β path coefficients extracted from the simplified path analysis 546 depicting the direct (filled) and indirect (hatched) relationships between intraspecific 547 trait variation among adult minnows, temperature, ecological dynamics (green) and 548 evolutionary dynamics (blue). Note that the direct effects of intraspecific variation on

- 549 evolutionary dynamics are not true direct effects (because the adult fish were removed
- before phase 2 of the experiment) but instead reveal unmeasured causal relationships.
- 551 # = abundance.



553 Fig. 1.

