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Abstract1

The emergence of novel pathogens often has dramatic negative effects on2

previously unexposed host populations. Subsequent disease can drive populations3

and even species to extinction. After establishment in populations, pathogens can4

continue to affect host dynamics, influencing the success or failure of species recovery5

efforts. However, quantifying the effect of pathogens on host populations in the wild6

is challenging because individual hosts and their pathogens are difficult to observe.7

Here we use long-term mark-recapture data to describe the dynamics of reintroduced8

populations of an endangered amphibian (Rana sierrae) and evaluate the success of9

these recovery efforts in the presence of a recently-emerged pathogen, the amphibian10

chytrid fungus Batrachochytrium dendrobatidis. We find that high B. dendrobatidis11

infection intensities are associated with increases in detectability, reductions in12

survival, and more infected adults. We also find evidence for intensity-dependent13

survival, with heavily infected individuals suffering higher mortality. These results14

highlight the need in disease ecology for probabilistic approaches that account15

for uncertainty in infection intensity using imperfect observational data. Such16

approaches can advance the understanding of disease impacts on host population17

dynamics, and in the current study will improve the effectiveness of species18

conservation actions.19

Key words: Batrachochytrium dendrobatidis; host-pathogen dynamics;20

mark-recapture; mountain yellow-legged frog; population establishment; recruitment;21

reintroduction; survival.22

Introduction23

Amphibians are one of the most threatened groups of vertebrates (Wake and Vredenburg24

2008). Although the drivers of amphibian decline vary taxonomically and spatially, the25
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amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is a major cause of26

population declines and species extinctions in montane habitats worldwide (Skerratt27

et al. 2007, Fisher et al. 2009, Grant et al. 2016). In the face of these declines, species28

recovery will often require introductions to restore extirpated populations, but little is29

known about the dynamics of population establishment and persistence of threatened30

amphibians (Armstrong and Seddon 2008), especially in the presence of disease. Given31

Bd’s role in eliminating populations, we expect introduction outcomes to be shaped by32

disease impacts on demographic rates, but measuring such impacts in wild populations is33

difficult (McCallum and Dobson 1995, Briggs et al. 2010).34

The mountain yellow-legged frog is emblematic of global amphibian declines. Although35

formerly abundant in the relatively protected habitats of California’s Sierra Nevada36

mountains (USA), the two species that make up this taxon (Rana muscosa and Rana37

sierrae (Vredenburg et al. 2007)) have disappeared from over 93% of historical localities,38

due primarily to the introduction of nonnative fish into fishless habitats (Knapp and39

Matthews 2000, Knapp 2005) and the emergence of Bd (Vredenburg et al. 2010). In40

response, both species are listed as “endangered” under the U.S. Endangered Species41

Act and included on the International Union for Conservation of Nature Red List of42

Threatened Species (IUCN 2017). R. sierrae has shown recent signs of recovery in the43

best-protected portion of its range, including Yosemite National Park, but due to dispersal44

limitations the re-establishment of populations may require introductions in addition to45

natural recovery (Knapp et al. 2016). The effectiveness of such actions remains unclear,46

and the drivers of post-introduction population dynamics and introduction success or47

failure are poorly understood.48

Introduction outcomes may be described in terms of survival, recruitment, and abundance49

trajectories. Mark-recapture studies provide a method to estimate these quantities in50

wild populations while accounting for factors that can complicate inference, including51
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imperfect detection (Jolly 1965, Pradel 1996), multiple classes within the population52

that may be imperfectly resolved (Lebreton and Cefe 2002, Conn and Cooch 2009), and53

incompletely observed individual-level traits (Royle 2009). This flexibility is critical for54

understanding disease impacts in wild populations. Multi-state mark-recapture methods55

have been applied with great success to understand the population-level impacts of Bd,56

and differences in demographic rates between infected and uninfected classes (Murray et al.57

2009, Pilliod et al. 2010, Sapsford et al. 2015, Hudson et al. 2016).58

Assuming that survival depends only on whether an individual is infected, and not59

considering infection intensity (i.e., load), could be problematic given that Bd-caused60

frog mortality is often a function of load (Briggs et al. 2010). However, individual-level61

infection data are often not available. For example, Bd load may not be observed if an62

individual is not encountered or captured on a survey, or if they are captured but no63

infection data are collected. This presents a major challenge: infection intensity is hard64

to measure, but may be critical for understanding population dynamics. Previous efforts65

to understand disease impacts in wild populations as a function of load at the individual66

level have randomly imputed missing infection load data with the observed distribution of67

load values (Spitzen-van der Sluijs et al. 2017). However, random imputation could bias68

inference if load data are not missing at random, for example, if load-dependent disease69

affects detection.70

In this paper, we use a Bayesian multi-state model with data from decade-long71

mark-recapture studies in two reintroduced frog populations to understand the influence72

of disease and climate on introduction outcomes. We find that disease dynamics affect73

introduction success, with high infection intensities leading to more infected adults,74

a reduction in adult survival, and adults that are easier to detect. Recruitment and75

uninfected adult survival are also important for population persistence. Differential76

detectability of adults related to infection intensity points to broader questions about77
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understanding disease impacts in wild populations, and highlights the importance of78

understanding hidden infection dynamics at the individual level. These insights will inform79

ongoing and future efforts aimed at restoring the endangered mountain yellow-legged frog,80

and provide a means to quantitatively assess why some introduction efforts fail and others81

succeed.82

Methods83

Field sites and methods84

The two study lakes are located in eastern Yosemite National Park (California, USA)85

at elevations of 2880 and 3200 m. R. sierrae populations in both lakes were established86

via translocation from a single nearby donor population (elevation: 3176 m). The donor87

population has been Bd-positive for at least two decades (Fellers et al. 2001), and contains88

one of the largest R. sierrae populations in Yosemite (minimum population size during89

this study: 600-1500 adults). The introduction lakes are located 5.5-7.0 km from the donor90

population and both contain high quality R. sierrae habitat (i.e., fishless, 6-12 m deep,91

with adjacent meadow and stream habitats) (Knapp 2005). Because these lakes harbor a92

sensitive species, we refer to them by the pseudonyms Alpine and Subalpine (Lindenmayer93

and Scheele 2017). Visual encounter surveys (Knapp 2005) conducted just prior to the94

first introductions indicated that both lakes lacked R. sierrae of any life stage. Prior to95

introduction, adult frogs (≥ 40 mm snout-vent length (SVL)) were captured at the donor96

site, and tagged (8mm passive integrated transponder (PIT) tags), measured, and weighed.97

To estimate Bd load, we also collected a skin swab from each frog using standard methods98

(Hyatt et al. 2007, Vredenburg et al. 2010).99

The initial introduction of frogs to Alpine and Subalpine occurred during summer 2006100

and 2008, respectively, and additional introductions to supplement both populations101
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were conducted in subsequent years. In the first introduction to Alpine, frogs were102

transported on foot; in all subsequent introductions to both Alpine and Subalpine, frogs103

were transported via helicopter (Table 1).104

To describe the dynamics of the introduced populations, both populations were assessed105

for 10-12 years using mark-recapture methods. Between 2006 and 2012, lakes were visited106

approximately once per month during the summer active season (June-September) and on107

a single day (primary period) all habitats were searched repeatedly for frogs which were108

captured using hand-held nets. Adult frogs were identified via their PIT tag (or tagged if109

they were untagged), measured, weighed, swabbed, and released at the capture location.110

During 2013-2017, we adopted a robust design in which all habitats were searched during111

several consecutive days (surveys), and frogs processed as described above. Within112

a primary period, frogs that were captured on more than one survey were measured,113

weighed, and swabbed only when first captured.114

Skin swabs were analysed using standard Bd DNA extraction and qPCR methods (Boyle115

et al. 2004) except that swab extracts were analyzed singly instead of in triplicate (Kriger116

et al. 2006, Vredenburg et al. (2010)). During 2005-2014, we used standards developed117

from known concentrations of zoospores (Boyle et al. 2004) and after 2014 we used118

standards based on single ITS1 PCR-amplicons (Longo et al. 2013). Based on paired119

comparisons between samples analyzed using both types of standards, Bd in the study120

area has an average of 60 ITS1 copies per zoospore. To express all qPCR results as121

the number of ITS1 copies, starting quantities obtained using the zoospore standard122

(measured as “zoospore equivalents”) were multiplied by 60. In addition, all qPCR123

quantities (regardless of standard) were multiplied by 80 to account for the fact that DNA124

extracts from swabs were diluted 80-fold during extraction and PCR (Vredenburg et al.125

2010).126

We acquired hourly air temperature and daily snow depth data from two nearby127
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meteorological stations (ERY and DAN, respectively) and snow water equivalent data128

from a manually-measured snow course (DAN; California Data Exchange Center -129

http://cdec.water.ca.gov). The stations and snow course are 5-17 km from the study130

lakes. We used snow water equivalent as measured on April 1 of each year as a measure131

of winter severity, to be used as a covariate for frog recruitment and survival. Daily snow132

depth data were acquired to model survey occurrence as described below. To better133

understand the detection process, we averaged hourly air temperature data collected134

between 0900-1600 on each day a survey took place, to derive a “survey air temperature”135

metric.136

Model development137

We developed a hierarchical Bayesian hidden Markov model to understand how138

environmental factors and partly observed time-varying individual traits (Bd loads) jointly139

drive population dynamics. This model also needed to account for the partly deterministic140

recruitment process that arises with introductions. The result is an extended open141

population Jolly-Seber mark-recapture model with known additions to the population142

(introduced adults), continuous uncertain disease states of individuals which may or may143

not be captured, and sampling that is unevenly distributed in time.144

In a small number of cases, adults were captured, weighed, and measured, but no swab145

data were associated with the capture (e.g., if a swab was lost). In these cases (3% of146

2697 swabs), capture data indicate that the adult was alive during the survey, but its147

infection status is unknown. As such, there are three possible observations for captured148

frogs: detected/infected, detected/uninfected, and detected/unknown infection status.149

A fourth possible observation class corresponds to non-detection: an individual was not150

observed during a survey.151
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Mark-recapture model structure152

We consider four possible observations for each individual i = 1, ...,M on each survey153

j = 1, ..., nj: oi,j = 1 indicates that the individual was not detected; oi,j = 2 indicates that154

the individual was observed and the swab collected for that individual indicated that they155

were uninfected; oi,j = 3 indicates that the individual was observed and results from the156

collected swab showed that the frog had a non-zero Bd load; and oi,j = 4 indicates that157

the individual was observed, but no swab data were available from the capture.158

We use parameter-expanded data augmentation to account for the fact that the total159

number of adults in the population is unknown (Royle and Dorazio 2012). Across the160

entire time period of the study, we assume Ns individuals have existed in the population,161

comprising the superpopulation of individuals that were present at some time. While Ns162

is not directly observable, across all surveys n ≤ Ns unique individuals were known to be163

present in the population (because they were introduced and/or captured). An estimate of164

Ns can be acquired by considering a large number M > Ns of individuals, M −Ns of which165

never existed (Royle 2009). Thus, the model has a state corresponding to individuals166

that have not recruited yet. Here, M was chosen to be 2218 at Alpine (618 observed167

unique individuals plus 1600 augmented individuals), and 558 at Subalpine (158 observed168

individuals, and 400 augmented individuals). These values were chosen to be considerably169

greater than our prior guess of Ns, and we also verified that posterior estimates of Ns were170

much less than M to avoid problems on the boundary of this augmented parameter space171

(Dennis et al. 2015).172

We denote the true state of individual i in primary period t as ui,t, for every individual173

i = 1, ...,M and each primary period t = 1, ..., nt. The four states that we consider are:174

ui,t = 1 for individuals that have not recruited, ui,t = 2 for uninfected adults, ui,t = 3175

for infected adults, and ui,t = 4 for dead individuals. Each survey j = 1, ..., nj occurs in176

one of the nt primary periods, and we denote the primary period in which survey j takes177
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place as tj. Each primary period t occurs within one year, but within a year there are178

multiple primary periods. We set the year containing the first primary period to yt=1 = 1,179

and generally yt represents the year containing primary period t. Years increment by one180

until the final year of the mark recapture efforts, which we denote ny: y ∈ {1, 2, ..., ny}.181

We assume that within a primary period, the state of each individual does not change182

(i.e., individuals do not recruit into the adult population, gain or lose Bd infection, or die).183

This assumption is justified by the short time intervals between surveys within primary184

periods.185

Observation model186

An emission matrix Ωi,j links observations to hidden states, with the elements of Ωi,j187

providing the probability of each possible observation of individual i in survey j, given188

the true hidden state. The rows in Ωi,j correspond to the state of individual i in primary189

period tj, and the columns correspond to an observation of individual i in survey j:190

Ωi,j =

Not detected Bd negative Bd positive Bd unknown

oi,j = 1 oi,j = 2 oi,j = 3 oi,j = 4



1 0 0 0
Not recruited

ui,tj = 1

1− p−i,j p−i,jδ 0 p−i,j(1− δ)
Uninfected

ui,tj = 2

1− p+
i,j 0 p+

i,jδ p+
i,j(1− δ)

Infected

ui,tj = 3

1 0 0 0
Dead

ui,tj = 4

The structure of Ωi,j implies that there are no mistaken individual identifications (those191
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that are dead or not recruited are never detected), and that a swab successfully makes it192

to the lab and provides qPCR data with probability δ, conditional on the animal being193

detected. Detection probabilities are provided by p−i,j for uninfected (Bd negative) and194

p+
i,j for infected (Bd positive) individuals, and these detection probabilities can vary by195

individual and survey. We also assume that there are no false-positive or false-negative Bd196

results (Hyatt et al. 2007), though relaxing this assumption may be a promising future197

area, given the potential sensitivity of swab results to infection intensity (Miller et al.198

2012).199

State model200

The hidden states of each individual evolve as a Markov process with transition matrix201

Ψi,t, the entries of which provide the probability of transitioning to state ui,t+1 (the202

column index) from state ui,t (the row index). This matrix is different for individuals203

that naturally recruit versus those that recruit deterministically due to introduction. For204

naturally recruiting individuals:205

Ψi,t =

Not recruited Uninfected Infected Dead

ui,t+1 = 1 ui,t+1 = 2 ui,t+1 = 3 ui,t+1 = 4



1− λt λt(1− γt) λtγt 0
Not recruited

ui,t = 1

0 φ−i,t(1− η+
t ) φ−i,tη

+
t 1− φ−i,t

Uninfected

ui,t = 2

0 φ+
i,tη
−
t φ+

i,t(1− η−t ) 1− φ+
i,t

Infected

ui,t = 3

0 0 0 1
Dead

ui,t = 4
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where λt is the probability that an individual enters the adult population between primary206

periods t and t+ 1, γt is the probability that a recruiting individual is infected conditional207

on entry, φ−i,t is a survival probability for an uninfected adult, φ+
i,t is a survival probability208

for an infected adult, η+
t is the probability of transitioning from the uninfected to infected209

class conditional on survival, and η−t is the probability of transitioning from the infected to210

uninfected class conditional on survival.211

For introduced individuals, the recruitment process is deterministic. Specifically, for each212

introduced adult, there is zero chance that they recruit prior to the primary period in213

which they are introduced, and if they are introduced at time tintro
i, then the probability214

that they recruit into a particular class (their state upon introduction) must be one.215

For these introductions, all introduced adults were infected, and thus recruited into the216

infected adult class, leading to the following transition matrix for introduced animals,217

where the recruitment process is completely determined by tintro
i, such that Ψi,t is:218

Not recruited Uninfected Infected Dead

ui,t+1 = 1 ui,t+1 = 2 ui,t+1 = 3 ui,t+1 = 4



1− I(t=(tintro
i−1)) 0 I(t=(tintro

i−1)) 0
Not recruited

ui,t = 1

0 φ−i,t(1− η+
t ) φ−i,tη

+
t 1− φ−i,t

Uninfected

ui,t = 2

0 φ+
i,tη
−
t φ+

i,t(1− η−t ) 1− φ+
i,t

Infected

ui,t = 3

0 0 0 1
Dead

ui,t = 4

where I(t=(tintro
i−1)) is an indicator function equal to one when t is equal to tintro

i − 1.219
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An imaginary first primary period augments the collection of primary periods when220

introductions took place and when surveys occurred, and was set to occur one week221

before the initial introductions into each population. For this augmented period t = 1,222

we assume that all individuals are in the “not-recruited” class, ui,1 = 1 for i = 1, ...,M223

(Figure 1). Given that neither lake was known to contain adult frogs immediately prior to224

introduction, this is potentially a fair assumption, but in case the assumption was violated225

and adults were present prior to the introduction, we include a time-varying adjustment226

into the recruitment model (described below).227

The number of primary periods was not uniform across survey years, and as such, the228

time between primary periods was also heterogeneous, complicating the interpretation229

of transition probabilities. Thus, at both sites, we used augmented primary periods to230

increase the regularity of time intervals between primary periods. These were chosen to231

occur when primary periods might have occurred, e.g., not during the winter months when232

the lakes are snow-covered, using a statistical model of when surveys are conducted. At233

each site, we fit a binomial generalized additive model with thin plate spline smoothers234

for day-of-year and daily snow depth at Dana Meadows, where the response variable was235

zero or one for each day, with one indicating that a survey took place. These models were236

fit using the gam function in the mgcv package in the R programming language (R Core237

Team 2017, Wood 2017). Then, we predicted new values from these models, with the238

goal of augmenting the set of primary periods for each year at each site until all years239

except the first and last had the same number of primary periods (the maximum number240

of primary periods within one year at each site: ten at Alpine and eight at Subalpine).241

Augmented primary periods were only accepted if there was no primary period within five242

days (before and after) of the proposed augmented primary period. The end result is a set243

of primary periods that are more uniformly distributed in time than the original collection244

of empirical primary periods, though these augmented primary periods are not associated245

with real surveys.246
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Parameter model247

Detection probabilities248

Among uninfected adult frogs, we assume that the probability of detection varies with249

survey air temperature (Sinsch 1984), so that250

logit(p−i,j) = α(p) + β(p,x)xj,

where α(p) is an intercept parameter, β(p,x) is the effect of survey air temperature on251

detection probability, and xj is the survey air temperature for survey j, for all i, j. Among252

infected adult frogs, the detection model was expanded to allow for an adjustment to253

account for being infected, and a further adjustment to deal with variation due to Bd load:254

logit(p+
i,j) = α(p) + β(p,x)xj + β(p,+) + β(p,z)zi,tj ,

where β(p,+) is the adjustment on the intercept for infected adults, and β(p,z) is a coefficient255

for the log Bd load zi,tj of individual i in primary period t containing survey j, for all i, j.256

Recruitment probabilities257

The recruitment model was designed to account for annual variation in Bd loads, whether258

primary periods spanned years, and winter severity. For the probability of entering the259

population between primary period t and t+ 1, we have:260

logit(λt) = α(λ) + β(λ,w)wt + β(λ,s)syt + β(λ,1)I(t=1) + ε(λ)
yt ,

where α(λ) is an intercept term, and the effect of an overwinter transition is represented261

as β(λ,w), with wt as a binary indicator of whether a transition from period t to t + 1262
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spans a winter (or equivalently, two years). The effect of the previous winter’s severity263

is β(λ,s), where syt is previous winter’s severity. The parameter β(λ,1) is an adjustment for264

the recruitment probability after the first imaginary primary period, which could account265

for undetected individuals present prior to introduction. Finally, ε(λ)
yt is an adjustment266

to account for extra annual variation. The probability that an individual is infected,267

conditional on recruitment is modeled as a function of expected Bd load among infected268

adults:269

logit(γt) = α(γ) + β(γ,µ)µyt + ε(γ)
yt ,

where α(γ) is an intercept, β(γ,µ) represents the effect of mean Bd load among infected270

adults in the year containing primary period t (denoted µyt), and ε(γ)
yt is a year-specific271

adjustment.272

Survival probabilities273

Survival of uninfected adults was modeled as a function of whether a transition spanned274

an overwinter period and winter severity:275

logit(φ−i,t) = α(φ−) + β(φ−,w)wt + β(φ−,s)syt + ε(φ−)
yt ,

where α(φ−) is an intercept parameter, β(φ−,w) is an adjustment for overwinter transitions,276

β(φ−,s) is a coefficient for winter severity, and ε(φ−)
yt is a year-specific adjustment. The277

survival probabilities for infected adults were similarly modeled, but with additional effects278

of individual Bd load:279

logit(φ+
i,t) = α(φ+) + β(φ+,w)wt + β(φ+,s)syt + β(φ+,z)zi,t + ε(φ+)

yt ,
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where zi,t is the log transformed Bd load of individual i during primary period t, β(φ+,z)
280

is a coefficient for Bd load, and the remainder of parameters are defined using the same281

notation as for the survival of uninfected adults.282

Loss and gain of infection probabilities283

The probability that an infected adult loses infection was modeled as a function of mean284

Bd load in the infected population, and whether a transition occurred from one year to the285

next:286

logit(η−t ) = α(η−) + β(η−,µ)µyt + ε(η−)
yt ,

where α(η−) is an intercept, β(η−,µ) is the effect of expected Bd load among infected adults,287

and ε(η−)
yt is a year-specific adjustment. Transitions from the uninfected to infected class288

were modeled similarly:289

logit(η+
t ) = α(η+) + β(η+,µ)µyt + ε(η+)

yt

where parameter notation conventions and definitions match those for transitions from the290

infected to uninfected classes.291

Bd loads292

The fact that individuals are imperfectly detected, and that occasionally, individuals293

are detected but no disease information is recorded presents a challenge for including294

individual-level Bd loads in the model. Within the infected population, Bd loads are295

partially observed when individuals are captured and swabs are collected. We used a296

normal distribution to represent (potential) log Bd loads:297
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[Z|µ, σ] =
M∏
i=1

nt∏
t=1

Normal(zi,t|µyt , σ)

When the load of individual i during primary period t was observed, this specifies a298

likelihood. Otherwise, this specifies a prior distribution for the potential log load of299

individual i on primary period t, conditional on infection. The expected value of Bd300

load among infected adults was assumed to vary among years, and potentially vary as a301

function of winter severity:302

[µ|α(µ), β(µ), σ(µ)] =
ny∏
y=1

Normal(µy|α(µ) + β(µ)sy, σ
(µ))

Prior distributions303

Based on knowledge of the observation process, we expected that most captures304

resulted in a non-missing swab result, leading to the specification for the prior on305

δ as [δ] = Beta(δ|9, 1). Annual adjustments were modeled using zero-mean normal306

distributions with unknown standard deviations specific to the process of interest, e.g., for307

the probability of entering the population: [ε(λ)] = ∏ny
y=1 Normal(ε(λ)

y |0, σ(ε(λ))). Standard308

deviation parameters were given half normal priors i.e., [σ(ε(λ))] = Normal+(σ(ε(λ))|0, 1.5),309

and all remaining parameters were given Normal(0, 1.5) priors. The full factorization of310

the joint distribution of data and parameters is provided in Appendix A: Joint distribution311

factorization.312

Parameter estimation313

We implemented the model in Stan, a probabilistic programming language, and sampled314

from the approximate posterior distribution of parameters with automatic differentiation315

variational inference (Kucukelbir et al. 2015, Carpenter et al. 2016). We used the forward316

algorithm (Zucchini et al. 2016) to circumvent the need to sample from the discrete317
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space of true individual states (see Appendix B: Forward algorithm description for318

details). Variational inference uses a simple family of distributions as an approximation319

of the posterior distribution, optimizing parameters of this simpler approximation320

(the variational distribution) to minimize the Kullback-Leibler divergence between321

the true posterior and the variational distribution. A variational approximation was322

necessary for the models to run in a reasonable amount of time (≈ 2 − 4 hours) on finite323

resources (r4.2xlarge EC2 instances on Amazon Web Services, with 8 virtual CPUs and324

61 GiB RAM). To verify our model implementation, we simulated data with known325

parameters from the model to evaluate parameter recovery, and check that parameters326

were identifiable. These simulations allowed us to identify a lack of identifiability in327

an earlier model specification which included multiplicative interaction terms between328

winter severity and Bd load for both the probability of entering the population, and the329

probability that new adults were infected conditional on recruitment.330

All code and data necessary to reproduce the analysis and manuscript is publicly331

available at https://www.github.com/snarl1/sierra-reintroduction-cmr (Joseph and332

Knapp 2018). The workflow is wrapped into GNU Make command (Stallman et al.333

2004), the manuscript is written in R Markdown (Allaire et al. 2018), and we used the334

R programming language (R Core Team 2017) with the assertthat, ggrepel, ggridges,335

ggthemes, lubridate, mgcv, patchwork, reshape2, rstan, and tidyverse packages to facilitate336

data processing, model fitting, and visualization (Wood 2004, Wickham 2007, 2017a,337

2017b, Grolemund and Wickham 2011, Stan Development Team 2016, Pedersen 2017,338

Slowikowski 2017, Arnold 2018, Wilke 2018). The computational environment with these339

dependencies is containerized via Docker, and the Dockerfile for the image exists in the340

GitHub repository for this project (Boettiger 2015).341
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Results342

At both sites, infected adults were easier to detect than uninfected adults, and detection343

probabilities also increased with survey air temperature (Figure 2A). For a survey with344

an air temperature of 17 °C, the estimated probability of detecting an uninfected adult345

at Alpine was 0.157 (0.15, 0.163; posterior median and 90% CI), but for an infected346

adult with average Bd load, the probability of detection was 0.324 (0.306, 0.34). At347

Subalpine, for a survey with the same air temperature, the probability of detecting an348

uninfected adult was 0.19 (0.17, 0.211), but the probability of detecting an infected349

adult with an average Bd load was 0.598 (0.551, 0.646). Among infected adults, there350

was evidence for additional increases in detectability with increases in Bd load in the351

Alpine population (posterior median for β(p,z): 0.107, 90% CI: 0.086, 0.129) but not in the352

Subalpine population (β(p,z): 0.001, 90% CI: -0.056, 0.053) (Figure 2B).353

Despite the two study populations being 12 km apart, mean Bd loads among infected354

adults varied synchronously between populations. After initial introduction in 2006 or355

2008, mean loads at both sites were typically between 1,000 and 10,000 copies, with356

a reduction in mean Bd load during the year following the first introduction (Figure357

3). Thereafter, loads were relatively low and stable through 2012. At both sites mean358

loads were uncharacteristically low in 2013 but increased in subsequent years until359

reaching a peak in 2016. Mean Bd loads at Subalpine tended to be higher than at Alpine,360

particularly in the period from 2015 - 2017. The estimated correlation over time between361

mean log Bd loads at the two study sites was 0.636 (0.315, 0.861). This correlation was362

not due to a shared response to winter severity because winter severity did not influence363

Bd load at either site (at Alpine β(µ): -0.12 (-0.604, 0.37), at Subalpine β(µ): -0.022364

(-0.909, 0.912).365

Following initial introduction, both sites experienced multiple years of low abundance,366

but in 2013 the adult population at Alpine began increasing, reaching values upwards367
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of 400 adults by late-summer 2016 (Figure 4A). In contrast, at Subalpine, the adult368

population probably has not exceeded 50 individuals over much of the study duration,369

and introduction events account for the largest recruitment pulses. At both sites, infected370

adults tended to outnumber uninfected adults throughout the study period. The total371

number of adults to have ever existed (Ns) was estimated to be 768 (686, 848) at Alpine,372

and 172 (147, 212) at Subalpine.373

Infected adults experienced decreased overwinter survival, especially in the Subalpine374

population, unlike uninfected adults which maintained overwinter survival that was375

comparable to within-summer survival (Figure 4B). Bd load reduced infected adult376

survival at Alpine (Figure 5), with β(φ+,z) estimated to be -0.132 (-0.211, -0.045) at Alpine,377

and -0.078 (-0.199, 0.05) at Subalpine. Winter severity appeared to increase survival of Bd378

infected adults at Alpine (β(φ+,s): 0.303 (0.173, 0.436), but may have been associated with379

lower survival at Subalpine (-0.239 (-0.465, 0)). At both sites, winter severity coefficients380

overlapped zero for uninfected adults (β(φ−,s): -0.044 (-0.735, 0.661) at Alpine, and 0.349381

(-0.139, 0.842) at Subalpine). Overall, uninfected adults had higher survival at Alpine382

(α(φ−): 4.146 (3.42, 4.883)) than Subalpine (α(φ−): 2.183 (1.782, 2.594)) (Figure 4B).383

Introduced adults survived longer on average at Alpine compared to Subalpine (Figure384

6). At the end of the summer following the initial introduction of adults at Alpine,385

the proportion of adults surviving was 0.825 (0.675, 0.95). At Subalpine, only about386

half (0.583 (0.385, 0.778)) of adults survived to the end of the first summer following387

initial introduction. In the year after the initial introduction, the estimated proportion388

of introduced adults surviving at Alpine was 0.675 (0.45, 0.85), and at Subalpine just389

0.306 (0.139, 0.528). Similar differences in survival were evident following subsequent390

introductions, with low within-summer and among-year survival at Subalpine, and a391

higher survival rate at Alpine (Figure 6).392

Little to no recruitment was observed during the 3-4 years following the initial393
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introductions, consistent with the multi-year larval and juvenile stages in this species394

(“recruitment” is the addition of new adults to the population). However, Alpine395

experienced large recruitment pulses in 2013, 2014, and 2016 (Figure 7). The Subalpine396

population had smaller pulses of recruitment during the period 4-6 years after the397

introduction, but little recruitment in subsequent years (Figure 7). Recruitment pulses398

were asynchronous between the two populations, particularly in 2016 when a very large399

pulse of recruits was observed at Alpine but not Subalpine.400

Recruitment dynamics varied as a function of winter severity and Bd load. In both401

populations, winter severity reduced recruitment (at Alpine β(λ,s): -1.41 (-1.55, -1.264), at402

Subalpine β(λ,s): -1.295 (-1.612, -1.001)). Recruitment overwinter (before the first primary403

period of the year) was less likely than recruitment among within-year primary periods at404

Alpine (β(λ,w): -2.763 (-3.946, -1.551)), but more likely at Subalpine (β(λ,w): 1.677 (1.117,405

2.256)). Conditional on entering the population, adults at Alpine were more likely to406

recruit into the infected class when mean Bd loads were high (β(γ,µ): 1.195 (0.356, 2.104)),407

but mean Bd load was not associated with the probability of recruiting as infected at408

Subalpine (β(γ,µ): -0.575 (-2.199, 1.192)), perhaps due to low recruitment and therefore low409

power to detect such an effect.410

At both sites, transitioning from the uninfected to the infected adult class (gaining411

infection) was more likely than transitioning from the infected to uninfected class (losing412

infection) over most of the study period. Among-year variation in transition probabilities413

was similar at both sites, with 2013 having higher than average loss-of-infection414

probabilities (Figure 8A). This was most likely due to exceptionally low mean Bd loads in415

2013: when Bd loads were low, adults were more likely to lose infection at both study sites,416

and less likely to gain infection in the Subalpine population (Figure 8B).417
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Discussion418

The modeling approach developed here provides a quantitative means to assess how419

climate and disease affect demographic rates and population dynamics in hard-to-sample420

host populations. This builds on previous research that incorporated individual-level421

covariates in mark-recapture models (Pledger et al. 2003, Royle 2008, Gimenez and422

Choquet 2010, Ford et al. 2012), and that evaluated effects of Bd load at the individual423

level in wild populations (Spitzen-van der Sluijs et al. 2017). Our approach is unique in424

part because we treat unobserved infection status and intensity as parameters, rather425

than using imputation to backfill missing intensity values. Accounting for uncertainty426

in individual-level infection intensity in a Bayesian framework simplifies uncertainty427

propagation to key parameters including detection and survival probabilities. This may428

provide a better understanding of how individual traits relate to demographic processes429

and population dynamics, especially when effects of disease on detectability lead to biased430

capture histories.431

Overall, results indicated that the introduction of frogs to Alpine was successful in432

establishing a large self-sustaining population, but unsuccessful at Subalpine. The success433

of the introduction effort at Alpine seems to be driven by relatively low Bd loads, high434

adult survival, and large recruitment pulses into the adult population following mild435

winters. In contrast, the failure of introductions into Subalpine was associated with higher436

Bd loads, lower adult survival, and smaller, infrequent recruitment pulses. The estimated437

effect of Bd load on the survival of infected adults was similar in both populations, but438

loads on average were higher at Subalpine. Given the negative effect of Bd load on frog439

survival, the cause of higher loads on frogs at Subalpine is worthy of additional study.440

In addition, the fact that the effect of Bd load on survival of infected adults was similar441

in both populations, but loads on average were higher at Subalpine also suggests that442

the observed introduction outcomes cannot be explained by differences between the two443
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populations in frog tolerance of Bd infection within summer seasons (Råberg et al. 2009,444

Wilber et al. 2017).445

The two study lakes were relatively distant from each other and located in catchments446

with different environmental characteristics, but despite this Bd loads were temporally447

correlated across the two sites. The synchrony in expected load is worth further448

investigation, as it may indicate environmental forcing of disease dynamics, e.g., variation449

due to temperature (Phillott et al. 2013, Cohen et al. 2017), but see (Knapp et al.450

2011), or some form of connectivity among sites, although the latter possibility seems451

unlikely. Future studies might also seek to better disentangle landscape-wide factors452

driving synchrony and local factors that drive differences in mean load, particularly in the453

context of known mechanisms of disease-induced extinction such as non-density dependent454

transmission (Rachowicz and Briggs 2007, Orlofske et al. 2018), nonamphibian reservoir455

hosts (McMahon et al. 2013), and small equilibrium densities in the presence of disease456

(De Castro and Bolker 2005).457

Although between-population differences in Bd load provide a straightforward explanation458

for the lower survival of infected adults at Subalpine compared to Alpine (Briggs et459

al. 2010), it is less obvious why uninfected adults also had lower survival at Subalpine.460

Low uninfected survival may result from differences in habitat characteristics and/or461

the abundance of terrestrial or aquatic predators that prey on adult frogs. For example,462

in 2013 ten translocated frogs at each site were tracked for several weeks using radio463

telemetry. At Subalpine, two of these frogs were preyed on by garter snakes (Thamnophis464

elegans, (Jennings et al. 1992)) and no evidence of predation was observed at Alpine.465

We found that infected adults were easier to detect than uninfected adults, and at Alpine,466

infection load increased detection probability among infected individuals. This could relate467

to infection-related behavior that makes frogs easier to find and/or capture (Johnson468

2002). For example, some amphibians increase feeding activity when infected with Bd469
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(Hess et al. 2015). If this is the case for R. sierrae, we might expect frogs to spend more470

time around the lake edge, where they would be more conspicuous to observers. Some471

previous studies have assumed equal detectability among infected and uninfected frogs472

(Briggs et al. 2010, Stegen et al. 2017), while others have not (Retallick et al. 2004,473

Murray et al. 2009, Phillott et al. 2013). Our results indicate that even accounting for474

unequal detectability between uninfected and infected animals may not be sufficient,475

because Bd load may further affect detectability among infected individuals. Future476

studies should evaluate conditions under which disease impacts on detectability could bias477

estimates of demographic rates in wild populations.478

The recruitment model developed here may be somewhat simplistic in its focus on adults.479

In reality, recruitment into the adult population is a function of dynamics in the subadult480

and larval populations. In particular, in mountain yellow-legged frogs and many other frog481

species Bd infection imposes heavy mortality during metamorphosis, but disease effects on482

larval stages are relatively weak (Rachowicz and Vredenburg 2004, Rachowicz et al. 2006).483

Therefore, to fully understand how factors such as winter severity and disease influence484

population dynamics by way of affecting larvae, subadults, and adults, future efforts485

might focus on incorporating elements of integral projection models (Wilber et al. 2016)486

and integrated population models (Schaub and Abadi 2011) with hidden Markov models487

similar to those we developed in this study. A joint model for larval, subadult, and adult488

population dynamics would be better able to account for time lags resulting from the 1-4489

year larval development period of this species (Vredenburg et al. 2005). For example, one490

severe winter could have long-lasting effects if it slows the development of larvae so that491

they develop in three rather than two years, but this effect might not be detectable as492

a signal for adult recruitment until four years after the severe winter, depending on the493

growth rate of subadult frogs.494

Our results provide important insights into causes of population establishment or likely495
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failure for the endangered R. sierrae. The two study populations showed very different496

patterns of adult survival and recruitment, and in particular, within a population497

the estimated survival of introduced cohorts was remarkably consistent across all498

introductions. Although the generality of results obtained from these two populations need499

to be assessed using data from mark-recapture efforts at other reintroduced populations,500

the results suggest that the estimated survival of reintroduced frogs could provide an501

early indication of the site-specific probability of introduction success. In addition, in the502

future, when survival estimates of reintroduced frogs are available from a larger number of503

populations, these estimates could eventually allow the identification of site characteristics504

associated with likely introduction success or failure. This predictive ability would greatly505

increase the effectiveness of mountain yellow-legged frog recovery efforts.506
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Tables721

Table 1 Schedule of frog introductions to the study lakes.

Lake Year Number of frogs
Alpine 2006 40

. 2013 20
Subalpine 2008 36

. 2013 19

. 2015 20

. 2017 30
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Figure legends722

Figure 1723

Summary of hidden Markov model structure. On the first primary period t = 1, we724

assume that all individuals i = 1, ...,M are in the not-recruited class. The second725

primary period represents the first introduction. In this example, two surveys j = 1, 2 are726

conducted on the third primary period. The fourth primary period is a dummy period,727

inserted to increase the regularity of time intervals between primary periods, and has no728

associated surveys.729

Figure 2730

A. Estimated detection probabilities as a function of survey air temperature for731

Bd-infected and uninfected adults. The ribbons represent the 90% posterior credible732

interval, and the line represents the posterior median. Predictions for Bd infected adults733

correspond to individuals with average infection loads at each site. B. Parameter estimates734

for the detection model. Each of the detection parameters are shown on the y-axis. Color735

indicates population.736

Figure 3737

Batrachochytrium dendrobatidis (Bd) infection loads over time. Observed load values from738

skin swabs are shown as points on a log10 scale, colored by site. The estimated average Bd739

infection load is shown as a line (posterior median) with a 90% credible interval ribbon.740
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Figure 4741

Estimated abundance (A) and survival (B) time series for infected and uninfected adults742

at both populations. Time is shown on the x-axis, with facets for years. Posterior medians743

for each primary period are shown as points connected by line segments, and the 90%744

credible interval is shown as a shaded ribbon. In A, the vertical dashed lines indicate745

introduction events, and the number of adults added in each event is indicated with a746

“+” symbol. Also note the difference in the y-axis scales between the two sites.747

Figure 5748

Estimated survival probabilities for within-summer and overwinter transitions among749

infected adults as a function of Bd infection load. The x-axis shows Bd load over the range750

of observed values. The y-axis represents survival probabilities. Posterior medians are lines751

and 90% credible intervals are ribbons.752

Figure 6753

Estimated survival of introduced adults at both populations, colored by introduction event.754

Time is shown on the x-axis, with the proportion of adults surviving on the y-axis. The755

number of individuals introduced in each introduction event is labeled as (n=. . . ). The756

ribbons represent the 90% posterior credible interval, with the midline representing the757

posterior median.758

Figure 7759

Estimated cumulative number of natural recruits into the adult population at both sites760

over time (on a log10 scale). The ribbons represent the 90% posterior credible interval,761
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with the midline representing the posterior median. Dots connected by lines represent762

primary periods.763

Figure 8764

A. Estimated transition probabilities between the uninfected and infected adult classes at765

both sites in each year. Ribbons represent the 90% posterior credible interval, with the766

midline representing the posterior median. Dots connected by lines represent years. B.767

Estimated transition probabilities from the uninfected adult class to the infected adult768

class and vice versa as a function of expected Bd load among infected adults. The line769

represents the posterior median, and the ribbons indicate the 95% credible interval, with770

colors differentiating study sites.771
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7

●●● ●● ● ● ● ●●● ●●●● ●● ●●●●● ●●●●●

●●●● ●●●

●●●●●●●●●●

● ● ●●●●●●●●

●● ● ●●●●●●●

● ●●●●●●●● ●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●
●●●

●

● ● ●●●●●●
●●

●

●
●
●
●
●●

●●●

●

●●●●●●●●●

●●●●●●
●●●●

●●●●●●● ●●●

●●●●●●●●●●

●●●
● ●● ●●●●

●

●
●
●

●
●
●
●●

●

●●●●● ●●●● ●

●●● ●●●

●●●●● ●

● ●

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

100

800

C
um

ul
at

iv
e 

re
cr

ui
tm

en
t

● ●Alpine Subalpine

44

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2018. ; https://doi.org/10.1101/332114doi: bioRxiv preprint 

https://doi.org/10.1101/332114
http://creativecommons.org/licenses/by/4.0/


Figure 8
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Appendices773

Appendix A: Joint distribution factorization774

For completeness, we specify the factorization of the joint distribution of data and775

parameters (the unnormalized posterior density) below. We represent all unknowns776

specific to the detection model as a vector θ(p) = (α(p), β(p,x), β(p,+), β(p,z)), parameters777

specific to the probability of entry model as a vector θ(λ), to the probability of recruiting778

into the infected adult class given that an individual has entered the population as θ(γ),779

to uninfected survival as θ(φ−), and to the infected survival model component as θ(φ+).780

Concatenating these two vectors gives a vector that contains all unique survival model781

parameters: θ(φ) = (θ(φ−), θ(φ+)). Last, we represent parameters unique to transitions from782

the infected to uninfected class as θ(η−), and from the uninfected to infected class as θ(η+),783

with both concatenated as θ(η) = (θ(η−), θ(η+)). The resulting joint distribution is:784

46

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2018. ; https://doi.org/10.1101/332114doi: bioRxiv preprint 

https://doi.org/10.1101/332114
http://creativecommons.org/licenses/by/4.0/


Hidden states and observations︷ ︸︸ ︷
M∏
i=1

[ui,1:nt , oi,1:nj |θ(λ), θ(γ), θ(φ), θ(η), θ(p), zi,1:nt ]×

Bd model︷ ︸︸ ︷
[Z|µ, σ][µ|α(µ), β(µ), σ(µ)][α(µ)][β(µ)][σ(µ)][σ]×

Prior distributions︷ ︸︸ ︷
[α(λ)][β(λ,w)][β(λ,s)][β(λ,1)]

ny∏
y=1

[ε(λ)
y |σ(λ)][σ(λ)]×

[α(γ)][β(γ,µ)]
ny∏
y=1

[ε(γ)
y |σ(γ)][σ(γ)]×

[α(φ−)][β(φ−,w)][β(φ−,s)]
ny∏
y=1

[ε(φ−)
y |σ(φ−)][σ(φ−)]×

[α(φ+)][β(φ+,w)][β(φ+,s)][β(φ+,z)]
ny∏
y=1

[ε(φ+)
y |σ(φ+)][σ(φ+)]×

[α(η−)][β(η−,µ)]
ny∏
y=1

[ε(η−)
y |σ(η−)][σ(η−)]×

[α(η+)][β(η+,µ)]
ny∏
y=1

[ε(η+)
y |σ(η+)][σ(η+)]×

[α(p)][β(p,x)][β(p,+)][β(p,z)][δ].

Appendix B: Forward algorithm description785

Parameter estimation for this model is made somewhat difficult by the presence of discrete786

parameters (hidden states). We address this issue by using the forward algorithm, which787

does not require sampling from the discrete state space, to compute the joint probability788

of hidden states and observations (Zucchini et al. 2016). To describe this algorithm,789

we first consider the case of one individual. We would like to compute [ui,1:nt , oi,1:nj |...]790

(suppressing dependence on detection and transition parameters for compactness) for the791

individual with state and capture history shown in Figure 1.792

We can factor this joint probability as follows:793
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[ui,1:nt , oi,1:nj ] = [ui,1][ui,2|ui,1][ui,3|ui,2][oi,j=1|ui,3][oi,j=2|ui,3][ui,4|ui,3]...[ui,nt|ui,nt−1][oi,nj |ui,nt ].

If all of the unknown states were known, this would be as simple as extracting the relevant794

probabilities from Ψi,t and Ωi,j. Assuming that all individuals in the first primary period795

are in the “not recruited” class (ui,1 = 1 ∀i) implies that [ui,1] = (1 0 0 0), where each796

element in the row vector represents the probability of being in hidden state 1, 2, 3, and797

4, respectively. If we define: P(oi,j) = diag(Ω.,i,j,oi,j) to be the square matrix acquired by798

placing the elements of column oi,j from Ωi,j along the diagonal (with zeros elsewhere),799

the forward algorithm provides the joint distribution of hidden states and observations as800

follows:801

[ui,1:nt , oi,1:nj ] = [ui,t=1]Ψi,t=1Ψi,t=2P(oi,j=1)P(oi,j=2)Ψi,t=2...Ψi,t=nt−1P(oi,j=nj)1′

where 1′ is a column vector of ones. More generally, we can compute this probability by802

defining Bi,t = Ψi,t−1
∏
j∼t P(oi,j), where j ∼ t indicates surveys that took place in primary803

period t (if no surveys took place, then Bi,t = Ψi,t−1). Then bringing back dependence on804

all other detection and transition parameters into our notation, we can compute the joint805

probability of hidden states and the observation history compactly as:806

[ui,1:nt , oi,1:nj |θ(λ), θ(γ), θ(φ), θ(η), θ(p), zi,1:nt ] = [ui,t=1]
nt∏
t=2

Bi,t1′.
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