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Abstract
Systematic modeling of Alzheimer's Disease
(AD) neuropathology based on brain gene ex-
pression would provide valuable insights into the
disease. However, relative scarcity and regional
heterogeneity of brain gene expression and neu-
ropathology datasets obscure the ability to ro-
bustly identify expression markers. We propose
MD-AD (Multi-task Deep learning for AD) to
effectively combine heterogeneous AD datasets
by simultaneously modeling multiple phenotypes
with shared layers. MD-AD leads to an 8% and
5% reduction in mean squared error over MLP for
predicting counts of two AD hallmarks: plaques
and tangles. It also leads to a 40% and 30% re-
duction in classification error over MLP for two
common staging systems for AD: CERAD score
and Braak stage. Additionally, MD-AD's net-
work representation tends to better capture known
metabolic pathways, including some AD-related
pathways. Together, these results indicate that
MD-AD is particularly useful for learning expres-
sive network representations from heterogeneous
and sparsely labeled AD data.

1. Introduction
Alzheimer's disease (AD), the 6th leading cause of death
in the United States, is a degenerative brain condition af-
flicting an estimated 5.5 million Americans. There is no
known treatment to prevent, cure, or slow down AD, and as
a disease that predominantly affects the elderly, the number
of AD patients is projected to rise, making it an increas-
ingly pressing national health concern (Association, 2017).
The primary challenge in treating and preventing AD is
the fact that, although neuritic plaques and neurofibrillary
tangles are well-known brain biomarkers of AD, very little
is known about AD pathogenesis, including the primary
genetic drivers of these infarcts (Reitz, 2012).

Systematic modeling of AD neuropathology based on brain
gene expression would provide valuable insights into AD
neuropathology. However, relative scarcity and regional
heterogeneity of brain gene expression and neuropathology

Figure 1. (A) MD-AD network architecture and (B) four baseline
MLP models (right). P, T, C, and B refer to: neuritic Plaque count,
neurofibrillary Tangle count, CERAD score, and Braak stage.

datasets obscure the ability to robustly identify expression
markers. A deep neural network, such as a multi-layer
perceptron (MLP), is a powerful approach to capture com-
plex relations between input (here, gene expression levels)
and output variables (neuropathological phenotypes such as
neuritic plaque count, etc.).

With a standard MLP approach, one might train separate
neural network models, each for one of the target pheno-
types of interest. However, training separate MLPs for each
phenotype (Figure1B) is limited in its scope: (1) for each
phenotype, it can utilize only the samples that are measured
for that specific phenotype, limiting the samples that can
be used for each networks training, and (2) it cannot take
advantage of information sharing across related phenotypes,
which may be quite useful for a complex disease like AD.

We propose MD-AD (Multi-task Deep learning for AD) to
effectively combine heterogeneous AD datasets, which, un-
like the traditional approach, learns a single network repre-
sentation by simultaneously modeling multiple phenotypes
(Figure 1A). Such a model has three advantages over the
standard MLP. First, MD-AD allows sparsely labeled data,
which is the case with our data (Table 1): even if different
phenotypes only partially overlap in the measured samples,
each sample contributes to the training of both phenotype-
specific and shared layers. Second, a multi-task learning
approach may more robustly capture relevant relationships
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between expression and AD neuropathology via an implicit
inductive bias to prefer a representation relevant to multi-
ple phenotypes. Third, shared layers enable learning high-
level dependencies between expression and neuropathology
(while the phenotype-specific layers let us identify expres-
sion dependencies specific to each phenotype).

2. Related Work
To our knowledge, MD-AD is the first attempt to apply deep
learning to expression and AD phenotype data. Multi-task
learning allows us to incorporate multiple heterogeneous
data sets to alleviate the problem of high-dimensionality.

A. Multi-task learning in biology Multi-task learning may
ameliorate the high-dimensionality problem by regulating
models to prefer representations relevant to many tasks
(Caruana, 1998). Many studies have demonstrated its advan-
tages. For example, multi-task SVM approaches have been
used to predict binding affinities for several related proteins
(Widmer & Rätsch, 2012) over traditional separate-task pre-
dictions. Similarly, Gonen & Margolin (2014) applied a
Bayseian algorithm using kernel-based dimensionality re-
duction to predict drug susceptibility simultaneously for
a panel of drugs. Finally, Jain et al. (2014) found that
jointly modeling protein interaction networks for multiple
flu strains together helped to identify known and novel fac-
tors. More recently, a multi-task deep learning approach was
used to predict millions of interactions between proteins and
small molecules simultaneously (Ramsundar et al., 2015).

B. AD research with gene expression data: Several stud-
ies have investigated gene expression data in relation to
AD severity, using simple analyses such as measuring the
correlations between each gene's expression and AD pathol-
ogy (Blalock et al., 2004; Katsel et al., 2007), or identifying
differentially expressed genes between AD-affected and con-
trol individuals. However, given the complex nature of AD,
we may benefit from more complex models. For example,
(Zhang et al., 2013) used gene expression data to construct
coexpression networks for gene-gene interactions between
tissues and AD status, and then used these gene-regulatory
networks to identify gene modules relevant to AD.

Unfortunately, the relative scarcity of brain gene expression
data poses a large challenge to the use of complex models.
One possible solution is to combine multiple data sets to
gain statistical power. We previously demonstrated that
combining multiple datasets from different brain regions
and studies enabled us to identify more robust markers of
AD (Celik et al., 2018). Unlike this earlier work which
uses a probabilistic model, here we build a neural network
representation between gene expression samples (pooled
across various brain regions and studies) and multiple AD-
related neuropathological phenotypes.

Table 1. Summary of data sets and available labels for our tasks.

STUDY ACT MSBB ROSMAP

# EXPR. SAMPLES 337 879 542

PLAQUE COUNT?
√ √

TANGLE COUNT?
√

CERAD SCORE?
√ √ √

BRAAK STAGE?
√ √ √

C. Deep learning for AD: Although, to our knowledge, no
AD studies have applied deep learning to gene expression
data, many studies have used deep learning to classify AD
pathophysiology from brain imaging data. For example,
feature representations of brain imaging data provided by
deep learning approaches, such as stacked auto-encoders
(Suk & Shen, 2013) and deep Boltzmann machines (Suk
et al., 2014) have both led to improvements in AD classifi-
cation from both magnetic resonance imaging and positron
emission tomography scans. Most recently, a multi-modal
and multi-scale deep neural network led to state-of-the-art
accuracy on AD prediction from these data (Lu et al., 2018).

D. Multi-task learning for AD: Recent multi-task learning
approaches for AD research also tend to be focused on neu-
roimaging data. For example, combined structured sparse
regularizations have been used to select relevant features
from imaging and genetic SNP data through multi-task learn-
ing (Wang et al., 2012). Similarly, a multi-modal multi-task
model employed an SVM to fuse selected features from
multiple imaging modalities to simultaneously predict cog-
nitive test scores and AD status (Zhang & Shen, 2012). To
our knowledge, no multi-task deep learning models have
been employed in AD research.

3. Methods
A. Datasets: We learned an MD-AD network representa-
tion from RNA-Seq and neuropathology datasets avail-
able through the AMP-AD Knowledge Portal: (1) Adult
Changes in Thought (ACT) (Miller et al., 2017), (2) Mount
Sinai Brain Bank (MSBB)§, and (3) Religious Orders
Study/Memory and Aging Project (ROSMAP) (Bennett
et al., 2012a) (Bennett et al., 2012b). We pooled together
brain expression data from the temporal cortex, parietal cor-
tex, hippocampus, and forebrain white matter from ACT,
Brodmann areas 10, 22, 36, and 40 from MSBB, and the
dorsolateral prefrontal cortex from ROSMAP (see Table 1).

For MD-AD, we incorporate four neuropathological pheno-

§We are grateful to Mount Sinai/JJ Peters VA Medical Center
Brain Bank for making the MSBB expression and neuropathology
data available through the AMP-AD Knowledge Portal.
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types as tasks: (P) neuritic plaque count, (T) neurofibrillary
tangle count, (C) CERAD score (a semiquantitative mea-
sure of neuritic plaque density) (Mirra et al., 1991), and (B)
Braak stage (a semiquantitative measure of tangles’ distribu-
tion and severity) (Braak & Braak, 1991). When they were
available, we used plaque and tangles counts obtained from
the same brain region as the gene expression measurement,
but otherwise used global averages. Taken together, the
studies provide 1,758 gene expression samples, along with
sparse labels for the phenotypes, as shown in Table 1.

For our analyses, we use expression levels of 5,110 genes
present in all datasets. We log-transform the expression val-
ues and then normalize them for each gene to vary between 0
and 1 for consistency across studies. Finally, when combin-
ing the gene expression datasets, batch effect normalization
was applied to reduce systematic differences across studies
(Johnson et al., 2007). To avoid confounding conditions, we
excluded samples with neuropathological diagnoses other
than AD. Finally, we normalized neuritic plaque densities
and neurofibrillary tangle densities to vary between 0 and 1
for each study.

B. Experimental Setup: As illustrated in Figure 1A, the
MD-AD network jointly models relationships between in-
put data and all four phenotypes via shared hidden layers
followed by task-specific hidden layers. For comparison,
we generate four analogous MLP networks with un-shared
representations, and four linear models containing no hid-
den layers, to serve as baseline models. We built our models
in Python using the TensorFlow and Keras packages.

In order for an efficient and robust training and to reduce
overfitting, we apply a principal component analysis (PCA)
transformation to the data and use resulting top 500 principal
components – a 500-dimensional representation of our 5,110
gene expression values – as the input to the MD-AD and all
baseline models.

For training the models, we use a mean squared error (MSE)
loss function for networks predicting plaque and tangle
counts. Because both CERAD score and Braak stage con-
tain ordered categories (i.e., integers from 0 to 3 and 0 to 5,
respectively, where large values indicate a higher AD sever-
ity), we developed a loss function for ordinal data which
penalizes larger differences between the true and predicted
labels more heavily than smaller differences.

We evaluate our model over five separate splits of the data
into training and test sets. Within each training set, we used
cross-validation to select the best configuration of hyperpa-
rameters for our three models, then retrained the selected
models with the full training set before evaluating test per-
formance for that fold. Finally, after obtaining these five test
performance metrics separately, we take the mean to obtain
our final average test performance, illustrated in in Figure 2.

4. Experimental Results
We evaluated MD-AD using three evaluation metrics: ac-
curately (1) predicting counts of AD infarcts – plaques and
tangles, (2) classifying AD stages of individuals based on
Braak stage and CERAD score, and (3) capturing known
functional gene pathways. For (3), we considered 1,024
Reactome, BioCarta, and KEGG GeneSets (canonical path-
ways) from the C2 collection (curated gene sets from online
pathway databases) of the current version of MSigDB (Sub-
ramanian et al., 2005) as the ground truth pathways.

A. MD-AD predictions outperform separate learning:
When compared with our baseline MLPs, MD-AD has a
8% and 5% reduction in mean squared error over MLP for
plaque count and tangle count, respectively, and 40% and
30% reduction in classification errors for CERAD score and
Braak stage. As expected we see even larger improvements
when compared with the linear baseline (See Figure 2).

Figure 2. Average test performance of MD-AD compared with
MLP and linear baselines, evaluated over 5 folds.

Figure 3. True Braak stage and CERAD scores for test data vs.
predictions made by each model (combined across test folds).
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Furthermore, MD-AD seems to predict individuals’ AD
stages much more effectively than our baselines (Figure
3), achieving predictions within one value of the true class
in 84% and 81% of test cases for CERAD and Braak, re-
spectively. On the other hand, the MLP models’ within-one
accuracies were only 60% and 57% for CERAD score and
Braak stage, and the linear baselines’ were 63% and 56%.
This indicates that joint learning helped us to learn feature
represention helpful for AD severity classification.

B. MD-AD’s shared representation captures relevant gene
pathways, particularly for AD: To evaluate MD-AD’s
ability to capture known biological pathways within the
network representation, we calculate feature attributions for
genes and then look for nodes that rely heavily on genes
in our pathways of interest. We are particularly interested
in the shared hidden layers for MD-AD (shown in blue in
Figure 1A) because pathway enrichment in these layers
indicates an advantage of joint learning.

After training our final models on the full dataset,
for each data point, we assign importance values of
each input feature on each downstream node in the
network using the Integrated Gradients method (Sun-
dararajan et al., 2017) (python package available at:
https://github.com/hiranumn/IntegratedGradients). We then
average over each sample’s absolute weight for each feature
to obtain a general feature importance for each node. We
then propagate these input features’ weights to the original
genes’ dimensions to obtain weights for each gene on each
of the 600 nodes in the first two hidden layers, which we
convert to a ranking from 1 to 5110.

We consider a pathway to be captured by the network if
a functional unit of the network highly ranks the genes it
contains. For each pathway, we identify the node in MD-
AD’s shared layers with the best median rank for the genes
in the pathway. Then, we use a permutation test to compute
the significance of the pathway genes’ ranking: over 10,000
iterations, we randomly sample new rankings for the genes
in the pathway, and generate a p-value corresponding to
the fractional occurrence of the randomly selected pathway
ranking having a better mean than the true pathway’s gene
rank. For each pathway, the same analysis was completed
for the analogous layers of our separate MLP models (blue
layers in Figure 4B). Comparisons of enrichment for these
1024 pathways in our models are shown in Figure 4.

Among the 1024 gene pathways evaluated, MD-AD
achieved equal or better p-values for 70%, 74%, 70%, and
94% of pathways for plaque count, tangle count, CERAD
score, and Braak stage, respectively (i.e., Figure 4’s points
on or above the diagonal). In particular, both KEGG’s and
BioCarta’s AD pathways had the best possible p-values for
MD-AD, suggesting that the most relevant pathways are
particularly well captured in our network’s shared layers.

Figure 4. Permutation test results for MD-AD vs. baseline MLPs
for Plaque count, Tangle count, CERAD score, and Braak stage,
described in 4B. Each point represents the −log10(p-value) for
the best node in the blue layers from Figure 1 (Note: when p = 0,
we plot the point at 4.5). Red circles correspond to AD pathways.

5. Discussion
MD-AD's reduction in prediction errors compared with in-
dividual training across all phenotypes indicates that it may
be particularly useful for learning an expressive network
representation from heterogeneous and sparsely-labeled AD
data. Furthermore, our pathway analyses demonstrate that
the learned representation captures biologically relevant in-
formation, especially pertaining to AD.

Although our network captures known pathways, we rec-
ognize that MLP baselines also captured many of the same
pathways. Nevertheless, those baseline networks achieved
lower predictive power than our model, indicating that some
of the helpful information captured by MD-AD may fall
outside of these known pathways. Thus, moving forward,
we plan to identify genes salient for each phenotype in the
MD-AD network, which could lead to knowledge of a novel
molecular basis for neuropathological phenotypes.

Finally, an advantage of MD-AD is its ability to simulta-
neously represent multiple AD-related phenotypes. Iacono
et al. (2015) found that of cognitively normal individuals
in the study, over 54% had AD pathology upon autopsy,
indicating that they were resilient to AD dementia. An excit-
ing extension of MD-AD could be to incorporate cognitive
data as new tasks so that we may study AD resilience (i.e.,
unimpaired cognition despite the presence of diagnosed
AD pathology). By training with additional cognitive data,
MD-AD can elucidate genes promoting resilience by reveal-
ing genes associated with cognitive normality despite the
presence of neuropathological AD traits.
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