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Abstract

Background It is widely acknowledged that retrospective exploratory analyses of ran-
domised controlled trials (RCTs) seeking to identify treatment effect heterogeneity (TEH)
are prone to bias and false positives. Yet the increasing availability of multiple data modal-
ities on subjects and the desire to learn all we can from trial participants motivates the
inclusion of such analyses within RCTs. Coupled to this, widespread advances in AI and
machine learning (ML) methods hold great potential to utilise such data to characterise
subjects exhibiting heterogeneous treatment response.
Methods We present new learning strategies for RCT ML discovery methods that ensure
strict control of the false positive reporting rate at a pre-specified level. Our approach uses
randomised data partitioning and statistical or ML based prediction on held-out data. This
can test for both crossover and non-crossover TEH. The former is done via a two-sample
hypothesis test measuring overall predictive performance of the ML method. The latter is
done via ‘stacking’ the ML predictors alongside a classical statistical model to formally test
the added benefit of the ML algorithm. An adaptation of recent statistical theory allows
for the construction of a valid aggregate p-value. This learning strategy is agnostic to the
choice of ML method.
Results We demonstrate our approach with a re-analysis of the SEAQUAMAT trial. We
find no evidence for any crossover subgroup who would benefit from a change in treat-
ment from the current standard-of-care, artesunate, but strong evidence for significant non-
crossover TEH within the artesunate treatment group. We find that artesunate provides a
differential benefit to patients with high numbers of circulating ring stage parasites.
Conclusions Our ML approach combined with the use of computational notebooks and
version control can improve the robustness and transparency of RCT exploratory analyses.
The methods allow researchers to apply the latest ML techniques safe in the knowledge that
any declared associations are statistically significant at a user defined level.

Abbreviations

RCTs randomised controlled trials
ML machine learning
TEH treatment effect heterogeneity
RF random forests
ML-SSAP machine learning based subgroup statistical analysis plan
GLM generalised linear model
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Introduction

In the medical sciences randomised controlled trials (RCTs) provide the gold standard for ev-
idence evaluation of novel treatments and health interventions. The growing accessibility and
recording of data modalities, arising from genetics, medical imaging, genomics, and electronic
health records alongside breakthroughs in machine learning (ML) and AI provide opportunities
for scientific discovery by characterising patient strata with respect to treatment effect1;2. This
can improve patient outcomes and optimise treatment recommendations. However, exploratory
analyses of RCTs and correct interpretations of these analyses are difficult3;4 and controversial5.
Data analytic tools such as AI algorithms6 are particularly attractive for identifying treatment
effect modifiers in RCTs due to their hypothesis free nature and ability to learn by example.
While there have been numerous recent papers on technical developments and novel methods
for subgroup analysis and treatment effect heterogeneity (TEH)7–15, we know of none to date
who have considered ML paradigms which provide strict control of the false positive rate (type
I error). Medical statisticians know how to assess the evidence when the subgroups or inter-
actions are predefined and the models are explicit, by counting the “degrees of freedom”, or
number of free parameters, in the model and using formal tests of hypotheses16–18. But for
ML algorithms the models are designed to adapt their complexity and dependency structures
to the underlying problem during the training phase and hence notions of counting parameters
become meaningless. The question then remains of how to assess the true evidence of benefit
following ML discovery?

We show that it is possible to train ML methods, alongside conventional statistical models,
to analyse RCT data and provide a global hypothesis test for the presence of TEH. Our method
can formally test the presence of patient subgroups (crossover TEH) and also formally test
the added predictive benefit of the ML algorithm by ‘stacking’ the ML predictions alongside
predictions from a baseline ‘vanilla’ statistical model. ML algorithms are only justified if their
predictive benefit can be proven superior to simpler and more interpretable methods. This
framework has important implications for how existing data can be used in a principled manner
for trusted hypothesis generation. We hope that our approach will motivate careful a priori
construction and monitoring of statistical analysis plans utilising the latest ML techniques in
RCTs. Such plans are necessary to ensure optimal evidence evaluation and learning through
retrospective discovery of TEH.

Our formal approach is illustrated step-by-step via an open source RMarkdown computa-
tional notebook19 which uses random forests (RFs)20 to retrospectively analyse a randomised
trial in severe malaria21. Throughout this paper we refer to subgroup analysis and TEH in-
terchangeably. Clinically relevant subgroups are a consequence of TEH, in that a subgroup
is said to occur when the optimal treatment allocation changes (crosses over), whereas het-
erogeneity is broader in suggesting any systematic differential in the effectiveness of any one
treatment (see panel 1). It is important to distinguish between such crossover and non-crossover
events, the former resulting in an optimal treatment allocation that is dependent on patient
characteristics22.

Methods

We support the principle that subgroups of clinical importance identified through a retrospective
analysis of trials data, from trials not explicitly designed to identify these subgroups, ultimately
need to be validated in a focused, independent, follow-up RCT. Subgroup analysis typically
exploits data from trials that were designed to answer a different primary question not involving
subgroups and hence the analysis cannot by itself provide a complete picture of the evidence.
In this respect, the ML analysis should seek to establish the strength of evidence that any
heterogeneous treatment effects are real (true-positives). Establishing and controlling the false-

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2018. ; https://doi.org/10.1101/330795doi: bioRxiv preprint 

https://doi.org/10.1101/330795
http://creativecommons.org/licenses/by-nc-nd/4.0/


positive rate of the discovery procedure mitigates the risk of following false leads in subsequent
confirmatory trials targeting the putative subgroup, and aids in the communication of the
evidence from the analysis. The following sections outline a formal methodology for exploratory
analysis with strict control of the type I error.

Pre-defining the ML subgroup statistical analysis plan (ML-SSAP)

Modern statistical and ML methods are able to automate the discovery of subgroups in high-
dimensional data, and statistical scripting and programming packages such as R, Python, or
Stata, allow the analyst to construct routines that take trial data as input and apply statistical
or ML models to the data to identify potential TEH. Here we consider both crossover TEH
whereby the subgroup is characterised by the set of patients predicted to benefit from a change
in treatment compared to the current standard-of-care, and non-crossover TEH whereby the
standard-of-care is everywhere optimal but its benefits vary systematically across patient strata.
The standard-of-care should be defined prospectively (before looking at the data), even if the
analysis is retrospective.

In order to maintain the transparency of the evidence, the ML-SSAP should be specified
before any exploration of the primary RCT data has taken place. Failure to do so runs the
risk of biasing the results23. When formulating the analysis plan, covering both the ML or
statistical method (model) used for discovery, and the set of potential stratifying measurements
used by the method, researchers should be cautioned against throwing in every possible variable
and every flexible ML method. There is a principle here of ‘no free lunch’, or rather ‘no free
power’. The choice of discovery method and the potential variables to include is an important
step. Methods that trawl through measurements looking for interactions are not panaceas, nor
substitutes for careful thought, and the more judicious the a priori data selection and choice
of discovery model the higher the expected power and ability of the analysis to detect true
effects24.

The analysis plan should also include the specification of a test statistic that can compare
overall patient benefit between any two groups and which can be used to quantify the type I
error when declaring beneficial subgroups. The form of this test statistic is study specific and
should relate to the clinical outcome of interest such as survival time, cure rate, or a quantitative
measurement of treatment benefit. This will typically match that used in the original study
protocol of the primary trial.

False-positive control of crossover interactions: subgroup detection

The subgroup analysis refers to the discovery of crossover TEH whereby the optimal treatment
allocation changes.

We use a held-out data approach to construct a test for a global null hypothesis of “no true
crossover TEH (subgroups)”. Fig 1 illustrates this procedure using the example of a primary
two-arm RCT where the original trial failed to detect an overall benefit of the experimental
treatment. The approach is as follows. The trial data are repeatedly randomly divided into
two subsets, with the ML method fitted independently and separately to each subset. The ML
algorithm (or statistical model) is trained on each half of the data separately and is then used
to predict the individual treatment effects, and thus the optimal treatments for subjects, in
the corresponding other half of ‘held-out’ data. Combining the resulting subjects whose held-
out predicted optimal treatment assignment differs from the standard-of-care forms a held-out
subgroup of size ns from the original trial of sample size n. The actual treatment administered
to these subjects in the primary RCT is random, such that in a balanced two-arm trial we
would expect half of the subjects, 1

2ns, to have received the standard treatment and the other
half the experimental treatment. This then facilitates a two-sample hypothesis test, using
the test statistic defined in the analysis plan, with a null hypothesis of “no improved subject
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benefit identified through the ML subgroup analysis plan”. The hypothesis test compares the
outcomes of the patients whose optimal treatment was predicted by the ML algorithm to be
the experimental treatment and who received the experimental treatment, to those predicted
to benefit from the experimental treatment but who received the standard-of-care. A one-sided
test would be appropriate if the test statistic measures patient benefit. If there is no true benefit
then the resulting p-value is uniformly distributed on [0,1]. If K iterations of this procedure
are run, randomising the data-split at each iteration, then we obtain corresponding p-values
{p1, .., pK}. We note that these are conservative in that the discovery model on each subset has
half the sample size to identify the subgroups. Finally the p-values {p1, .., pK} can be aggregated
to compute a global significance test for the presence of a benefiting subgroup. This aggregation
can be done by adapting a method for p-value aggregation in high dimensional regression25. In
brief, if α is the level of control of the type I error (this is usually set to 0.05), then the set of
p-values can be merged into one test using the following formula:

paggregate = min
γ∈[α,1]

[
1, (1− logα)Qγ{pi}Ki=1

]
, (1)

where Qγ({pi}Ki=1) = min
[
1, Quantileγ({piγ }

K
i=1)

]
. Quantileγ(·) computes the γ quantile of the

set of p-values which have be scaled by 1
γ . This procedure sweeps over γ ∈ [α, 1] to find the

minimum value in Qγ . Alternately the analyst could fix γ in the analysis plan, such as γ = 0.5
to select the median p-value,

p
(median)
aggregate = (1− log 0.5) Median[2p1, 2p2, . . . , 2pK ]

Note, if a true subgroup exists in the population from which the RCT trial participants are
drawn, then ns

n ×100% estimates the subgroup prevalence in that population. The more refined
the subgroup, the smaller ns will tend to be and hence the resulting test will have lower power
to detect a true effect. That is, rarer subgroups are harder to detect. Intuitively this highlights
how the original trial design has reduced power to support more intricate subgroup discovery.

False-positive control of non-crossovers: added predictive benefit of the ML
analysis

The primary outcome in a standard RCT will often be strongly associated with particular base-
line covariates and prognostic factors, e.g. severity of disease or co-morbidities. Generalised
linear models (GLMs) provide one of most interpretable statistical models for relating clinical
outcome to a combination of prognostic factors and the randomised treatment. Using more com-
plex and therefore less interpretable ML methods needs to be justified with respect to the added
benefit over this baseline model. In this context, the utility of ML methods is in their ability
to detect non-linear interactions between prognostic factors and the randomised intervention.
Using exactly the same data-splitting approach as for the discovery of statistically significant
crossover subgroups, we can objectively evaluated the added benefit of the ML method. We
illustrate the approach using a binary clinical outcome, yi ∈ {0, 1} for the i’th subject, and a
logistic regression GLM where

Pr(Yi = 1) =
exp(Zi)

1 + exp(Zi)

with linear predictor Zi = Xiβ + Tiα, for prognostic variables, X, and randomised treatment
indicator T . The procedure is summarised below,

• For K iterations (e.g. K = 1000):

1. Split the data into two equally sized subsets with balanced number of treated and
untreated cases in each half.
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Example: null hypothesis not rejected by a primary RCT with two arms

Step 1:
Randomly divide 
the RCT data into 
two equally sized 
subsets, ‘A’ and ‘B’, 
ensuring that 
treatment is 
balanced within 
each subset. Note: 
we will use the label 
“T” to denote the 
experimental 
treatment, and “S” 
for the  standard-of-
care

Step 2:
Train a model, using only 
the data in subset A, to 
provide an individualized 
treatment 
recommendation for 
future subjects;
Use this model to predict 
the optimal treatment
for all subjects in B;
Repeat this operation, 
training a model on B 
and predicting optimal 
treatments for subjects 
in subset A

Step 3:
Combine the 
predictions and discard 
those subjects 
predicted S as their 
optimal treatment, 
leaving only those 
subjects whose 
predictions assign them 
to the experimental 
treatment (T).
Note: the actual
treatment assigned to 
these subjects will be 
randomized in the 
original RCT

Step 4:
Perform a two-sample 
statistical test 
comparing the 
observed outcomes 
from: (i) those subjects 
predicted T who 
received T, versus; (ii) 
those predicted T who 
received S.
Under a null-
hypothesis that the 
predictive model in 
Step 2 provides no 
benefit the resulting p-
value from this test  is 
uniform on [0, 1].

Repeat this procedure 1000x to obtain 1000 p-values. A global aggregated 
(corrected) p value is then obtained (Eq 1).

Figure 1: Illustrative example of hypothesis testing in exploratory subgroup discov-
ery using 1000 iterations of two-fold cross-prediction The example considers a primary
RCT with two arms where a null hypothesis of “no improvement from the experimental treat-
ment” is not rejected, i.e. no significant evidence of the experimental treatment providing
improvement over the standard-of-care. Each random division results in a corresponding p-
value against the null hypothesis of no benefiting subgroup. The p-values are then aggregated
for the overall test as given by Eq 1.

2. Fit a GLM to each subset separately and record for each individual their out-of-
sample linear predictor ẐGLMi = Xiβ̂ + Tiα̂, where (β̂, α̂) are obtained from the
in-sample data fit.

3. Fit the ML method to each subset separately and predict the out-of-sample outcome
probabilities, Pr(Yi = 1) = P̂i = f̂ML(Xi, Ti), to obtain the corresponding log-odds

out-of-sample prediction ẐML
i = log

(
P̂i

1−P̂i

)
for each individual i.

4. Fit a ‘stacked’ GLM model to the full dataset using the n × 2 matrix of prediction
values (ẐGLM , ẐML) as two independent covariates variables,

Pr(Yi = 1) =
exp(ẐGLMi θGLM + ẐML

i θML)

1 + exp(ẐGLMi θGLM + ẐML
i θML)

to obtain (θ̂GLM , θ̂ML). Record the p-value, pk, assigned to an ANOVA test for the
model with θML 6= 0 versus a model with θML = 0.

• Construct the aggregate p-value from the set p1, .., pK using adjustment method from
Eq 1.

This method is analogous to ‘stacking’, a popular ML technique whereby multiple competing
models are aggregated to form a more powerful ensemble model26. We propose ‘stacking’ the
standard accepted ‘vanilla’ statistical model (a GLM) alongside the predictions from a ML
model. The added benefit of the ML based predictions can then be formally tested using Eq 1.
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Exploratory analysis

These ML driven procedures for testing both the presence of crossover and non-crossover TEH
provide p-values uniformly distributed under the null. However, this approach is by definition
non-constructive: the output does not contain an estimate of the discovered subgroup, nor an
estimate of the TEH.

If the analysis leads to a rejection of the null (the aggregated p-value is below a pre-specified
significance level), we then recommend fitting the same ML model to the full dataset and using
this model to estimate the individual treatment effects. Further exploratory analysis can then
be undertaken to assess the structure of the heterogeneity, such as: ‘which individuals are
contained within the subgroup?’; ‘which covariates are predictive of TEH?’; ‘is the subgroup
clinically relevant?’. This could be done via scatter plots of important covariates against the
individual treatment effects. It is often possible to characterise a method detecting a true signal
in the data by a few simple rules, for example using decision trees (e.g. Fig 2, panel D)27. By
proceeding in this order, first evaluating the p-value for the null hypothesis, then undertaking
the exploratory analysis using the full data, formal control of the type I error is still obtained.

Transparency and reproducibility

It is essential that all the findings and analysis paths taken are transparent and auditable to
an external researcher. This can be achieved through the use of statistical notebooks, akin to
the laboratory notebook in experimental science. Mainstream programming environments for
data analysis (such as R and Python) provide open source notebooks such as R Markdown or
Jupyter which seamlessly combine the analysis and the reporting. This allows all the exploratory
analysis paths to be curated. Research recorded in a computational notebook is transparent,
reproducible, and auditable. Auditability can be further improved without becoming burden-
some through the use of version control repositories such as github (https://github.com) which
record, timestamp, and preserve all versions and modifications of the analysis notebooks. Re-
producibility can also be improved via the use of cloud computing services such as Code Ocean.
In this way all of the steps, time lines, and historical evolution of the subgroup analysis are
included and the work flow is open to external criticism and interrogation. Any published re-
sults can be audited back to the original RCT. Any p-values or statistical estimates that point
toward subgroup effects that are reported subsequent to the heterogeneity tests need to be
clearly labeled as such and treated with caution due to the potential for evidence inflation and
post selective inference that arises from using the data twice. We prefer to label such measures
that follow after data interrogation as qualitative, or q-values, as the formal statistical sampling
uncertainty is often unknown28.

Results

Antimalarial pharmacodynamics of artemisinin in severe malaria

Severe Plasmodium falciparum malaria is a medical emergency with case fatality rates ranging
from 10 to 40%29. A recent major advance in the treatment of severe malaria has been the
introduction of parenteral artesunate. In Asia, this has been shown to reduce mortality by a
third21, and in Africa by a fifth30. To illustrate the methodology advocated in this work, we use
data from the definitive study of artesunate for severe malaria in Asia (SEAQUAMAT: South
East Asian Quinine Artesunate Malaria Trial). This was a large multi-country randomised trial
comparing intravenous quinine to intravenous artesunate21.

The superiority of parenteral artesunate for severe malaria is now well established31. Thus
in this retrospective analysis the artesunate arm is considered ‘standard-of-care’. The complete
statistical analysis is published as an open source Code Ocean capsule and is entirely repro-
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ducible19. This analysis provides an easily adjusted template for new exploratory subgroup
analyses of different datasets.

We chose to use RFs to fit the data, one of the most popular and important ML methods
in use today20. This method deals well with multiple correlated covariates as is the case in
these data. We first evaluate whether there is evidence for a crossover subgroup of patients who
would benefit from quinine treatment as opposed to artesunate. The subgroup analysis does
not reject the null hypothesis of “homogeneous optimal treatment allocation” (p = 1) showing
that there is no evidence in the data of any subgroup benefitting from quinine.

This analysis was followed by examining the added benefit of the predictive RF model
relating patient survival to the baseline measurements and treatment. An aggregation of the
p-values obtained by repeated data-splitting and ‘stacking’ of the out-of-sample ML model
predictions alongside the validated best linear predictor (the linear predictor on the logistic scale
comprised of Glasgow coma scale, base deficit and treatment32) showed a strongly significant
added benefit of the RF-ML model (p=10−6, Fig 2, panel C). Statistical significance of the
repeated data-splitting and cross-prediction procedure can be assessed visually by comparing
the cumulative distribution of the resulting p-values against the boundary curve as given by Eq
1.

Further exploratory analysis attempted to characterise possible interactions explaining this
variation in predicted individual treatment effect. This analysis showed that significant TEH
can be partially explained by the total non-sequestered parasite biomass (panel A) and the base
deficit (panel B). This TEH can be summarised using a pruned CART model decision tree (panel
D)27. This suggests that the greatest benefit of parenteral artesunate is seen in patients with
large numbers of circulating young ring stage parasites (interaction between total parasitaemia
and % of young rings). This is not highlighting a clinically relevant subgroup but helps elucidate
the mechanism of action of artemisinin, a useful exercise in light of emerging drug resistance33.
Moreover, these results are concordant with the current proposed mechanism of action of the
artemisinin derivatives and the importance of the artemisinin specific mode of action in the
treatment of severe malaria. Artemisinins kill a broader range of parasite stages compared to
quinine, notably the younger circulating ring forms, thereby reducing further sequestration and
subsequent death in patients with a high parasite biomass34.

Discussion

We have shown how modern ML algorithms can be trained safely to determine the presence
of TEH in a way that rigorously controls for type I error. The validity of our data splitting
and out-of-sample prediction procedure holds irrespective of the method used, provided that
samples are independently recruited from the study population. If this is not the case, for
example if patients are recruited in pairs, or are related in some manner, then adjustments need
to be made to ensure that the p-value reports the correct out-of-sample evidence. The choice
of discovery algorithm should depend on the measurement variables collected (how many, and
of which type) and the primary or secondary outcomes of the study for which TEH analysis is
to be applied, e.g. survival time, binary outcome, continuous risk score. The specification of
the stratifying measurements used by the method needs careful thought under a principle of
‘no free power’ in that feeding in irrelevant predictor variables will reduce the ability to detect
true signals24.

It is important that the analysis is transparent and the methods, data transformations, and
analytic procedures are laid out and documented in an auditable plan, and that any code base
used is properly documented and available for scrutiny. We recommend the use of open source
repositories such as github or cloud computing services such as Code Ocean for fully reproducible
data analyses. By following some simple guidelines we hope to improve upon the reliability and
stability of TEH analysis reported in the literature.
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Figure 2: Graphical visualisation and validation of TEH defined by non-crossover
interactions in the SEAQUAMAT trial Panels A&B show the univariate relationships to
the individual predicted treatment effect for total parasite biomass and base deficit, respectively.
The thick blue lines show spline fits to the data. Panel C shows the cumulative distribution
of the p-values for the added benefit of the ML model obtained by repeated data-splitting
and stacking of the standard model alongside the ML model. Significance (at the 5% level) is
obtained if the black line crosses above the red boundary (this is given by the function Qγ in
Eq 1). Panel D summarises the overall non-crossover interaction found by the RF model with
a pruned regression tree model fitted to the individual treatment effects. The leaves of the tree
in panel D show the mean treatment effect.

Recent advances in statistical ML algorithms taken together with recent advances in mea-
surement technologies have the potential to impact heavily and positively in the advancement
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of medical science. However alongside these advances great care must be taken to ensure that
the integrity of the statistical analysis and the validity of the evidence base is upheld at all
times.

Panel 1: Overview of exploratory hypothesis generating ML-guided analysis.

• TEH results in either crossover or non-crossover interactions Crossover
interactions imply that the optimal treatment allocation differs between patients (e.g.
there is a subgroup of patients who’s optimal treatment is not the standard-of-care).
Non-crossover interactions are important to understand intervention mechanisms and
can be an important element in subsequent cost-benefit analyses.

• Retrospective subgroup analysis Before undertaking a retrospective hypothesis
generating subgroup analysis on existing RCT data, it is necessary to write an ML
subgroup statistical analysis plan (ML-SSAP) which should pre-specify the statistical
or ML algorithm and the set of potential stratifying variables along with any poten-
tial explanatory, prognostic factors. This must define the ‘standard-of-care’ treatment
(this could be different from when the trial was designed). More careful data prepa-
ration will increase the power to detect a true effect. The outcome variable should
ideally match that used in the main trial.

• Prospective subgroup analysis We recommend including a ML-SSAP with the
main trial protocol. In the same way as for a retrospective analysis, this must pre-
specify the variables included in the analysis and the algorithm used for the subgroup
discovery. If the outcome variable is different from the main trial outcome, this should
be explicit.

• Cross-validation method for an unbiased assessment of subgroups Aggrega-
tion of p-values from repeated two-fold data-splitting can provide an unbiased p-value
relating to the null hypothesis of ‘no crossover TEH’. This p-value can be taken at
face value and if below a pre-specified significance level, the proposed subgroups from
a full data analysis (fitting the same model to the full dataset) can be used to inform
further trials.

• Further exploratory analyses As data are accrued and analysed, further reactive
analyses may be of interest. Such exploratory analysis is recommended but should
be clearly distinguished from the main pre-specified subgroup analysis. The p-values
generated from these analyses can be denoted ‘q-values’ (qualitative p-values).

• Statistical notebooks The entire subgroup discovery process should be undertaken
using computational notebooks (e.g. RMarkdown, Jupyter). Combined with version
control tools such as github and cloud computing such as Code Ocean this allows for
a fully reproducible and transparent process.
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[25] Meinshausen N, Meier L, Bühlmann P. P-values for high-dimensional regression. Journal
of the American Statistical Association. 2009;104(488):1671–1681.

[26] Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann; 2016.

[27] Breiman L, Friedman J, Olshen R, Stone CJ. Classification and regression trees. Chapman
and Hall/CRC; 1984.

[28] Spiegelhalter D. Trust in numbers. Journal of the Royal Statistical Society: Series A
(Statistics in Society). 2017;180(4):1–16.

[29] Dondorp AM, Lee SJ, Faiz M, Mishra S, Price R, Tjitra E, et al. The relationship be-
tween age and the manifestations of and mortality associated with severe malaria. Clinical
Infectious Diseases. 2008;47(2):151–157.

[30] Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, et al. Arte-
sunate versus quinine in the treatment of severe falciparum malaria in African children
(AQUAMAT): an open-label, randomised trial. The Lancet. 2010;376(9753):1647–1657.

[31] White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria.
The Lancet. 2014;383(9918):723 – 735. doi:https://doi.org/10.1016/S0140-6736(13)60024-
0.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2018. ; https://doi.org/10.1101/330795doi: bioRxiv preprint 

https://doi.org/10.1101/330795
http://creativecommons.org/licenses/by-nc-nd/4.0/


[32] Hanson J, Lee SJ, Mohanty S, Faiz M, Anstey NM, Charunwatthana Pk, et al. A sim-
ple score to predict the outcome of severe malaria in adults. Clinical infectious diseases.
2010;50(5):679–685.

[33] Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread
of artemisinin resistance in Plasmodium falciparum malaria. New England Journal of
Medicine. 2014;371(5):411–423.

[34] White N. The parasite clearance curve. Malaria journal. 2011;10(1):278.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2018. ; https://doi.org/10.1101/330795doi: bioRxiv preprint 

https://doi.org/10.1101/330795
http://creativecommons.org/licenses/by-nc-nd/4.0/

