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México, Ciudad de México, México
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de México, México
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11 Miembro del Colegio Nacional
12 Biology Department, Stanford University, US
13 Instituto de Investigación para el Desarrollo con Equidad (EQUIDE), Universidad
Iberoamericana, Ciudad de México, México
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Abstract

Sustainability is a key concept in economic and policy debates. Nevertheless, it
is usually treated only in a qualitative way and has eluded quantitative analysis.
Here, we propose a sustainability index based on the premise that sustainable
systems do not lose or gain Fisher Information over time. We test this approach
using time series data from the AmeriFlux network that measures ecosystem
respiration, water and energy fluxes in order to elucidate two key sustainability
features: ecosystem health and stability. A novel definition of ecosystem health is
developed based on the concept of criticality, which implies that if a system’s
fluctuations are scale invariant then the system is in a balance between robustness
and adaptability. We define ecosystem stability by taking an information theory
approach that measures its entropy and Fisher information. Analysis of the
Ameriflux consortium big data set of ecosystem respiration time series is
contrasted with land condition data. In general we find a good agreement between
the sustainability index and land condition data. However, we acknowledge that
the results are a preliminary test of the approach and further verification will
require a multi-signal analysis. For example, high values of the sustainability index
for some croplands are counter-intuitive and we interpret these results as
ecosystems maintained in artificial health due to continuous human-induced
inflows of matter and energy in the form of soil nutrients and control of
competition, pests and disease.
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Introduction 1

Sustainability has been defined in many ways, but the most frequently-quoted definition 2

is from Our Common Future, also known as the Brundtland Report: ”Sustainable 3

development is development that meets the needs of the present without compromising 4

the ability of future generations to meet their own needs”. The vagueness of this 5

statement may suit the need for flexibility in policy objectives, but attempts to bring 6

greater precision to implementation have long been thwarted by multiple possible 7

interpretations [1]. So, despite considerable interest in the core idea of 8

sustainability [2, 3], it remains a poorly demarcated concept, eluding mathematical 9

definition except within the scope of a few restricted disciplines, and excluding 10

fundamental laws such as entropy [4]. There is no widely-accepted, precise, and testable 11

multidisciplinary definition of sustainability; and perhaps more importantly there is no 12

general theory of the subject, thereby preventing rigorous analysis and evidence-based 13

policy formulation. 14

Without precise mathematical definitions, a general theory, and a testable 15

hypothesis, it is virtually impossible to apply the scientific method to make progress in 16

any area of study. For example, together with economics and social, ecology is one of 17

the three dimensions of sustainability, yet macroecology is woefully underrepresented in 18

sustainability science [5]. While ecological principles are central to sustainability, their 19

use has been largely concerned with socio-environmental interactions, such as physical 20

limits on resource use by energy-demanding technology-based human societies. For 21

example, Burger et al. (2012) describe calculations that are consistent with analyses 22

reporting peak oil, fresh water, and phosphate, to examine how global stocks of these 23

important resources affect the patterns of global consumption decline and the likelihood 24

of global depletion [6, 7]. 25

From a basic ecological perspective, sustainability encompasses “the ability of one or 26

more entities, either individually or collectively, to exist and thrive (either unchanged or 27

in evolved forms) for lengthy timeframes, in such a manner that the existence and 28

flourishing of other collectivities of entities is permitted at related levels and in related 29

systems” [8]. From the multiplicity of elements considered in this definition, we identify 30

two core aspects relevant to ecological sustainability: ecosystem stability and health [9]. 31

As a whole, the concept of sustainability faces important challenges if it is to 32

consolidate as a scientific discipline. In this paper, we focus on the ecological dimension 33

of sustainability, particularly stability and health, using a thermodynamic-informational 34

framework. When we discuss stability we are doing so in a statistical sense rather that 35

in a formal system dynamics way, calculating for example, Routh-Hurwitz conditions. 36

We consider that this approach provides precise mathematical concepts and takes into 37

account fundamental constraints in ecology and system dynamics. 38

Ecosystem Health 39

Ecosystem health is a diffuse concept that has been defined several times since the late 40

1980’s [10]. This conceptual diversity has given rise to different measurement methods, 41

which in turn have generated a wide range of narratives related to ecosystem health [11]. 42

Ultimately it has become an ongoing priority for governments, scientists and managers 43

around the world [5]. 44

Originally, ecosystem health was conceived within a control-optimization perspective 45

in which health is defined as a desired management target or reference condition [12,13]. 46

ure 1 lays out a schematic relationship between the ontologies that result from 47

different perspectives. The top of the figure represents the ‘Natural’ perspective for 48

which ecosystem health is usually defined through structure assessment and ecological 49

functions. This involves the measurement of certain indicators, such as the lack of algal 50
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blooms in rivers [14, 15]; food web performance [16]; nutrient recycling and maintenance 51

of biodiversity (US National Research Council, 2005), and resilience to external 52

perturbations [17]. The bottom of the figure represents the ‘Human’ perspective that 53

understands the issue from a managerial standpoint, focusing on optimization and 54

control. 55

The definition of ecosystem health has entered the realm of multi- and 56

interdisciplinarity (horizontal line in Fig. 1). At the level of multidisciplinarity, 57

ecosystem health can be characterized by ecosystem services such as the provision of 58

clean drinking water [18]. As the idea of sustainability has permeated society, ecosystem 59

health has become increasingly associated with the integration of environmental, 60

economic and human domains [10,19]. 61

Fig 1. The narrative surrounding ecosystem health has shifted from a very disciplinary
framework, through multi, inter and transdisciplinarity, before finally being defined in
terms of complex systems.

Finally, the shift towards interdisciplinarity in science has led to a complexity-based 62

approach in which ecosystem health is conceived as a property of a complex system. A 63

dynamic system is characterized by a set of (state) variables. When assigned a 64

particular set of numeric values, these variables define the state of the system. There 65

are also evolution rules that describe the way in which the system transitions from any 66

one state to any other. Although the very definition of a complex system is still under 67

active discussion [20–24], in general a complex system emerges from a sufficiently large 68

number of elements that have strong enough (usually non-linear) interactions, or when 69

the state space changes fast enough in terms of observer’s scales of observation. These 70

qualities make it impossible to describe the behavior of the system in terms of the 71

simpler behavior of its components. 72

Within this narrative of system dynamics, complexity is usually studied by analyzing 73

the time series of the fluctuations in state variables that have been identified as central 74

to the dynamics of the system [25]. Ultimately, they are at the center of the modern 75

description of out-of-equilibrium dynamics [26]. 76

A typical analytical method is studying the time series through spectral and fractal 77

analysis, in particular through the Power Spectral Density (PSD) or Detrended 78

Fluctuation Analysis (DFA). It is often the case that these fluctuations exhibit scale 79
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invariance (e.g. when the power spectrum follows a power-law (S ∼ f−β), in which case 80

it is customary to compare and classify fluctuation dynamics according to their 81

similarity to three archetypal classes of noises: white (β ∼ 0), pink (β ∼ 1) and 82

Brownian (β ∼ 2) [27–30]. 83

It has also been reported in the literature that several complex systems display 84

behaviors related to dynamic criticality, usually associated with some kind of scale 85

invariance, and in many cases with pink noise [27,28,31,32]. 86

Following this line of thought, several authors have found evidence of dynamic 87

criticality in physiological processes such as heart activity, and have posited that it may 88

be a key feature of a healthy state. [33–35]. Some authors [36] strongly relate healthy 89

hearts associate scale-invariant noise in the region around 1/f noise and provide medical 90

evidence for it. In a recent paper reviewing criticality in the brain, [37] state that i) 91

Criticality is a widespread phenomenon in natural systems that provides a unifying 92

framework that can be used to model and understand brain activity and cognitive 93

function, and ii) that there is substantial evidence now supporting the hypothesis that 94

the brain operates near criticality. 95

Nevertheless, from a theoretical standpoint, the universality of criticality is still 96

under examination and is known as the Criticality Hypothesis, which states that 97

systems in a dynamic regime shifting between order and disorder, attain the highest 98

level of computational capabilities and achieve an optimal trade-off between robustness 99

and flexibility. Recent results in cell and evolutionary biology, neuroscience and 100

computer science have great interest in the criticality hypothesis, emphasizing its role as 101

a viable candidate general law in the realm of adaptive complex systems (see [38] and 102

references therein). 103

Our proposal in this paper, to address ecosystem health, is based on the criticality 104

framework and we measure it as the combination of scale invariance (as power laws in 105

Power Spectra) and a balance between adaptability and robustness (dynamic in the 106

neighborhood of a 1/f noise type). In this regard, [39] have pointed out that “the very 107

existence of such ubiquitous power laws implies the existence of powerful constraints at 108

every level of biological organization. The self-similar power law scaling implies the 109

existence of average, idealized biological systems, which represent a 0th order baseline 110

or point of departure for understanding the variation among real biological systems. 111

Real organisms can be viewed as variations on, or perturbations from, these idealized 112

norms due to influences of stochastic factors, environmental conditions or evolutionary 113

histories”. This scale invariance property manifests itself, for example, as power law 114

behavior. These power laws appear in countless phenomena including the statistics of 115

earthquakes, solar flares, epidemic outbreaks,etc. [40–43]. They are also a common 116

theme in biology [36,44–47]. Of particular interest for this paper are the examples of 117

many physiological and clinical time-series data that have a spectrum that decays as a 118

power of the frequency. This effect is often called 1/f noise, although powers of the 119

frequency, f, may appear [48]. Also, patterns of human and animal mobility often 120

exhibit scale-free features [49–52]. Moreover, a number of commonly observed statistical 121

patterns of natural-world data –such as Zipf’s law [42,53–55], Bendford’s law [56,57], 122

and Taylor’s law [58,59] - stem from underlying scale invariance, i.e. power-law 123

distributions [60]. 124

This universality of power laws may be due, as [61] proposes, as a result of the 125

optimization of energy, matter and information transport. The proposed common 126

mechanism underlies the idea that living things are sustained by the transport of 127

materials through linear networks that branch out to supply all parts of the 128

organism [61] and involves three principles or assumptions. First, in order for the 129

network to supply the entire volume of the organism, a space-filling fractal-like 130

branching pattern is required. Second, the final branch of the network (such as the 131
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capillary in the circulatory system) is a size-invariant unit. And third, the energy 132

required to distribute resources is minimized; this final restriction is basically equivalent 133

to minimizing the total hydrodynamic resistance of the system. The authors then claim 134

that scaling laws arise from the interplay between physical and geometric constraints 135

implicit in these three principles. 136

Furthermore, [62] showed that scale invariance emerge only at critical temperature 137

levels of a two dimensional Ising model – temperature levels in which the correlation 138

length diverges, which in practice means that the correlation length becomes very large 139

when compared to the scales of interaction of the system. And they also support the 140

conclusion that this property may be the key to the robustness and adaptability of 141

complex systems. 142

A balance between robustness and adaptability has already been recognized as an 143

important feature of sustainability by [63]. The authors state that sustainable systems 144

tend to be in an optimal regime where the capacity for the system to undergo 145

evolutionary change or self-organization consists of two aspects: i) It must be capable of 146

exercising sufficient directed power (ascendency for them, robustness for us) to maintain 147

its integrity over time and, on the other hand, ii) it must simultaneously possess a 148

reserve of flexible actions (adaptability in our narrative) that can be used to meet the 149

exigencies of novel disturbances. Then the authors argue that “systems with either 150

vanishingly small ascendency or insignificant reserves are destined to perish before long. 151

A system lacking ascendency has neither the extent of activity nor the internal 152

organization needed to survive. By contrast, systems that are so tightly constrained and 153

honed to a particular environment appear “brittle” in the sense of Holling (1986) or 154

“senescent” in the sense of Salthe (1993) and are prone to collapse in the face of even 155

minor novel disturbances. Systems that endure – that is, are sustainable – lie 156

somewhere between these extremes”. In our case, that optimal regime that lies 157

in-between is the criticality, mainly characterized by scale invariance. 158

If we study a system by its time series, and it is well accepted that this must be 159

done on the time-series of the fluctuations instead of the original state variable, then a 160

traditional place for looking for scale invariance is in its power spectrum S ∼ f−β . 161

When this happens, as the autocorrelation functions as the inverse Fourier transform of 162

the power spectrum of the signal C(τ) = F−1(S), then applying a scale transformation 163

in the time domain, τ → τ ′ = aτ , we obtain the autocorrelation function of the type 164

C(aτ) = aβ−1 (1)

for which the general solution of the equation is also a power law. In this way, the 165

correlations are zero for white noise, large for brown noise, and then pink noise is 166

between no correlation (that we associate with adaptation) and high correlation (that 167

we associate with robustness). Under this narrative, we propose that criticality is 168

recognizable in coarse grain by power laws in the power spectrum, and then the system 169

will be more critical if it is in the vicinity of beta = 1 (i.e., pink noise). When we relate 170

criticality with health, our proposal is in good agreement with [64], who found that 171

scale invariant and 1/f noise satisfy the unifying concept that physiological complexity 172

(pink is more complex that white or brown noise) is fundamentally related to the 173

adaptive capacity of the organism, which requires integrative, multiscale functionality. 174

In contrast, disease states, as well as aging, may be defined by a sustained breakdown of 175

long-range correlations. 176

Although we recognize that more work is needed to anchor the theory of criticality 177

to health in general, or to ecosystem health in particular, we nevertheless consider that 178

there is enough empirical evidence of the former, and there are justified reasons to 179

believe it could be valuable in the future. 180

Following this line of thought, several authors have found evidence of this dynamic 181
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criticality in physiological process such as heart activity, and have speculated that it 182

may be a key feature of a healthy state. [33–35] 183

Our proposal in this paper for measuring ecosystem health (Fig. 2) is based on this 184

idea of dynamic criticality as the combination of scale invariance and balance between 185

adaptability and robustness. 186

Fig 2. Our proposal for measuring the dynamic dimension of ecosystemic health is
based on the idea of criticality as the combination of scale invariance and balance
between adaptability and robustness (pink noise). By combining a scale invariance
index based on BIC values with the value of the scalar coefficients (beta) in power
spectra, we propose an Ecosystemic Health Index, whose maximum for beta values
equals 1, and that is associated with a balance between adaptability and robustness. In
this way, an ecosystem may lose health by losing robustness and exhibiting white-noise
dynamics, or by losing adaptability leading to Brownian-noise dynamics.

Initially we asked which environmental signal could be used as an analog of a 187

systemic physiological variable such as heart rate, and that is one of the most widely 188

used experimental variables? 189

We consider that potential candidates should be related to soil because it is a 190

complex system [65] that integrates several scales as well as the main ecosystemic 191

processes. On the one hand, its dynamics are defined by the interaction of different 192

subsystems such as the biosphere, atmosphere, geosphere and hydrosphere and all their 193

components [66], which in turn interact in the geographic space, generating different 194

pedogenetic processes related to climate or geoforms [67–69]. On the other hand, 195

according to [65], carbon flows also connect ecosystems in the temporal dimension, since 196

carbon persists in the soil as a kind of biogeochemical memory [70]. 197

Following the above logic, and since soil plays a central role in the flux of CO2, we 198
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decided to analyze the Ameriflux database that measures energy and matter (mainly 199

CO2) fluxes in America (mostly North America). 200

Ecosystem Stability (Out-of-equilibrium Thermodynamics) 201

Following [71], let us consider an abstract resource space in which we can define a vector 202

r̄i that represents a particular socio-ecological entity (a species, an environmental entity 203

such as a wetland, or a human community). In this way, the projection of the entity’s 204

vector r̄i over a resource axis represents the root mean square value of the resource 205

gradient that the entity i requires to subsist. 206

[71], proposes that the movement of an entity in this space implies changing the 207

resource gradient requirements as well as the strength of the interactions with the other 208

entities. Thus, an entity vector r̄i may exhibit length changes in the form of vibrations 209

(i.e. changes in a species population), small direction changes in the form of rotations 210

(i.e. niche plasticity) and larger changes in its direction (i.e. niche evolution). 211

Helmholtz discovered that, when left alone, all systems tend to more stable states of 212

greater longevity by reducing their free energy F as defined by 213

F = U − TS (2)

where U is the internal energy of the system given by interactions between the internal 214

constituents, T is its temperature (associated with randomness) and S its entropy. 215

Then, given the restrictions of the resource space, this optimization problem guides the 216

dynamics of the exploration of this space and hence the evolution of the strengths of the 217

interactions between entities and between entities and environment. Stability is reached 218

by minimizing Helmholtz free energy, and one way to achieve this is to maximize the 219

entropy of the whole system (not just a single component) [72]. 220

Ecosystem Stability (Fisher Information) 221

Mayer and co-workers [3] have proposed that Fisher information offers a robust method 222

to assess the stability of a system over time, being essentially able to aggregate multiple 223

variables, each one capturing different aspects of a system, and outputting a global 224

indicator of stability. 225

Following [73] and [3] let us consider the basic problem of estimating the real value 226

of a state variable θ. The estimation comes from an inference process from imperfect 227

observation y = θ + x in the presence of some random noise x. 228

This kind of measurement-inference process will hence be called ”smart 229

measurement” of θ whose result is an estimator θ̂ that is function of imperfect 230

observation θ̂(y). 231

This is a closed system, meaning that it’s well described by {y, θ̂, x} without the 232

need to consider additional sources of noise. Consider also that the estimator is 233

unbiased in terms of being a good estimator on average
〈
θ̂(y)

〉
= θ. In this case, the 234

mean-square error obeys the Cramer-Rao inequality 235

e2I ≥ 1, (3)

where I is the Fisher Information of the system, calculated as 236

I =

∫
dy

P0(y|θ)

[
dP0(y|θ)

dθ

]2
, (4)

in which P0(y|θ) is the probability density function of measuring a particular value of y 237

given the true value θ of the state variable in question. Then, since the error decreases 238
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as information increases, Fisher information may be understood as the quality of the 239

estimation θ from a smart measurement. 240

Then if the system is characterized by a phase space with m state variables xi that 241

define the phase vector s = (x1, ..., xi,..., xm) associated with a smart measurement y, 242

then we can prove that 243

I (s) =
1

T

T∫
0

s′′2

s′4
dt (5)

where T is the time period required for one cycle of the system; s′(t) is the tangential 244

speed and s′′(t) is scalar acceleration tangential to the system path in phase space. 245

Both are calculated in terms of the state variables xi as 246

s′ (t) =

√√√√ m∑
i

(
dxi
dt

)2

, (6)

s′′ (t) =
1

s′ (t)

m∑
i

(
dxi
dt

d2xi
dt2

)
. (7)

A simple and robust approach to calculating tangential velocity and acceleration 247

uses the three-point difference scheme 248

dxi
dt

=
αxi(t+ ∆ta)− (α2 − 1)xi(t)− xi(t− α∆ta)

α(α+ 1)∆ta
(8)

d2xi
dt

=
αxi(t+ ∆ta)− (α+ 1)xi(t)− xi(t− α∆ta)

α(α+ 1)∆t2a/2
(9)

where xi(t) is a central data point, xi(t−∆ta) is the later point to the central xi and 249

xi(t−∆tp) is the previous point. For evenly-spaced points ∆ta = ∆tp and 250

α = ∆tp/∆ta is the ratio of the previous and following time space. 251

The thesis proposed by [74] is that a change in Fisher information can signal a 252

regime change in a dynamic system, and is based on the following premises: (l) if a 253

change in the dynamic regime is observable then there must be a corresponding change 254

in the measurable variables of the system; (2) an observable change in the measurable 255

variables implies a corresponding change in the distribution of system states; and (3) a 256

change in the distribution of system states implies a change in the system’s Fisher 257

information. An interesting feature of this proposal is that it gives us a way to measure 258

order, since very little information would be inferred from a disordered (non-correlated) 259

system with no observable patterns. This would translate to a Fisher information that 260

approaches zero. On the other hand, the highest values of information are obtained 261

from ordered (highly-correlated) systems that exhibit patterns in behaviour. 262

Following these ideas, [75] has proposed that: 263

• Fisher information is a function of the variability of the observations. Low 264

variability leads to high Fisher information and high variability leads to low Fisher 265

information. 266

• Systems in stable dynamic states have constant Fisher information. Systems 267

losing organization migrate toward higher variability and lose Fisher information. 268

• Self-organizing systems decrease their variability and acquire Fisher information. 269
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These considerations led them to propose a sustainability hypothesis: “sustainable 270

systems do not lose or gain Fisher information over time.” From equations (5) and (6) 271

this means that the system is in a state of constant tangential velocity and acceleration 272

in the phase space, and therefore, in a stable state. 273

Methods 274

The data were taken from the AmeriFlux researcher-driven network of sites in North, 275

Central and South America, measuring ecosystem respiration, water, and energy fluxes. 276

The network was established to provide compatible data from a large number of sites 277

representing major climate and ecological biomes, including tundra, grasslands, 278

savannah, farmland, and coniferous, deciduous, and tropical forests. Each site has 279

instruments tailored to suit each ecosystem. The network grew from about 15 sites in 280

1997 to more than 110 active sites registered today. Sixty-one other sites, now inactive, 281

have flux data stored in the network’s database. In 2012, the U.S. DOE established the 282

AmeriFlux Management Project (AMP) at Lawrence Berkeley National Laboratory 283

(LBNL) to support the broad AmeriFlux community and the AmeriFlux sites. The data 284

is publically available from the Ameriflux database (http://ameriflux.lbl.gov). The time 285

series measures CO2 flux fluctuations every half hour. 286

First, we performed an Analytical Hierarchical Process (AHP) using the following 287

criteria: data requirements for analysis, ecological relevance and quantity of data 288

available. From this analysis, ecosystem respiration was identified as the best measure 289

of ecological processes. 290

We did not use data from intensively managed farmland sites, because they are 291

subject to high external inputs of nutrients, pesticides and herbicides and are artificially 292

maintained in a temporary ecological condition. In the absence of external control, they 293

would markedly change their physiological signals and so their ecological state should be 294

considered fragile. 295

In order to derive the Criticality Index and a Scale Invariance Index from annual 296

Ameriflux site data we used the following steps. 297

Firstly, we extracted the desired variable from the raw file and identified any missing 298

or invalid values in the data series. We then scanned for gaps in the time series, as the 299

computation of the power spectrum demands that the time series have constant time 300

intervals between data values. When the gaps are small (a few data values) it is possible 301

to perform a simple interpolation to fill in the gap. However, to ensure that this 302

interpolation does not alter the data, we only analyzed time series with no gaps at all. 303

Secondly, we filtered out long-term trends and obvious periodicities from the time 304

series. Although the Ameriflux records are not expected to exhibit long-term trends, we 305

still computed and subtracted a linear trend for the whole time series for each site. If no 306

trend was present the data was left essentially unchanged. Daily periodicities are to be 307

expected for many of the variables. While there are many techniques to extract 308

periodicities for time series, we found that applying a digital infinite impulse response 309

filter worked well for the Ameriflux records. In particular, we used scipy’s notch filter, 310

which is a band-stop filter that rejects a narrow bandwitdh around a chosen frequency 311

and leaves the rest of the spectrum unchanged. We did this three times: once around a 312

frequency of one cycle per day using a quality factor Q=12, and then twice with a 313

narrower band with (Q=30) for the first two harmonics of this frequency. After this 314

step the time series was considered to be trend-free and most high-energy periodicities 315

are removed. We termed this filtered time series the ‘fluctuations’. 316

The third step was to apply a traditional spectral analysis using a Fast Fourier 317

Transformation of the time series and to compute the spectral index by fitting 318

power-laws to the spectrum. Two fits were obtained. The first is a direct single 319
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power-law fit obtained by fitting a straight line to the logarithmic spectrum through 320

least-squares linear regression. The negative of the slope of this line is the first spectral 321

index, β0, which is a measure of criticality. We used this value to define the Criticality 322

Indicator (Icrit). 323

The second fit model is a piecewise-defined and double power-law function, 324

composed of a low-frequency power-law with a spectral index β1, followed by a 325

high-frequency power-law with a spectral index β2, with a crossover frequency to be 326

determined. We employed the scipy curve-fit routine (a nonlinear least-squares 327

optimizer that uses the Trust Region Reflective algorithm) to obtain the best-fit double 328

power-law model for each of the fluctuation time series. In order to obtain a measure of 329

scale invariance we then compare the two power-law models by computing their 330

Bayesian Information Criterion (BIC) using the residual sum of squares of the models 331

and the relevant number of parameters for each one, including the data variance (i.e. 3 332

for the single power-law model, 5 for the double-power model). The BIC provides a 333

model comparison that penalizes a model for having more parameters. The BIC values 334

of the models then yields the Scale Invariance Index (Iscale). 335

We defined the Criticality Index (Icrit) as a function of the ”distance” to a 1/f type 336

of signal (β ∼ −1) in such a way that it equals 1 when β = −1 and zero when 337

β <= −0.5 and β >= 1.5. Between those values Icrit grows and decreases linearly as 338

Icrit = 2β − 1 and Icrit = −2β + 3. 339

In the same manner, we defined the Scale Invariance Index (Iscale) in terms of 340

model selection between a one linear model or a two lines model for fit the PSD using 341

the BIC. Taking the BIC model difference dBIC = BIC(model1)−BIC(model2), 342

Iscale is zero for dBIC <= 2 and 1 for dBIC > 10. For intermediate values it 343

increases linearly as Iscale = (1/8) ∗ dBIC − 1.75. 344

Then, we define the Ecosystemic Health Index (Ih) following the functional form of 345

the Human Development Index (HDI) as the square root of the criticality index times 346

the scale index. 347

Ih =
√
Icrit ∗ Iscale (10)

To derive the value of ecosystem stability under the Michaelian framework based on 348

entropy [71], we used the Statcomp library in R [76,77], which calculates information 349

measures for Time Series, including entropy, complexity and Fisher information, which 350

we report in this work. This library has been used in a range of different disciplinary 351

studies, including medicine [79–86], physical systems [87–91], economic [92–95] and 352

environmental applications [96–98]. Statcomp [76] is based on [78] and calculates 353

simple complexity measures using the concept of permutation entropy defined by the 354

order relations among values of a time series. Permutation entropy assumes that 355

patterns may not have the same probability of occurrence, and that this probability 356

may unveil relevant knowledge about the underlying system. In the same way, we use 357

the fis function in the Statcomp library to calculate Fisher information over the annual 358

fluctuation time series. 359

Results 360

In Fig. 3 we show the land condition 361

(http : //www.natureserve.org/conservation−tools/modeling−landscape−condition) 362

variable used as validation in terms of noise type, see Hak and Comer [100]. The colors 363

represent ecosystem types in the IGBP nomenclature. We expected that if criticality is 364

a good proxy for ecosystem health, then sites with 1/f dynamics should have the 365

highest land condition values. 366
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By assessing an ANOVA test using land condition as a proxy variable and grouping 367

data by noise type (color) we obtain statistically significant differences (F = 28.16; 368

Pr(> F ) = 2.2x10−16 ∗ ∗∗) between noise types, although it is clear that this difference 369

between pink and white might be marginal , perhaps because more data is needed. 370
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Fig 3. In this figure we show the Land Condition variable used as validation in terms
of noise type. Color scale corresponds to ecosystem types in the IGBP nomenclature
gaia.agraria.unitus.it/IGBPdesignations.pdf

Since land condition is not a dynamic measurement, it is not expected to have 371

strong correlation with our measurement of ecosystemic health, but it is consistent in 372

statistical terms. Sites with pink noise (β ∼ −1) behavior are statistically in better land 373

condition that those sites with white (β ∼ 0) or brown (β ∼ −2) noise type. So we may 374

have cases of sites with an external non-health condition that nevertheless exist in a 375

systemically healthy state. An analogy would be a person that has a broken arm: this 376

state of non-health means nothing in terms of systemic processes such as heart activity. 377

Conversely, we also have sites that are externally healthy, but systemically non-healthy. 378

An analogy would be the cases of Sudden Cardiac Death in young athletes [99]. 379

In Fig. 4 we show a boxplot for beta values for each ecosystem type using the 380

IGBPP nomenclature again. As expected, most ecosystems fall into pink noise behavior. 381

And in general, we found that ecosystems out of criticality are older forests, or have 382

been altered by human activity or events such as wildfires. One example is the UA-Me1 383

(Metolius-Eyerly burn) site, which is an intermediate aged ponderosa pine forest in 384

Oregon-USA that was severely burned in 2002 by the Eyerly wildfire, a stand-replacing 385

event in which all trees were killed. 386
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Fig 4. As expected, most ecosystems fall into pink noise. In general, we found that
ecosystems out of criticality are older forests or have been altered by human activity or
events such as wildfires.

Fig. 5 shows the values of our Ecosystemic Health Index for all ecosystem types 387

(IGBP). For this data set, it seems that Ecosystemic Health is basically driven by the 388

value of beta. 389
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Fig 5. Values of our Ecosystemic Health Index for all ecosystem types (IGBP). The
color of each data point corresponds to the type of noise (white, pink and brown)
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Our results (see Fig. 6) are also consistent with Michaelian [71] ideas about 390

ecosystem stability and entropy, where stable ecosystems (higher values of entropy) 391

correspond to healthier states (criticality - pink noise). 392

Again we have significant difference between noise types, with pink noise (β ∼ −1) 393

behavior being significant higher value of statistical stability than white (β ∼ 0) or 394

brown (β ∼ −2) noise. 395
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Fig 6. Permutation entropy boxplot in terms of noise color

We see in Fig. 7 a very interesting behavior for permutation entropy as a function of 396

beta. We see that entropy reaches its highest values around the range of beta values for 397

which pink noise is defined, meaning that the most stable behavior corresponds to a 398

criticality dynamic. 399

Interestingly enough, as proposed by [21] we see in Fig. 8 a quadratic relation 400

between information (i.e. entropy) and complexity: 401

C = aI(1− I) (11)

We think that this might be the first time this relation is found directly in the data 402

and not from modeling. 403

And finally, our results are consistent with [75]: (a) Fisher information is a function 404

of the variability of the observations such that low variability leads to high Fisher 405

information and high variability leads to low Fisher information; (b) Systems in stable 406

dynamic states have constant Fisher information. Systems losing organization migrate 407

toward higher variability and lose Fisher information; (c) Self-organizing systems 408

decrease their variability and acquire Fisher information. The authors [75] under these 409

considerations propose a sustainability hypothesis: “sustainable systems do not lose or 410

gain Fisher information over time.” 411

In Fig. 9 we show the evolution of Fisher information for the Harvard Forest site 412

(US-Ha1). We can see that from 1991 to 2003 the ecosystem was in a stable state of low 413

health (combination of white and pink noise) with a low Fisher information value 414

(around 0.025). After that, it enters a process of self-organization gaining Fisher 415

information and starts to stabilize around a higher Fisher information value (around 416
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Fig 7. Permutation entropy scatter plot in terms of β value. Entropy reaches highest
values around the beta values range for which pink noise is defined.
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Fig 8. Complexity as a quadratic function of Permutation Entropy.

0.15), dominated by healthier pink noise dynamics, and therefore, according to 417

Cabezas’s hypothesis, a more sustainable state. 418

Since criticality (pink noise) appears to be the most healthy and stable (sustainable) 419

type of dynamics, we use it as a leaf variable in a classification tree using the C4.5 420

algorithm in WEKA (Fig. 10). Results are consistent with what was previously 421

described: sites with an entropy value lower than 0.85 are out of criticality, that is, in 422
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Fig 9. Evolution of Fisher information for the Harvard Forest site (US-Ha1) from 1991
to 2003. Pink points are 1 year time series with a pink noise kind of dynamics
(0.5 < β < 1.5) and blue point correspond to 1 year time series with a white noise
dynamics (β ≤ 0.5)

non-healthy and non-sustainable states. Sites with a land condition value under 30 are 423

also out of criticality and hence in non-healthy and non-sustainable states. Pink noise in 424

this branch of the tree is a spurious result because, just as with intensive crop lands, 425

this Sherman Island site (US-Snd) is known to be very degraded but under intensive 426

control by the California Department of Water Resources, so this result is a false 427

positive. Specific ecosystem types with a combination of entropy values higher than 0.85 428

and Land Condition value higher than 30 are in healthy, stable and therefore 429

sustainable states. The rest of the tree is harder to interpret, and individual site 430

histories might play an important role (events of wildfires, site management, and so on.) 431

In Fig. 11 we present the corresponding maps using a combination of circle size and 432

color to encode one or two variables of interest. 433

Finally we show the complete Sustainability Index as the square root of the Health 434

Index times the Stability Index Fig. 12. 435

Discussion and conclusions 436

A complexity perspective based on information theory seems to be a promising starting 437

point to develop a general framework for the measurement of sustainability. 438

We showed that the use of criticality, defined by scale invariance and pink noise 439

behavior, may be one way to measure systemic ecosystem health. We complement the 440

analysis using a non-dynamic variable, in this case land condition. In general, we found 441
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Fig 10. Since criticality (pink noise) appears to be the most healthy and stable
(sustainable) type of dynamics, we use it as a leaf variable in a classification tree using
the C4.5 algorithm in WEKA.

that sites with pink noise (β ∼ −1) behavior are statistically in better land condition 442

that those sites with white (β ∼ 0) or brown (β ∼ −2) noise type. Interestingly enough, 443

one may find systems with good land condition but in low systemic health and vice 444

versa. 445

We interpret the first case, where we have high values of land condition but low 446

values of Ecosystem Health, in terms of an analogy with human health considering 447

phenomena such as Sudden Cardiac Death in young athletes [99]. Consider an Olympic 448

athlete in their twenties: it would be difficult to think of someone with better external 449

health qualities, and yet this athlete could drop dead on the track due to this syndrome, 450

which is related to systemic health. On the other hand, consider a person with a broken 451

arm (a clear external signal of non-health) but perfectly healthy in terms of heart, brain 452

and general system functioning. Additionally, we identified a third case for intensively 453

managed ecosystems that, as in this analogy, matches a patient in intensive care who is 454

maintained in some form of artificial health using life-support devices. 455

We recognize that as usually happens with complex systems: the basis of the 456

configuration space of the problem is not known a priori. Whether ecosystem 457

respiration is the correct or only “physiological” signal for Ecosystemic Health 458

measurements remains an open question. 459

Our results are consistent with stability ideas developed by Michaleian, where high 460

entropic sites are also in criticality. We refer to a case study where our results are also 461

in good agreement with the Fisher information framework for system stability 462

developed by Mayer and co-workers [3]. In this study, stable (more sustainable) systems 463

do not lose or gain Fisher information over time. 464

For future work, other sources of time series should be systematically explored, for 465

example data already available in public repositories such as: 466

• http://dataportal-senckenberg.de/knb/ 467
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Fig 11. In this map we represent the type of noise in a color scale, and land condition
as size of the circles.

• https://www.st.nmfs.noaa.gov/copepod/time-series/ 468

• https://eco.confex.com/eco/2017/webprogram/Paper62280.html 469

• https://lagoslakes.org/ 470

In particular we think that time series from main biogeochemical processes could be 471

good candidates for systemic ecosystem physiological signals. For example, biologically 472

available nitrogen (fixed N) limits the fertility of much of the ocean and data is 473

available in the NOAA link above. 474

Finally, we acknowledge that more data and controlled experiments would be 475

necessary to understand complicated patterns that emerge from current analysis. 476
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et al. Criticality and long-range correlations in time series in classical and
quantum systems. Physical Review E. 2011;84(1):016224.
doi:10.1103/PhysRevE.84.016224.

29. Kleinen T, Held H, Petschel-Held G. The potential role of spectral properties in
detecting thresholds in the Earth system: application to the thermohaline
circulation. Ocean Dynamics. 2003;53(2):53–63. doi:10.1007/s10236-002-0023-6.

30. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL.
Mosaic organization of DNA nucleotides. Physical Review E.
1994;49(2):1685–1689. doi:10.1103/PhysRevE.49.1685.
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84. Silva A, Campos S, Monteiro J, Venâncio C, Costa B, Guedes de Pinho P, et al.
Performance of Anesthetic Depth Indexes in Rabbits under Propofol Anesthesia.
Anesthesiology. 2011;115(2):303–314. doi:10.1097/ALN.0b013e318222ac02.

85. Frank B, Pompe B, Schneider U, Hoyer D. Permutation entropy improves fetal
behavioural state classification based on heart rate analysis from biomagnetic
recordings in near term fetuses. Medical & Biological Engineering & Computing.
2006;44(3):179–187. doi:10.1007/s11517-005-0015-z.

86. Parlitz U, Berg S, Luther S, Schirdewan A, Kurths J, Wessel N. Classifying
cardiac biosignals using ordinal pattern statistics and symbolic dynamics.
Computers in Biology and Medicine. 2012;42(3):319–327.
doi:10.1016/j.compbiomed.2011.03.017.

87. Soriano MC, Zunino L, Larger L, Fischer I, Mirasso CR. Distinguishing
fingerprints of hyperchaotic and stochastic dynamics in optical chaos from a
delayed opto-electronic oscillator. Optics Letters. 2011;36(12):2212.
doi:10.1364/OL.36.002212.

June 4, 2018 23/24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2018. ; https://doi.org/10.1101/330415doi: bioRxiv preprint 

https://cran.r-project.org/package=statcomp
https://doi.org/10.1101/330415
http://creativecommons.org/licenses/by-nc-nd/4.0/


88. Wu JG, Tang X, Wu ZM, Xia GQ, Feng GY. Parallel generation of 10 Gbits/s
physical random number streams using chaotic semiconductor lasers. Laser
Physics. 2012;22(10):1476–1480. doi:10.1134/S1054660X12100246.

89. Kowalski AM, Mart́ın MT, Plastino A, Rosso OA. Bandt–Pompe approach to the
classical-quantum transition. Physica D: Nonlinear Phenomena.
2007;233(1):21–31. doi:10.1016/J.PHYSD.2007.06.015.

90. Kowalski AM, Mart́ın MT, Plastino A, Rosso OA, Casas M. Distances in
Probability Space and the Statistical Complexity Setup. Entropy.
2011;13(6):1055–1075. doi:10.3390/e13061055.

91. Tiana-Alsina J, Torrent MC, Rosso OA, Masoller C, Garcia-Ojalvo J.
Quantifying the statistical complexity of low-frequency fluctuations in
semiconductor lasers with optical feedback. Physical Review A.
2010;82(1):013819. doi:10.1103/PhysRevA.82.013819.

92. Zunino L, Soriano MC, Rosso OA. Distinguishing chaotic and stochastic
dynamics from time series by using a multiscale symbolic approach. Physical
Review E. 2012;86(4):046210. doi:10.1103/PhysRevE.86.046210.
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