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ABSTRACT 22 

It is not understood what evolutionary factors drive some genes to be expressed 23 

at a higher level than others. Here, we hypothesized that a gene’s function plays an 24 

important role in setting expression level. First, we established that each S. cerevisiae 25 

gene is maintained at a specific expression level by analyzing RNA-seq data from 26 

multiple studies. Next, we found that mRNA and protein levels were maintained for the 27 

orthologous genes in S. pombe, showing that gene function, conserved in orthologs, is 28 

important in setting expression level. To further explore the role of gene function in 29 

setting expression level, we analyzed mRNA and protein levels of S. cerevisiae genes 30 

within gene ontology (GO) categories. The GO framework systematically defines gene 31 

function based on experimental evidence. We found that several GO categories contain 32 

genes with statistically significant expression extremes; for example, genes involved in 33 

translation or energy production are highly expressed while genes involved in 34 

chromosomal activities, such as replication and transcription, are weakly expressed. 35 

Finally, we were able to predict expression levels using GO information alone. We 36 

created and optimized a linear equation that predicted a gene’s expression based on 37 

the gene’s membership in 161 GO categories. The greater number of GO categories 38 

with which a gene is associated, the more accurately expression could be predicted. 39 

Taken together, our analysis systematically demonstrates that gene function is an 40 

important determinant of expression level.  41 
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INTRODUCTION 42 

Proteins play critical roles in cellular metabolism, structure and homeostasis. 43 

Each step of gene expression is intricately regulated to ensure that the abundance of 44 

each protein is appropriate for the cellular condition (Wittkopp 2014).  With recent 45 

advances in protein quantitation, it has been possible to ascertain “absolute” protein 46 

abundances (Vogel and Marcotte 2012; Liu et al. 2016).. These technologies have 47 

revealed that the steady-state abundance of each protein remains similar across studies 48 

(Conesa et al. 2016), suggesting that there is a set point for each protein. The steady-49 

state abundance of each protein is highly correlated with that of orthologous proteins 50 

across diverse taxa (Schrimpf et al. 2009; Laurent et al. 2010; Khan et al. 2013). Since 51 

orthologs are known to share function (Dolinski and Botstein 2007), the fact that protein 52 

abundance is widely conserved suggests that the function of each protein is important in 53 

determining its abundance. 54 

 55 

It is expected that, through evolutionary forces, protein abundance reaches a 56 

level that maximizes the fitness of the organism. Two opposing factors influence the 57 

expressed level of a protein: the cost of protein synthesis drives down expression while 58 

the biochemical need for the protein drives up expression, ultimately resulting in a level 59 

that maximizes fitness (Wagner 2005; Dekel and Alon 2005; Lang et al. 2009). We 60 

hypothesize that this biochemical need can be predicted by the protein’s function, as 61 

captured in the gene ontology (GO) framework. Taking this one step further, we 62 

propose that the GO terms describing a gene product can be used to predict protein 63 

abundance. Thus, genes that share a GO term will exhibit similar protein abundances 64 
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because the proteins work with related biochemical parameters. Gene ontology (GO) 65 

attempts to define three aspects of a gene’s function (molecular function, biological 66 

process, and cellular component) and these aspects can be used to think about how 67 

function may influence expression level. For example, proteins with the same molecular 68 

function (e.g. isomerase activity) may have comparable Michaelis-Menten kinetics (e.g., 69 

Km, kcat) and work on substrates with related concentrations. Proteins that participate in 70 

the same biological process (e.g., cytoplasmic translation) are components of a 71 

pathway that may have similar flux at each step. Proteins within the same cellular 72 

component (e.g., nucleus) are confined to the same physical volume. Supporting the 73 

idea that gene function determines abundance, it has been shown in genome-wide 74 

mRNA and protein studies that transcription factors exhibit low abundance (Drawid et al. 75 

2000; Ghaemmaghami et al. 2003; Vaquerizas et al. 2009) while protein synthesis and 76 

metabolism genes exhibit high abundance (Velculescu et al. 1997; Jansen and Gerstein 77 

2000; Nagalakshmi et al. 2008). 78 

 79 

In this study, we took a systematic genome-wide approach to investigate whether 80 

S. cerevisiae gene function (as indicated by gene membership in GO categories) is 81 

related to gene expression level. S. cerevisiae is suitable for this study because cell 82 

type-specific expression is not an issue, several genomic studies of RNA and protein 83 

abundance have been performed, and a large proportion of genes have been well-84 

annotated. As an indicator of expression level, we mainly relied on mRNA abundance 85 

(though we confirmed some of our findings with protein abundance data) because 86 

protein abundance measurements are not consistent between studies and are limited in 87 
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their genome-coverage (Vogel 2013; Liu et al. 2016). Moreover, with the recent 88 

improvement of data quality, it has been found that mRNA levels are strong predictors 89 

of protein levels (Csárdi et al. 2015; Li et al. 2017), in contrast to earlier studies showing 90 

a weaker correlation between mRNA and protein abundance (Maier et al. 2009). In this 91 

study, we found that mRNA and protein levels of S. cerevisiae genes are highly 92 

correlated to levels of orthologous genes in S. pombe, supporting the notion that gene 93 

function, which is shared among orthologues, determines expression level. Then, we 94 

statistically analyzed the set of genes within each of 161 GO categories and found that 95 

many GO categories exhibit statistically significant expression extremes. For example, 96 

genes involved in translation or the cell wall are highly expressed while genes involved 97 

in chromosomal activities, such as replication and transcription, are weakly expressed. 98 

Furthermore, we wanted to test whether GO categories could be used to predict gene 99 

expression so we developed and optimized a linear model in which GO categories could 100 

be used to determine expression. Using this method, we were able to predict 101 

expression of S. cerevisiae and S. pombe genes with GO category information alone. 102 

Together, these data show that the function of a gene is a determinant of its expression 103 

level, adding to our understanding of the evolution of gene expression.  104 
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MATERIALS AND METHODS 105 

S. cerevisiae datasets 106 

RNA-seq datasets were downloaded from NCBI Gene Expression Omnibus (GEO) or 107 

Sequence Read Archive (SRA). S. cerevisiae sets included SRA048710 (Risso et al. 108 

2011), GSE43002 (Baker et al. 2013), GSE61783 (Adhikari and Cullen 2014), 109 

GSE52086  (Martín et al. 2014), GSE57155 (Fox et al. 2015), and GSE85595 (Bendjilali 110 

et al. 2017). Datasets that were published as SRA files were converted to FASTQ files 111 

with the SRA toolkit (Leinonen et al. 2011), trimmed with the FASTQ Quality Trimmer 112 

(Blankenberg et al. 2010) using a quality score of ten, mapped to the R64.1.1 2011-02-113 

03 yeast genome (Engel et al. 2014) with TopHat2 (Kim et al. 2013), and converted into 114 

raw counts per gene with HTSeq (Anders et al. 2014). Gene counts were normalized for 115 

gene length and the total number of sequencing reads, thus generating RPKM (Reads 116 

Per Kilobase of transcript per Million mapped reads) (Mortazavi et al. 2008). In studies 117 

that did not provide the total number of mapped reads, the total number of reads that 118 

mapped to genes was used. Each replicate within a study was treated individually when 119 

averaging all replicates together; there were 18 total S. cerevisiae RNA-seq replicates. 120 

Protein abundance in S. cerevisiae was determined by mass spectrometry (Lawless et 121 

al. 2016). Paralogous proteins could not be distinguished in this study so were removed 122 

from our analysis, leaving absolute abundances for 1103 unique proteins. Gene names 123 

in all datasets were converted to systematic gene names using gene names from the 124 

Saccharomyces Genome Database (SGD) (Cherry et al. 2012). Cell cycle data 125 

generated in a separate study (Spellman et al. 1998) were downloaded from SGD. File 126 
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S1 contains S. cerevisiae gene names and normalized expression data. File S5 127 

contains gene ontology (GO) SLIM categories for each gene, downloaded from SGD.  128 

 129 

S. pombe expression datasets 130 

S. pombe gene names and their respective S. cerevisiae orthologues were obtained 131 

from PomBase (Wood et al. 2012; McDowall et al. 2015). S. pombe RPKM values were 132 

averaged from two RNA-seq datasets: GSE74411 (Mukherjee et al. 2016) and 133 

GSE80349 (Shah et al. 2016). Protein abundance in S. pombe was determined by 134 

integrating data from several studies (Wang et al. 2015); abundance data were 135 

downloaded from the Protein Abundance Database (PaxDb). File S2 contains S. pombe 136 

gene names and normalized expression data. 137 

 138 

Expression of each GO category 139 

The expression of genes within each GO category (e.g., “mRNA processing”) was 140 

summarized by four metrics: mean RPKM, median RPKM, mean rank median rank. For 141 

ranks, GO categories were ordered from least to highest RPKM (mean or median) and 142 

given a rank. Using these metrics, the expression of each GO category was compared 143 

to that of all genes. To determine whether the GO category differed significantly from all 144 

genes, the metric was compared to the respective metric of a randomly-selected set of 145 

the same size. This comparison was performed with 107 iterations, counting the number 146 

of iterations that resulted in a metric more extreme than the original metric for the 147 

category. More extreme refers to either tail of the distribution, depending on whether the 148 

original metric for the category was higher or lower than all genes. Thus, p = (number of 149 
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iterations resulting in a more-extreme metric) / 107, and the p-value refers to the 150 

probability that the expression of genes within a GO category is either higher or lower 151 

than all genes by chance. This was performed in the R statistical language (Team 152 

2015), as shown in File S6. The p-values were corrected for multiple hypothesis testing, 153 

using the BH method (Benjamini and Hochberg 1995).  154 

 155 

Prediction 156 

The RPKM level of each gene was predicted based on its inclusion in each of the 163 157 

GO categories, according to this linear equation: 158 

E
g
  =   

1 
GO1

g  +  
2 
GO2

g  
+  …

  
+ 

163 
GO163

g 
     (Equation 1) 159 

where Eg represents the predicted expression level for gene, g; 1 through 163 are 163  160 

coefficients to be optimized; and GO1
g through GO163

g are binary numbers signifying 161 

whether gene g is present (=1) or absent (=0) in the respective GO category. 162 

The 163  values were adjusted over 106 iterations using a random walk, with the 163 

goal of maximizing the correlation between the predicted expression (log10) and the 164 

actual RPKM (log10) for all genes. To begin, one of the 163  values was randomly 165 

chosen and then changed randomly up or down, with a step size of 1. If the change 166 

increased the correlation, then this specific change was repeated. To avoid reaching a 167 

local maximum, the change was repeated only 90% of the time. If the change 168 

decreased the correlation, then another random  value was chosen and changed. The 169 

iterations continued until a maximum correlation was achieved. This was carried out in 170 

R, as shown in File S7. 171 

 172 
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Data availability 173 

File S1 lists S. cerevisiae genes and associated expression and cell-cycle data. File S2 174 

lists S. pombe genes and associated orthologue and expression data. File S3 lists GO 175 

categories and associated expression and statistics data. File S4 shows starting seeds 176 

and resulting beta values for 10 independent random walks. File S5 lists S. cerevisiae 177 

genes and their GO Slim categories, adopted from https://www.yeastgenome.org. File 178 

S6 is the R script which determines the significance of gene expression within each GO 179 

category. File S7 is the R script which performs a random walk to predict expression. 180 

Figure S1 depicts mRNA abundance across studies. Figures S2, S3, and S4 show the 181 

expression of all genes within 100 GO processes, 40 GO molecular functions, and 21 182 

GO cellular components, respectively. Figure S5 depicts the expression of cell cycle 183 

genes vs. non-cell cycle genes. Figure S6 shows the expression of genes within specific 184 

cell-cycle phases. Figure S7 shows that RPKM is correlated to protein abundance. 185 

Figure S8 compares the protein and RPKM datasets, regarding the number of genes 186 

per GO category. Figure S9 shows two independent random walks, to predict RPKM 187 

levels, generated similar  coefficients. Figure S10 graphs predicted vs. actual 188 

expression, with the “Cytoplasmic translation” genes colored in red. Figure S11 graphs 189 

predicted vs. actual expression of “Cytoplasmic translation” genes, with genes exhibiting 190 

an identical predicted expression value of 197.8 colored in red. Figure S12 shows the 191 

distribution of how many GO categories describe each gene. Figure S13 shows that GO 192 

categories can be used to predict protein abundance, using a random walk. Figure S14 193 

shows two independent random walks, to predict protein abundance, generated similar 194 
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 coefficients. These files have been submitted to 195 

https://gsajournals.figshare.com/submit.  196 
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RESULTS 197 

 198 

S. cerevisiae genes exhibit an expression set point 199 

We first evaluated whether each S. cerevisiae gene exhibits consistent steady-200 

state mRNA abundance relative to all other genes. We monitored mRNA levels across 201 

eighteen independent samples drawn from six RNA-seq studies using the standard lab 202 

strains, S288C and Sigma, grown in rich media at 30°C. Transcript levels were 203 

calculated as RPKM values (Reads Per Kilobase of transcript per Million mapped 204 

reads), which have the benefit of allowing between-gene comparisons of mRNA 205 

abundance (Mortazavi et al. 2008). Figure S1 shows that the mRNA abundance of each 206 

gene is highly correlated across studies (r = 0.69 to 0.93). These results indicate that 207 

each gene is maintained at an expression “set point.” 208 

 209 

S. cerevisiae expression levels are correlated with orthologous genes in S. pombe 210 

It has been shown that orthologous genes, which share function, between a 211 

diverse set of species including S. cerevisiae, C. elegans, D. melanogaster and H. 212 

sapiens exhibit highly similar abundances of both RNA and protein (Schrimpf et al. 213 

2009; Laurent et al. 2010; Khan et al. 2013), supporting the idea that function has an 214 

influence on abundance. We confirmed that this is the case even when comparing 215 

orthologous genes between S. cerevisiae and S. pombe, two species separated by 330-216 

420 million years of evolution (Sipiczki 2000). Both mRNA and protein levels of 217 

orthologous genes are highly correlated between these yeast species (Figure 1). This 218 
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result further supports the hypothesis that gene function, which is conserved among 219 

orthologues, is important in determining expression levels. 220 

 221 

Evaluating the expression level within each GO category 222 

To more deeply explore how gene expression levels are related to gene function, 223 

we employed the GO Slim annotations at the Saccharomyces Genome Database 224 

(SGD) (Cherry et al. 2012). In the GO framework, experimental evidence is used to 225 

associate each gene with one or more GO annotations which describe biological 226 

processes, molecular functions, and cellular components. The SLIM annotations used 227 

here are unique to S. cerevisiae and were developed by SGD to broadly categorize 228 

genes into their functional groups. We employed this condensed set of annotations in 229 

order to test whether expression level varies across these broad functional categories. 230 

We characterized the distribution of mRNA expression levels of genes 231 

associated with 100 biological processes (Figure 2A), 40 molecular functions (Figure 232 

2B), and 21 cellular components (Figure 2C). Organizing the categories into three 233 

panels facilitates appropriate comparisons; for example, comparing the two components 234 

“nucleus” and “cell wall” is more appropriate than comparing the component “nucleus” to 235 

the process “mRNA processing.” Each panel of Figure 2 is ordered by the median 236 

expression level of a GO category. Also shown are the mean expression levels, to test 237 

whether there is a skewed distribution of expression within categories. The complete 238 

distribution of expression levels within each GO category is depicted in Figures S2, S3 239 

and S4. These figures show that, while there is wide variation of expression values 240 
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within each GO category, some GO categories exhibit higher expression levels than 241 

others. 242 

To test whether the distribution of expression levels in each GO category is 243 

significantly lower or higher than expected, we compared expression of genes within 244 

each GO category to a set randomly selected from the genome, as described in the 245 

Materials and Methods. This one-sided test generated a p-value for each GO category, 246 

equal to the probability that the distribution of expression values could occur by chance. 247 

The results are shown in heatmap format in Figure 2, with darker blue indicating greater 248 

significance (i.e., lower p-value). To ensure that the statistics are robust, four metrics 249 

were used to describe the distribution of expression levels in each GO category: median 250 

RPKM, mean RPKM, median rank, and mean rank. Three of the metrics (median 251 

RPKM, median rank, and mean rank) resulted in p-values that are remarkably similar, 252 

as shown by a similar shading of blue in Figure 2. In contrast, the mean RPKM metric 253 

often resulted in higher p-values. A likely explanation is that the mean RPKM of each 254 

category is influenced by outlier expression values, making the comparison to all genes 255 

less meaningful. It was for this reason that we decided to employ median and rank, in 256 

addition to mean, as metrics in our analyses. 257 

We were concerned that our analyses would be biased by cell-cycle genes, 258 

which may have low expression because their expression is limited to a subset of the 259 

cell cycle. Surprisingly, the cell cycle genes, as identified previously (Spellman et al. 260 

1998), do not appear to be expressed less than non-cell-cycle genes (Figure S5). Upon 261 

closer examination, we found that the G1 genes are expressed significantly less than 262 

non-G1 genes (Figure S6). To rule out any cell-cycle effects on gene expression within 263 
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GO categories, we repeated the statistical tests on the entire gene set minus the 799 264 

cell-cycle genes (Figure 2). The p-values obtained were largely unchanged, as shown 265 

by the similar shading of blue in the heatmap, indicating that our results are not biased 266 

by cell-cycle genes. 267 

Now that we have described the methodology employed to analyze expression 268 

within each GO Category, we will use the next three sections to explore how expression 269 

levels relate to (1) Biological Processes, (2) Molecular Functions, and (3) Cellular 270 

Components. 271 

 272 

Expression of genes within GO Biological Processes 273 

Figure 2A depicts the expression of the 100 GO Biological Processes ordered by 274 

median RPKM levels. Also, see File S3 for category statistics and Figure S2 to visualize 275 

the distribution of gene expression within each category. Several notable patterns are 276 

observed when considering the expression level within GO categories. To facilitate 277 

description of these patterns, we have grouped related GO terms (as shown by the 278 

colored points in Figure 2). First, there is a clear relationship between the GO terms and 279 

the Central Dogma (i.e., DNA  RNA  protein). Among the lowest expressed GO 280 

terms are those involving DNA processes (indicated by green points), such as 281 

“chromosome segregation” and “DNA repair.” Our statistical tests show that these 282 

categories exhibit significantly low expression. This is followed by terms describing 283 

aspects of transcription and RNA processes, such as “mRNA processing” and 284 

“transcription from RNA polymerase II promoter” (indicated by yellow points). The GO 285 

terms showing statistically high expression are related to aspects of translation and the 286 
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ribosome (indicated by red points). For this group, we included certain transcription 287 

terms (e.g., “transcription from RNA polymerase I promoter”) because these processes 288 

solely serve to create structural RNAs of the ribosome. The relationship between gene 289 

expression level and the role of the gene in the Central Dogma can be explained by 290 

“amplification”. In S. cerevisiae, experimental data show that when mRNA was detected 291 

for ~5854 genes, there were ~36,000 total mRNA molecules and 35 million proteins per 292 

haploid cell (Csárdi et al. 2015). Thus, the amplification from DNA to mRNA is 6-fold 293 

while the amplification from mRNA to protein is 972-fold. Another study measured the 294 

components of cell dry weight, which includes abundant rRNA molecules, and found 295 

that DNA amount is 20-fold less than RNA amount and that RNA amount is 5-fold less 296 

than protein amount (Feijó Delgado et al. 2013). As might be expected, our findings 297 

suggest that the measured cellular concentration of these biomolecules (i.e., DNA, 298 

mRNA, protein) is related to the expression level of the proteins that are tasked with 299 

synthesizing or maintaining the respective biomolecule. 300 

The genes that participate in protein modification (orange points; e.g., “protein 301 

modification” and “protein acylation”) exhibit relatively high expression, but less so than 302 

the translation and ribosome genes. There could be two reasons for this, not 303 

necessarily mutually exclusive. First, each modification enzyme may only work on a 304 

subset of proteins while translation/ribosome proteins work on all proteins. Second, 305 

modification enzymes catalyze only one or few reactions on each polypeptide substrate 306 

while each translation/ribosome protein contributes to dozens or hundreds of peptide 307 

bond formation reactions to create a single polypeptide. In both cases, a modification 308 
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enzyme is likely less expressed than a translation/ribosome protein due to decreased 309 

flux through the enzyme. 310 

Genes involved in several GO metabolic processes (dark blue points), such as 311 

“nucleobase-containing small molecule metabolic process,” are highly expressed, 312 

consistent with the large flux occurring through biosynthesis and energy production 313 

pathways. Interestingly, some metabolic processes, like “oligosaccharide metabolic 314 

process,” contain genes of low expression. This makes sense because the mRNA 315 

expression levels observed here are from yeast grown in the monosaccharide glucose 316 

as the carbon source, not from yeast grown in oligosaccharides. 317 

The GO categories associated with transport (blue points) deserve mention 318 

because they are among the highest and lowest expressed. The highest among the 319 

Transport categories is “nucleobase-containing compound transport”, which facilitates 320 

the much-needed transport of nucleobases for metabolism. The next highest category is 321 

“nuclear transport” comprised of genes involved in the nuclear pore and in export of 322 

ribosomal RNA, both important for translation. On the other hand, certain Transport 323 

categories, such as “carbohydrate transport,” exhibit low expression, which is not 324 

surprising given that the cells were grown in excess glucose, which represses certain 325 

types of sugar import (Ozcan and Johnston 1999). 326 

Finally, GO categories related to Cell Fate (light blue points) mainly show low 327 

expression. This is consistent with the cells being cultured under asexual rich-media 328 

conditions and thus not faced with cell fate decisions (e.g., meiosis, mating, invasive 329 

growth). Surprisingly, “mitotic cell cycle” exhibited low expression, despite the cells 330 

undergoing exponential growth. A possible factor is that many of the cell cycle genes 331 
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are involved in signal transduction and transcriptional regulation, both of which exhibit 332 

low expression. Specifically, “signaling” is 36th lowest out of 100 GO Processes, and 333 

“nucleic acid binding transcription factor activity” is the lowest out of 40 GO Functions. 334 

 335 

Expression of genes within GO Molecular Functions 336 

Figure 2B shows the expression of the 40 GO Molecular Functions ordered by 337 

median RPKM levels. Also, see File S3 for category statistics and Figure S3 to visualize 338 

the distribution of gene expression within each category. Again, the relationship 339 

between GO terms and the Central Dogma is apparent. Among the lowest expressed 340 

GO terms are those involving DNA processes (green points), such as “nuclease activity” 341 

and “DNA binding.” We included “nucleic acid binding transcription factor activity” and 342 

“transcription factor binding” in the DNA group because the proteins (transcription 343 

factors and their regulators) within these categories mainly bind to DNA. The proteins 344 

do not participate in the high-flux enzymatic steps of transcription and RNA processing, 345 

but instead bind to a limited number of sites on the DNA. Generally exhibiting higher 346 

expression are categories such as “RNA binding” that describe aspects of transcription 347 

and RNA processes (yellow points). Finally, GO terms such as “translation factor 348 

activity, RNA binding” that describe aspects of translation and the ribosome exhibit the 349 

highest expression (red points). 350 

Like the GO processes in Figure 2A, the GO Functions that are involved in 351 

protein modification (indicated by orange points in Figure 2B) exhibit relatively high 352 

expression but reduced expression compared to translation and ribosome categories. 353 
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An example is “unfolded protein binding,” the third highest Function, which can be 354 

compared to the related “protein folding,” the fifth highest Process. 355 

Also notable are the two transport-related GO Functions (“protein transporter 356 

activity” and “transmembrane transporter activity”) which are relatively highly expressed 357 

(blue points). There are only two transport-related Functions compared to 10 transport-358 

related Processes (Figure 2A). When observing the 10 Processes, there is much more 359 

variation in expression levels, indicating that some of this variation is lost when grouping 360 

genes into only 2 categories. 361 

 362 

Expression of genes within GO Cellular Components 363 

Figure 2C shows the expression of the 21 GO Cellular Components ordered by 364 

median RPKM levels. Also, see File S3 for category statistics and Figure S4 to visualize 365 

the distribution of gene expression within each category. Consistent with our previously 366 

established relationship between expression and the Central Dogma, categories 367 

involving DNA processes (“microtubule organizing center” and “chromosome,”) show 368 

low expression while categories involving Translation/Ribosome (“nucleolus” and 369 

“ribosome,”) exhibit high expression. There are no Cellular Component categories that 370 

capture only RNA/Transcription genes. 371 

Categories related to Cell Fate (“cellular bud” and “site of polarized growth,”) 372 

exhibited relatively low expression, possibly because these cellular locations are short-373 

lived and comprise a small space. As expected, the genes within the cytoplasm are 374 

expressed at higher levels than genes within the nucleus, a cellular component with a 375 

volume substantially less than that of the cytoplasm (Jorgensen et al. 2007). 376 
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Additionally, genes within the categories “Extracellular Region” and “Cell Wall” are 377 

highly expressed, likely due to the vast number of proteins needed to populate these 378 

spaces (de Groot et al. 2009). 379 

 380 

Gene function is also associated with protein expression  381 

So far, we have shown that mRNA levels are correlated with gene function. Since 382 

proteins actually carry out the function, we also attempted to associate protein levels 383 

with function. This task was hindered because quantitative data for protein levels is 384 

lacking. Not only is it difficult to detect levels for many proteins, abundance 385 

measurements are not consistent between the limited number of studies (Vogel and 386 

Marcotte 2012; Liu et al. 2016). We identified one recent study that determine the 387 

absolute abundances of 1103 S. cerevisiae proteins with high-quality by using mass 388 

spectrometry with internal controls (Lawless et al. 2016). We found that the measured 389 

protein abundance is highly correlated (r=0.61) with the RPKM values that we used here 390 

(Figure S7). Next, we compared protein expression within each GO category with 391 

mRNA expression within each category (Figure 3A). There was only a modest 392 

correlation (r=0.44). We hypothesized that the low correlation is due to the small 393 

number of genes in the protein dataset and the resulting smaller number of genes per 394 

GO category (Figure S8). To control for this discrepancy in number of genes per 395 

category, we calculated the median RPKM for each GO category using only the 1103 396 

genes that are in the protein dataset. Then, we compared the RPKM of each GO 397 

category with the corresponding protein abundance (Figure 3B). There was a high 398 
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correlation (r=0.81), suggesting that gene function, as defined by GO categories, has an 399 

effect not only on mRNA levels but on protein levels as well. 400 

 401 

Gene function can predict expression levels 402 

As described above, we found that the genes in each GO Category have distinct 403 

expression levels. We wondered whether gene function, as assessed by a gene’s 404 

membership in GO categories, can be used to predict expression level. To test this, we 405 

developed a linear equation in which the RPKM of each gene is determined by the 406 

gene’s inclusion in each of the 163 GO categories (see Materials and Methods). Each 407 

GO category was assigned a coefficient (), which was optimized using a random walk, 408 

with the goal of accurately predicting the expression of each gene. Prediction accuracy 409 

was assessed by correlating the predicted vs. the actual expression of all genes. As 410 

shown in Figure 4A, as the random walk progressed over 10,000 iterations, the 411 

correlation increased until a maximum of 0.44 was reached. The correlation did not 412 

increase further, even when the walk was performed with 107 iterations (data not 413 

shown). Additionally, when the random walk was initiated 10 independent times with 414 

randomly-chosen  coefficients, the same correlation (0.44) and  coefficients were 415 

obtained (File S4). For example, Figure S9 shows a linear relationship between the  416 

coefficients of the 2nd and 3rd repeats. As might be expected, the GO categories that 417 

had a high coefficient (e.g., “cytoplasmic translation”) were among the highest 418 

expressed categories. In contrast, the GO categories that had a low coefficient (e.g., 419 

“cellular respiration”) were not always the lowest expressed categories; this suggests 420 
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that these categories, in combination with other GO categories, play a complicated and 421 

additive role in prediction. 422 

The predicted expression vs. actual expression of each gene is depicted in 423 

Figure 4B. This graph shows that there is a modest correlation between predicted and 424 

actual expression. A notable feature of the graph is that some genes can be grouped 425 

together into a vertical line; in such a group, each gene has the same predicted 426 

expression but a variety of actual expression levels. This is likely caused by having 427 

incomplete functional information; the genes are predicted to have the same expression 428 

level because they are in the same GO category and are not functionally differentiated 429 

by other informative GO categories. An interesting example is the set of genes in the 430 

“cytoplasmic translation” category (Figure S10). As expected, these genes are predicted 431 

to have high expression. A subset of these genes was predicted to have identical 432 

expression but actually vary in expression (Figure S11). The reason that these genes 433 

are predicted to have the same expression level is that they share membership in the 434 

same 5 GO categories (cytoplasm, cytoplasmic translation, ribosome, structural 435 

constituent of ribosome, structural molecule activity). If these genes had additional 436 

functional information, the prediction would likely be more accurate. 437 

To further test this idea, we limited our prediction to genes associated with a 438 

minimum number of GO categories. Genes show a wide-range in the number of GO 439 

categories assigned to them (Figure S12), from 0 to 35, presumably attributable to the 440 

degree to which the genes have been studied. As we expected, when the prediction 441 

was limited to genes associated with a larger number of GO categories, the prediction 442 

increased in accuracy, as shown by a higher correlation between predicted and actual 443 
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expression (Figure 5). It should be noted that as the minimum number of GO categories 444 

increases, the number of genes dramatically decreases (blue line in Figure 5). 445 

Regardless, these results suggest that having more information about gene function 446 

improves the ability to predict gene expression levels.   447 

In our prediction analysis above, we created a model that predicts gene 448 

expression based on gene function. We wanted to test whether this model, developed 449 

with S. cerevisiae GO annotations, can be used to predict expression levels of the 450 

orthologous genes in S. pombe. Indeed, we found that there was a high correlation 451 

(r=0.54) between our predicted expression values and actual expression in S. pombe 452 

(Figure 6). 453 

Finally, we wanted to test whether gene function can also be used to predict 454 

protein abundance. We used the same linear equation and random walk as above, but 455 

performed the random walk with protein abundance values (Lawless et al. 2016) in 456 

place of RPKM values. As the random walk progressed over 105 iterations, the 457 

correlation increased up to a maximum of 0.62 (Figure S13), a correlation that is even 458 

higher than the one generated using RPKM values in the random walk. The random 459 

walk was initiated 10 independent times with randomly-chosen  coefficients, 460 

generating the same correlation and  coefficients each time. For example, Figure S14 461 

shows a linear relationship between the  coefficients of the 1st and 5th repeats. The  462 

coefficients obtained with protein data versus RPKM data were somewhat consistent 463 

(compare Figure S9 with Figure S14). In both analyses, the  coefficient for “generation 464 

of precursor metabolites and energy” was among the highest and that of “cellular 465 

respiration” was among the lowest. 466 
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DISCUSSION 467 

RNA and protein levels increase or decrease upon changing cellular conditions, 468 

giving rise to the concept of differential expression. This concept is important in 469 

understanding tissue- and condition-specific gene expression and is used to determine 470 

which gene functions are important in a given environment. In contrast, we focus here 471 

not on changes in expression, but on absolute steady-state abundances of mRNA and 472 

protein. According to cost-benefit analysis, the abundance of each gene product should 473 

be controlled (Wagner 2005; Dekel and Alon 2005; Lang et al. 2009). The costs are 474 

two-fold: energy consumed during transcription and translation as well as mass that is 475 

added to the already-packed volume of the cell (Dill et al. 2011). The benefit is to 476 

perform a necessary cellular function. There is a balance between cost and benefit, 477 

resulting in a steady-state set point that provides maximal fitness for the cell and 478 

organism. Indeed, we have found here that, at least in one condition, there is an 479 

expression set point for each gene. This leads to the question of what factors determine 480 

the set point for a gene. We hypothesized that the function of the protein product would 481 

be an important determinant. We could test this by employing the gene ontology (GO) 482 

framework which systematically describes gene function. Specifically, we predicted that 483 

genes sharing a GO category would exhibit similar expression. The GO framework 484 

divides function into three domains: molecular function, biological process, and cellular 485 

component. First, proteins with the same molecular function need to be maintained at 486 

the same cellular concentration because they will have similar biochemical properties 487 

(e.g., Km, kcat) and work on substrates of similar concentrations. Supporting this idea, 488 

when bacteria are grown long-term in different levels of the substrate, lactose, the cells 489 
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evolve to express a proportional level of the LacZ enzyme (Dekel and Alon 2005). 490 

Second, proteins that participate in the same biological process should be kept at the 491 

same concentration because they are components of a pathway with similar flux at each 492 

step. Proteins within the same cellular component should be of related abundances in 493 

order to achieve similar protein concentrations in a defined physical volume. 494 

Several analyses presented here support the conclusion that gene function is an 495 

important factor in determining gene expression. First, we found that mRNA and protein 496 

levels are correlated between S. cerevisiae genes and their orthologous genes in S. 497 

pombe, showing that the expression level of functionally-related genes has been 498 

conserved over millions of years. This finding is consistent with cross-species 499 

correlations between other organisms (Schrimpf et al. 2009; Laurent et al. 2010; Khan 500 

et al. 2013). Second, we found that gene expression within several GO categories is 501 

significantly higher or lower than seen in the entire genome. Interestingly, genes 502 

involved in the Central Dogma follow a pattern. DNA-related genes are expressed the 503 

least, transcription-related genes are in the middle, and translation-related genes are 504 

expressed the most. As discussed above, this finding fits in with the amplification of 505 

biomolecules that occurs in the Central Dogma. Third, we were able to use GO terms 506 

alone in calculating gene expression levels. A linear model was created using S. 507 

cerevisiae GO and gene expression information, but then it was successfully used to 508 

predict S. pombe gene expression. Fourth, while we primarily relied on the plethora of 509 

high-quality RNA-seq data, we also performed analysis with protein data, obtaining 510 

similar results. This last point is critical since we assume that gene function is most 511 

closely associated with the abundance of proteins, the factors that directly perform the 512 
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cellular functions. Consistently, protein levels are under greater evolutionary constraints 513 

than mRNA levels (Khan et al. 2013), likely because fitness relies more on the optimal 514 

protein level. However, protein abundance data is not always as accurate as mRNA 515 

abundance data and does not cover much of the genome (Vogel and Marcotte 2012; 516 

Liu et al. 2016). With future advances in measuring protein abundance, this study can 517 

be repeated with high-quality genome-wide protein data. 518 

 Our work here has shown that gene function (as defined by biological process, 519 

molecular function and cellular component) is a strong determinant of gene expression 520 

level. This has implications for how gene expression has evolved within the biochemical 521 

constraints of a cell. The constraints (e.g., organelle volume, substrate concentration, 522 

optimal flux through each pathway, and the energy requirements of transcription and 523 

translation) governing the expression of each protein can be estimated by the protein’s 524 

associated GO categories. However, GO categories alone might not accurately capture 525 

these constraints. The categories are proxies for other biochemical features of the 526 

protein. In this case, it might be important to determine whether more specific features, 527 

like Km or cellular substrate concentration, are important in driving gene expression 528 

levels. 529 

For gene function, we used the GO Slim annotations at the Saccharomyces 530 

Genome Database (SGD) (Cherry et al. 2012). While these annotations were useful for 531 

the initial study of gene function and gene expression, it would be useful to carry out 532 

future studies with the entire set of GO terms (Ashburner et al. 2000; Boyle et al. 2004). 533 

This will be especially useful for predicting gene expression as there would be additional 534 

information describing gene function. For example, instead of a gene simply associated 535 
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with “transcription factor binding,” the gene may be labeled as being part of “the core 536 

TFIIH complex when it is part of the general transcription factor TFIIH,” a term that could 537 

be a better predictor of gene expression.  In addition, as genes are further 538 

characterized, they will receive additional GO annotations that will improve the accuracy 539 

of prediction. As we observed here, genes associated with a larger number of GO 540 

categories could be more accurately predicted. 541 

This analysis was performed primarily with expression data obtained from a 542 

particular strain of the yeast S. cerevisiae, grown in rich media. It was important to study 543 

expression in one condition to examine levels that are maintained at steady-state. 544 

However, our results may be biased by condition-specific effects. For example, a large 545 

set of genes is subject to glucose-repression under rich media conditions (Kayikci and 546 

Nielsen 2015) and thus would be labeled as poorly expressed simply because 547 

transcription was turned off. When these genes are relieved of glucose repression, they 548 

may be highly expressed. To deal with this issue, one could perform this analysis using 549 

the highest observed abundance for each gene.  Practically, this could be done in S. 550 

cerevisiae, since genome-wide expression has been monitored across hundreds of 551 

conditions. Thus, the abundance value obtained for each gene would be the maximum 552 

and represent the level when the gene is “turned on.”  This way, the expression level of 553 

all genes can be fairly compared. This could even be performed in other species, such 554 

as humans, that have a large number of both RNA-seq studies and GO annotations. 555 

 In predicting gene expression levels, we fit GO category information into a linear 556 

equation and optimized the coefficients with a random walk. We achieved a decent 557 

correlation (r=0.44) between prediction and observed, especially considering that the 558 
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predictions were on a continuous scale and that we predicted the expression of 6,717 559 

genes. However, other machine learning approaches may be more effective at 560 

estimating expression levels. These approaches include neural net, decision tree, naïve 561 

Bayes, and alternative mathematical models. The relationship between gene function 562 

and expression level is likely complex and further work is needed to determine the type 563 

of model that best takes into account all of the evolutionary forces that dictate gene 564 

expression levels.  565 
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FIGURE LEGENDS 725 

 726 

Figure 1 The expression of orthologous genes in S. cerevisiae and S. pombe are highly 727 

correlated. (A) Comparison of protein abundances between orthologous genes in S. 728 

pombe and S. cerevisiae (r=0.67, n=111).  (B) Comparison of RPKM values between 729 

orthologous genes in S. pombe and S. cerevisiae (r=0.63, n=1118). 730 

 731 

Figure 2 The mRNA abundance of genes within each GO Category: (A) Biological 732 

Processes, (B) Molecular Functions, and (C) Cellular Components. Each panel is 733 

organized in the same manner. The GO categories are ordered from left-to-right with 734 

increasing RPKM median. The first two rows are in heatmap format and depict the 735 

mean and median, respectively, of each GO category; black signifies genome-wide 736 

mean or median, red signifies higher than genome, and green signifies lower than 737 

genome. Rows 3-6 are in heatmap format and depict the probabilities that the mean or 738 

median differs from the genome-wide mean or median by chance, using random 739 

sampling with four different metrics; as the intensity of blue increases, the p-value 740 

decreases (minimum p=10-7). Removing the 799 cell cycle genes from the analysis had 741 

little effect on the probabilities (rows 7-10). Finally, the median RPKM (log10) of each 742 

GO category was plotted; GO categories representing related functions (e.g., DNA) 743 

were merged into groups and colored, as described in the Materials and Methods and in 744 

File S3. 745 

Figure 3  The median mRNA abundance of each GO category is similar to the median 746 

protein abundance. (A) For each GO category, the median protein abundance is plotted 747 
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against the median RPKM. Note that the protein abundance dataset only includes 1103 748 

genes. (B) For each GO category, the median RPKM abundance (calculated from the 749 

1103 genes in the protein data set) is plotted against the median protein abundance. 750 

 751 

Figure 4 GO categories alone can be used to predict gene expression levels. (A) A 752 

random walk was performed to optimize the  coefficients of each GO category in 753 

predicting expression, as described in the Materials and Methods. The graph depicts 754 

the iteration number vs. the correlation between predicted and actual RPKM values of 755 

all genes.  (B) Shown is the predicted expression (x-axis with arbitrary scale) vs. the 756 

actual log10(RPKM) in S. cerevisiae.  757 

 758 

Figure 5 Limiting prediction to genes with a minimum number of GO categories 759 

improves the correlation between predicted and actual expression (black line). Also, as 760 

the minimum increases, the number of genes meeting or surpassing this minimum 761 

decreases (blue line). In the inset graph, the range of the “number of genes” axis is 0 to 762 

100. 763 

 764 

Figure 6 Gene function in S. cerevisiae can be used to predict expression of 765 

orthologues genes in S. pombe. Shown is the predicted expression of S. cerevisiae 766 

genes (x-axis with arbitrary scale) vs. the actual log10(RPKM) of their respective 767 

orthologs in S. pombe. 768 
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