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Abstract

Cancer development is a multistep process in which cells increase in malignancy through
progressive alterations. The early phase of this process is hardly observable which aggravates
an understanding of later tumor development. We shed light on this initial phase with a
cell-based stochastic model calibrated with epidemiological data from the tissue scale. Our
model allows to estimate the number of tumor cells needed for tumor formation in human
tissues based on data on the diagnosed ratios of benign and malignant tumors. We find that
the minimal number of cells needed for tumor formation is surprisingly small and largely
depends on the tissue type. Our results point towards the existence of tumor-originating
niches in which the fate of tumor development is early decided. Our estimate for the human
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colon agrees well with the size of the stem cell niche in colonic crypts. Our estimates might
help to identify the tumor-originating cell type, e.g. our analysis suggests for glioblastoma
that the tumors originate from a cell type competing in a range of 300 - 1900 cells.

Summary

We estimate the number of tumor cells needed for tumor formation in human tissues and
propose the existence of small and tissue-specific tumor-originating niches which might help
to find tumor-originating cell types, in particular in glioblastoma.

Introduction

Cancer development is a multistep process in which cells acquire a certain number of
progressive epigenetic and genetic alterations [1]. This multistep process can be divided
into a neutral and a selection phase. In the neutral phase, the epigenetic and genetic
alterations do not confer a proliferative fitness advantage to the tumor precursor cells
whereas cells gain such an advantage in the selection phase [2,3]. A single genetically altered
cell does not necessarily induce tumor formation but is rather exposed to competition with
its corresponding wild-type cells [4]. The realization of this competition depends on the
tissue and cell type. It can be direct due to replacement of a cell by the offspring of another
proliferating cell [4] but also indirect, for example by symmetric and asymmetric division of
cells [5]. Importantly, tissues are composed of different types of cells but only those which
are capable to give rise to a progeny able to accumulate alterations can be tumor-originating
cell types [6]. Tumor-originating cell refers to the wild-type cell of a certain type that
acquires the first alteration in the multistep process of cancer development. Within the
neutral phase, the progeny of the tumor-originating cell competes with wild-type cells within
normal tissue homeostasis. Because this competition is controlled by the original tissue
organization, the range of this competition is determined by the tissue structure which
provides natural spatial boundaries for the spread of the progeny of the tumor-originating
cell [7, 8].

In order to induce tumor formation, the progeny of the tumor-originating cell must not
go extinct but has to establish within the tissue. This establishment is achieved by clonal
expansion to a sufficiently large cell population [9]. For some tissues, there is experimental
evidence that this establishment is characterized by an outcompetition of wild-type cells
within the homeostatic range of competition. For example, the tumor-originating cell within
the human colon has been identified to be almost always a stem cell with a first hit in
the APC gene, and a second hit in this gene is sufficient to induce adenoma formation,
a benign precursor of malignant adenocarcinoma. These stem cells reside at the bottom
of so-called niches within colonic crypts and are capable of self-renewal and multilineage
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differentiation [10]. It has been demonstrated that tumor-originating cells neutrally compete
with wild-type stem cells for a position within the spatially restricted stem cell niche [5].
Either such an altered stem cell goes extinct due to this competition or eventually replaces
all wild-type stem cells within the stem cell niche. This process has been termed monoclonal
conversion and represents almost always the first step of tumor formation within the human
colon [10]. Hence, the monoclonal conversion of the stem cell niche by the progeny of the
tumor-originating cell with loss of the APC gene induces the establishment of an adenoma
on the tissue scale. However, in other tissues the early phase of tumor development on
the cellular scale is less understood. The main reason is a lack of knowledge regarding the
tumor-originating cell type. Similar to the colon, it has been shown that stem cells within
the hematopoietic system represent the tumor-originating cell type [11, 12]. In contrast,
there is also evidence that non-stem cells can be the tumor-originating cell type, e.g. in
oligodendroglioma [13]. Although the lineage in which cancer originates has been revealed
for skin, pancreatic, brain and breast tumors, the tumor-originating cell type remains elusive
in most cases [14]. Its identification may allow earlier detection of malignancies and may
lead to preventive therapies for individuals at high risk of developing cancer [14].

On the tissue scale, one observes different types of tumor progression. Tumors can
progress sequentially, i.e. with a clinically detectable benign precursor stage. Alterna-
tively, they can also progress by tunneling without such a prior benign precursor stage.
Epidemiological data allow to infer the progression patterns with respect to the ratios of
tunneling versus sequential progression of different tumors. Interestingly, these progression
patterns differ largely between tissues. Some tumors exhibit predominantly sequential
progression, e.g. benign adenoma almost always develop prior to adenocarcinoma in the
colon [10]. Similarly, multiple myeloma are in almost all cases preceded by a premalignant
state called monoclonal gammopathy of undetermined significance (MGUS) [15]. In contrast,
glioblastoma develops in 90% of all cases without evidence of a less malignant precursor
lesion (primary glioblastoma) and progresses in 10% of all cases from low-grade tumors
(secondary glioblastoma) [16]. In which way these progression patterns on the tissue scale
emerge from the multistep process of cancer development on the cellular scale is difficult to
infer since the early phase of this multistep process is hardly observable.

In this work, we use observables on the tissue scale to shed light on the early cellular
processes of tumor development. We utilize a Moran model with mutations [17–19] to
describe cellular competition between wild-type cells and tumor cells. Benign and malignant
tumor subtypes on the tissue scale are represented by two absorbing states within the
model. We incorporate epidemiological data on the progression patterns of cancers to
calibrate the model. By analyzing the model dynamics with respect to different spatial
cell arrangements, we obtain a lower and upper bound for the critical number of tumor
cells needed for tumor development on the tissue scale. Interestingly, our estimates are
considerably small, tissue-specific and far away from the overall number of cells in a clinically
observable tumor. We therefore propose that the fate of tumor development is decided in
tissue-specific tumor-originating niches. This proposal is supported by our estimate of the
tumor-originating niche size for the human colon which agrees well with the size of the stem
cell niche in colonic crypts. In particular, we propose that a tumor-originating niche size of
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300 – 1900 cells within the human brain can explain the ratio of primary and secondary
glioblastoma. Interestingly, our estimates also agree well with the minimal number of tumor
cells needed for tumor formation in mice injection experiments and might allow to infer the
tumor-originating cell type.

Materials and methods

State space and representation of benign and malignant tumor subtypes. The
multistep process in which cancer cells increase gradually in malignancy differs with respect
to the number of steps, e.g. two steps in retinoblastoma [20] compared to seven steps in
colon cancer [21]. In our cell-based model, we only regard the last step within the neutral
phase and the first step within the selection phase such that we obtain a two-step process.
This coarse-grained approach is appropriate for our purpose since we are only interested
in modeling tumor progression patterns and not quantities which are largely influenced
by the precise number of steps, e.g the time-scale of tumor development or intra-tumor
heterogeneity. In the cellular two-step process, genetic or epigenetic alterations can transform
wild-type cells into benign tumor cells which can further progress to malignant tumor cells.
We assume that the benign progeny of the tumor-originating cell competes with wild-type
cells and can clonally expand within normal tissue homeostasis. The parameter N in our
model describes the homeostatic range of this competition. We further assume that a benign
tumor on the tissue scale will develop if monoclonal conversion of wild-type cells by benign
tumor cells within the homeostatic range of competition N is achieved. This assumption is
based on experimental observations for example within the colon where mutant cells either
go extinct or fixate in the colonic stem cell niche [5]. Moreover, mice injection experiments
indicate that a critical number of tumor cells is needed for tumor formation [22–29] which
suggests a point of no return on the cellular scale for tumor formation. If the first benign
tumor cell progresses to a malignant tumor cell we assume that a malignant tumor will
inevitably develop on the tissue scale which reflects a high fitness advantage of malignant
tumor cells.

The state space of the underlying stochastic process of the model is S = {0, 1, 2, ...., N,E}
where states 0 to N represent the occurrence of the respective number of benign tumor
cells without the occurrence of malignant tumor cells. State E indicates the presence of a
malignant tumor cell. States N and E correspond to emergence of benign and malignant
tumor subtypes and therefore to sequential and tunneling tumor progression, see also Figure
1. Both states N and E are absorbing states of the underlying stochastic process, see also
Text S1 for details.

Dynamics in the model. In order to describe competition between cells and tumor cell
progression, we adopt a Moran model with mutations. This model class has mostly been
investigated from a theoretical point of view [18, 30, 31]. Recently, we applied a Moran
model to evaluate tumor regression in pilocytic astrocytoma [19]. Moran models are
appropriate to describe a population of fixed size N which represents the homeostatic
range of competition in our model. The dynamics is as follows. One cell is randomly
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chosen to undergo cell death and is replaced by the offspring of another chosen cell. During
proliferation, a genetic or epigenetic alteration can lead to tumor cell progression. Wild-type
cells can progress to benign tumor cells with probability u and benign tumor cells progress
to malignant tumor cells with probability v. We assume that initially all cells are wild-type
cells. Hence, the process starts in state 0.

Analysis of the model

Choice of spatial cell arrangement. Theoretical studies demonstrated that the inter-
play between tissue structure, the population size N and mutation probabilities u and v in
Moran models are crucial for the dynamics of the model [18,31,32]. In particular, it has
been shown that the absorption probability in state N on regular structures is the highest
if all cells can potentially compete with each other and the lowest for a one-dimensional cell
arrangement [18]. Since the tumor-originating cell type is unknown for most cancers also
the spatial cell arrangement and realization of competition is unknown [4,33]. Therefore,
we consider a space-free and a one-dimensional cell arrangement in order account for this
uncertainty by deriving a lower and an upper bound for the absorption probabilities. Figure
2 illustrates the Moran dynamics on these two structures. For the precise definition of the
underlying stochastic processes, see Text S1.

Tumor progression patterns in the model. Three parameter regimes within the
model can be distinguished with respect to the tumor progression patterns. Within the
sequential fixation regime, the benign tumor cell population is primarily able to reach size
N before a benign tumor cell progresses to a malignant tumor cell. This regime corresponds
to primarily sequential progression on the tissue scale. In the tunneling regime [30] a
malignant clone will occur before the benign population is able to reach size N which
corresponds to primarily tunneling progression in the model. In the borderline regime [32]
both sequential fixation and tunneling are possible corresponding to both progression types
on the tissue scale. An asymptotic classification of the model behavior with respect to these
parameter regimes for large N has been theoretically derived in a space-free model [34]
and in lattice-like cell arrangements [31]. We showed in a previous work that the exact
progression pattern described by the absorption probability in state N in the space-free
model solely depends on the so-called risk coefficient γ := N

√
v [19]. Analogously, we derive

here that the absorption probability in the one-dimensional model solely depends on a
one-dimensional risk coefficient γ1D = N 3

√
v.

Choice of the parameter regime. In order to describe the frequency of sequential
tumor formation, we derive the absorption probability of the underlying stochastic process
in state N . We assume a parameter regime in which no additional mutations from wild-type
cells to benign tumor cells occur as long as benign tumor cells are present in the system.
The biological consequence of this assumption is that tumors form from the progeny of a
single cell [35]. Formally, in the space-free model

Nu� 1 (1)
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and in the 1D model

Nu� 3
√
v (2)

ensures this model behavior, see [18]. For u = v = 10−6, this assumption is valid if N � 106

in the space-free model and N � 104 in the 1D model.

Absorption probabilities. In [19], we have shown that the absorption probability in
state N in the space-free model is given by

α(γ) =
1

I0(2γ)
, (3)

where γ := N
√
v and In, n ∈ N0, denote the modified Bessel functions of the first kind,

see [36]. We refer to the parameter γ as space-free risk coefficient because it determines the
fraction of sequential progression.

In this work, we derive the absorption probability in state N of the 1D model. For this
purpose, we utilize first step analysis in order to obtain a linear system of equations for the
absorption probabilities in state N starting the process with k, 1 ≤ k ≤ N , benign tumor
cells. Subsequently, Cramer’s rule allows to derive the absorption probability starting
with one benign tumor cell. Here, it is necessary to calculate two determinants and one
of them is approximated by solving a second order difference equation with non-constant
coefficients. Finally, we can approximate the absorption probability in state N of the 1D
process starting with a single benign tumor cell as

α1D(N, v)

=
v(1− v)N−1

π
(
JN+ 2

v

(
2
v

) (
(2v + 1)Y1+ 2

v

(
2
v

)
− Y2+ 2

v

(
2
v

))
+ YN+ 2

v

(
2
v

) (
J2+ 2

v

(
2
v

)
− (2v + 1)J1+ 2

v

(
2
v

))) ,
(4)

where J denotes a Bessel function of the first kind and Y a Bessel function of the second
kind, see [36]. A detailed derivation of equation (4) is provided in Text S1.

Numerical analysis of the 1D model indicates that the absorption probability in state N
solely depends on the 1D risk coefficient given by γ1D := N 3

√
v, see Figure S5. A detailed

derivation of equation (4) and simulation results of the 1D model showing good accordance
to this approximation is provided in Table S2.

Results

The range of competition determines tumor progression patterns. Our analysis
allows to determine the progression patterns in both the space-free and the one-dimensional
model in dependency of the competition range N . Interestingly, we find that a considerably
small value of N corresponds to primarily tunneling progression in both the space-free and
one-dimensional model. Moreover, the estimates of the parameter N largely depend on the
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considered underlying spatial cell arrangement. In particular, the smaller the number of
neighboring cells, the smaller is the estimated competition range. The estimated values
for a mutation probability v = 10−6 per cell division [37] are summarized in Table 1 and
visualized in Figure 3. Note that these conclusions also hold for other values of v although
a smaller value of v would increase and a larger value of v would decrease the estimates, see
Table S3.

Fate of tumor development is decided in small tissue-specific tumor-originating
niches. Our model allows to estimate the range of cellular competition N in different
human tissues. For these estimations, we calibrate the space-free and 1D model with
epidemiological data on the diagnosed fraction of benign and malignant tumor subtypes.
We performed an extensive literature research to obtain these data which allow to estimate
the risk coefficients γ = N

√
v and γ1D = N 3

√
v in the following way. We equal the clinically

diagnosed fraction of benign tumors p with the absorption probabilities in state N given by
equations [3] and [4] in the Material and Methods section. Subsequently, we numerically
calculate the risk coefficients by evaluating the inverse of the absorption probability function
at the diagnosed fraction of benign tumors p, i.e. γ = α−1(p). The resulting estimates of
the competition ranges in various tissues are provided in Table 2 and visualized in Figure
3. Our model predicts that the range of competition is considerably small compared to
the overall number of cells in a tumor. Note that we do not assume any upper bound
for the parameter N in our model. Moreover, although the estimates are considerably
small, the range of competition largely depends on the tissue. For example, the estimated
competition range within the liver is 383 – 2837 cells whereas the estimates for the bone
marrow are 18 – 31 cells. Importantly, the estimate of the tumor-originating niche size for
the human colon assorts well with the stem cell niche size in colonic crypts of about 40
cells [38] but surely less than 100 cells [39]. Overall, these results can be interpreted as
existence of a tissue-specific tumor-originating niche in which the fate of tumor development
is decided long before a tumor becomes detectable. Based on our results, we propose that a
tumor-originating niche size of 291 – 1928 cells within the human brain might be responsible
for the clinically observed fraction of primary and secondary glioblastoma, see Table 2b).

Predicted tumor-originating niche size agrees well with mice injection experi-
ments. Interestingly, the estimated tumor-originating niche sizes in Table 2 correspond
very well to the necessary cell numbers for tumor induction in mice experiments [22–29],
see also Figure 3. This observation supports two of our model assumptions. First, the
possibility of tumor cell extinction for too small populations in these experiments shows
that tumor and wild-type cells compete with each other. Second, the experimental data
justify our model assumption that a sufficient number of tumor cells is needed to induce
tumor formation on the tissue scale.
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Discussion

On the tissue scale, one observes tumor progression types with and without detectable
benign precursor stages. Data on the progression patterns with respect to the ratios of these
progression types exhibit large differences between tissues. The underlying cellular processes
causing these progression patterns are hardly observable and remain unclear. In this work,
we shed light on the early phase of tumor development on the cellular scale with the help
of a stochastic model. Our model is based on competition between wild-type and tumor
cells and assumes that a sufficient amount of tumor cells is needed for tumor formation.
We estimate this number by fitting the model to data on the diagnosed ratios of benign
and malignant tumor subtypes. Our model predicts that this number is considerably small
compared to the overall number of cells in a clinically detectable tumor and largely depends
on the tissue which can be interpreted as existence of a tissue-specific tumor-originating
niche. Hence, our results suggest that the fate of tumor development is decided long before
a tumor becomes detectable.

Interestingly, our estimates of the tumor-originating niche size of about 39 cells for
colon cancer agrees well with the number of stem cells found in one colonic crypt [38].
Indeed, it is the current understanding that colon adenomas and carcinomas develop within
one colonic crypt with intestine stem cells likely to be the cell type of origin [40]. This
demonstrates that our model might be utilized to predict tumor-originating niche sizes,
thereby allowing to infer the potential cell type of tumor-origin for cancers from other
tissues in which the origin is still elusive, e.g. for glioblastoma [41]. Glioblastoma can
be divided into two classes dependent on the progression dynamics. In about 90% of
cases, glioblastoma occur de novo, i.e. without evidence of a less malignant precursor
lesion (primary glioblastoma) whereas 10% develop slowly by progression from low-grade
gliomas (secondary glioblastoma). Using this data, our model predicts that the size of the
tumor-originating niche from which glioblastoma develop is about 291 – 1928 cells. Neural
stem cells (NSCs) of the subependymal zone (SEZ) have been suggested as a potential cell
of origin for glioblastoma. Moreover, recent experimental evidence regarding NSCs in the
SEZ of the adult brain suggests that the total number and fate of NSCs is regulated by a
density-dependent mechanism [42]. Importantly, the finding in [42] that the fate of a NSC,
e.g. activation or quiescence, is coupled to its neighbors perfectly fits to our hypothesis
of cells competing within a certain range. Interestingly, the authors also suggest that the
fate of active NSCs is coupled to the total number of neighboring NSCs in a shared locally
restricted area which suggests that this area is a potential candidate for the tumor-initiating
niche in the adult brain. It would be interesting to investigate if the range of coupled NSCs
fits to our predicted size of the tumor-originating niche for glioblastoma.

From a modeling perspective, our analysis allows to distinguish different model regimes
in Moran models not only asymptotically as in [18], but also for finite values of the
system size N , see Table S3. and Figure S5. We find that the risk coefficient in both the
space-free and the 1D model does not only distinguish the different model regimes, but
quantifies the proportion of tunneling and sequential progression. Moreover, we show that
the corresponding asymptotic results in dependency of the risk coefficient provide very good
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approximations even for small population sizes N . This finding obviates the need of ad-hoc
rules like a� b if a/b ≤ 1/10 to choose the appropriate parameter regime [43].

The potential existence of tumor-originating niches in which tumor fate is decided at an
early stage of the cellular multistep process supports the view that cancer development is
an ecological process [44, 45]. Ecology studies the dynamics of communities of species and
their interactions and describe the origin of new species. From this point of view, the size of
the tumor-originating niche might represent a critical effective population size that has to
be reached by the progeny of the tumor-originating cell type in order to establish a tumor
on the tissue scale. A deeper understanding of the processes and the origin of the tumor-
originating niche contributes to the understanding of the early phase of tumor development.
Further modeling and experimental effort is needed to understand this early phase of tumor
development on the cellular scale in a better way. In this work, we demonstrated how
observable quantities on the tissue scale might be utilized to achieve this goal.

Supplementary Material

S1 Text

The supplementary text contains the precise definitions of the Moran models and detailed
analytical derivations.

S2 Table

Comparison of the analytical approximation given and simulation results from 10000
trajectories of the underlying stochastic process of the one-dimensional model for the
probability of absorption in state N. The results are also visualized in Figure S5

S3 Table

This table summarizes the risk coefficient regimes with respect to the different progression
patterns of the model. Primarily sequential and primarily tunneling progression patterns
refer to a fraction of 99.9% of sequential and tunneling progression, respectively.

S4 Table

This table summarizes regimes for the parameter N with respect to the different progression
patterns of the models in dependency of the mutation probability v. Primarily sequential
and primarily tunneling progression patterns refer to a fraction of 99.9% of sequential and
tunneling progression, respectively.

S5 Figure

We numerically approximated the absorption probability in state N for different values
of N and v such that the risk coefficient γ1D is constant. This analysis suggests that the
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absorption probability solely depends on the risk coefficient γ1D for approximately N ≥ 40.
The squares indicate the results of simulation studies of the absorption probability in state
N and therefore the benign tumor fraction in the model, see also Table S2
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Tables

progression patterns 1D model space-free model

primarily sequential N ≤ 17 N ≤ 29
both sequential and tunneling 17 < N ≤ 528 29 < N ≤ 4530

primarily tunneling N > 528 N > 4530

Table 1: Tumor progression patterns in dependency of the spatial cell arrangement in the
model. For these estimates, we have chosen v = 10−6. Primarily sequential and primarily
tunneling progression patterns refer to a fraction of 99.9% of sequential and tunneling
progression, respectively.
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epidemiological data model predictions mice data

tissue benign pre-
cursor

malignant tu-
mor

benign
fraction p

Nspace-freeN1D needed cells
for tumor
formation in
mice

a) liver hepatocellular
adenoma

hepatocellular
carcinoma

2% [46] 2837 383 1000 [28]

b) brain low-grade as-
trocytoma

glioblastoma 10% [16] 1928 291 500 [29]

c) breast ductal carci-
noma in situ

invasive duc-
tal carcinoma

20% [47] 1514 246 200 [22] – 500
[27]

d) skin nevus melanoma 25% [48] 1375 230 1000 [23]
e) stomach gastric ade-

nomas
gastric cancer 81% [49] 471 111 200 [26]

f) meningesbenign
meningioma

aggressive
meningioma

95% [50] 227 67 NA

g) colon colonic ade-
noma

adenocarcinoma 99% [51] 100 39 25 [24] – 100
[25]

h) bone
mar-
row

MGUS myeloma 99.9∗%
[15]

31 18 NA

Table 2: Estimation of the homeostatic competition range N in different tissues.
This table summarizes epidemiological data on benign and malignant tumor subtypes. We
calibrate the model such that the absorption probabilities in state N given by equations (3)
and (4) are equal to the diagnosed benign tumor fraction p. We assume a mutation probability
of v = 10−6 throughout these calculations. The last column contains the necessary number
of injected cells to obtain a tumor in mice transplantation experiments. The estimates and
mice data are also illustrated in Figure 3. ∗ = estimated, MGUS=monoclonal gammopathy
of undetermined significance.
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Legends to Figures

Figure 1: Tumor progression types and patterns in the model. On the cellular
scale, wild-type cells can progress to benign tumor cells during proliferation with mutation
probability u. Wild-type cells and benign tumor cells neutrally compete with each other
within the homeostatic range of competition which is modeled by Moran dynamics,
see Figure 2. A benign tumor will manifest if all cells within the homeostatic range of
competition are converted to benign tumor cells. Furthermore, benign tumor cells can
progress to malignant tumor cells during proliferation with probability v. Then, a malignant
tumor inevitably develops. These cellular dynamics lead to two distinct progression types
at the tissue scale, namely sequential progression and tunneling progression. The benign
tumor fraction p determines the progression pattern. We do not model the transition from
benign tumors to malignant tumors since we are only interested in the type of progression
(dotted arrow).

Figure 2: Moran dynamics with different spatial cell arrangements. In the Moran
dynamics, a randomly chosen cell proliferates (blue circle) and replaces a neighboring cell
which undergoes cell death (red circle). In A, the space-free dynamics is illustrated, i.e.
each cell can be replaced by any other cell. In B, only neighboring cells can be replaced
representing a one-dimensional cell arrangement.

Figure 3: Estimated tumor-originating niche sizes based on tumor progression
patterns. This plot shows the benign tumor fraction in the space-free (red) and one-
dimensional (blue) model as function of the tumor-originating niche size. The blue curve
has been numerically evaluated, see equation [4]. The red curve represents the plot of
equation (3). The shaded areas illustrate the borderline parameter regimes, i.e. in which
both sequential and tunneling progression are possible for the space-free and the 1D model,
see Table 1. The dots indicate the estimated tumor-originating niche size and the squares
represent experimental data for different tissues, see Table 2 for the values.
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