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Abstract 

Background: The outcome of a given antibiotic treatment on the growth capacity of 

bacteria is largely dependent on the initial population size (the Inoculum Effect, IE). 

For some specific classical antibiotic drugs this phenomenon is well established in 

both in-vitro and in-vivo studies, and its precise mechanisms, its clinical implications 

and its mathematical modelling are at the forefront of current research. Traditional 

view of the IE is that it is mainly attributed to -lactam antibiotics in relation to -

lactamase producing bacteria, and that some antibiotics do not induce an IE at all. The 

study of antimicrobial peptides had emerged in the past two decades as a possible 

additional strategy for combatting infections, and their mechanism of operation and 

clinical implications are extensively studied. Yet, no previous studies addressed the 

possible induction of IE under the action of classical cationic antimicrobial peptides 

(CAMPs).  

 Based on mathematical reasoning regarding bacteria-neutrophils interaction, we 

hypothesized that CAMPs also induce an IE in bacterial growth, and questioned what 

are the similarities and differences between the IE induced by CAMPs and that 

induced by classical antibiotics. To this aim we also needed to better understand the 

characteristics of the IE induced by classical antibiotics.    

Principal Findings: We characterized and built a model of in-vitro IE in E. coli 

cultures using a large variety of antimicrobials, including 6 conventional antibiotics, 

and for the first time, 4 cationic antimicrobial peptides (CAMPs). Each combination 

of bacterial initial load and antimicrobial concentration experiment was done in 

duplicate, with 48 such combinations in each experiment. Each experiment was 

repeated 4-6 times, sometimes with some adjustments in the tested concentrations to 

get better resolution of the IE. Each growth curve was processed independently, to 

correctly reflect the initial exponential growth that might lead to large deviations even 

between duplicates. By using Optical Density (OD) to monitor the bacterial density, 

we were able to gather growth curves from this extensive data set and from these 

curves extract, by data processing, the corresponding growth functions. We show that 

this process allows us to clearly differentiate between simple one-dimensional 

deterministic bacterial growth dynamics and more complex behaviour.  
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In all agents we tested, including all cationic antimicrobial peptides and all 

conventional antibiotics, independently of their biochemical mechanism of action, an 

“inoculum effect” was found. At a certain range of concentrations, which is specific 

for every drug and experimental setting, the system exhibits a bistable behaviour in 

which large loads survive and small loads are inhibited. Moreover, we characterized 

three distinct classes of drug-induced bi-stable growth dynamics and demonstrated 

that in rich medium, CAMPs correspond to the simplest class, bacteriostatic 

antibiotics to the second class and all other traditional antibiotics to the third, more 

complex class. In particular, for the first two classes, of cationic antimicrobial 

peptides and of the commercial bacteriostatic antibiotics, the bacterial growth can be 

explained by a very simple deterministic one-dimensional mathematical model. These 

findings provide a unifying universal framework to describe the dynamics of the 

inoculum effect induced by antimicrobials with inherently different killing 

mechanisms.   

 

Limitations of the results: The IE we detect is in-vitro, in rich medium, and the simple 

deterministic one dimensional models apply to this setting for the CAMPs and the 

bacteriostatic antibiotics only. While these findings can be used as a building block to 

more complex settings, with in-vivo being the most complex of all, it is clear that 

additional studies are needed in order to address these complexities. Another 

limitation is the OD methodology which does not clearly differentiate between live, 

dormant and dead cells and also does not detect small bacterial loads that are below 

the reader detection level. Nonetheless, since only live bacteria grow, the growth 

functions that we find experimentally are independent of the dead and dormant 

bacteria, and the bacterial density axis may be at most shifted by small amount due to 

this effect. The behaviour at small loads, below the OD detection level, is also 

irrelevant for the current study as we are concerned with the IE at high inoculum. 

Finally, this study is conducted at the population level only, with the point of view 

that IE is induced by deterministic non-linear interactions between the bacteria and 

the anti-microbial agent, without delving into the details of the particular molecular 

mechanisms that lead to this particular interaction. Such detailed nonlinear molecular 

mechanisms that induce IE are known to exist for some of the agents we use. Future 
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studies are needed to better understand the detailed molecular mechanisms in the 

other cases.   

Conclusions & Significance: The vast increase in bacterial resistance, highlights the 

need for new approaches to eradicate bacterial infections, by either the development 

of new antimicrobial agents, or new strategies of treatment. Developing treatment 

strategies requires a better understanding of the Inoculum Effect (IE). We demonstrate 

that IE is abundant in the application of both classical antimicrobial peptides and 

classical antibiotics to bacteria. Furthermore, we show that IE falls into three 

universality classes of bi-stable behaviours and that classical antimicrobial peptides 

form a class of their own – the simplest and most predictable class. These findings 

propose a new exciting viewpoint on the universality features of IE that may serve as 

building blocks for the design of better treatment strategies for infection.  

We stress that the detection of IE in CAMPs may have important implications for 

their mode of operation, and this finding may lead to further explorations of this 

phenomenon both in terms of mechanistic models and in terms of clinical and 

biological implications.  

While bacterial IE was identified in previous studies of particular conventional 

antibiotic agents and bacteria, previous explanations of its appearance included 

genetic and/or phenotypic population heterogeneity and additional time-dependent 

factors. These were modelled, for example, by deterministic multi-dimensional 

equations of classical reaction kinetics.  Here we show that for some cases (the 

bacteriostatic antibiotics) a one dimensional model can explain the resulting growth 

curves by density dependant mechanisms alone. By Ockham’s razor principle, we 

assert that such models are adequate for describing the IE in bacteriostatic antibiotics. 

On the other hand, we also show that for all other cases (growth with all other 

classical antibiotics and growth in poor medium) simple one dimensional 

deterministic models cannot describe the dynamics, and thus multi-dimensional 

models may be needed to describe IE in these cases. Additionally, contrary to some 

other studies, we show that IE appears in every antibiotic we tested (in particular 

antibiotics that are not -lactams), so additional molecular mechanisms for creating 

the non-linear bacterial-drug interaction need to be identified.  
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Finally, density dependent phenomena are abundant in biology and may appear in 

other pathogenesis systems, where densities matter. Here we demonstrated that such 

phenomena can sometimes be described by very simple growth dynamics. Such 

simple models may serve as building blocks to more complex models such as in-vivo 

ones and may also inspire detailed studies aimed at deciphering the specific dominant 

molecular mechanisms of the detected IE. We propose that the principles and 

methodologies developed here for studying IE by observing the population level 

dynamics may be applicable to diverse biological situations.  

   

Authors Summary 

The vast increase in bacterial resistance highlights the need for new approaches to 

eradicate bacterial infections, by either the development of new antimicrobial agents, 

or new strategies of treatment. Since the outcome of a given antibiotic treatment on 

the growth capacity of bacteria is largely dependent on the initial population size 

(Inoculum Effect, IE), developing treatment strategies requires a better understanding 

of this effect. We characterized and built a model of this effect in E. coli cultures 

using a large variety of antimicrobials, including conventional antibiotics, and for the 

first time, cationic antimicrobial peptides (CAMPs). Our results show that all classes 

of antimicrobial drugs induce an inoculum effect. Moreover, we characterized three 

distinct classes of drug-induced bi-stable growth dynamics and demonstrated that in 

rich medium, CAMPs correspond to the simplest class, bacteriostatic antibiotics to the 

second class and all other traditional antibiotics to the third, more complex class. 

These findings provide a unifying universal framework to describe the dynamics of 

the inoculum effect induced by antimicrobials with inherently different killing 

mechanisms. These findings propose a new exciting viewpoint on the universality 

features of IE that may serve as building blocks for the design of better treatment 

strategies for infection. 
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Introduction 

Many factors can affect bacterial susceptibility to antibiotics. These include 

the metabolic state and the presence of persistent cells [1-3], the microenvironment 

conditions that affect the antibiotic potency [4], the physical structure of the 

population (biofilms) [5], and the population size, or inoculum, at the site of infection. 

Indeed, a major power of bacteria is within numbers since it has been well established 

that as a population, bacteria often survive a concentration of an antimicrobial agent 

that is lethal to individual cells. In a therapeutic context, this means that the fate of an 

initial infection depends on the initial load of bacteria – while small infections are 

easily cleared even with no antibiotics, large infections are hazardous, even when 

antibiotics are administered at high doses. This phenomenon, known as the “inoculum 

effect” (IE), is well established in-vitro [6-8], as well as in-vivo in animal models and 

in human patients [9-11][7, 12] [13] [14] 

 

There are several known biological mechanisms that were proposed to account for IE. 

First, it is known that the E. coli spontaneous beneficial mutation rate is 10-5 

mutations per genome per generation [15]. Thus, bacterial populations equal to or 

larger than 10^5 may contain genetic heterogeneity in regard to antibiotic resistance 

[16, 17]. Phenotypic heterogeneity [1-3] is also more prominent in these larger initial 

populations. It is believed that this heterogeneity can generate bi-stability: at low 

numbers we expect that only one, non-resistant population exists, hence treatment 

leads to extinction, whereas at high initial numbers heterogeneity may allow a 

resistant strain to grow, leading to bi-stability. 

Second, density-dependent mechanisms may also lead to IE. The bacterial density 

affects both the cellular state of the cell, and its interactions with the antimicrobial 

agent. Cellular communication that is sensitive to population density is called quorum 

sensing.  Quorum sensing enables bacteria to synchronize gene expression and alter 

their properties to become more resistant to different antibiotics.  At low cell 

densities, a large proportion of the signalling factors disperse before they can be used, 

and so their production provides a small direct or indirect fitness benefit. At high cell 

densities, a much greater proportion of the signalling factors is available per cell, and 

consequently bacteria can better cope with the relevant stressor [18]. A density-

dependent mechanism that does not involve cellular signalling is reduction in the 
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antibiotic concentration. For instance, E. coli secrete the β-lactamase enzyme that 

cleaves and inactivates β-lactam antibiotics [19]. Larger populations produce more β-

lactamase and can therefore degrade the antibiotic faster [20, 21]. If the population 

survives and grows, more enzymes are produced and cleave the antibiotic in a higher 

rate - a positive feedback mechanism. A similar concept applies when an antibiotic 

agent binds to its target or to non-specific cell components and its effective 

concentration in the medium is reduced. This might not have much effect when the 

antibiotic concentration is sufficiently large compared to the population size, but is 

expected to lead to a bistable situation at a critical ratio. Even if the antibiotic 

concentration does not change in time, bistable behaviour can arise when growth is 

proportional to the amount of antibiotic molecules available to each bacterium at the 

time of exposure [7, 22]. The above density dependent mechanisms are inherently 

non-linear: these effects are not increasing gradually, proportionally to the bacterial 

load and antimicrobial concentration as they all have either threshold or limiting 

effects. 

In a clinical situation, IE is undesirable because the treatment outcome may become 

difficult to predict even if the dynamics (drug-target interaction) is assumed to be 

deterministic [8, 23-26]. A direct consequence is that treatment with insufficient doses 

of antibiotics can lead to increased mortality of infected patients [27], and favour the 

selection of drug-resistant strains [25, 28].  

 

The IE may be viewed as a bistable effect. A system is said to be monostable if it 

always equilibrates to one final state, and is bistable when it admits more than one 

stable state (see e.g. [29]). In the bacteria-antimicrobial context, a monostable system 

corresponds to the case where any initial amount of bacteria (B) reaches the same 

maximal population size under a non-lethal treatment (A). Lethal treatment leads to 

eradication of all loads, and therefore, the fate of the system is independent of the 

initial load (Figure 1A). In a bistable situation, the fate of the system may depend on 

its initial load. Here, for a range of the antimicrobial agent concentrations, the 

bacterial population can assume two possible states (the two solid black lines in 

Figure1B), depending on whether the initial bacterial concentration was above or 

under the threshold concentration Bc(A) (dashed black line in Figure1B). Three main 

regimes govern this bistable dependence. First, a minimal antibiotic/peptide 
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concentration Ac is needed to kill or inhibit a minute number of bacterial cells, so for 

A < Ac, even minute bacterial populations grow, similar to untreated cells. Second, an 

enormous amount of antimicrobial agent inhibits practically any amount of cells, so 

there exists Ae such that for A > Ae all relevant bacterial densities are growth-

inhibited or killed. Third, for Ac < A < Ae, the greater the concentration of the 

antimicrobial agent, the larger the bacterial concentration it can inhibit, so the 

threshold concentration Bc(A) is monotonically increasing with A in this range. It 

follows that for any given antimicrobial agent concentration in the range Ac < A <

Ae, the fate of the bacterial population depends on whether its initial concentration is 

above or below Bc(A) (dotted bottom line Figure 1B). We thus have a bi-stable 

behaviour for all Ac < A < Ae (Figure 1B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. One dimensional models of monostable and bistable bacterial growth 

in the presence of antimicrobial agents. The x-axis represents the collection of 

antimicrobial concentrations, the y-axis shows the bacterial amount. In this plot, the 

bacterial dynamics correspond to motion along vertical lines – from any initial 

inoculum at a given antimicrobial concentration, the bacterial load increases (moves 

upward) in the red regions and decreases (moves downward) in the blue regions. The 

solid/dashed lines correspond to stable/unstable equilibrium states respectively. (A) 
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antimicrobial concentration (a thick full line). (B) The bistable model has a range of 

concentrations, the bistable range, where the system has at least two possible stable 

equilibria (two full lines). The upper solid line represents the antimicrobial-

concentration dependent maximal capacities. The dashed line of unstable equilibria 

represents the collection of critical bacterial loads Bc(A) above which the bacteria 

grows to the upper equilibrium branch and below which the bacteria becomes extinct 

or inhibited. Ac is a minimal antimicrobial agent concentration that inhibits/kills a 

minute number of cells. Ae is a concentration that inhibits/kills every tested bacterial 

load. The bi-stable range corresponds to concentrations between Ac and Ae. See 

similar figure in Malka et al [29],[30] for neutrophil-bacteria dynamics. 

 

Essentially, any non-linear drug-target interactions can result in a bi-stable 

behaviour. Indeed, in Malka et al [29, 30], it was argued, by this reasoning, that 

neutrophil-bacterial interactions also exhibit bi-stable behaviour. It was shown there 

that deterministic one-dimensional models, which depend only on a single dynamic 

variable - the varying bacterial concentration - are sufficient for adequately describing 

such a behaviour in in-vitro experiments in which bacteria and neutrophils are 

incubated together in well mixed wells. Notably, other more complex mechanisms 

may also result in a bi-stable behaviour. By Ockham's razor principle, since the 

concentration-dependent bi-stable mechanism is the simplest adequate model, and 

such a model involves hardly any assumptions on the specifics of the neutrophils-

bacteria interactions, it provides the main underlying mechanism for in-vitro bacteria-

neutrophil dynamics (and possibly for in-vivo dynamics under neutropenic conditions, 

see Malka et al. [29, 30]).  The inoculum effect shows that a similar underlying 

mechanism applies to bacteria-antibiotics interactions. 

In the current study, we show that as long as the initial bacterial loads used for 

bacterial growth assays in the presence of antimicrobials were sufficiently resolved, 

every tested antimicrobial agent showed an inoculum effect for E.coli K12 MG1655 

cells. We tested several antibiotic substances, each employing a different mechanism 

to kill bacteria, to show that the bacterial growth dynamics are dependent on the 

initial bacterial load present in the medium, regardless of the type and mechanism of 

action of the antimicrobial agent. We also show, for the first time to the best of our 

knowledge, that classical antimicrobial peptides that do not have specific targets on 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 24, 2018. ; https://doi.org/10.1101/330035doi: bioRxiv preprint 

https://doi.org/10.1101/330035


the bacterial membrane induce an inoculum effect as was previously observed for 

some non-classical antimicrobial peptides [31]. Moreover, we show that the killing 

induced by them may be described by an even simpler model – a model of a bistable 

immediate kill term followed by peptide independent dynamics. Possible clinical 

implications of this study are discussed. 

 

Experimental Materials and Methods  

Commercial antibiotics – Ampicillin sodium salt, Kanamycin sulphate, 

Chloramphenicol, Carbenicillin disodium salt, Oxacillin sodium salt and Gentamycin 

solution were purchased from Sigma-Aldrich. Polymixin B was purchased from Fluka 

BioChemika and Tetracycline hydrochloride was purchased from Calbiochem.  

Peptide synthesis and purification – Peptides were synthesized by using a 433A  

synthesizer (Applied Biosystems, Life Technologies) on rink amide 0.65 mmol/mg 

MBHA resin, using Fmoc protected amino acids. The synthesized products were 

washed thoroughly with DMF and DCM, then dried and cleaved. Cleavage was 

performed by addition of 95% trifluoroacetic acid (TFA), 2.5% water and 2.5% TIS. 

The peptides were then purified (>98% homogeneity) by reverse phase HPLC (RP-

HPLC). Purification was performed using a C18 column and a linear gradient 

(Melittin – 20%-80%, K6L9 – 10%-90%, MSI – 10%-90%) of acetonitrile in water 

(final fluid containing 0.1% TFA (v/v)] for 40 min. 

Bacterial Strains – E. coli MG1655 with a Lux-Kanamycin resistance plasmid 

(described previously in [32]) was used for generation of all bacterial growth curves 

except for the curves generated with Kanamycin where non-resistant E. coli MG1655 

was used. Bacteria were grown in LB media or LB+Kanamycin (30 µg/ml), shaking 

in 37°C for 4 hours (OD600 = 1-1.5) and then diluted for the experiments. 

Generation of growth curves from various initial inoculums – a sterile 96-well plate 

with a flat-bottom was prepared with serial dilutions of the necessary 

antibiotic/peptide in LB media (total volume in well 100 µL). In short, an initial high 

concentration stock of the antibiotic/peptide in DDW was used to make an initial 

stock in LB to fill 200 µL into wells in row A. Serial dilutions were then made by a 

multipipette into the other wells already containing 100 µL of LB (the last row was 
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left without antibiotics/peptide as a positive control). Bacteria from a shaking culture 

as described above were then measured for their OD600 and normalized in 2 ml LB 

medium to an OD600 of 0.01 (order of 106 cfu/ml as measured from live counts). 

Serial dilutions of the bacteria were then made in additional 5 LB tubes (200 µL from 

previous dilution were transferred into 1800 µL of LB every time after vortexing). 

100 µL of the highest bacterial dilution were inserted into wells A1-B12, 100 µL of 

the second highest bacterial dilution into wells C1-D12 etc. The smallest inoculum 

contains about 5 bacteria and, in all experiments` controls, exhibited growth (was not 

empty). The prepared plate was placed in an automatic microplate plate-reader for 16 

hours with medium shaking speed and an OD600 measurement every 20 min.  

Antibacterial activity – The base minimal inhibitory concentration (bMIC) was 

determined for each antibiotic/antimicrobial peptide (AMP) based on the above 

described growth curves – bacterial populations with an initial inoculum of 106 cfu/ml 

(105 cfu per well) that finished with an OD600 lower than a cut-off of 0.35 after a 16-

hour incubation were considered as extinct or inhibited. The lowest antibiotic/peptide 

concentration for which both duplicates went extinct is the bMIC. Similarly, MICs 

were also generated for lower inoculums using the same cut-off.  

Preparation of spent media with Polymixin B (PMB) and Ampicillin (Amp) – 

Appropriate concentrations of PMB and Amp were prepared in LB medium for 

subsequent dilutions for a MIC assay described above. E. coli MG1655 were grown in 

shaking LB till an OD600 of about 0.4-0.6, and diluted into some of the prepared 

PMB and Amp stocks to an OD600 of 0.1. All types of these media and LB alone 

were then incubated in shaking in 37°C for 1h. Incubated media were centrifuged and 

the supernatant was used for a standard MIC assay described above.   

Determination of antibiotic potency over time - E. coli MG1655 were grown in 

shaking LB ON and then centrifuged for 5 minutes in 3000 rpm and diluted to an 

OD600 of 1. Ampicillin, Chloramphenicol, Carbenicillin and Tetracycline were added 

to appropriate concentrations for final MIC determination as indicated in the results to 

tubes containing either LB or LB and bacteria in an OD600 of 1. Some LB tubes with 

bacteria in the same density were also incubated with rest without any antibiotics. All 

tubes were incubated for 24 hours in shaking and 37˚C. In addition, another inoculum 

of E.coli MG1655 were grown in shaking LB ON. After 23 hours, the whole process 
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was repeated for the 1hr samples with the new ON culture. When 24h had passed, all 

samples were filtered through 0.2 um syringe filters and appropriate amounts of all 

corresponding antibiotics were added to the samples that were incubated with bacteria 

only (without antibiotics). Finally, all samples were diluted by a factor of 2 with fresh 

LB for the highest antibiotic concentration and by increasing dilutions for a standard 

MIC assay as described above. In addition, fresh LB with fresh antibiotics was 

prepared for each antibiotic for a parallel classic MIC assay as a control by the 

protocol described above. All MIC assays were performed in 96-well plates over 16h 

of incubation in shaking (250 rpm) and 37˚C. Final results were determined by the 

sight of turbidity and OD600 measurements.  

Mathematical models 

 Three types of deterministic mathematical models are proposed, all admitting bi-

stable behaviour as described in the introduction section: The bistable immediate kill 

and then A-independent dynamics model (simplest), the bistable A-dependant 

dynamics model (simple), and a bistable multiple time-dependent factors A-dependant 

dynamics model (the most complex model presented here). Notably, more complex 

bi-stable models taking into account detailed molecular processes, stochastic effects, 

and/or several phenotypic populations may be introduced. One of the main results 

here is that the two simpler models are adequate for describing much of the data.  

Denoted by B(t) (bacterial cells/ml) the concentration of the bacteria at time t (hours) 

and by A the initial concentration of the antibiotics/peptide (µM).  The growth curves 

under the influence of the antibiotics/peptides reflect the overall population growth 

which is decreased/delayed by either killing of substantial portions of the population 

(peptides or bactericidal antibiotics) or by growth-inhibition (bacteriostatic 

antibiotics). 

The bistable immediate kill model (BIK): the bacterial destruction occurs quite rapidly 

and abruptly at some initial phase τ. After this destruction occurs, the surviving 

bacteria (if such exist) grow exactly as if there are no peptides in the medium (as in 

the control). The flow chart for such a model is of the form in flow chart No 1.  

This means, that if one plots the growth function of the bacteria, dB/dT versus B, one 

should obtain, for all concentrations of the antimicrobial peptide, a unique growth 

function F(B) which is independent of the antimicrobial concentration. The 
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experiments (see Figures 3-6) demonstrate that all the antimicrobial peptides exhibit 

such behaviour whereas none of the antibiotic agents induce such a simple behaviour.   

 

The bistable A-dependant dynamics model (BAD): here the bacterial destruction 

occurs continuously as a result of the antibiotics action, which is assumed to be fixed 

along the experiment (See flow chart No 2). 

The bi-stability arises here from the non-linear nature of antibiotics-bacteria 

interactions. The experiments (see Figure 3) demonstrate that to a good 

approximation, two of the antibiotics that were tested are well described by this 

continuous one dimensional model. From the data sets we can roughly obtain the 

concentration dependent growth function F(B,A) for each of the antibiotics by 

plotting the experimental curve 
∆B

∆t
 vs B – for each concentration separately. Plotting 

these experimental curves provides a first glimpse to the experimentally derived 

nonlinear bacterial-antibiotics interactions (see Figure 3B). 

The bistable multiple time-dependent factors A-dependent dynamics model (BMFD): 

Here, additional time-dependent factors, such as antibiotics concentrations and -

lactamase concentrations influence the bacterial growth and are being influenced by 

the bacterial concentrations, leading to at least a two dimensional deterministic 

system (it is also plausible that stochastic terms need to be included, see e.g. [26]). 

The simplest possible model of this kind lets the bacterial dynamics to be modelled as 

above, with the antibiotics concentration that governs the bacterial dynamics change 

with time according to a dynamic law – see flow chart No 3.  

Clearly, such higher dimensional models are more complex than the deterministic one 

dimensional BIK and BAD models. Indeed, notice that the two simplified models 

(BIK and BAD) can be considered as two limiting cases of the above simplest two 

dimensional model: very fast depletion of the antibiotics leads to a BIK model, 

whereas very slow depletion and consumption of the antibiotics means that the 

antibiotic concentration remains essentially fixed and the BAD model emerges.  

When the experimental growth function for each antibiotic concentration depends on 

the bacterial initial load, one concludes that the two simple models are insufficient to 

describe the bacterial growth dynamics. 
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Results 

Without antibiotics, in rich media, bacteria grow to maximal capacity obeying 

deterministic 1D growth dynamics.  

To investigate how the initial bacterial concentration (i.e. initial load) influences the 

growth outcome at a given antibacterial agent concentration, we first searched for 

conditions in which the medium content itself is not a limiting factor that can affect 

the growth dynamics. Six initial bacterial loads with a fold-change between them 

(roughly 10–10^6 cfu/ml) were prepared from an exponentially growing culture of 

E.coli and grown in a rich medium (LB) or in a minimal medium (see methods). In 

the rich medium, all initial loads had the same growth rate during the exponential 

phase, and reached the same maximal concentration (optical density, OD) – the full 

capacity of the well (Figure 2A). When grown in a minimal medium, the different 

Flow chart No 2 – BAD Model 

Flow chart No 3 – A BMFD Model 

Antibiotics dynamics coupled to the BAD model bacterial  dynamics: 

Flow chart No 1 – BIK Model 
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initial loads did not necessarily reach the same maximal concentration, nor grew with 

similar rates during the exponential growth phase. In addition, there was a higher 

variability between replicated samples (Figure 2D). Note that the different loads are 

detected by the OD reader only after they grow above the detection level of about 

10^6-10^7 cfu/ml. The time shift between the different loads can be thus used to 

estimate the growth rate at the exponential phase (and later on, to estimate the initial 

anti-microbial killing). To better visualize the specific growth function (dB/dt) for a 

given bacterial concentration B(t) we plot dOD/dt versus B. In these plots, the growth 

rates of all loads tested in rich medium converge approximately to a single line 

(Figure 2B), while in minimal medium they do not (Figure 2D).  

These plots show, for the first time (to the best of our knowledge), the fully nonlinear 

growth function that appears in any deterministic mathematical model which involves 

bacterial growth. We see that in a rich medium the rate of change of the bacterial 

concentration (dB/dt) at a given time depends only on its current concentration (B(t)) 

and not on the initial load B(0) or the time of growth (Fig 2B). Mathematically, such a 

behaviour corresponds to classical deterministic 1D dynamics, namely to a model of 

the form dB/dt=F(B) where F(B) is shown in Figure 2B. In particular, the fact that all 

duplicates and all different initial loads collapse to one growth function clearly 

demonstrates that under these conditions stochastic effects are insignificant, even 

when a minute number of live bacteria are put in the wells. In contrast, bacteria in 

minimal medium exhibit more complicated dynamics – here the rate of change 

depends on other time dependent factors such as the depleting nutrients, and we 

observe that duplicates may grow differently (Figure 2D). Thus, the dynamics in 

minimal medium cannot be described by such a simple mathematical model. We 

conclude that growth in a rich medium is robust and enables reproducible and 

identical growth rates for all initial loads, hence we use it to study how antimicrobial 

peptides and antibiotics with well-defined mechanisms of action (Table 1) affect the 

growth dynamics. 

Bacterial growth dynamics under antimicrobial treatment  

We employed three parameters to characterize the growth dynamics under an 

antimicrobial treatment (see Flow chart.4): 
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Figure 2. Growth dynamics of untreated bacteria in rich and minimal medium. 

(A) The growth of twelve initial loads (six different loads in duplicated) in rich 

medium (LB) as monitored by a change in optical density (OD) in time. Circles-data 

points, solid line – smooth approximation to data used for calculating the growth 

function, see methods.  (B) Specific growth function curves [experimental dOD/dt vs. 

OD].  (C-D) Repeating the experiment in minimal medium resulted in higher 

variability between duplicates and exhibited a strong influence of the initial load on 

the growth rate and the maximal population size. 

i. Does the bacterial growth exhibit bi-stability, i.e. is there an antibiotic 

concentration A such that during the experiment time, small initial bacterial 

loads B(0) do not grow (i.e. are not detectable) whereas large loads do? 

ii. Does the bacterial growth exhibit deterministic 1d growth model or more 

complicated dynamics? 

iii. When growth occurs, how does the maximal bacterial concentration depend 

on B(0) and  A?   

Figure 2 
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Table 1: Antibacterial agent properties and tested bMIC ranges concentrations 

Agent 
Type 

Mechanism 
Target MIC 

(µM) 

 

Chloramphenicol 
Chloramphenicol 

Bacteriostatic 
Ribosomal 

50S 

5-20  

Tetracycline 
Polyketide 

Bacteriostatic 
Ribosomal 

30S 

2-4.5  

Gentamycin 
Aminoglycoside 

Bactericidal 
Ribosomal 

30S 

4-8  

Kanamycin 
Aminoglycoside 

Bactericidal 
Ribosomal 

30S 

10-20  

Ampicillina 
β-lactam 

Bacteriolytic 
Cell-wall 

PBP 

12-14  

Carbenicillina 
β-lactam 

Bacteriolytic 
Cell-wall 

PBP 

21-43  

Oxacillin 
β-lactamb 

Bacteriolytic 
Cell-wall 

PBP 

1800  

Polymixin B CAMP Bactericidal Membrane  0.3-1.25  

Melittin CAMP Bactericidal Membrane 20  

MSI CAMP Bactericidal Membrane 17  

K6L9 CAMP Bactericidal Membrane 10-20  

a E. coli K12 MG1655 is a β-lactamase producer that can cleave β-lactam antibiotics. 

PBP is a penicillin-binding-protein. b Oxacillin is a β-lactamase resistant β-lactam. 

 

 

 

 

 

 

Flow chart 4 – Bacterial growth dynamics in the presence of antimicrobials. 
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Bacteria grown in the presence of commercial antibiotics exhibit bi-stability and 

either A-dependent dynamics (BAD) or more complicated dynamics (BMFD). 

In all the experiments with commercial antibiotics bi-stability was detected. Its 

detection required searching for the bi-stable range which may explain why it was 

missed in previous studies [22, 33, 34]. Figures 3-4 demonstrate the bi-stable 

behaviour for Tetracycline and Kanamycin. Similar bi-stability behaviour is observed 

for all seven commercial antibiotics (see figure S4-S6). 

 

When growing the different initial loads with increasing concentrations of 

Tetracycline, a bacteriostatic antibiotic that inhibits protein synthesis, we found a 

bistable behaviour at 1 ≤ 𝐴 ≤ 3 µM (Figure 3A). Here, for a given A, all loads grow 

with a similar growth function as shown in Figure 3B. Since, for any fixed A, the 

growth function is not changing when different loads are tested, we conclude that the 

antibiotic concentration remains roughly constant with time. This behaviour fits our 

second model – a bistable A dependent model (BAD) in which the growth function is 

determined only by the antibiotic concentration and is independent of the initial load:  

dB/dt=F(B;A) where F(B;A) is shown in Figure 3B for several A values. Put 

differently, for each fixed A value, all the loads that grow, grow in exactly the same 

way. In particular, their maximal capacity is independent of the initial bacterial load 

(Fig 3C,D). Moreover, as A is increased, the growth rates decline, the smallest loads 

fail to grow, and the maximal capacity decreases. Repeating the experiment with 

Chloramphenicol (another bacteriostatic agent) resulted in a similar trend, but at 

different concentration ranges (Figure S4). 

C

DB

A

Figure 3 
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Figure 3. Dynamics of bacterial growth with Tetracycline. (A) The bacterial 

population is either extinct or growing with a similar growth curve under a given 

concentration of Tetracycline. At any given antibiotic concentration A (one of the 

seven subplots), all loads that grow have similar growth curves, shifted in time 

(different colours correspond to different initial loads as indicated). For A>1m some 

of the small loads fail to grow altogether. The maximal growth capacity declines as 

the antibiotic concentration A rises. (B) The specific growth function (dOD/dt vs OD) 

of the different loads changes as a function of A, but remains fairly constant for all 

loads at a given A. (C) The maximal capacity of all loads at a given Tetracycline 

concentration A is always similar, and declines as A becomes bigger. Normalized 

maximal capacities (hereafter, normalized by the averaged maximal capacity of the 

control) of one representative experiment are presented. (D) The normalized maximal 

capacity of all loads at a given Tetracycline concentration A is always similar, and 

declines as A becomes bigger – 6 experiments together. *Hereafter, we note that 

whenever collective results of maximal capacities are represented, all the represented 

experiments “hit” the dynamic range of the antimicrobial and displayed bistability. 

See separate experimental results in figure S4.  

 

Bistable behaviour was also found using aminoglycoside bactericidal antibiotics 

Gentamycin and Kanamycin. These agents bind to the 30S subunit of the bacterial 

ribosome and inhibit translation, which eventually causes cell death. The dynamic 

range of Kanamycin as deduced from the maximal growth rate is (3.75 ≤ A ≤

15 µM) (Figure 4A). However, unlike the antibiotics described above, the different 

initial loads do not grow to the same maximal concentration at a given A. Moreover, 

the specific growth rates of the different initial loads at a given A do not overlap 

(Figure 4A). A similar behaviour is demonstrated for Gentamycin with a dynamic 

range of 1.5 ≤ A ≤ 4 µM (Figure 4B). In this situation, growth dynamics depends on 

both the initial bacterial load and on other time-dependent factors. Such growth 

dynamics must be described by at least a two-dimensional growth-inhibition model 

(or, possibly, by a time dependent one-dimensional model).  
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The β-lactam antibiotics used in this study (prevent synthesis of new cell-wall 

peptidoglycan and consequently cause cell-lysis - bacteriolytic), also exhibited a 

bistable behaviour (see Figure 4C, 4D).  With Ampicillin, the bistable range in which 

large loads grow and small loads go extinct is 8 ≤ A ≤ 12 µM (Figure 4C). 

Carbenicillin, another β-lactam, is active already at a lower concentration, but has a 

wider bistable range (8 ≤ A ≤ 16 µM) (Figure 4D). As can be seen from the maximal 

growth capacity of each initial load at a given antibiotic concentration A, different 

loads reach different maximal growth capacities (see growth curves in S5), 

demonstrating a shift from 1d dynamics in the lower antibiotic concentrations towards 

at least 2d dynamics in the high concentrations. Interestingly, the transition seems to 

occur in concert with the appearance of the bistability. This kind of dynamics may 

appear in bistable multiple time dependent factors A-dependent dynamics models 

(BMFD).   

Therefore, bistable behaviour is independent of the specific mechanism of action of 

each antibiotic. The only condition for such an effect is a suitable range of A, which is 

specific for each agent.  

 

 

 

 

 

 

 

 

 

 

Figure 4. Bacteria grown with β-lactam or aminoglycoside antibiotics exhibit 

complicated bi-stable dynamics. Collective results of maximal capacity are shown 

for (A) 6 repeats with Kanamycin. (B) 4 repeats with Gentamycin. (C) 4 repeats with 
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Ampicillin.  (D) 4 repeats with Carbenicillin. The maximal capacities are load and 

dose-dependent. * See separate experimental results in Fig S5. 

 

 

Summarizing, the BMFD dynamics is associated with additional time-dependent 

factors that influence the bacterial growth. The rich medium we use guarantees that 

nutrients are not the limiting factor (Fig 1). Naturally, the next factor to test is the 

antibiotics stability during the course of the experiment (Fig 5A). We find that after 

24 hours, Ampicilin potency decreases (MIC doubles) due to exposure to high 

bacterial loads whereas Carbenicillin potency is reduced due to its exposure to the 

medium (Fig 5A). Comparing to the stability of the BAD antibiotics (Fig 3c,d), we 

find that the Chloramphenicol is absolutely stable for at least 24 hours, whereas 

Tetracycline is less effective after 24 hours (independently of bacterial presence). 

On the other hand, the stability results also show that substances secreted by the 

affected bacteria influence the dynamics: the MIC of Carbenicillin is actually reduced 

in spent medium (Figure 5A right most bar), meaning some bacterial secretions 

promote the potency of this antibiotic. Also, MIC experiments with Oxacillin, which 

is a beta-lactam antibiotic resistant to beta-lactamase degradation, demonstrates that 

even stable antibiotics can produce BMFD dynamics (Figure 5B-E). We conclude that 

while in some cases the antibiotics potency is reduced during the experiments, 

additional factors secreted by the affected bacteria may be more significant in 

producing the BMFD dynamics. 
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Figure 5. Antibiotic stability over time differs between different classes of 

antibiotics (A) Minimal inhibitory concentration of the antibiotic relative to the MIC 

as a function of several media conditions (incubation with or without antibiotics and 

bacteria as indicated). (B) Different loads of bacteria grown with Oxacillin have a 

similar growth slope in the exponential growth phase at almost all A’s (except for 

loads that fail to grow altogether). (C) The specific growth function of the different 

loads in Oxacillin changes with the loads and with A, with no obvious trend with 

respect to A. In particular, the peak of the function remains essentially constant at 

different Oxacillin concentrations. (D) The maximal capacity at all Oxacillin 

concentrations is always similar, and doesn’t decline as A becomes bigger, although 

different loads reach different maximal capacities in each antibiotic concentration. (E) 

The maximal capacities of different loads grown in Oxacillin from 6 different 

experiments. *See separate experimental results in Fig S6. 
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E.coli K12 grown in the presence of antimicrobial peptides exhibit bistable kill and 

A-independent dynamics (BIK) 

Cationic antimicrobial peptides (CAMPs) directly kill bacteria by perforating or 

completely disintegrating their membrane [35]. We first tested Polymixin B, a cyclic 

peptide derived from the bacterium Bacillus polymyxa used in the clinic to fight 

resistant Gram-negative infections. Again, we observed that while large initial 

bacterial loads could overcome higher concentrations of the peptide, small initial 

loads could not, even though the exact same amount of peptide was applied (Figure 

6A). This implies that antimicrobial peptides also induce a bistable inoculum effect, 

as do antibiotics. Additionally, all loads at each peptide concentration exhibited the 

same growth function at each growth phase (see dOD/dt curves in Figure 6B), 

similarly to the antibiotics that conferred BAD dynamics. Surprisingly, we noticed 

that the Polymixin B not only induced an inoculum effect, but also did so without 

changing the maximal capacity of the bacterial growth in all applied concentrations 

(including concentrations that killed almost all of the initial bacterial loads). Thus the 

similar look of all dB/dt curves in the presence of Polymixin, except for 

concentrations of Polymixin B that are 1.25 µM or higher, in which none of the initial 

bacterial loads survived. Therefore, in the case of Polymixin B, The dynamic range is 

(0.16 ≤ A ≤ 0.625 µM) where Ae is between 0.625-1.25 µM and Ac is at most 0. 

16µM (Figures 6A-C).  

Interestingly, these same special dynamics were observed for all three other tested 

antimicrobial peptides – K6L9, MSI and Melittin (Figure 4D and supplementary 

figure S2) only with different dynamic ranges. This sort of behaviour fits a simplified 

BAD model. By this model  there are still two possible stable bacterial concentrations 

in the bistable range of peptide concentrations, but these bacterial concentrations are 

independent of A – bacteria are either completely extinct, or are fully grown by the 

same growth function as the control, to the maximal capacity of the control well. 

Namely, when the bacteria grow, they reach a bacterial concentration that is the same 

for all peptide concentrations. We name this the bistable immediate kill and A-

independent growth model, or a model displaying shock dynamics (Figure 4G). Once 

again, the continuous lines represent stable points for maximal bacterial 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 24, 2018. ; https://doi.org/10.1101/330035doi: bioRxiv preprint 

https://doi.org/10.1101/330035


concentrations, while the interrupted line represents the critical points that determine 

which of the two possible stable concentrations the bacterial population will take. 

This result may be also phrased in terms of the CAMP stability. Since the CAMP 

loses much of its potency within an hour (Fig S2), the bacteria which survive the first 

hour grow in the same way as the control.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Bacterial growth dynamics under antimicrobial peptides treatment. (A) 

At the bistable range, a given bacterial load is either extinct or grows to full capacity 

as shown for Polymixin B (B) The specific growth functions appear to be independent 

of both the loads and the peptide concentration (C) The normalized maximal growth 

capacity of each growing load is independent of the Polymixin B concentration – 3 

repeats together (D) Normalized maximal growth capacities for all loads and peptide 

concentrations for MSI show similar trend – 4 repeats together. (E) The peptide-

bacteria interaction can be described by a bifurcation diagram in which bistable 

behaviour occurs between Ac and Ae.  *See separate experimental results in Figure 

S7. 
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Discussion 

In all agents we tested, including all cationic antimicrobial peptides and all 

conventional antibiotics, independently of their biochemical mechanism of action, an 

“inoculum effect” was found. At a certain range of concentrations, which is specific 

for every drug and experimental setting, the system exhibits a bistable behaviour in 

which large loads survive and small loads are inhibited. Moreover, we find that for 

certain cases (the cationic antimicrobial peptides and the commercial bacteriostatic 

antibiotics we tested) this phenomenon can be explained by a very simple 

mathematical model.  

Cationic antimicrobial peptides in rich medium (meaning the feeding conditions are 

not limiting) induce the simplest bi-stable bacterial growth dynamics. Because 

antimicrobial peptides kill bacteria in a mechanical fashion by attaching to the 

bacterial membrane via electrostatic forces and formation of pores/lesions through 

which the bacterial contents flow out, they cause almost immediate death [35]. The 

only thing that determines the bacterial growth dynamics is the initial peptide 

concentration “met” by the bacterial cells. After the initial killing is performed by the 

peptide, there are two possible options: either all bacteria are eradicated, and therefore 

there would be no growth at all, or, if there are live bacteria left, they will grow 

normally as the control, independently of the antimicrobial peptide that was primarily 

present in the medium (see our control experiments in Figure S2). The initial 

“decision” of whether to go extinct or survive the peptide is highly dependent on the 

initial bacterial concentration present in the well, and therefore, an inoculum effect 

occurs. Since the initial load is reduced abruptly by the killing, the time till the 

bacterial load becomes detectable allows an estimate of the killing rate – this rate 

appears to be highly sensitive to the experimental setting (see Supplementary figure 

S7).  Mechanistically, this model is supported by various biophysical studies done by 

others and ourselves showing that CAMPs bind and kill both Gram-negative and 

positive bacteria within minutes [36, 37] see Figure S2. The consequence of this 

unusual interaction is mathematically described by our uni-dimensional BIK model – 

there is a density dependent and concentration dependent immediate kill function, 

with the surviving bacteria growing exactly as the control, obeying a deterministic 
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one-dimensional ordinary differential equation with a growth function that is found 

experimentally (Figure 6B).  

Commercial bacteriostatic antibiotics that target the ribosome also induce a simple bi-

stable bacterial growth dynamics - a concentration dependent unidimensional growth-

inhibition activity. Such behaviour appears when there is no decline in the effective 

concentration of the antibiotic in the medium and the medium is rich.  Then, the 

bacterial growth function depends only on the instantaneous inoculum and on the 

amount of antibiotic available at the time of exposure, [A0]:  at any given [A0] 

different initial bacterial loads obey the same dynamic laws which can result in 

inhibition or growth to an [A0] dependent maximal concentration. Such behaviour is 

described mathematically by our BAD model - deterministic one-dimensional 

ordinary differential equation with growth function that depends on the initial 

antibiotics concentration [A0]. Notably, we find these functions from the experimental 

data, and observe that they may have multiple maxima for large [A0] (Figure 3 and 

S4). These experimentally derived functions may be utilized in future mathematical 

models of bacterial growth dynamics.  

Treatment with beta-lactam antibiotics, which specifically target the cell-wall, or with 

aminoglycosides that inhibit the ribosome, resulted in a more complex bi-stable 

growth dynamic. Our results demonstrate that the growth function of the bacteria for 

any given initial drug concentration [A0] does not depend only on the time-dependent 

bacterial density, namely it cannot be described by a single time independent ordinary 

differential equation. Such a behaviour may be explained by more complex 

mathematical models, which we call BMFD. Such models include additional time-

dependent factors, for example, the time-dependent antibiotic concentration (see, e.g. 

[7, 12] for a variety of such models). 

A summary of the three described models and the division of the tested antimicrobial 

agents between them is visualized in Flow Chart No 5. 
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While IE was identified in previous studies of particular conventional antibiotic 

agents and bacteria [6, 7] [9, 10] [7, 8, 12], previous explanations of its appearance  

included genetic and/or phenotypic population heterogeneity and additional time-

dependent factors. These were modelled, for example, by deterministic multi-

dimensional equations of classical reaction kinetics [7, 12] or by two-dimensional 

PK/PD dynamics [8].  Here we show that for some cases (the bacteriostatic 

antibiotics) the one dimensional BAD model can explain the resulting growth curves 

by density dependant mechanisms alone. By Ockham’s razor principle, we assert that 

the BAD models are adequate for these cases: the more complex reasoning can be 

neglected for explaining bacterial growth in rich media under bacteriostatic 

antibiotics. 

On the other hand, we demonstrated that in other cases (bi-stable bacterial growth 

with bactericidal and bacteriolytic antibiotics), higher dimensional models are 

required. These could possibly be described by either density dependant mechanisms 

(such as the production of β-lactamase or, for other bacteria, by extracelluar PH 

Flow Chart No 5 – Summary  
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variations[8]) or models involving population heterogeneity, see [7, 8, 12] and 

references therein. For example, it is well established that E. coli MG1655 produces 

β-lactamase, an enzyme that hydrolyses β-lactam antibiotics such as Ampicillin and 

Carbenicillin [7, 32]. If the antibiotic is being inactivated by the bacteria, higher initial 

loads would then produce larger concentrations of the enzyme over the course of time, 

and therefore, the antibiotic concentration will decline faster. Our experimental results 

with Oxacillin demonstrate that even when the β-lactam is not degraded by the 

bacteria and the drug concentration remains constant over time, IE appears, and the 

growth dynamic may be still multi-dimensional. Interestingly, these results also 

exhibit high sensitivity to the experimental settings. This sensitivity could be possibly 

attributed to the stress induced by the very high antibiotic concentrations (E.coli are 

often naturally resistant to Oxacillin [38]), possibly introducing an additional time and 

antibiotic concentration dependant factor to the system.  Additional experimental 

work in which these factors are monitored is needed for clarifying the dominant 

mechanisms involved in the more complex settings. 

The BAD models and their extended multi-dimensional BMFD models suggest a 

basic mechanism of bacteria-antibiotics interactions, or for that matter, the dynamics 

of bacterial growth under any kind of limiting conditions and not just antibiotics (for 

example, the BAD dynamics are similar to in-vitro neutrophils-bacteria interactions 

[30] and the BMFD may be relevant to our experiments with minimal medium 

(Figure 2C-D). 

From a therapeutic point of view, understanding the particular bacterial growth 

dynamic in the presence of different classes of antimicrobials and starting from 

various bacterial inoculums is central for the assignment of the correct treatment for 

various bacterial infections (see [7, 12] and references therein). Of-course, bacterial 

infections in-vivo require additional considerations, such as the presence of the 

immune system, the clearing of the drugs, as well as environmental conditions that are 

not only subjected to changes by the bacteria but also by the host (e.g., the host may 

control limiting factors for the bacterial growth, and such factors invoke higher 

dimensional dynamics, see Figure 2C-D). Nevertheless, studies have shown [14, 39] 

that quite often in-vitro results regarding interaction dynamics between bacteria and 

antimicrobials are indicative of such dynamics in-vivo and may be used as building 

blocks for the in-vivo models [30]. If the IE is relevant for application of any 
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antimicrobial agent in-vivo as we show here is the case in-vitro, then the simplest way 

to avoid its alarming consequences is to treat infections when they are still very small. 

This would reduce the chance of failure in standard clinical treatment protocols and 

will not allow bacteria to acquire genetic resistance over a long term of insufficient 

treatment. However, in cases when early diagnosis and treatment are impossible, the 

ability to predict bacterial growth dynamics in the presence of a selected treatment 

becomes indispensable. In such cases, the estimation of bacterial load present in the 

infection site, and the knowledge of the type of growth dynamic of the infecting 

bacterium with different antimicrobials, would allow for a personalized treatment in 

terms of dosage and frequency of treatment [22, 40] [6, 7]. Examples for the possible 

growth models include BIK, BAD or BMFD dynamics.    

Our current efforts are concentrated on simulating the results based on the fitting of 

our experimental data and studying their implications. Interestingly, in many of the 

antibiotic concentration dependent growth functions a “hump” in the graph is seen at 

higher OD’s (see Figure 3). This can be indicative of a change in the collective 

behaviour of the bacteria at these higher densities. Investigation of this change in the 

growth dynamic in the future might shed light on the distinct bacterial behaviour at 

high densities.  Finally, to achieve a successful clinical treatment, basic growth 

dynamics rules such as those presented herein should be adapted to include additional 

parameters such as nutrient limiting factors, drug clearance, the action of the immune 

system and the level of drug resistance of the specific bacterial species present at the 

infection site. Inclusion of these additional factors into the bi-stability of the basic 

bacteria-antimicrobial agents system can shed light on the relation between in-vitro 

and in-vivo growth dynamics.   
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