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Abstract 17 

This paper presents a new heuristic method for phasing and imputation of 18 

genomic data in diploid plant species. Our method, called AlphaPlantImpute, 19 

explicitly leverages features of plant breeding programs to maximise the accuracy of 20 

imputation. The features are a small number of parents, which can be inbred and 21 

usually have high-density genomic data, and few recombinations separating parents 22 

and focal individuals genotyped at low-density (i.e. descendants that are the 23 

imputation targets). AlphaPlantImpute works roughly in three steps. First, it identifies 24 

informative low-density genotype markers in parents. Second, it tracks the inheritance 25 

of parental alleles and haplotypes to focal individuals at informative markers. Finally, 26 

it uses this low-density information as anchor points to impute focal individuals to 27 

high-density.  28 

We tested the imputation accuracy of AlphaPlantImpute in simulated bi-29 

parental populations across different scenarios. We also compared its accuracy to 30 

existing software called PlantImpute. In general, AlphaPlantImpute had better or 31 

equal imputation accuracy as PlantImpute. The computational time and memory 32 

requirements of AlphaPlantImpute were tiny compared to PlantImpute. For example, 33 

accuracy of imputation was 0.96 for a scenario where both parents were inbred and 34 

genotyped at 25,000 markers per chromosome and a focal F2 individual was 35 

genotyped with 50 markers per chromosome. The maximum memory requirement for 36 

this scenario was 0.08 GB and took 37 seconds to complete.  37 
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Introduction 38 

This paper presents a new heuristic method for phasing and imputation of 39 

single nucleotide polymorphism (SNP) array data in diploid plant species. High-40 

density SNP array data in plant breeding populations is increasingly valuable for 41 

genomic selection and for identifying regions of the genome that underlie traits of 42 

interest in genome-wide association studies. The accuracy of genomic selection and 43 

power of association studies increases with the number of individuals and with the 44 

density of SNP markers. However, the cost of genotyping many individuals at high-45 

density is high. This high cost is a barrier to the adoption of genomic selection in 46 

plant breeding programs where the number of selection candidates in each cycle can 47 

be very large. An effective strategy to overcome this cost barrier is to genotype a 48 

proportion of the population at high-density, phase their genotypes, and use this data 49 

for imputation of large numbers of individuals genotyped at low-density (Jacobson et 50 

al., 2014, 2015; Gorjanc et al., 2017a; b). This strategy has been widely adopted in 51 

livestock and human populations, partly because genotype imputation tools that work 52 

well in these populations are widely available (Kong et al., 2008; Howie et al., 2009; 53 

Druet and Georges, 2010; Li et al., 2010; Sargolzaei et al., 2011; Hickey et al., 2011; 54 

Cleveland and Hickey, 2013; Hickey and Kranis, 2013; VanRaden et al., 2015; 55 

O’Connell et al., 2016; Loh et al., 2016; Antolín et al., 2017). 56 

Bi-parental populations that are widely used in plant breeding have four 57 

features that make them ideal for imputation. First, they are derived from only two 58 

parents. High-density genotyping of the two parents and low-density genotyping of 59 

focal individuals (i.e., descendants that are the imputation targets) is an effective low-60 

cost strategy in these populations. Second, the number of meiosis separating parents 61 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/330027doi: bioRxiv preprint 

https://doi.org/10.1101/330027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

and focal individuals is small. This means that parental haplotypes remain largely 62 

intact in focal individuals, which simplifies imputation. Third, they have well-known 63 

crossing structures that could be informative for imputation, although the process of 64 

selfing or the creation of doubled haploids can add complications that are not present 65 

in human and livestock settings. However, these “complications” can in certain 66 

situations empower imputation. Finally, parents that contribute to a bi-parental 67 

population are usually inbred. This means that they are homozygous at many loci and 68 

the majority of their genome is phased de facto.  69 

A recent simulation study demonstrated that achieving high imputation 70 

accuracies could empower genomic selection in bi-parental populations (Gorjanc et 71 

al., 2017a; b). The high imputation accuracies with SNP array data were achieved 72 

using the PlantImpute software (Nettelblad et al., 2009; Hickey et al., 2015). The 73 

main drawback of PlantImpute is that it has large computational requirements in 74 

terms of time and memory. This makes it impractical for routine use in breeding 75 

programs. Existing software for imputation in livestock or human populations do not 76 

have large computational requirements. However, software for imputation in livestock 77 

or human populations are not designed to leverage features of plant breeding 78 

programs, and in some cases, cannot work where selfing and bi-sexuality is common. 79 

To our knowledge, existing imputation software for plant breeding programs (e.g., 80 

(Swarts et al., 2014)) are not explicitly designed for imputation of SNP array 81 

genotypes in bi-parental populations.    82 

This paper presents a new heuristic method, called AlphaPlantImpute, for 83 

phasing and imputation of SNP array data in diploid plant species. AlphaPlantImpute 84 

works roughly in three steps. First, it identifies markers fully or partially informative 85 
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for parent-of-origin. Second, it tracks the inheritance of parental alleles and 86 

haplotypes to focal individuals at informative markers. Finally, it uses this low-87 

density information as anchor points to impute focal individuals to high-density. 88 

We tested the accuracy of AlphaPlantImpute in simulated bi-parental 89 

populations across different scenarios. These scenarios varied in the levels of 90 

inbreeding in the parents, the number of selfing events separating parents and focal 91 

individuals, the chromosome size (i.e. recombination rate) and the number of markers 92 

on the low-density array. We calculated the accuracy of imputation within each 93 

scenario as the correlation between the true and imputed genotypes. In general, 94 

AlphaPlantImpute gave excellent accuracy of imputation and typically outperformed 95 

or performed equally as well as PlantImpute for the accuracy of imputation. The 96 

computational time and memory requirements of AlphaPlantImpute were always tiny 97 

compared to that of PlantImpute.  98 
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Materials and methods 99 

Definitions 100 

A focal individual is an individual that is to be imputed. A fully informative 101 

marker is one where the two parents have opposing homozygous genotypes, i.e., 102 

genotypes 0 and 2 (note that the method is agnostic of which allele is the reference 103 

allele). A partially informative marker is where one parent is homozygous and the 104 

other is heterozygous. Markers where parents are fixed for the same allele or where 105 

both parents are heterozygous are uninformative. The high-density (HD) array is the 106 

array at which parents have genotypes and is the target array for imputation. In our 107 

test datasets, the HD array consisted of 25,000 SNP markers. The low-density (LD) 108 

array is the array at which focal individuals have genotypes. We tested eight LD 109 

arrays (see below), all of which were nested subsets of the HD array. 110 

Description of the method 111 

We present a new heuristic method, called AlphaPlantImpute, for phasing and 112 

imputation of SNP array data in diploid plant species. In detail, our method has five 113 

steps: (1) Identify markers that are informative for parent-of-origin of alleles in focal 114 

individuals; (2) Infer the most likely linked alleles at two markers; (3) Phase and 115 

assign parent-of-origin for focal individual’s alleles; (4) Impute focal individual to 116 

high-density using low-density anchors captured in step 3; and (5) Impute markers in 117 

recombined regions. Impute markers adjacent to recombination locations. Step 1 is 118 

the only step applied to groups of focal individuals together. Steps 2, 3, 4 and 5 are 119 

applied for each focal individual separately. A description of the definitions used and 120 
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of each step is given below and a schematic is given in Figure 1 (a more detailed 121 

schematic is given in Supplementary Figure 1). 122 

Method steps 123 

Step 1: Identify informative low-density markers in parents 124 

In the first step we determine which low-density markers are fully or partially 125 

informative in parents, which is used in the following steps to infer parent-of-origin of 126 

phased alleles in focal individuals. For example, in Figure 1 eight of the ten markers 127 

on the HD array genotyped in the parents are fully informative and two (markers 2 128 

and 9) are uninformative. Of the ten HD markers, five (markers 1, 3, 5, 7, 9) are also 129 

on the LD array, which was used to genotype focal individuals. Of these five LD 130 

markers, four are informative and one (marker 9) is uninformative. 131 

Step 2: Infer the most likely linked alleles at two markers 132 

In the second step we infer the most likely linked alleles at two markers for all 133 

pairs of informative markers, which is used in the following steps to phase 134 

heterozygous markers in focal individuals. If parent haplotypes are inherited directly 135 

without recombination, the most likely linked alleles at two markers recover the 136 

parent haplotypes. When this is not the case, the most likely linked alleles at two 137 

markers indicate a potential recombination hotspot or marker map error for the 138 

population. For each pair of informative markers we perform three steps. 139 

2a) First, identify focal individuals that are homozygous at the first and the 140 

second marker. 141 

2b) Second, count the number of times focal individuals have genotype: 142 
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• 0 for the first and 0 for the second marker (diplotype 0-0), 143 

• 0 for the first and 2 for the second marker (diplotype 0-2), 144 

• 2 for the first and 0 for the second marker (diplotype 2-0), and 145 

• 2 for the first and 2 for the second marker (diplotype 2-2). 146 

2c) Third, compare the count of 0-0 to 0-2 and of 2-2 to 2-0. If the count of 0-147 

0 is higher than 0-2 and 2-2 is higher than 2-0, then the 0 (1) allele at the first marker 148 

is commonly linked to the 0 (1) allele at the second marker. If the count of 0-2 is 149 

higher than 0-0 and 2-0 is higher than 2-2, then the 0 (1) allele at the first marker is 150 

commonly linked to the 1 (0) allele at the second marker. For example, in Figure 1 2-151 

2 and 0-0 are the two most frequent diplotypes at markers 1 and 3, which suggests the 152 

most likely linked alleles are 1-1 and 0-0. 153 

Step 3: Phase and assign parent-of-origin for focal individual’s alleles 154 

In the third step we phase alleles in focal individuals and assign their parent-155 

of-origin. We perform this first for the homozygous markers and then for the 156 

heterozygous markers. 157 

3a) Phase homozygous markers 158 

We phase alleles at homozygous markers as the 0 allele for both haplotypes 159 

when the genotype is 0 and as the 1 allele when the genotype is 2. For example, in 160 

Figure 1 the focal individual ID_Y has genotype 2 for marker 7 and we phase it as the 161 

1 allele for both haplotypes. 162 

3b) Assign parent-of-origin to alleles at homozygous markers 163 
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We assign parent-of-origin for phased alleles in the step 3a based on the 164 

informative markers in the step 1. For example, in Figure 1 marker 7 is informative. 165 

At this marker, the Parent_A has the 0 allele, while the Parent_B has the 1 allele. 166 

Focal individual ID_Y has genotype 2, which suggests that both of the 1 alleles were 167 

inherited from the Parent_B. Focal individual ID_Y is also homozygous at marker 9, 168 

with genotype 0, but this marker is not informative and we cannot assign parent-of-169 

origin to phased alleles. 170 

3c) Phase heterozygous marker 171 

We phase alleles at heterozygous markers iteratively based on the most likely 172 

linked alleles in the step 2. Specifically, we perform four steps. We start at the first 173 

heterozygous marker . For example, in Figure 1 the first marker for which the focal 174 

individual ID_Y is heterozygous is marker 1.  175 

3c1) First, phase the first heterozygous marker randomly as the 1 allele for the 176 

first haplotype and the 0 allele for the second haplotype. 177 

3c2) Second, phase the second heterozygous marker based on the the most 178 

likely linked alleles in the step 2. For example, in Figure 1 the second heterozygous 179 

marker is marker 3. Information from the most likely linked alleles suggest that the 0 180 

(1) allele at marker 1 is linked to the 0 (1) allele at marker 3. Using this information, 181 

we phase marker 3 alleles of ID_Y as the 1 allele for the first haplotype and the 0 182 

allele for the second haplotype. We continue moving from left-to-right until the last 183 

heterozygous marker is phased. 184 

3c3) Third, we repeat steps 3c1 and 3c2, but this time starting from the last 185 

heterozygous marker and progressing to the  first heterozygous marker. 186 
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3c4) Finally, we derive a consensus between the haplotypes derived from 187 

moving left-to-right and right-to-left along the chromosome. If they disagree, set the 188 

consensus haplotypes to missing. If only one is filled, set the consensus haplotype to 189 

the filled information. 190 

3d) Assign parent-of-origin to alleles at heterozygous marker 191 

We assign parent-of-origin for phased alleles in the step 3c based on the 192 

informative markers in the step 1. For example, in Figure 1 focal individual ID_Y is 193 

heterozygous at marker 1. At this marker, the 1 allele on ID_Y’s first haplotype is 194 

inherited from Parent_A and the 0 allele on ID_Y’s second haplotype is inherited 195 

from Parent_B. If the marker is partially informative, we assign both the parent-of-196 

origin and the haplotype-of-origin (i.e., first or second haplotype of the parent that is 197 

heterozygous for that marker). 198 

Step 4: Impute focal individual to high-density using anchors from the step 3 199 

4a) Fill uninformative homozygous markers 200 

For uninformative homozygous markers at HD that are not genotyped in the 201 

focal individual at LD, we phase and impute the focal individual with the parental 202 

information. For example, in Figure 1 both parents have genotype 0 for marker 2, so 203 

focal individual ID_Y is imputed as genotype 0. 204 

4b) Assign parent-of-origin to HD marker alleles 205 

For markers on the HD array, assign parent-of-origin to marker alleles based 206 

on the parent-of-origin assignment of the two nearest marker alleles on the LD array. 207 

For example, in Figure 1 marker 6 is not genotyped on the LD array but the two 208 
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neighbouring markers 5 and 7 are genotyped on the LD array. We have assigned the 209 

second haplotype of focal individual ID_Y to Parent_B for both markers 5 and 7. We 210 

therefore also assign marker 6 to Parent_B for the second haplotype. We have 211 

assigned the first haplotype of focal individual ID_Y to Parent_A for marker 5 and to 212 

Parent_B for marker 7. We conclude that there was a potential recombination around 213 

marker 6 at the first haplotype and we do not assign parent-of-origin for this allele. 214 

4c) Phase and impute HD markers using parent-of-origin assignment from 215 

step 4b 216 

For HD markers with assigned parent-of-origin in step 4b, we phase the allele 217 

inherited from that parent for the haplotype of the focal individual. If we have phased 218 

both alleles at a marker, we impute the genotype as the sum of the two alleles on the 219 

two haplotypes of the focal individual. If parent-of-origin has not been assigned for 220 

one or both alleles of the focal individual, we leave the genotype as missing. 221 

Step 5. Impute markers in recombined regions 222 

We phase and impute missing HD markers in potentially recombined regions 223 

in one of two ways. We either (1) impute expected genotype dosage as the average of 224 

the alleles of the two parents; or (2) phase and impute using information from a 225 

genetic or physical map. For (2), we first identify the two closest neighbouring 226 

markers that were informative and phased, second use the distance between these two 227 

markers as a weight to phase the missing alleles as the weighted average of the alleles 228 

of the two parent haplotypes, and third impute expected genotype dosage as in (1). 229 

Implementation 230 
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 We have implemented the method in a program called AlphaPlantImpute, 231 

which is controlled by a specification file that contains some user specified thresholds 232 

and the addresses of input files. The required input data are membership of 233 

individuals to the bi-parental populations, HD genotypes for parents, and LD 234 

genotypes of focal individuals. The output data are imputed genotypes, phased 235 

haplotypes, inferred parent-of-origin for focal individual haplotypes, and information 236 

on whether a marker is informative. AlphaPlantImpute implements some data editing 237 

checks, which are described in the user manual. 238 

Examples of implementation: Description of datasets 239 

To test the imputation accuracy of AlphaPlantImpute, testing datasets of a 240 

subset of the scenarios described in Hickey et. al. 2015 were simulated. This enabled 241 

the comparison of AlphaPlantImpute with PlantImpute without re-running 242 

PlantImpute with its large computational cost. Although the simulation design is 243 

largely a replication of that in Hickey et. al. 2015, a brief description of the general 244 

structure and simulation method of the different scenarios tested is given below for 245 

completeness. 246 

Simulation of genomic data  247 

Sequence data for 100 base haplotypes for a single chromosome were 248 

simulated using the Markovian Coalescent Simulator (Chen et al., 2009) and 249 

AlphaSim (Faux et al., 2016). The base haplotypes were 108 base pairs in length, with 250 

a per site mutation rate of 1.0×10-8 and a per site recombination rate that varied across 251 

scenarios. The different recombination rates simulated were 0.25×10–8, 0.5×10–8, 252 

1.0×10–8, 1.5×10–8, 2.0×10–8, 3.0×10–8, and 4.0×10–8, resulting in chromosome sizes 253 
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of 25, 50, 100, 150, 200, 300, and 400 centiMorgans (cM), respectively. The effective 254 

population size (Ne) was set at specific points during the simulation to mimic changes 255 

in Ne in a crop such as maize (Zea mays L.). These set points were: 100 in the base 256 

generation, 1000 at 100 generations ago, and 10,000 at 2000 generations ago, with 257 

linear changes in between. The resulting whole-chromosome haplotypes had 258 

approximately 80,000 segregating sites in total. 259 

Simulation of a pedigree 260 

A pedigree of 11,266 individuals was constructed. The pedigree was initiated 261 

from six outbred founders (A, B, C, D, E, F). These six founders were crossed to 262 

generate the founder bi-parental populations (AxB, CxD, ExF). These founder bi-263 

parental populations were selfed to F1, F2, F4, F10, or F20, resulting in different levels 264 

of inbreeding in the parents. To properly propagate the residual heterozygosity in 265 

these parents, they were crossed to generate 100 pairs of F1 individuals. F1 individuals 266 

were selfed to generate 100 F2 individuals. F2 individuals were selfed to generate 100 267 

F3 individuals, and selfing continued through to F10. The focal individuals (i.e. 268 

descendants that were the imputation targets) were F2, F4, F6, or F10 descendants. 269 

In the base generation, individuals had their chromosomes sampled from the 270 

100 base haplotypes. In subsequent generations the chromosomes of each individual 271 

was sampled from parental chromosomes with recombination. The recombination rate 272 

varied depending on the scenario resulting in chromosome sizes of 25, 50, 100, 150, 273 

200, 300, and 400 centiMorgans (cM). Recombinations occurred with a 1% 274 

probability per cM and were uniformly distributed along the chromosome.  275 

Simulated SNP marker arrays 276 
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 A single HD array of 25,000 SNP markers for the single chromosome was 277 

simulated. To test the effect of the number of markers on the LD array, eight LD 278 

arrays of 3, 5, 10, 20, 50, 100, 200, and 400 markers for the single chromosome were 279 

simulated. Arrays were constructed by aiming to select a set of markers that 280 

segregated in the parents and that were evenly distributed across the chromosome. All 281 

LD arrays were nested within each other and within the HD array. 282 

Scenarios 283 

 The imputation accuracy of AlphaPlantImpute and PlantImpute were 284 

compared in four different scenarios (scenario 1, 2, 3, and 4). Scenarios 1, 2, and 3 285 

were the same as scenarios 2, 4, and 5 in Hickey et al. 2015. A description of all four 286 

scenarios is provided below. In all scenarios, focal individuals genotyped at LD were 287 

imputed to the single HD array of 25,000 SNP markers. Ten replications of each 288 

scenario were performed and the average of each replication is reported in the results. 289 

 Scenario 1: The effect of the number of selfing events separating parents and 290 

focal individuals. Parents were almost fully inbred (F20) and chromosomes were 100 291 

cM in length. The accuracy of imputation was assessed for F2, F4, F6, and F10 focal 292 

individuals. 293 

 Scenario 2: The effect of the level of inbreeding in parents. Parents were F1, 294 

F2, F4, F10, or F20 and chromosomes were 100 cM in length. The accuracy of 295 

imputation was assessed for F2 focal individuals. 296 

 Scenario 3: The effect of chromosome size. Parents were fully inbred (F20) and 297 

the accuracy of imputation was assessed for F2 focal individuals. Chromosomes were 298 

25, 50, 100, 150, 200, 300, or 400 cM in size. 299 
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 Scenario 4: The effect of number of focal individuals in the bi-parental 300 

population. Parents were fully inbred (F20) and the accuracy of imputation was 301 

assessed for F2 focal individuals. Subsets of focal individuals were randomly selected 302 

from the 100 focal individuals to generate bi-parental population sizes of 1, 5, 10, 25, 303 

and 50 focal individuals. 304 

Analysis 305 

 Imputation was performed within each bi-parental population. Parents were 306 

assumed genotyped at HD and focal individuals were assumed genotyped at LD. The 307 

imputation accuracy was calculated for each focal individual as the correlation 308 

between the true and imputed genotypes. The precision in imputation accuracy was 309 

calculated as the log of the inverse of the variance in imputation accuracy within each 310 

bi-parental population. 311 

  312 
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Results 313 

For each scenario, we first present the imputation accuracy of 314 

AlphaPlantImpute and then compare it to PlantImpute (Nettelblad et al., 2009; Hickey 315 

et al., 2015). 316 

Effect of the number of markers on the low-density array 317 

Increasing the number of LD markers increases the imputation accuracy of 318 

AlphaPlantImpute. Figure 2 plots the number of LD markers against the accuracy of 319 

imputation for F2 focal individuals of an F20 x F20 bi-parental cross. Figure 2 shows 320 

that increasing the number of LD markers from 3 to 20 SNP increased the average 321 

imputation accuracy from 0.85 to 0.96. Increasing the number of markers beyond 20 322 

achieved only a slight increase in the accuracy of imputation from 0.96 with 20 323 

markers to >0.99 with 400 markers. 324 

Scenario 1: Effect of the number of selfing events separating parents and focal 325 

individuals 326 

Increasing the number of selfing events separating parents and focal 327 

individuals slightly decreases the imputation accuracy of AlphaPlantImpute. Figure 328 

3a plots the accuracy of imputation in F2, F4, F6 and F10 focal individuals of a bi-329 

parental population where the parents were F20. Figure 3a shows that with 3 LD 330 

markers, the average imputation accuracy decreased from 0.85 for F2 focal individuals 331 

to 0.77 for F10 focal individuals. Increasing the number of LD markers beyond 10 332 

markers mitigates the decrease in the average imputation accuracy between F2 focal 333 

individuals and F10 focal individuals. Figure 3a shows that with 20 LD markers, the 334 
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average imputation accuracy decreased from 0.96 for F2 focal individuals to 0.95 for 335 

F10 focal individuals.  336 

Regardless of the number of selfing events separating parents and focal 337 

individuals, the accuracy of imputation for AlphaPlantImpute was higher than for 338 

PlantImpute when the number of LD markers was low. Figure 3b plots the average 339 

imputation accuracy of AlphaPlantImpute on the y-axis and for PlantImpute on the x-340 

axis. The colours represent the different number of LD markers and the shapes 341 

represent the number of selfing events separating the parents and the focal 342 

individuals. The red diagonal line indicates when the imputation accuracy of the two 343 

methods is equal. Points above the line indicate when the accuracy of imputation was 344 

higher for AlphaPlantImpute than for PlantImpute and visa versa. Figure 3b shows 345 

that with 3 LD markers, the average accuracy of imputation was 0.85 for 346 

AlphaPlantImpute and 0.76 for PlantImpute for F2 focal individuals and was 0.77 for 347 

AlphaPlantImpute and 0.70 for PlantImpute for F10 focal individuals. 348 

For all numbers of selfing events separating parents and focal individuals, 349 

increasing the number of LD markers reduced and in some cases reversed the 350 

advantage of AlphaPlantImpute over PlantImpute. This was most obvious for F10 351 

focal individuals for medium number of LD markers where the imputation accuracy 352 

with PlantImpute was slightly higher than with AlphaPlantImpute. Figure 3b shows 353 

that with 10 LD markers, the average imputation accuracy was 0.93 for 354 

AlphaPlantImpute and 0.94 for PlantImpute for F2 focal individuals and was 0.90 for 355 

AlphaPlantImpute and 0.92 for PlantImpute for F10 focal individuals. Increasing the 356 

number of LD markers beyond 100 markers meant that the average accuracy of 357 

imputation for AlphaPlantImpute equalled that for PlantImpute. Figure 3b shows that 358 
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with 100 LD markers, the average imputation accuracy was 0.99 for both 359 

AlphaPlantImpute and PlantImpute for F2 focal individuals and for F10 focal 360 

individuals. 361 

For all numbers of selfing events separating parents and focal individuals, the 362 

precision of imputation accuracy (i.e., consistency across focal individuals) for 363 

AlphaPlantImpute was higher than for PlantImpute when the number of LD markers 364 

was low. Figure 3c is similar to Figure 3b and plots the log of the precision of 365 

imputation accuracy for AlphaPlantImpute on the y-axis and PlantImpute on the x-366 

axis. Points above the line indicate better precision (i.e. less variance) for 367 

AlphaPlantImpute than for PlantImpute, and vice versa. Figure 3c shows that with 3 368 

LD markers, the precision of imputation was 1.62 for AlphaPlantImpute and 1.08 for 369 

PlantImpute for F2 focal individuals and was 1.32 for AlphaPlantImpute and 1.11 for 370 

PlantImpute for F10 focal individuals. 371 

Figure 3c also shows that for medium number of LD markers, the precision of 372 

imputation accuracy for AlphaPlantImpute was higher than for PlantImpute for F2 373 

focal individuals but was lower when the number of selfing events was higher. With 374 

20 LD markers, the precision of imputation accuracy was 2.48 for AlphaPlantImpute 375 

and 2.00 for PlantImpute for F2 focal individuals and was 2.57 for AlphaPlantImpute 376 

and 2.80 for PlantImpute for F10 focal individuals. With the highest number of LD 377 

markers (400), the precision of imputation accuracy was 3.84 for AlphaPlantImpute 378 

and 4.00 for PlantImpute for F2 focal individuals and was 5.40 for both 379 

AlphaPlantImpute and PlantImpute for F10 focal individuals. 380 

Scenario 2: Effect of the level of inbreeding in parents  381 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/330027doi: bioRxiv preprint 

https://doi.org/10.1101/330027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Increasing the level of inbreeding in the parents increases the imputation 382 

accuracy for AlphaPlantImpute. Figure 4a plots the accuracy of imputation in F2 focal 383 

individuals of a bi-parental population where the parents were F1, F2, F4, F10 or F20. 384 

Figure 4a shows that with 20 LD markers, the average imputation accuracy increased 385 

from 0.81 for F1 parents to 0.96 for F20 parents. Figure 4a also shows that increasing 386 

the level of inbreeding in the parents beyond F4 did not increase the average accuracy 387 

of imputation for F2 focal individuals. The average imputation accuracy with 20 LD 388 

markers was approximately 0.96 for F2 focal individuals when parents were F4, F10, 389 

and F20. 390 

For all levels of inbreeding in the parents and all numbers of LD markers, the 391 

average imputation accuracy with AlphaPlantImpute was almost always higher than 392 

with PlantImpute. Figure 4b is similar to Figure 3b and plots the average imputation 393 

accuracy for AlphaPlantImpute on the y-axis and for PlantImpute on the x-axis. The 394 

shapes represent the level of inbreeding in the parents. Figure 4b shows that with 20 395 

SNP LD markers, the average imputation accuracy was 0.81 for AlphaPlantImpute 396 

and 0.74 for PlantImpute for F2 focal individuals when parents were F1, 0.95 for 397 

AlphaPlantImpute and 0.91 for PlantImpute when parents were F4, and 0.96 for 398 

AlphaPlantImpute and 0.94 for PlantImpute when parents were F10. In two cases, the 399 

average imputation accuracy with PlantImpute was slightly higher than with 400 

AlphaPlantImpute. This was when parents were F4 and with 3 and 5 LD markers. The 401 

average imputation accuracy was 0.84 for AlphaPlantImpute and 0.80 for PlantImpute 402 

with 3 LD markers and was 0.87 for AlphaPlantImpute and 0.85 for PlantImpute with 403 

5 LD markers. 404 
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For all levels of inbreeding in the parents and all numbers of LD markers, the 405 

precision of imputation accuracy with AlphaPlantImpute was almost always higher 406 

than with PlantImpute. Figure 4c is similar to 3c and plots the log of the precision of 407 

imputation accuracy for AlphaPlantImpute on the y-axis and PlantImpute on the x-408 

axis. Figure 4c shows that with 20 LD markers, the precision of imputation accuracy 409 

was 2.16 for AlphaPlantImpute and 1.92 for PlantImpute for F2 focal individuals 410 

when parents were F1, 2.54 for AlphaPlantImpute and 1.84 for PlantImpute when 411 

parents were F4, and 2.52 for AlphaPlantImpute and 1.71 for PlantImpute when 412 

parents were F10. In a few cases, the precision of imputation accuracy for PlantImpute 413 

was slightly higher than AlphaPlantImpute. This was mainly when parents were F20 414 

and with 50, 200, and 400 LD markers. The precision of imputation accuracy was 415 

3.04 for AlphaPlantImpute and 3.40 for PlantImpute with 50 LD markers, was 3.71 416 

for AlphaPlantImpute and 4.00 for PlantImpute with 200 LD markers, and was 3.84 417 

for AlphaPlantImpute and 4.00 for PlantImpute with 400 LD markers. 418 

Scenario 3: Effect of chromosome size 419 

Increasing the chromosome size (in cM) decreased the imputation accuracy 420 

for AlphaPlantImpute. This was most apparent when the number of LD markers was 421 

10 or less. Figure 5a plots the imputation accuracy for seven chromosome sizes of 25, 422 

50, 100, 150, 200, 300, and 400 cM for F2 focal individuals of a bi-parental 423 

population where the parents were F20. Figure 5a shows that with 3 LD markers, 424 

quadrupling the chromosome size from 25 cM to 100 cM decreased the average 425 

imputation accuracy from 0.95 to 0.85, and quadrupling from 100 cM to 400 cM 426 

decreased the average imputation accuracy from 0.85 to 0.55. The reduction in the 427 

imputation accuracy was less or non-existent when the number of LD markers was 428 
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higher than 10. Figure 5a shows that the imputation accuracy was approximately 0.98 429 

for all chromosome sizes when the number of LD markers was 50. 430 

When the chromosome size was 300 cM or less, the average imputation 431 

accuracy was higher for AlphaPlantImpute than for PlantImpute. Figure 5b is similar 432 

to Figure 3b and plots the average imputation accuracy for AlphaPlantImpute on the 433 

y-axis and for PlantImpute on the x-axis. The shapes represent the chromosome sizes. 434 

Figure 5b shows that with 3 LD markers, the average imputation accuracy was 0.95 435 

for AlphaPlantImpute and 0.69 for PlantImpute when the chromosome size was 25 436 

cM and was 0.61 for AlphaPlantImpute and 0.57 for PlantImpute when the 437 

chromosome size was 300 cM. The exception to this was when the chromosome size 438 

was 150 cM, where the average imputation accuracy was 0.70 for AlphaPlantImpute 439 

and 0.83 for PlantImpute. When the chromosome size was 400 cM the average 440 

imputation accuracy was 0.55 for AlphaPlantImpute and 0.51 for PlantImpute when 3 441 

LD markers were used but was 0.61 for AlphaPlantImpute and 0.68 for PlantImpute 442 

when 5 LD markers were used.  443 

For all chromosome sizes and numbers of LD markers, the precision of 444 

imputation accuracy for AlphaPlantImpute was generally higher than for PlantImpute. 445 

Figure 5c is similar to Figure 3c and plots the precision of imputation accuracy for 446 

AlphaPlantImpute on the y-axis and for PlantImpute on the x-axis. Figure 5c shows 447 

that with 3 LD markers, the precision of imputation accuracy was 0.71 for 448 

AlphaPlantImpute and 1.78 for PlantImpute when the chromosome size was 25 cM, 449 

was 1.08 for AlphaPlantImpute and 1.62 for PlantImpute when the chromosome size 450 

was 100 cM and was 1.59 for AlphaPlantImpute and 1.20 for PlantImpute when the 451 

chromosome size was 400 cM. The exception to this was when the chromosome size 452 
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was 150 cM, where the precision of imputation accuracy was 1.17 for 453 

AlphaPlantImpute and 1.46 for PlantImpute.  454 

Scenario 4: Effect of the number of focal individuals in the bi-parental population 455 

Increasing the number of focal individuals in the bi-parental population 456 

slightly increased the imputation accuracy for AlphaPlantImpute. This was most 457 

apparent when the number of LD markers was low. Figure 6 plots the accuracy of 458 

imputation for F2 focal individuals of an F20 x F20 bi-parental cross with 1, 5, 10, 25, 459 

50 or 100 focal individuals. Figure 6 shows that increasing the number of focal 460 

individuals from 5 to 100 increased the average imputation accuracy from 0.83 to 461 

0.85 when 3 LD markers were used. Figure 6 also shows that when the 10 or more LD 462 

markers were used, increasing the number of focal individuals had no effect on the 463 

imputation accuracy. When the number of LD markers was 400, the average 464 

imputation accuracy was 0.96 with 5 or 100 focal individuals in the bi-parental 465 

population. 466 

Figure 6 also shows that when we only imputed one focal individual, the 467 

imputation accuracy fluctuated according to the focal individual that was sampled. As 468 

a result, increasing the number of LD markers did not always increase the imputation 469 

accuracy. For example, the average imputation accuracy was 0.95, 0.91, or 0.94 when 470 

3, 5, or 10 LD markers were used. When 400 LD markers were used, the average 471 

accuracy of imputation was 0.997. 472 

Computational requirements of AlphaPlantImpute 473 

Table 1 summarises the computational requirements of AlphaPlantImpute for 474 

twelve datasets across the three scenarios. Datasets were chosen to reflect the 475 
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extremes in the number of selfing events separating parents and focal individuals (F2 476 

vs. F10), the level of inbreeding in the parents (F1 vs. F20) and the number of LD 477 

markers (3, 50, or 400). Table 1 shows that the average run time for 478 

AlphaPlantImpute was 22.13 seconds with a maximum of 49.33 seconds. The average 479 

memory requirement for AlphaPlantImpute was 0.08 GB with a maximum of 0.082 480 

GB. 481 

  482 
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Discussion 483 

Our results highlight three points for discussion: (i) the performance of 484 

AlphaPlantImpute; (ii) the performance of AlphaPlantImpute compared to 485 

PlantImpute; and (iii) future development of AlphaPlantImpute. 486 

Performance of AlphaPlantImpute 487 

This paper presents a new heuristic method, called AlphaPlantImpute, for 488 

phasing and imputation of SNP array data in diploid plant species. AlphaPlantImpute 489 

explicitly leverages features of plant breeding programs to impute LD focal 490 

individuals to HD. The explicit utilisation of pedigree information and heuristics 491 

developed specifically to track the inheritance of parental haplotypes using the LD 492 

genotypes of focal individuals are likely to be the reasons for AlphaPlantImpute’s 493 

robust and consistent performance across all tested scenarios. AlphaPlantImpute 494 

achieves high imputation accuracy of between 0.8 and 1.0 for the majority of 495 

scenarios. For scenarios where the imputation accuracy was below 0.8, increasing the 496 

number of LD markers increased the imputation accuracy.  497 

Increasing number of selfing events separating parents and focal individuals 498 

from F2 to F10 only slightly decreases the imputation accuracy. Decreasing the level of 499 

inbreeding in the parents or increasing the chromosome size decreases the imputation 500 

accuracy when the number of LD markers is 10 or less. However, in both cases, the 501 

decrease in the imputation accuracy could be mitigated by increasing the number of 502 

LD markers to 20 SNP or more.  503 

Decreasing the number of focal individuals in the bi-parental population 504 

slightly decreases the imputation accuracy. This was most evident when the number 505 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/330027doi: bioRxiv preprint 

https://doi.org/10.1101/330027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

of LD markers was 10 SNP or less. The likely cause of this is that inferring the most 506 

likely linkage between alleles for two markers is difficult with fewer focal 507 

individuals, since fewer individuals will be homozygous at the markers. In this case, 508 

the algorithm defaults to the linkage pattern of alleles in the parents. This may be sub-509 

optimal for imputing markers in regions with elevated recombination rates, i.e., 510 

hotspots. When there was a single focal individual in the focal family, the accuracy of 511 

imputation for that individual varied. The likely cause of this is whether an individual 512 

had a recombination or whether it had inherited the parental haplotypes without 513 

recombination. One solution to this situation could be to utilise the most likely 514 

linkage from related families with more genotyped focal individuals (see section: 515 

Future work and developments). 516 

Overall, the results suggest that for a given population, high imputation 517 

accuracy can be achieved even when the number of LD markers is low, and small 518 

increases in the number of markers can achieve high accuracies depending on the 519 

biology of the species (i.e. recombination rate, obligate outcrossing) and the pedigree 520 

design (outbred, inbred, level of selfing). 521 

Performance of AlphaPlantImpute compared to PlantImpute 522 

The imputation accuracy for AlphaPlantImpute was compared to that for 523 

PlantImpute (Nettelblad et al., 2009; Hickey et al., 2015). In the majority of cases, the 524 

imputation accuracy was higher for AlphaPlantImpute than for PlantImpute. One 525 

exception to this was when the chromosome size was 400 cM and when the number 526 

of LD markers was 20 or less (e.g. 0.88 vs. 0.90 when the number of LD markers was 527 

20). One reason for this could be that unless there is enough information in the 528 

genotypes of focal individual on the LD array, the heuristic algorithm in 529 
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AlphaPlantImpute is inherently more conservative in determining recombination 530 

regions compared to the probabilistic algorithm in PlantImpute. As such, 531 

AlphaPlantImpute is more likely to leave positions as missing and fill them in as the 532 

parent average in the final step.  533 

The precision of imputation accuracy (calculated as the log of the inverse of 534 

the variance in imputation accuracy within each bi-parental population) was also 535 

higher in the majority of cases for AlphaPlantImpute than for PlantImpute. This was 536 

most apparent with small number of LD markers. The higher precision of imputation 537 

accuracy for AlphaPlantImpute is likely a consequence of directly calling allele phase 538 

and parent-of-origin and imputed genotypes in turn. The probabilistic algorithm of 539 

PlantImpute is marginalizing over the all possible phase and genotype, which is 540 

probabilistically correct and handles the uncertainty properly, but it seems this is 541 

lowering the imputation accuracy. One exception to this was when the chromosome 542 

size was 150 cM, where the precision of imputation accuracy was higher for 543 

PlantImpute than for AlphaPlantImpute for all LD arrays.  544 

The biggest advantage of AlphaPlantImpute compared to PlantImpute relates 545 

to computational requirements. Hickey et. al. 2015 report that to perform imputation 546 

within a single bi-parental population of 100 F2 focal individuals, PlantImpute 547 

required a minimum of 3 hours and in excess of 100 GB of memory. In comparison, 548 

AlphaPlantImpute required on average ~22 seconds and ~0.08 GB of memory for all 549 

tested scenarios. 550 

The high and consistent accuracies achieved with very low computational 551 

requirements makes AlphaPlantImpute an attractive, reliable and practical tool for 552 
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routine use in plant breeding programs that are already using or will include SNP 553 

array data to inform selection decisions. 554 

Future work and developments 555 

At present, the heuristic method in AlphaPlantImpute works within the most 556 

common plant breeding program design of bi-parental populations and it works best 557 

when parents are fully inbred or close to being fully inbred. AlphaPlantImpute could 558 

be extended in multiple ways. For example, instead of treating each bi-parental 559 

population as an independent unit it could simultaneously work across bi-parental 560 

populations that share parents. This could increase the imputation accuracy in three 561 

ways: (i) information between bi-parental populations could be shared for imputation 562 

of focal individuals that are effectively half-sibs (one common parent); (ii) 563 

information between bi-parental populations could be used to resolve phase where 564 

one or both parents are heterozygous at one or more consecutive markers; and (iii) if a 565 

common parent has no or LD genotypes available, information from its descendants 566 

across half-sib bi-parental populations could be leveraged to phase and impute it to 567 

high-density. 568 

AlphaPlantImpute could also be extended to include ancestral pedigree 569 

information (such as grandparents and great-grandparents). This could be useful for 570 

improving phasing and imputation of parents with missing information or that are 571 

highly outbred. More simply, AlphaPlantImpute could also be extended so that it can 572 

directly read in and exploit phased information for the fully or partially outbred 573 

parents. Such phased information could be generated for parents by running 574 

AlphaPlantImpute on the bi-parental family from which the fully or partially outbred 575 

parent derived. 576 
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AlphaPlantImpute could be extended so that it reads in previously inferred 577 

most likely linked alleles at two markers. It is likely that linkage patterns are shared 578 

across families, especially if the families are related. Using this information across 579 

families would be especially suited to imputation situations in bi-parental populations 580 

that have only a few genotyped focal individuals (e.g., one genotyped individual per 581 

family).  582 

Finally, although SNP arrays for the many domesticated plant species exist, 583 

low-coverage sequencing methods such as genotyping-by-sequencing are also used. 584 

The heuristics of AlphaPlantImpute might be extended to enable imputation with such 585 

data. 586 

Software availability 587 

We implemented our method in a software package called AlphaPlantImpute, 588 

which is available for download at 589 

http://www.AlphaGenes.roslin.ed.ac.uk/AlphaPlantImpute/ along with a user manual. 590 

  591 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/330027doi: bioRxiv preprint 

https://doi.org/10.1101/330027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Acknowledgments 592 

The authors acknowledge the financial support from the BBSRC ISP grant 593 

number ‘BB/P013759/1’ and from the BBSRC KWS grant number ‘BB/R002061/1’. 594 

This work has made use of the resources provided by the Edinburgh Compute and 595 

Data Facility (ECDF) (http://www.ecdf.ed.ac.uk).  596 

 597 

  598 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/330027doi: bioRxiv preprint 

https://doi.org/10.1101/330027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

References 599 

Antolín, R., C. Nettelblad, G. Gorjanc, D. Money, and J.M. Hickey. 2017. A hybrid 600 

method for the imputation of genomic data in livestock populations. Genet. 601 

Sel. Evol. 49(1): 30. doi: 10.1186/s12711-017-0300-y. 602 

Chen, G.K., P. Marjoram, and J.D. Wall. 2009. Fast and flexible simulation of DNA 603 

sequence data. Genome Res. 19(1): 136–142. doi: 10.1101/gr.083634.108. 604 

Cleveland, M.A., and J.M. Hickey. 2013. Practical implementation of cost-effective 605 

genomic selection in commercial pig breeding using imputation. J. Anim. Sci. 606 

91(8): 3583–3592. doi: 10.2527/jas.2013-6270. 607 

Druet, T., and M. Georges. 2010. A Hidden Markov Model Combining Linkage and 608 

Linkage Disequilibrium Information for Haplotype Reconstruction and 609 

Quantitative Trait Locus Fine Mapping. Genetics 184(3): 789–798. doi: 610 

10.1534/genetics.109.108431. 611 

Faux, A.-M., G. Gorjanc, R.C. Gaynor, M. Battagin, S.M. Edwards, D.L. Wilson, S.J. 612 

Hearne, S. Gonen, and J.M. Hickey. 2016. AlphaSim: Software for Breeding 613 

Program Simulation. Plant Genome 9(3). doi: 614 

10.3835/plantgenome2016.02.0013. 615 

Gorjanc, G., M. Battagin, J.-F. Dumasy, R. Antolin, R.C. Gaynor, and J.M. Hickey. 616 

2017a. Prospects for Cost-Effective Genomic Selection via Accurate Within-617 

Family Imputation. Crop Sci. 57(1): 216. doi: 10.2135/cropsci2016.06.0526. 618 

Gorjanc, G., J.-F. Dumasy, S. Gonen, R.C. Gaynor, R. Antolin, and J.M. Hickey. 619 

2017b. Potential of Low-Coverage Genotyping-by-Sequencing and Imputation 620 

for Cost-Effective Genomic Selection in Biparental Segregating Populations. 621 

Crop Sci. 57(3): 1404–1420. doi: 10.2135/cropsci2016.08.0675. 622 

Hickey, J.M., G. Gorjanc, R.K. Varshney, and C. Nettelblad. 2015. Imputation of 623 

Single Nucleotide Polymorphism Genotypes in Biparental, Backcross, and 624 

Topcross Populations with a Hidden Markov Model. Crop Sci. 55(5): 1934–625 

1946. doi: 10.2135/cropsci2014.09.0648. 626 

Hickey, J.M., B.P. Kinghorn, B. Tier, J.F. Wilson, N. Dunstan, and J.H. van der Werf. 627 

2011. A combined long-range phasing and long haplotype imputation method 628 

to impute phase for SNP genotypes. Genet. Sel. Evol. 43(1): 12. doi: 629 

10.1186/1297-9686-43-12. 630 

Hickey, J.M., and A. Kranis. 2013. Extending long-range phasing and haplotype 631 

library imputation methods to impute genotypes on sex chromosomes. Genet. 632 

Sel. Evol. 45(1): 10. doi: 10.1186/1297-9686-45-10. 633 

Howie, B.N., P. Donnelly, and J. Marchini. 2009. A flexible and accurate genotype 634 

imputation method for the next generation of genome-wide association 635 

studies. PLoS Genet. 5(6): e1000529. 636 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/330027doi: bioRxiv preprint 

https://doi.org/10.1101/330027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Jacobson, A., L. Lian, S. Zhong, and R. Bernardo. 2014. General Combining Ability 637 

Model for Genomewide Selection in a Biparental Cross. Crop Sci. 54(3): 895. 638 

doi: 10.2135/cropsci2013.11.0774. 639 

Jacobson, A., L. Lian, S. Zhong, and R. Bernardo. 2015. Marker imputation before 640 

genomewide selection in biparental maize populations. Plant Genome 8(2): 9. 641 

doi: doi:10.3835/plantgenome2014.10.0078. 642 

Kong, A., G. Masson, M.L. Frigge, A. Gylfason, P. Zusmanovich, G. Thorleifsson, 643 

P.I. Olason, A. Ingason, S. Steinberg, T. Rafnar, P. Sulem, M. Mouy, F. 644 

Jonsson, U. Thorsteinsdottir, D.F. Gudbjartsson, H. Stefansson, and K. 645 

Stefansson. 2008. Detection of sharing by descent, long-range phasing and 646 

haplotype imputation. Nat. Genet. 40(9): 1068–1075. doi: 10.1038/ng.216. 647 

Li, Y., C.J. Willer, J. Ding, P. Scheet, and G.R. Abecasis. 2010. MaCH: using 648 

sequence and genotype data to estimate haplotypes and unobserved genotypes. 649 

Genet. Epidemiol. 34(8): 816–834. doi: 10.1002/gepi.20533. 650 

Loh, P.-R., P. Danecek, P.F. Palamara, C. Fuchsberger, Y. A Reshef, H. K Finucane, 651 

S. Schoenherr, L. Forer, S. McCarthy, G.R. Abecasis, R. Durbin, and A. L 652 

Price. 2016. Reference-based phasing using the Haplotype Reference 653 

Consortium panel. Nat. Genet. 48(11): 1443–1448. doi: 10.1038/ng.3679. 654 

Nettelblad, C., S. Holmgren, L. Crooks, and Ö. Carlborg. 2009. cnF2freq: Efficient 655 

Determination of Genotype and Haplotype Probabilities in Outbred 656 

Populations Using Markov Models. p. 307–319. In Rajasekaran, S. (ed.), 657 

Bioinformatics and Computational Biology. Lecture Notes in Computer 658 

Science. Springer Berlin Heidelberg. 659 

O’Connell, J., K. Sharp, N. Shrine, L. Wain, I. Hall, M. Tobin, J.-F. Zagury, O. 660 

Delaneau, and J. Marchini. 2016. Haplotype estimation for biobank-scale data 661 

sets. Nat. Genet. advance online publication. doi: 10.1038/ng.3583. 662 

Sargolzaei, M., J.P. Chesnais, and F.S. Schenkel. 2011. FImpute - An efficient 663 

imputation algorithm for dairy cattle populations. J. Dairy Sci. 94 (E-Suppl. 664 

1): 421. 665 

Swarts, K., H. Li, J.A. Romero Navarro, D. An, M.C. Romay, S. Hearne, C. Acharya, 666 

J.C. Glaubitz, S. Mitchell, R.J. Elshire, E.S. Buckler, and P.J. Bradbury. 2014. 667 

Novel Methods to Optimize Genotypic Imputation for Low-Coverage, Next-668 

Generation Sequence Data in Crop Plants. Plant Genome 7(3): 0. doi: 669 

10.3835/plantgenome2014.05.0023. 670 

VanRaden, P.M., C. Sun, and J.R. O’Connell. 2015. Fast imputation using medium or 671 

low-coverage sequence data. BMC Genet. 16(1): 82. doi: 10.1186/s12863-672 

015-0243-7. 673 

 674 

  675 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/330027doi: bioRxiv preprint 

https://doi.org/10.1101/330027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

Figure captions 676 

Figure 1. Schematic of heuristic algorithm of AlphaPlantImpute. 677 

Figure 2. Effect of the number of SNP on the low-density array.  678 

Figure 3. Effect of level of inbreeding in focal individuals. 679 

Figure 4. Effect of the level of inbreeding in parents. 680 

Figure 5. Effect of chromosome size. 681 

 682 

Table captions 683 

Table 1. Computational requirements of AlphaPlantImpute. 684 

 685 

Supplementary Files 686 

Supplementary File 1. Detailed schematic of heuristic algorithm of 687 

AlphaPlantImpute. 688 
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Figure 1 – Schematic of heuristic algorithm of AlphaPlantImpute
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Figure 2 – Effect of the number of SNP on the low-density panel.  

The number of SNP on the LD panel against the genotype imputation accuracy using 
AlphaPlantImpute for F2 focal individuals of a bi-parental cross where the parents are 
F20 inbred individuals. 
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Figure 3 – Effect of the level of inbreeding in focal individuals.  

(a) The genotype imputation accuracy using AlphaPlantImpute in F2, F4, F6 and F10 
focal individuals from a bi-parental cross where the parents are F20 inbred 
individuals. 
(b) Comparison of the average genotype imputation accuracy using 
AlphaPlantImpute (y-axis) vs. PlantImpute (x-axis). The colours represent the 
different LD panels. The shapes represent the level of inbreeding in the focal 
individuals. The red diagonal line indicates when the accuracy of PlantImpute equals 
AlphaPlantImpute. Points above the line are when imputation accuracy is higher with 
AlphaPlantImpute and points below the line are when imputation accuracy is higher 
with PlantImpute. 
(c) Comparison of the precision in imputation accuracy using AlphaPlantImpute (y-
axis) vs. using PlantImpute (x-axis). The colours represent the different LD panels. 
The shapes represent the level of inbreeding in the focal individuals. The red 
diagonal line indicates when the precision of PlantImpute equals AlphaPlantImpute. 
Points above the line indicate when the precision in accuracies is higher in 
AlphaPlantImpute and points below the line are when the precision in accuracies is 
higher in PlantImpute. 
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Figure 4 – Effect of the level of inbreeding in parents.  

(a) The genotype imputation accuracy using AlphaPlantImpute in F2 focal individuals 
of a bi-parental cross where the parents are F1, F2, F4, F10 or F20. 
(b) Comparison of the average genotype imputation accuracy using 
AlphaPlantImpute (y-axis) vs. using PlantImpute (x-axis). The colours represent the 
different LD panels. The shapes represent the level of inbreeding in the parents. The 
red diagonal line indicates when the accuracy of PlantImpute equals 
AlphaPlantImpute. Points above the line are when imputation accuracy is higher with 
AlphaPlantImpute and points below the line are when imputation accuracy is higher 
with PlantImpute. 
(c) Comparison of the precision in imputation accuracy using AlphaPlantImpute (y-
axis) vs. using PlantImpute (x-axis). The colours represent the different LD panels. 
The shapes represent the level of inbreeding in the parents. The red diagonal line 
indicates when the precision of PlantImpute equals AlphaPlantImpute. Points above 
the line indicate when the precision in accuracies is higher in AlphaPlantImpute and 
points below the line are when the precision in accuracies is higher in PlantImpute.
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Figure 5 – Effect of chromosome size.  

(a) The genotype imputation accuracy using AlphaPlantImpute in F2 focal individuals 
from a bi-parental cross of F20 parents against seven chromosome sizes of 25, 50, 
100, 150, 200, 300, and 400 cM. 
(b) Comparison of the average genotype imputation accuracy using 
AlphaPlantImpute (y-axis) vs. using PlantImpute (x-axis). The colours represent the 
different LD panels. The shapes represent the chromosome size. The red diagonal 
line indicates when the accuracy of PlantImpute equals AlphaPlantImpute. Points 
above the line are when imputation accuracy is higher with AlphaPlantImpute and 
points below the line are when imputation accuracy is higher with PlantImpute. 
(c) Comparison of the precision in imputation accuracy using AlphaPlantImpute (y-
axis) vs. using PlantImpute (x-axis). The colours represent the different LD panels. 
The shapes represent the chromosome size. The red diagonal line indicates when 
precision of PlantImpute equals AlphaPlantImpute. Points above the line indicate 
when the precision in accuracies is higher in AlphaPlantImpute and points below the 
line are when the precision in accuracies is higher in PlantImpute.
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Figure 6 – Effect of the number of focal individuals in the bi-parental population.  

The number of focal individuals in the bi-parental population against the genotype 
imputation accuracy using AlphaPlantImpute for F2 focal individuals of a bi-parental 
cross where the parents are F20 inbred individuals. 
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Table 1 – Computational requirements of AlphaPlantImpute  

 

Parents Focal Individuals LD panel Time (Seconds) Memory (Gb) 

F20 F2 3 37.41 0.079 

F20 F2 50 8.14 0.080 

F20 F2 400 7.95 0.082 

F20 F10 3 49.33 0.079 

F20 F10 50 8.48 0.080 

F20 F10 400 9.40 0.082 

F1 F2 3 26.70 0.080 

F1 F2 50 35.10 0.080 

F1 F2 400 12.58 0.082 

F1 F10 3 24.66 0.079 

F1 F10 50 35.41 0.080 

F1 F10 400 10.35 0.082 

  Average: 22.13 0.080 
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