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Visual working memory (VWM), the brief retention of past visual information, supports a 
range of cognitive functions (Fukuda, Vogel, Mayr, & Awh, 2010; Johnson et al., 2013). 
The resource that supports VWM is limited, raising the question of how the brain allocates 
this limited resource to different objects. This question is even more interesting in 
ecological settings, in which objects are not equally important. In a psychophysical 
experiment, participants remembered the location of four targets with different 
probabilities of being tested after a delay. We then measured their memory accuracy of one 
of the targets. We found that participants allocated more resource to memoranda with 
higher priority, but underallocated resource to high- and overallocated to low-priority 
targets relative to the true probe probabilities. These results are well explained by a 
computational model in which resource is allocated to minimize expected estimation error. 
We replicated this finding in a second experiment in which participants bet on their 
memory fidelity after making the location estimate. The results of this experiment show 
that people 1) use information about memory quality and 2) minimize error even with an 
incentivized, alternative resource allocation strategy. Humans may mitigate the behavioral 
effects of a limited VWM through knowledge of memory fidelity and strategic resource 
allocation.  

One of the hallmarks of VWM is that it is supported by a limited resource. In natural 
environments, where objects vary in how relevant they are, the process by which our memory 
resource is allocated appears flexible and strategic. Indeed, experiments demonstrate that 
increasing the behavioral relevance of a set of items results in better memory for those items 
(Bays, 2014; Dube, Emrich, & Al-Aidroos, 2017; Emrich, Lockhart, & Al-Aidroos, 2017; 
Klyszejko, Rahmati, & Curtis, 2014; Zhang & Luck, 2008). Yet, it is still unknown how people 
decide how much resource to allocate to the encoding and storing of items with different 
behavioral relevancies.  

Here, our overall objective is to use computational models of VWM performance to 
understand the strategy by which memory resource is flexibly allocated when items vary in 
behavioral relevance. To do so, we first established that the amount of allocated resource is 
monotonically related to the behavioral relevance, or priority, of memorized items. We used a 
memory-guided saccade task in which, on each trial, participants remembered the location of 
four dots, one in each visual quadrant (Fig. 1a). To operationalize resource prioritization, we 
used a precue to indicate the probability that each dot would be later probed. On each trial, the 
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probe probabilities were 0.6 (“high”), 0.3 (“medium”), 0.1 (“low”), and 0.0. After a variable 
delay period, one of the quadrants was cued and the participant made a saccade to the 
remembered location of the dot within that quadrant. In line with our hypothesis, error decreased 
monotonically with increasing priority (F(1,13) = 13.9, p< 0.003), reflecting the intuition that 
people allocate more resource to a more behaviorally relevant target (Fig. 1b).  

 Next, we asked what strategy people use to allocate resource in response to unequal 
relevance. Emrich et al. (2017) proposed that resource is allocated in approximate proportion to 
the probe probabilities. Bays (2014) proposed that resource is allocated such that the expected 
squared error is minimized. Sims (2015) proposed more generally that resource is allocated to 
minimize loss. Thus, our second goal was to compare computational models of resource 
allocation. We tested variable-precision models of estimation errors (Bays & Husain, 2008; van 
den Berg, Shin, Chou, George, & Ma, 2012) augmented with different resource allocation 
strategies. Memory precision for a given item is a random variable whose mean depends on the 
item’s priority (middle/bottom panel of Fig. 2a; see Supplementary for more a detailed 
description of the model). In the Proportional model (Emrich et al., 2017), the amount allocated 
to an item is proportional to the item’s probe probability. This model provided a poor fit to the 
data (left panel of Fig. 2b), suggesting that people do not allocate resource in proportion to probe 
probability.  

Perhaps this model was too constrained, so we tested the Flexible model, in which the 
proportions allocated to each priority condition were free parameters. This model fit the data 
well (middle panel of Fig. 2b) and formal model comparison showed that it outperformed the 
Proportional model by a median DAICc of 63 (bootstrapped 95% CI: [37, 107] and a median 
DBIC of 54 [29, 99]). The proportions allocated to the high-, medium-, and low-priority targets 
were estimated as 0.49 ± 0.04 (M ± SEM), 0.28 ± 0.02, and 0.23 ± 0.03, respectively (Fig. 2c), 
suggesting that the brain underallocates resource to high-priority targets and overallocates 
resource to low-priority targets, relative to the experimental probe probabilities.  

 
Fig. 1 | Exp. 1 task sequence and behavioral results. 
a, Task sequence. b, Main behavioral effects. Saccade 
error (M ±	SEM) decreases as a function of increasing 
priority. red: 0.6., blue: 0.3, black: 0.1. 
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The Flexible model offered a good explanation for how much participants were allocating 
to each item, but not why. We considered that resource was allocated to minimize expected loss, 
where loss is defined as estimation error to a power (Bays, 2014; Harris & Wolpert, 1998; 
Kahneman & Tversky, 1979; Sims, 2015). In this Minimizing Error model, resource allocation 
differs substantially from the Proportional model (De Silva & Ma, 2017). An observer with 
limited resource should allocate their resource more equally than proportional. Such a strategy 
would lower the probability of very large errors for low-priority targets, at a small expense of the 

 
 
Fig. 2 | Exp. 1 modeling. Color indicates priority condition – red: 0.6, blue: 0.3, black: 0.1. a, 
Schematic of the Minimizing Error Variable Precision model. Top, the expected error of a memory 
decreases nonlinearly with mean precision. The current amount allocated to each priority item is 
indicated in the dashed vertical line. An observer can drastically decrease their total expected error 
by allocating some resource from the high-priority item to the low-priority item. Middle, the 
precision J of each item on each trial is drawn from a gamma distribution. Items from different 
conditions are drawn from distributions with different mean 𝐽,̅ illustrated here in different colors. 
Bottom, the reported location is drawn from a two-dimensional Gaussian with precision J; standard 
deviation %𝐽&

'
() shown in dotted lines. b, M ±	SEM error distributions for data (error bars) and 

model predictions (shaded region) for the Proportional, Flexible, and Minimizing Error models (N = 
14). c, Proportion allocated to each priority condition as estimated from the Flexible model. Black 
dots represent participants. Thicker lines indicate the 0.6, 0.3, and 0.1 allocation to high, medium, 
and low, respectively. The intersection of these lines is the prediction for the Proportional model. 
Observers are underallocating to high priority and overallocating to low, relative to the actual probe 
probabilities. d, Model comparison results. black line: median, grey box: 95% bootstrapped median 
CI. The Flexible model fits significantly better than the Proportional model, but not significantly 
better than the Minimizing Error (ME) model.  
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high-priority targets (top panel of Fig. 2a). The exponent on the error serves as a “sensitivity to 
error” parameter: an observer with a large exponent will experience a large error as much more 
costly than an observer with a lower exponent, and will adjust their strategy accordingly to avoid 
those errors. The Minimizing Error model fits better than the Proportional model (median DAICc 
[bootstrapped 95% CI]: 49 [21, 99], DBIC: 44 [17, 94]. Fig. 2b, 2d) and comparably to the 
Flexible model (DAICc: -7 [-30, -1], DBIC: -3 [-26, 3]). Additionally, the model estimated an 
allocation of resource similar to the Flexible model (0.46 ± 0.02, 0.32 ± 0.01, and 0.22 ± 0.02 for 
high-, medium-, and low-priority targets, respectively). This suggests that the under- and over-
allocation of resources relative to probe probabilities may be rational, stemming from an attempt 
to minimize error across the experiment. 

The first experiment showed that prioritizing items affects memory representations, and 
that people allocate memory resource in an error-minimizing way. However, this experiment, 
along with much of the VWM literature, overlooks other information available in VWM: 
memory uncertainty. Indeed, people can successfully report on the quality of their memory-based 
decisions (Rademaker, Tredway, & Tong, 2012), suggesting a representation and use of 
uncertainty over the memorized stimulus (Fougnie, Suchow, & Alvarez, 2011; Honig, Ma, & 
Fougnie, 2018; van den Berg, Yoo, & Ma, 2017). We conducted a second experiment to 
investigate how, if at all, priority affects working memory uncertainty.  

We tested this with a very similar memory-guided saccade task with an addition wager to 
measure uncertainty. After the participant made a saccade, a circle appeared centered at the 
endpoint of the saccade (Graf, Warren, & Maloney, 2005) (Fig. 3a). Participants made a wager 
by adjusting the size of the circle with the goal of enclosing the true target location within the 
circle. If successful, they received points based on the size of the circle, such that a smaller circle 
corresponded to more points. In unsuccessful, they received no points. This procedure served as 
a measure of memory uncertainty because participants were incentivized to make smaller circles 
when their memory was more certain.  

Our predictions for this experiment were the following: a) estimation error decreases with 
increasing priority, b) circle size decreases with increasing priority, and c) estimation error 
correlates positively with circle size within each priority level. We confirmed all three 
predictions. First, estimation error decreased monotonically with increasing priority 
(F(2,20)=12.5, p<0.001, 𝜂+=0.55; left panel of Fig. 3b), indicating that participants allocated 
more resource to higher priority targets. Second, circle size decreased monotonically with 
increasing priority (F(1.3,12.9)=10.60, p<0.005, 𝜂+=0.51; middle panel of Fig. 3b), indicating 
that participants had higher memory certainty in higher priority trials. Third, estimation error and 
circle size were correlated within each priority level (𝑟..0 = 0.27, p < .001;	𝑟..5 = 0.3, p < .001; 
𝑟..7 = 0.2, p < .001; right panel of Fig. 3b), indicating that people have a single-trial 
representation of their uncertainty independent of the priority manipulation, as suggested by 
earlier work (Fougnie et al., 2011; Suchow, Fougnie, & Alvarez, 2017).  
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The correlation, however, could have been driven by targets closer to the cardinal axes 
being remembered more precisely then those presented more obliquely (Appelle, 1972; 
Furmanski & Engel, 2000; Girshick, Landy, & Simoncelli, 2011; Pratte, Park, Rademaker, & 
Tong, 2017). Pratte and others (2017) argued that much of the seemingly random variability in 
the variable-precision model could be explained by this “oblique effect.” Perhaps location-
dependent noise (along with the observer’s knowledge thereof) might also be driving the 
measured within-priority correlation. To test this hypothesis, we conducted a permutation test for 
each participant and priority level (details in Supplementary). We found that the actual 
correlations (𝑀 ± 𝑆𝐸𝑀: 0.29 ± 0.04) were significantly higher than the median of the 
correlations obtained in the null distribution (𝑀 ± 𝑆𝐸𝑀: -0.007 ± 0.006; Wilcoxon signed-rank 
test, z = -4.69, p < 1e-5), suggesting that the correlation within each priority condition was driven 
by internal fluctuations in the quality of the memory representation above and beyond any 
location-dependent variation.  

We extended the computational models from the first experiment to account for the 
additional wager data. The observer uses trial-to-trial knowledge of memory quality to calculate 
the probability that the target lies within the circle of a proposed size (a “hit”). The observer 
multiplies this value by the utility of that circle size to calculate the expected utility (Fig. 3c). We 

 
 
Fig. 3 | Exp. 2 task, behavior, and model extension. a, Trial sequence. Exp. 2 is identical to 
Exp. 1 up to the saccade response, after which they make the post-decision wager. b, Main 
experimental effects. Error bars show M ±	SEM for memory error (left) and circle radius 
(middle) across priorities for 11 participants; both measures decrease with increasing priority. 
These measures are positively correlated within priority conditions (right), suggesting that 
error and circle size have a common cause, namely fluctuations in precision. c, Schematic of 
how model generates circle radius predictions. For a given radius r, the observer multiplies 
the utility and the probability of the true target being inside of the circle to calculate the 
expected utility (EU). Shown here are two examples of how precision J effects EU (𝜏= 0.1. 
low precision: J = 0.1. high precision: J = 2). d, To incorporate decision noise, we model 
response distribution as a softmax function of utility. (low noise: 𝛽 = 1. high noise: 𝛽 = 0.3). 
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assume the observer noisily chooses the circle size that maximizes the expected utility (Fig. 3d; 
details in Supplementary).  
 We again tested the Proportional model and Flexible model, jointly fitting the estimation 
data and the post-estimation wager data. We again found that the Proportional model did not 
provide a good fit to human data and the Flexible model provided an excellent fit to the data 
(Fig. 4a). As before, the Flexible model suggests that the brain underallocates resource to high-
priority targets and overallocates resource to low-priority targets relative to experimental probe 
probabilities.  The proportion allocated to the high-, medium-, and low-priority targets were 
estimated as 0.44 ± 0.02, 0.31 ± 0.02, and 0.25 ± 0.02, respectively (Fig. 4b). Given the 
analogous results, we again asked if we could describe a normative model for the resource 
allocation strategy.  
 Unlike in the first experiment, optimal performance in this experiment requires 
maximizing points. This Maximizing Points model has qualitatively different properties from the 
Minimizing Error model. An observer that maximizes points would receive more points by 
ignoring the low-priority targets completely in order to remember the high-priority targets better, 
while an observer that minimizes error would allocate it more evenly across targets. Because 
these two strategies conflict, we are able to test whether the intrinsically-driven, error-
minimizing strategy that people seem to be using in the absence of reward can withstand being 
put in conflict with an external incentive. To our surprise, the Maximizing Points model fit very 
poorly, indicating that participants were not allocating resource in order to earn the most points  
(Proportional model: median DAICc: -75 [-109, -26], DBIC: -75 [-109, -26]; Flexible model: 
DAICc: -156 [-308, -94], DBIC: -148 [-300, -86]).  
 Perhaps participants were still acting in in accordance with the Minimizing Error model. 
In this experiment, this strategy is myopic: the observer allocates resource to minimize error in 
the estimation without considering how this allocation may affect the points of the wager. 
Nonetheless, the Minimizing Error model fit the data substantially better than the Proportional 
model (median DAICc: 55 [20, 106], DBIC: 50 [17, 102]) and the Maximizing Points model 
(DAICc: 140 [85, 249], DBIC: 137 [81, 245]) and about as well as the Flexible model (DAICc:  
-16 [-44, -5], DBIC: -12 [-40, 0]; Fig. 4c). The Minimizing Error model fitted the proportions of 
resource allocated to high-, medium-, and low-priority targets as 0.52 ± 0.02, 0.32 ± 0.01, and 
0.16 ± 0.01, respectively, similar to the allocation estimated in the Flexible model.  
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In this work, we examined how people allocate resource in a task with varying behavioral 
relevance. First, we found that people flexibly allocate resource according to behavioral 
relevance. This is comforting: we remember more important things better. Second, we found 
accurate knowledge of both priority-driven and spontaneous trial-to-trial fluctuations in memory 
quality, even when controlling for spatial location. This is also comforting: to some extent, we 
can trust our confidence in our memories. Additionally, uncertainty is useful when deciding 
whether to use or resample information. Third, we explained not just how people allocate VWM 
resource, but what strategy they may be using. We find that people minimize estimation error, a 
strategy whose consequence is an overallocation to low- and underallocation to high-priority 
targets relative to probe probabilities. Fourth, this strategy persists even when presented with a 
conflicting external reward.  

 
 
Fig. 4 | Exp. 2 modeling results. Color indicates priority condition – red: 0.6, blue: 0.3, black: 0.1. 
a, Fits of four models (columns) to error distribution (top), circle radius distribution (middle), and 
correlation between the two (bottom). M ±	SEM shown for data (error bars) and model predictions 
(shaded region). b, Proportion allocated to each priority condition as estimated from the Flexible 
model. Black dots represent participants. Thicker lines indicate the 0.6, 0.3, and 0.1 allocation to 
high, medium, and low, respectively. The intersection of these lines is the prediction for the 
Proportional model. Again, observers are underallocating to high priority and overallocating to low, 
relative to the actual probe probabilities. c, Model comparison results. black line: median, grey box: 
95% bootstrapped median CI. The Flexible model fits significantly better than the Proportional and 
Maximizing Points (MP) models, but not significantly better than the Minimizing Error (ME) 
model.  
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Consider that we find minimizing the errors of our memory intrinsically rewarding. 
Indeed, extrinsic rewards influence the metrics of saccades in humans and monkeys (Chen, 
Chen, Zhou, & Mustain, 2014; Takikawa, Kawagoe, Itoh, Nakahara, & Hikosaka, 2002). For 
instance, extrinsic rewards affect both the velocity of saccades as well as neural activity in 
dopamine-associated reward circuits (Kato et al., 1995), and they modulate neural activity in 
cortical areas that represent the goals of saccade plans (Platt & Glimcher, 1999). Perhaps the 
intrinsic reward associated with veridical memory eclipses the extrinsic reward associated with 
gaining more points, which would explain why people minimized error instead of maximized 
points in the second experiment. Additionally, minimizing memory error might be 
computationally easier than maximizing points because it does not require the observer to think 
and optimize performance two steps ahead. Lastly, the amount that performance may improve 
from maximizing points may not be worth the computational and metabolic cost.  

Our results identify a single and simple model of how the resource that supports VWM is 
allocated despite the large variability in WM abilities across individuals and ages (Engle, Kane, 
& Tuholski, 1999; Salthouse, Babcock, & Shaw, 1991). For example, electrophysiological 
signals measured at the scalp predict individual differences in WM capacity (Vogel & 
Machizawa, 2004) as well as trial-to-trial variation in the precision of WM (Adam, Robison, & 
Vogel, 2018; Reinhart et al., 2012). Individual differences in WM can also be explained by 
differences in control processes, such as inhibition of irrelevant distractors (Vogel, McCollough, 
& Machizawa, 2005). Our model accounts for these individual differences by explicitly 
assuming inter-trial variability, as well as having parameters that account for participants’ 
differences in total amount of resource as well as sensitivity to error. Some participants prefer 
making a few large errors in order to maximize the number of extremely precise memory guided 
saccades, while others prefer avoiding large errors at the expense of those precise saccades. 
 In everyday life, we are bombarded with information constantly, and we have to decide 
what to look at, pay attention to, and remember. This study finds that not only do people 
remember more important items and their associated uncertainty, but they also do so in a way 
that minimizes the overall magnitude of memory errors. Perhaps this strategic allocation is how 
we are able to function so well despite such limited working memory resource.  
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Methods 
 
Participants. Fourteen participants (5 males, mean age=30.3, SD=7.2) participated in 
Experiment 1 and eleven (5 males, age=28.6, SD=3.03) in Experiment 2. Everyone had normal 
or corrected-to-normal vision and no history of neurological disorders. Participants were naive to 
the study hypotheses and were paid $10/hour. All participants provided written consent. The 
study conformed to the Declaration of Helsinki and was approved by the Institutional Review 
Board of New York University. 
 
Apparatus. Participants were placed 56 cms from the monitor (19 inches, 60 Hz), with their 
heads in a chinrest. Eye movements were callibrated using the 9-point calibration and recorded at 
a frequency of 1000 Hz (Eyelink 1000, SR Research). Target stimuli were programmed in 
MATLAB (MathWorks) using the MGL toolbox (Gardner Lab, Stanford) and were displayed 
against a uniform grey background.  
 In Experiment 2, participants made behavioral responses using a space bar with their left 
hand and a circular knob (PowerMate, Griffin Technology) with their right hand. For eye-
tracking, we applied an online drift correction when the recorded location of center of fixation 
exceeded 1 degree of visual angle from the center of the fixation cross. Because this experiment 
provided live visual feedback of the participants' current fixation, large discrepancies were 
uncomfortable for the participant and resulted in imprecise data. This was not a problem for the 
Experiment 1 because the corrective saccade provided a measure of drift, which we used to 
correct offline. 
 
Trial procedure. Each trial (Fig. 1a) began with a 300 ms increase in the size of the fixation 
symbol, an encircled fixation cross. This was followed by a 400 ms endogenous precue, 
consisting of three colored wedges presented within the fixation symbol, each of which angularly 
filled one quadrant. The radial sizes and colors (pink, yellow, and blue) of the wedges 
corresponded to probe probabilities of 0.6, 0.3, and 0.1, respectively. The quadrant with a probe 
probability of 0.0 did not have a wedge.  
 The precue was presented for 400 ms; this was followed by a 700 ms interstimulus 
interval, then by the targets, presented for 100 ms. The targets were four dots, each in separate 
visual quadrants. The dots were presented at approximately 10 dva from fixation, with random 
jitter of 1 degree of visual angle to each location. The location of the targets in polar coordinates 
were pseudo-randomly sampled from every 10 degrees, avoiding cardinal axes.  
 This was followed by a variable delay, chosen with equal probability from the range 
between 1000 and 4000 ms in 500 ms increments. A response cue appeared afterward, which 
was a white wedge that filled an entire quadrant of the fixation symbol. Participants were 
instructed to saccade to the remembered dot location within the corresponding quadrant of the 
screen. If participants took shorter than 100 ms or longer than 1200 ms to make the saccade, the 
trial was discarded.  
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 In Experiment 1, after the saccade, the actual dot location was presented as feedback 
and the participant made a corrective saccade to that location. After 500 ms, the feedback 
disappeared, participants returned their gaze to the central fixation cross, and a 1500 ms inter-
trial interval began.  
 In Experiment 2, simultaneously with the response cue, a red dot appeared at the 
location of the participants' fixation as measured online by the eye tracker. Because of eyetracker 
noise, the red dot often appeared in a slightly different location than where the participant was 
fixating. Thus, participants were instructed to adjust their gaze such that the red dot was at the 
remembered location, and press the space bar to indicate that this was their intended saccade 
endpoint. After completing this response, participants performed a post-estimation wager. A 
circle appeared, centered at the saccade endpoint. Participants received points based on the size 
of the circle, such that a smaller circle corresponded to more points. However, participants were 
only rewarded points if the true target was within the circle. The number of points awarded was 
120𝑒&..?@, in which r was the radius of the circle.  
 
Data Processing. Processing and manual scoring of eye movement data was performed in an in-
house MATLAB function-graphing toolbox (iEye). Eye position and saccadic reaction time 
(SRT) were extracted from iEye. Statistical analyses were performed in MATLAB (Mathworks) 
and SPSS (IBM). We excluded trials in which a) participants were not fixating in the middle of 
the screen during stimulus presentation, b) saccades were initiated before 100 ms or after 1200 
ms after the response cue onset, c) pupil data during the response period were missing, or d) 
participants made a saccade to the wrong quadrant, ignoring the response cue. This resulted in 
removing between 1% and 7% of trials per subject. Raw gaze positions were transformed offline 
into degrees of visual angle using a third order polynomial algorithm that fit eye positions to 
known spatial locations and we used gaze velocity trace to determine the onset and offset of 
saccades with a $30°/s threshold. Priority effects were not significantly different between initial 
and final saccade position, so we report the results for the final saccades.  
 
Model fitting, Parameter Recovery, and Model Recovery. For each participant and each 
model, we estimated the parameters using maximum-likelihood estimation. The likelihood of the 
parameters are defined as 𝑝 data model, θ), in which θ is a vector of the model parameters. To 
calculate the parameter likelihood, we use numerical integration to marginalize over the internal 
variables x and J (Supplementary Information). To find the maximum-likelihood parameter 
estimate, we used the optimization algorithm Bayesian Adaptive Direct Search (Acerbi & Ma, 
2017) in MATLAB, which combines mesh grid and Bayesian optimization methods. We 
completed 50 optimizations with different starting values for each participant and model, to 
ensure the obtained estimates were not a result of a local minimum. We took the maximum of all 
the runs as our estimate of the maximum-likelihood, and the corresponding parameter 
combination as our ML parameter estimates.  
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To validate the data-generating and model-fitting code, we performed parameter and 
model recovery. We simulated data from each model then fit each model to the simulated data. 
Successful parameter recovery occurs when the estimated parameters for the model that 
generated the data are equivalent or close to the true parameters. Parameter recovery is necessary 
for the interpretability of the parameter estimates. Successful model recovery occurs when the 
model which generated the data also fits the data better than any other model. Model recovery is 
necessary to ensure the models are distinguishable in a psychologically plausible model space. 
We successfully recovered both the parameters and models for each model.  
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the WM_resource_allocation github repository: github.com/aspenyoo/WM_resource_allocation. 
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