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Abstract

In data independent acquisition (DIA) mass spectrometry, precursor scans are interleaved
with wide-window fragmentation scans, resulting in complex fragmentation spectra containing
multiple co-eluting peptide species. In this setting, detecting the isotope distribution profiles of
intact peptides in the precursor scans can be a critical initial step in accurate peptide detection
and quantification. This peak detection step is particularly challenging when the isotope peaks
associated with two different peptide species overlap—or interfere—with one another. We pro-
pose a regression model, called Siren, to detect isotopic peaks in precursor DIA data that can
explicitly account for interference. We validate Siren’s peak-calling performance on a variety
of data sets by counting how many of the peaks Siren identifies are associated with confidently
detected peptides. In particular, we demonstrate that substituting the Siren regression model in
place of the existing peak-calling step in DIA-Umpire leads to improved overall rates of peptide
detection.

1 Introduction

The primary goal of most bottom-up mass-spectrometry-based proteomics is to detect and, ul-
timately, quantify multiple peptide species on the basis of mass spectra derived from complex
biological samples. Each such peptide species is typically observed twice: first in a preliminary
(MS1) scan of intact peptides, and subsequently in a secondary (MS2) scan of peptide fragments.
Information about the mass and charge of the peptide can be derived from either the MS1 or MS2
data, whereas the specific amino acid sequence of the peptide is typically derived from the MS2
data via database search (reviewed in [13]).

In this work, we propose a method for analysis of MS1 data. Specifically, we focus on the
problem of precursor annotation, where a “precursor” is an observed intact peptide ion and the
annotation consists of the inferred monoisotopic mass and charge. Such methods are useful in the
context of traditional, data-dependent acquisition (DDA) protocols or in the context of increasingly
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Table 1: Comparison of precursor annotation methods from MS1 spectra.
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Year 2006 2006 2008 2009 2010 2012 2016 2018
Peptide Mixture Model X X X

Multiple scans X X X X X X
Chromatographic correlation X X X X

Signal-to-noise filtering X X X X X X
DIA analysis X X

DDA analysis X X X X X X

popular data-independent acquisition (DIA) methods. In a DDA setting, precursor annotation
analysis helps identify co-eluting precursors that were isolated for an MS2 spectra but do not share
the precise m/z of the ions that triggered the sampling of the MS2 spectra, and also may provide
better charge state estimates than those based solely on MS2 analysis. MS1 analysis can also help
to fix isotope peak errors, in which the mass spectrometer triggers on a peak corresponding to
the +1 or +2 isotope, rather than the monoisotope. In a DIA setting, precursor annotation is
even more critical, because the isolation window employed in this setting is typically much larger.
Hence, in many DIA analyses, the first step toward confidently detecting a given peptide species is
to detect its corresponding MS1 precursor.

1.1 Related work

To provide context for our contribution, we first review existing precursor annotation methods.
Each of these methods is designed to consider different pieces of relevant information, but no
individual method takes all relevant information into account (Table 1). All of the methods rely
on averagine models [19] or variations thereof to define models of candidate isotope distributions.

Two early methods use LASSO regression [3, 17] for precursor annotation. The method proposed
by Du and Angeletti [3] first identifies candidate theoretical precursors whose two most intense
peaks appear in the spectra. The method then uses LASSO regression to narrow down candidates
that best explain the observed peaks while trying to avoid false positives. The method Nitpick [17]
also uses LASSO to select combinations of candidate precursors, employing a dense, non-centroided
representation of peaks and a Bayesian information criterion to eliminate candidates. Both of these
regression methods model each observed peak as a sum of ions from multiple peptides at once,
allowing the methods to cope with interference. However, neither of the two methods considers
information from multiple spectra at once to refine their candidates.

Four other approaches do not employ regression but instead treat each candidate independently.
MsInspect [1] chooses candidate precursors by evaluating their peaks over successive scans. This
approach allows MsInspect to ensure that its precursor annotations exhibit a characteristic elution
profile over time. MsInspect first defines peaks over m/z using wavelet decomposition in each
scan and and then filters out candidates that do not persist over multiple scans. The algorithm
then evaluates each candidate based on how well the relative intensities of their expected isotope
distributions correlate with observed peaks over both m/z and elution time. Bullseye follows
roughly the same steps as MsInspect [8]. The first step uses Hardklor [6] to examine MS1 peaks
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in and around the MS2 isolation window to compute a signal-to-noise ratio and identify which
precursor candidates are consistent with non-noise peaks. Bullseye’s second step determines which
candidates persist across multiple scans. Decon2LS [9] and pParse [24] also take similar approaches.
MsInspect, Decon2LS, and pParse (but not Bullseye) all evaluate candidate precursors based on
the correlation of elution profiles of the different isotopic peaks of the candidates.

Software that analyzes DIA data uses and infers precursor information in more diverse ways.
DIA-Umpire includes precursor identification as a first step within a larger pipeline to decon-
volve MS2 spectra [22]. This method identifies precursor ions by extracting precursor peak chro-
matograms and identifying them as a precursor’s isotope distribution if exhibit the expected pattern
of m/z values and if their intensity profiles correlate well over elution time. DIA-Umpire does not
consider observed peaks as mixtures of ions, which makes it vulnerable to interference that dis-
rupts the correlation between isotope peaks over time. Pecan [21] is similar to DDA database
search, in the sense that theoretical spectra are scanned against the data, but the score function
for each peptide takes into account both MS1 and MS2 data. For the MS1 data, Pecan computes
a theoretical isotope distribution for the candidate and scores using the dot product between the
theoretical and observed peaks. Because the dot product operation considers only one peptide at
a time and is agnostic to the presence of other peptides, this score function will yield a high value
for non-existent peptides whose isotope distribution happen to overlap those of existing peptides.
Accordingly, Pecan quantifies background signal and revises its interpretation of the dot-product
based on the quantification of the background. The method Specter [14] uses regression models
to describe mixtures peptides, but it acts at the MS2 level and requires library spectra for every
modeled peptide; it does not use MS1 data.

With the exception of the two regression models, all of the subsequent MS1 analysis methods
treats each candidate peptide independently. As such, these methods are fundamentally incapable
of modeling interference between co-eluting peptides. The regression models, on the other hand,
are designed to operate on only a single spectrum at a time.

1.2 Contribution

We propose a precursor annotation method called Siren (Sparse Isotope RegressioN) that uses
regression to jointly model mixtures of precursors while also taking into account the variation
in precursors over time. We provide empirical evidence that Siren’s mixture modeling approach
enables proper deconvolution of interference and that the sparse representation allows Siren to
efficiently scale to wide DIA isolation windows. Siren also estimates precursor abundances over
multiple consecutive scans. Siren is available as open source software implemented in Python
(http://bitbucket.org/noblelab/siren).

2 Methods

2.1 Linear model of MS1 spectra in DIA data

Siren represents the observed MS1 spectra as a linear combination of theoretical spectra. Siren
approximates a single MS1 spectrum as the sum of weighted theoretical precursor isotope distri-
butions (Figure 1a). Repeating this relationship for a sequence of successive scans yields the full
model (Figure 1b). Accordingly, the model consists of three matrices.

• Y ∈ RM×T consists of the observed MS1 data, corresponding to a series of MS1 spectra from
a single mass spectrometry run. Each of its T columns Yt is a vector representing a single

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/329805doi: bioRxiv preprint 

http://bitbucket.org/noblelab/siren
https://doi.org/10.1101/329805
http://creativecommons.org/licenses/by-nc-nd/4.0/


theoretical precursor 

spectra

observed 

spectrum

modeled 

spectrum

=
m/z

in
te

n
si

ty

m/z

m/z

∑

5.8

6

7

m/z m/z

elution time elution timeprecursors

p
recu

rso
rs 

≈

Y                            X                         B*

≈

Figure 1: Siren model. (A) Each observed MS1 spectrum is approximated by Siren as a linear
combination theoretical isotope distributions. (B) Visualization of the Siren approach, using real
data. The three heat maps correspond, from left to right, to observed MS1 data, a collection of
theoretical isotope distributions, and an inferred abundance matrix. The product of the boxed
isotope distribution in X the boxed elution profile in B yields the boxed pattern visible in matrix
Y . For clear visualization, the m/z bins in X and Y are re-discretized, and columns in X have
been merged to be consistent with B∗.
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MS1 spectrum, and each of M rows corresponds to a single m/z bin. Each m/z bin can only
be non-zero in a single Yt column, as each bin is unique to a particular spectrum.

• X ∈ RM×N contains theoretical spectra in the form of isotope distributions for the precursor
ions hypothesized to exist in the spectra. Each of N columns corresponds to an isotope
distribution computed using an averagine model [19] to represent the set of peptide ions that
share a particular monoisotopic mass (within a small error) and charge. Note that because
the discretized m/z bins are defined separately for each scan, single precursor ion that exists
across multiple scans will result in multiple columns, each corresponding to a separate scan
and set of m/z bins, whose relationships will be determined in a subsequent step.

• B ∈ RN×T contains the inferred abundances of the precursor ions of X in Y . Each column
in B represents the abundances of all N theoretical precursors in one observed spectrum Yt.
B is subsequently processed into the matrix B∗ where redundant rows of B that correspond
to the same precursor are combined into fewer rows of B∗.

Siren assumes that
Y = XB + ε (1)

where ε represents machine noise, contaminants, and other signals that are not represented by
theoretical peaks in X. Siren proceeds in three steps: constructing the matrix Y , constructing
the matrix X, and then inferring the matrix B. However, Siren exploits the observation that the
inference of each column in B (i.e., one vector of abundance values across all precursors) can be
carried out independently for each column (scan) in Y . Thus, the three steps are carried out
separately for each scan.

2.1.1 Construction of the observed matrix Y and theoretical matrix X

Each observed spectrum consists of a set of peaks, with real-valued m/z and intensity values. How-
ever, Siren requires that these peaks be arranged in a matrix Y . A column Yt in Y corresponds to a
discrete scan at discrete elution time t, but the rows must be created by some form of discretization
of the m/z axis.

Siren does not adopt the conventional strategy, in which the m/z span is divided into equal-width
bins, for several reasons. Say that we are working with high-resolution data that exhibits a native
resolution of 10 parts-per-million (ppm) on the m/z axis. If we make our bins much larger than
10 ppm, then we end up erroneously placing into the same column peaks that should be assigned
distinct m/z values. On the other hand, if we use a fine-grained bin size, then edge effects will
introduce arbitrary (and incorrect) distinctions between peaks that truly correspond to the same
underlying type of ion (Figure 2). Furthermore, a very fine binning scheme leads to a very large
matrix, making calculations very expensive. For example, Nitpick, which was designed for targeted
analysis of individual precursors, uses a very fine width of 8 · 105 Th. Using this binning scheme
across the commonly used m/z span of 400–1200 Th leads to 10 million bins. Nitpick mitigates
off-by-one errors by describing each isotope peak as a Gaussian distribution of many peaks across
many m/z bins rather than as a single peak in a single bin, but this smoothing further increases
Nitpick’s computational expense.

Rather than arbitrarily binning the m/z axis, Siren takes an approach similar to Du and An-
geletti [3] by creating entries in Y that correspond to observed monoisotopic peaks and their
corresponding isotope peaks. These entries sparsely describe the important portions of the m/z
range, while ignoring m/z values unoccupied by informative peaks. The specific procedure to create
a vector Yt for a single observed scan t is as follows:
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Figure 2: Binning errors introduced by small m/z bin size. The figure shows excerpts of a
sequence of three MS1 spectra over time, depicting the elution of a charge +2 isotope distribution
whose peaks are binned at a 0.1 m/z bin width. The monoisotopic peak and the third isotopic peak
each shift one bin to the left from scan 1489 to scan 1490.
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1. Noise reduction Peaks that occur in a single scan, with no corresponding peaks in neigh-
boring scans, likely represent noise. Accordingly, for a scan at time t and a peak with m/z
value m, we consider the scans at times t + 1 and t − 1. The current peak is eliminated if
neither of the adjacent scans contains a peak with m/z value in the range [m − τ,m + τ ],
where τ is an m/z tolerance value reflecting the precision of the data.

2. Observed peak clustering Peaks are clustered together if they fall within a noise m/z
tolerance, with the assumption that small variations in m/z value represent imprecise mea-
surements of the same ion species that should be represented in the same row in Yt. The peaks
are represented as a graph, in which vertices are peaks and an edge connects pairs of peaks
within a small m/z tolerance of each other. Peaks are then clustered, such that each cluster
corresponds to a connected component within the graph. Each cluster ci has an associated
range of m/z values, mmin

i to mmax
i .

3. Monoisotope identification For each peak cluster ci, we look for a sibling peak cluster
that is separated from ci by an m/z difference associated with a pair of isotopic peaks. For a
pair of clusters ci and cj , a sibling relationship is identified if and only if the m/z difference
between the clusters is consistent with the distance between the first two isotopic peaks of a
precursor of charge +1, +2, +3 or +4. Formally, the latter condition corresponds to

mmin
i + 1.0/C < mmax

j + τ (2)

and
mmax

i + 1.0/C > mmin
j − τ (3)

for charge values of C ∈ {1, 2, 3, 4}. Each time a sibling cluster is identified, the initial cluster
is defined as the tuple (mi, C), and (mi, C) is added to Pt to denote the hypothesis that a
precursor of mass mi and charge C is in spectrum t. This step ensures that only monoisotopic
precursors whose first two isotope peaks exist in the data are included in the model. Note
that, in this procedure, a single cluster can occasionally be marked with multiple charge
states. Further charge-state discrimination is performed by regression described below.

4. Theoretical peak generation In principle, the m/z and relative intensities of peaks in an
isotope distribution can be accurately predicted from the charge of the ion and its elemental
composition [18]. However, in our setting, the elemental compositions of each ion in the sample
is not known a priori. Accordingly, Siren employs the “averagine” model to approximate a
theoretical isotope distribution for each observed monoisotopic peak with m/z mi = (mmin

i +
mmax

i )/2 and charge Ci [19]. The calculation retains the +1 through +6 isotope peaks, each
with an m/z value and a relative intensity.

5. Construction of Yt. The vector Yt is constructed with one entry corresponding to each
observed monoisotopic peak, plus additional entries for the +1 through +6 peaks in each
marked charge state. Intensity values for the monoisotopic peaks are directly observed. For
the remaining isotope peaks, if an observed peak exists in the data within an m/z tolerance
of τ , then the observed intensity is used; otherwise, the intensity is set to zero.

6. Construction of X. The matrix X of theoretical isotope distributions is constructed such
that rows in X correspond to entries in Y . The averagine isotope distributions are placed into
X, scaled so that the L2 norm of each column in X is equal to 1. If the theoretical isotope
peaks across X do not exist within τ m/z of an observed peak, then they are clustered with
each other in the same way as described in Step 2. Each of these clusters forms a row in Y
and X.
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2.1.2 LASSO regression to identify precursors

Finally, given matrices Y and X, Siren assumes the existence of a “true” abundance matrix B∗

and estimates it by solving the following optimization problem:

argmin
B≥0

||Y −XB||2F + λ||B|| (4)

This is known as LASSO regression with a non-negative constraint [20]. The first term is the
ordinary least-squares penalty that penalizes differences between the observed data Y and the
model of the observed data XB. The optimization problem balances the first penalty’s goal to
accurately model the data against the second term that penalizes the absolute value of B to control
overfitting.

The parameter λ controls the relative weights of the two penalties. The solution B to the
optimization problem for a given λ is an estimate of B∗. Increasing λ decreases the inferred
abundances of the peptides and infers the presence of fewer peptides overall, thereby decreasing the
likehood of false positive inferences at the expense of underestimating abundances and increasing
false negative inferences.

Siren uses the algorithm Least Angle Regression (LARS) modified to compute LASSO solu-
tions [4] for every value of λ (the L1 regularization path), implemented in Scikit-learn [15], to
compute B for every non-negative value of λ.

2.1.3 Extracting continuous elution profiles from B

Further processing must be done on the inferred B to form continuous elution profiles because
of the way X and Y are constructed, separate rows of B may actually correspond to the same
precursor ion hypothesized to exist separately in consecutive scans. To form continuous elution
profiles for each precursor, non-zero values in B that correspond to approximately the same mass,
the same charge, and are adjacent in time are stitched together to form continuous elution profiles.
These continuous elution profiles form the matrix B∗ with T columns and N∗ < N rows, where
N∗ is determined after the B∗ is constructed by the algorithm below. The decoy columns of X and
their rows in B∗ are constructed separately but using the same algorithm.

1. The vector b is designated as the first the column of B∗.

2. Subsequent vectors bt are appended one by one to B∗. To add bt to B∗ that already contains
{b, ..., bt−1}, each value bn,t in bt is appended to a row of B∗:

(a) If the monoisotopic m/z of bn,t overlaps with that of a precursor of the same charge
already in B∗ that is non-zero at time t − 1, then bn,t is appended to that precursor’s
row in B.

(b) If the monoisotopic m/z of bn,t overlaps with more than one non-zero precursor of the
same charge already in B, then the rows for the overlapping precursors are summed
together and merged into a single row in B, and bn,t is appended to that row.

(c) If the monoisotopic m/z of bn,t does not overlap any precursor of the same charge with
a non-zero value at time t− 1, then a new row of zeros is created in B and assigned to
pt,n, and bt,n is appended to that row.

3. After the entirety of bt has been added to B∗, a zero is appended to all rows that did not get
assigned a new precursor from scan t.
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2.1.4 Identification of precursor elution profiles in B∗

Each row of constructed matrixB∗ of inferred abundances may contain elution profiles from multiple
peptide ions that share the same mass and charge. To identify individual elution profiles from a row
of B∗, we use the following procedure. For each precursor (row) in B∗, we apply Savitzky-Golay
smoothing (using a third degree polynomial over five points at a time) [16]. Local maxima are then
found in the smoothed row as points that are greater than both of its adjacent values. We only
consider maxima whose adjacent values are both greater than 0. Each local maximum is considered
to be an elution peak for a single precursor, and the elution profile of that precursor is bounded by
the adjacent local minima.

2.1.5 Estimating the false-discovery proportion of inferred precursors as a function
of λ

A proportion of the inferred elution profiles will be incorrect because of noise, non-peptide con-
taminants, and inaccuracies inherent to the averagine model of peptide isotope distributions. The
proportion varies by the value of λ. To estimate this false-discovery proportion (FDP), columns
containing decoy isotope distributions are included in X to facilitate the estimation. For each real
(target) theoretical isotope distribution in X, a decoy distribution is generated by reversing the
order of the intensities of the isotope peaks in the target distribution while preserving the m/z of
each peak, and each decoy distribution is added as a column in X. Subsequently, for a given value
of λ, we can then estimate the FDP as the proportion of inferred elution profiles associated with
decoy isotope distributions in B.

2.2 Data sets

The first data set is derived from HEK-293 lysates using an Orbitrap Fusion mass spec-
trometer over a 135-minute gradient [23]. Data was downloaded as mzXML files from
ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2016/06/PXD003179/. The two runs used are re-
ferred to as Tsou2016A with 2205 MS1 spectra (B D140314 SGSDSsample1 R01 MHRM T0.raw),
and Tsou2016B with 2219 MS1 spectra (B D140314 SGSDSsample1 R02 MHRM T0.raw). The
isolation widths vary from 24 to 222 m/z across the range 400–1250 m/z.

The second data set, Navarro2015, is derived from mixtures of lysates from three sources,
human, yeast, E. coli, and human, mixed in a ratio of 13:6:1, respectively [12]. This data
set was used as a benchmark to evaluate peptide identification and quantification algorithms.
These experiments were run on a TripleTOF 5600 mass spectrometer with a 120-minute gradi-
ent. Data were downloaded as wiff files (HYE110 TTOF6600 32fix lgillet I160308 001.wiff) from
ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2016/09/PXD002952. This data set contains 2197
MS1 spectra with fixed m/z isolation windows of 25 m/z spanning from 400 to 1200 m/z.

The third data set, Bruderer2017, is derived from human spinal cord tissue and was generated
on a Q-Exactive mass spectrometer over a 120-minute gradient [2], downloaded as a .raw file
from PeptideAtlas (PASS00782). This data set contains 2228 MS1 spectra, and employs precursor
isolation widths that vary from 24 to 222 m/z across the range 400-1220 m/z.

All files were converted to .ms1/.ms2 (for Siren) and .mzXML (for DIA-Umpire) formats using
msconvert [10].

For all three data sets, downstream analyses were carried out using a database of human tryptic
peptides derived from Uniprot (11/02/2014).
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2.3 DIA-Umpire analysis

We use DIA-Umpire’s deconvolution pipeline to identify precursor elution profiles and deconvolve
the MS2 spectra into one pseudospectrum for each elution profile. DIA-Umpire categorizes pseu-
dospectra into three sets: Q1 if its first three precursor isotope peaks appear in the MS1 spectra,
Q2 if the first two appear, and Q3 if only its precursor peak appears in the MS2 spectra. We only
report analyses for Q1 precursors, as the addition of Q2 and Q3 precursors in the Tsou2016 dataset
result in fewer confident peptide identifications. Note that, for the raw MS2 analysis (Section 3.2),
we ignore the deconvolved MS2 information within the pseudospectra and extract only the precur-
sor masses, charges, and peak elution times. With this information, we extract corresponding raw
MS2 spectra for input to Tide.

2.4 Tide analysis

We employ the Tide search engine with exact p-values [7] to search raw (Section 3.2) or deconvolved
(Section 3.3) MS2 spectra. The precursor isolation widths were set to 0.01 m/z for the Tsou2016
data sets, 0.01 m/z for the Navarro2017 data set, and 0.01 m/z for the Bruderer2017 data set.
Shuffled decoys were created by Tide, and searches were carried out in concatenated mode to allow
target-decoy. Peptide-level FDR was estimated using the “weed-out then estimate” procedure [5]
using in-house scripts.

2.5 Software implementation

The Siren software is implemented in Python and is publicly available at
http://noble.gs.washington.edu/proj/siren with an Apache license. The software depends
on the packages numpy, scikit-learn, and scipy. Siren takes as input precursor spectra in the form
of .ms1 files [11] and outputs identified elution peaks in a text file.

3 Results

We tested Siren’s performance in three ways: how accurately its regression model can describe a
real MS1 data set, how many peptides associated with its precursor annotations can be identified
from raw MS2 spectra via database search, and how many peptides can be identified when Siren is
incorporated into DIA-Umpire. Siren has a single tunable parameter λ that effectively controls the
number of peptides detected, so we also investigated the effect of this parameter on performance.

3.1 Ability of theoretical isotope distributions to model the observed data

For Siren’s regression modeling approach to make sense, it must be the case that a real MS1 data
set Y can be accurately decomposed into two matrices X and B. To test this property, we applied
Siren to a previously described DIA data set (Tsou2016A) derived from the human cell line HEK-
293 [23]. As a control, we created a shuffled version of the Tsou2016A data set, in which the
intensities within each scan are shuffled uniformly at random among all the peaks in that scan. For
each data set, we use Siren model to infer an abundance matrix B. Note that, for this analysis,
we set λ = 0 to maximize the model’s accuracy in modeling peak intensities; non-zero values of λ
result in the underestimation of the values in B and the modeled peak intensities in XB.
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Figure 3: Observed versus modeled peak intensities from Siren. Each point in the plot
corresponds to an MS1 peak, with its true intensity (x-axis) versus its intensity as modeled by
Siren (y-axis). The left plot shows results for peaks from 18 spectra, and the right plot is for peaks
shuffled from those 18 spectra.

This analysis shows that Siren’s model is indeed capable of capturing most of the empirical
structure of the Tsou2016A data set. We quantify performance using the average R2, defined as

1−
∑T

t=1 ||Yt − Ŷt||22∑T
t=1 ||Yt −XtBt||22

,

where Ŷt is a matrix filled with the mean value in Yt of the same dimension as Yt. We observe that
the learned models produced an average R2 of 0.977 over all MS1 spectra, meaning that 97.7% of
the variance in peak intensities was accounted for by the Siren models on average. Furthermore, as
expected, Siren’s average R2 on the shuffled control data set decreases, from 0.982 to 0.602. These
results imply that real data can be accurately described as linear combinations of precursor isotope
distributions, and that the necessary structure is lost under randomization of peak intensities.

Next, as a control, we created a shuffled version of the Tsou2016A data set, in which the
intensities within each scan are shuffled uniformly at random among all the peaks in that scan. As
expected, because this shuffled data does not exhibit the expected structure, Siren’s average R2

decreases, from 0.982 to 0.602. This result implies that the data can be accurately described as
linear combinations of precursor isotope distributions.

3.2 Comparison of Siren and DIA-Umpire using raw MS2 spectra

Next, to test the quality of the peak calls produced by Siren, we aimed to compare its performance
to that of Bullseye, Nitpick, and the peak-calling component of DIA-Umpire, again using the
Tsou2016A data set. Unfortunately, we found that Nitpick, which was designed for targeted analysis
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Figure 4: Comparison of DIA-Umpire and Siren using raw MS2 spectra. (A) Number
of precursors annotated by DIA-Umpire and Siren, plotted as a function of Siren’s regularization
parameter λ. The DIA-Umpire line is horizontal because it is invariant to λ. The purple line
counts peaks that are identified by both methods, using a 0.01 m/z tolerance. (B) Number of
PSMs accepted at 1% PSM-level FDR, using raw MS2 spectra with m/z values assigned by DIA-
Umpire or Siren. (C) Number of peptides accepted at 1% peptide-level FDR.
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of individual precursors, cannot scale to analysis of a full MS1 run. Also, Bullseye, which is no longer
actively maintained, yielded very few validated identifications. Therefore, our analysis focused on
a comparison to DIA-Umpire, which is a recently developed and actively maintained tool.

We used MS2 data to evaluate the quality of peaks called by each method, by counting the
number of candidate peaks that successfully lead to a detected peptide in a downstream database
search. For this analysis, the database search is conducted using raw MS2 spectra from the DIA
data set. This approach is clearly problematic, because the large precursor window used to generate
each MS2 spectrum will lead to many co-eluting peptides and hence low overall statistical power
in the database search step. However, we reasoned that the “handicap” induced by the use of raw
MS2 spectra would be equal for the two methods. In Section 3.3, we report results of a similar
analysis conducted using deconvolved MS2 spectra.

Overall, DIA-Umpire predicts a larger number of peaks than Siren (Figure 4)A. For this data
set, DIA-Umpire yields > 160, 000 pseudospectra, whereas even at its most relaxed setting (λ = 0),
Siren only assigns non-zero abundances to 69% of the hypothesized precursors, leading to ∼130,000
elution peaks. When we increase λ, the number of peaks produced by Siren drops substantially.
Surprisingly, irrespective of the λ threshold, the overlap between peaks assigned by Siren and peaks
assigned by DIA-Umpire is quite low.

The database search results show that the peaks produced by DIA-Umpire lead to fewer de-
tected peptides than the peaks produced by Siren (Figure 4C). The unregularized (λ = 0) Siren
model yields 1,979 detected peptides at 1% FDR, whereas DIA-Umpire detects 1,711 distinct pep-
tides. Furthermore, tuning the regularization parameter λ yields further improvement for Siren,
by preferentially eliminating low quality peaks and thereby reducing the multiple hypothesis test-
ing burden during the database search step. A grid search of multiple values of λ led to peptide
identifications as high as 2,516 peptides at 1% FDR (λ = 1429350) from 9,417 elution peaks.

Notably, the trend for the number of peptide-spectrum matches (PSMs) is reversed: at a 1%
PSM-level FDR, DIA-Umpire accepts 3,529 PSMs, whereas Siren accepts at most 2546. This
observation suggests that DIA-Umpire is assigning peaks to the same peptide at multiple points
during its elution, or is identifying the same peptides in multiple charge states.

We also note that the low overlap between peaks produced by DIA-Umpire and Siren is main-
tained in the PSM-level and peptide-level results. This is perhaps not surprising, because as noted
above, we expect the statistical power of detection to be low due to the use of raw MS2 DIA spectra
in the database search step.

3.3 Comparison of Siren and DIA-Umpire using deconvolved MS2 spectra

To improve the MS2 analysis step of the comparison, we next compared Siren and DIA-Umpire in
the context of DIA-Umpire’s full fragment deconvolution pipeline. To do this, we modified DIA-
Umpire so that its fragment deconvolution step could accept as input elution profiles provided by
Siren. In this way, we produced two comparable sets of pseudospectra, based on MS1 analysis
by Siren and by DIA-Umpire. Subsequently, peptides were identified from the pseudospectra via
database search. We carried out this analysis on both replicates of the Tsou2016 data set, as well
as two additional data sets, derived from human HeLa cells [12] and from human spinal cord tissue
[2]. For these analyses, we include decoy precursors in Siren (Section 2.1.5) to facilitate estimation
of the FDP among the precursor peaks.

Across all of these data sets, and across a range of nominal precursor FDP values, we find
that Siren detects more peptides than DIA-Umpire at an FDR threshold of 1% (Figure 5). At high
FDP, Siren + DIA-Umpire result in roughly similar numbers of detected peptides; however, filtering
some precursors using Siren’s λ parameter to achieve FDPs of 7.5–15% yields more identified
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Figure 5: Number of peptides identified by Siren and fragment deconvolution by
DIA-Umpire. The full pipeline of DIA-Umpire (DIA-Umpire full) and a pipeline consisting
Siren and DIA-Umpire’s fragment deconvolution step ( Siren + DIA-Umpire FD) were used to
identify peptides via database search in four data sets. For Siren + DIA-Umpire FD, sets of
peptide-spectrum matches were filtered by the false-discovery proportions (FDP) of their precursors,
estimated by Siren. (0.01 m/z tolerance).

peptides than DIA-Umpire’s full pipeline across all four data sets. An FDP of about 10% is close
to optimal for each data set, suggesting that 10% may be a reasonable cutoff for more general use.
At this threshold Siren improves upon DIA-Umpire by 7–26% across the four data sets. Notably, a
significant proportion of the detected peptides are not shared between the two precursor annotation
methods, suggesting that analysis of both sets of precursors jointly may be useful.

Because Siren’s regression model jointly considers the contributions of multiple precursors to
observed peaks, the method is able to detect precursors even if their peaks exhibit interference.
Figure 6 shows an example of this phenomenon. The two precursor ions (I and II) exhibit interfer-
ence. Both Siren and DIA-Umpire confidently assign a peptide to precursor I, whose elution peak
occurs around scan 613, but only Siren identifies precursor II, whose elution peak occurs around
scan 617. In this case, Siren’s ability to detect the second precursor may be because precursor II’s
second isotopic peak does not correlate well over time with the first and third due to interference
from precursor I. Figure 6B shows that Siren was able to deconvolve the interference and recognize
the elution profile of I.

4 Discussion

Siren uses a regularized regression model to jointly infer precursor information at a scale suitable for
DIA analysis. Although Siren’s model is similar to that of Nitpick, Siren’s sparse binning scheme
allows it to scale to joint analysis of a full run. Like DIA-Umpire, siren infers precursor elution
profiles that facilitate downstream peptide identification from MS2 spectra, but jointly models
precursors such that it can deconvolve interference.

A key parameter to Siren is the regularization parameter λ. Siren employs a LASSO path
estimation algorithm that simultaneously infers solutions for all values of λ. Subsequently, the user
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Figure 6: Peptide interference. (A) The figure plots a section of MS1 scan 613, depicting
peaks identified by both DIA-Umpire and Siren as the isotope distribution of precursor ion I with
monoisotopic m/z is 645.3 and charge +1. The colors denote the precursor ions contributing to
peak intensity according to Siren. (B) A section of MS1 scan 617, depicting peaks identified Siren as
the combined isotope distributions of precursor ion I and precursor ion II, both with monoisotopic
m/z is 645.3 and and charges of +1 and +2, respectively. The colors denote the precursor ions
contributing to peak intensity according to Siren. Siren suggests that the monoisotopic peaks of I
and II interfere with each other, and that the second isotopic peak of I interferes with the third
isotopic peak of II. Precursor II is not recognized by DIA-Umpire, but the corresponding MS2
spectrum is matched by database search to the sequence DISTNYYASQK. (C) Chromatograms of
the ions of precursors I and II. Each chromatogram is labeled purple if its m/z value matches both
precursors I and II or red if it matches only to precursor II. (D) Ion chromatograms modeled by
Siren for precursors I and II, with colors corresponding to their precursors.
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can choose a value of λ appropriate for the intended downstream use. Siren’s target-decoy strategy
provides a mapping from λ values to estimated FDP, to assist in selecting λ. For instance, if the
desired output is the accurate quantification of a peptide of known elution time, then a lower value
of λ should be used. On the other hand, if the goal is to minimize false positives, then a higher
value of λ may be more appropriate.

The inferred elution profiles in B can be used in many ways in both DDA and DIA analysis. The
first benchmarking scheme (Section 3.2) suggests that Siren may be useful in selecting precursor
isolation window in the context of DDA database search. The second benchmarking (Section 3.3)
uses Siren’s inferred elution profiles to improve DIA analysis pipeline. Siren’s modeling of MS1
spectra could also be used in combination with a tool such as Specter [14], which models MS2 DIA
spectra, so that both dimensions of data could be used simultaneously.

One challenge for Siren is that the model implicitly assumes that the observed data can be
modeled as a mixture of peptide isotope distributions. Thus, non-peptide species in the sample will
be modeled as noise in Equation 1. A direction for future work would be to incorporate into Siren a
more sophisticated noise model that accurately captures various sources of noise in real MS1 data,
thereby allowing Siren to focus its modeling on the signal induced by peptides.
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