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Abstract

In both plant and animal systems, size can determine whether an individual survives and grows under different
environmental conditions. However, it is less clear whether and when size-dependent responses to the environment
affect population dynamics. Size-by-environment interactions create pathways for environmental fluctuations to influ-
ence population dynamics by allowing for negative covariation between sizes within vital rates (e.g., small and large
individuals have negatively covarying survival rates) and/or size-dependent variability in a vital rate (e.g., survival
of large individuals varies less than small individuals through time). Whether these phenomena affect population
dynamics depends on how they are mediated by elasticities (they must affect the sizes and vital rates that matter)
and their projected impacts will depend on model functional form (the impact of reduced variance depends on the
relationship between the environment and vital rate). We demonstrate these ideas with an analysis of fifteen species
from five semiarid plant communities. We find that size-by-environment interactions are common but do not impact
long-term population dynamics. Size-by-environment interactions may yet be important for other species. Our ap-
proach can be applied to species in other ecosystems to determine if and how size-by-environment interactions allow
them to cope with, or exploit, fluctuating environments.

Keywords: demography, demographic buffering, environmental variability, individual heterogeneity, individual size,
integral projection model, population model

Introduction

The mechanisms by which environmental variability affects population dynamics are the focus of many longstanding
questions in ecology: Does environmental variation have a negative effect on population persistence via stochastic
extinctions (Stacey & Taper, 1992), or a positive effect via temporal niche partitioning (Chesson, 2000; Adler & Drake,
2008)? Do negative covariances among vital rates buffer populations against environmental variability (Jongejans
et al., 2010)? Can we use life history information to accurately predict population dynamics (Crone et al., 2013)?
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Increases in climate variability and the need to forecast population trajectories in changing environments make these
questions even more important. In size-structured populations, the answers to these questions could depend on how
individual size affects responses to environmental variation.

There are two ways that size might influence a species’ environmental response. First, differently sized individuals
can respond in different directions to environmental fluctuations. This would mean a “good” year for small individuals’
survival, for example, is a “bad” year for large individuals’ survival, and vice versa. We found no evidence of this
in the literature, maybe because it has not been investigated by ecologists, or maybe it is unlikely that a bad year for
one size class of a species can truly be a good year for another. Second, different size individuals can have different
magnitudes of response to environmental conditions. In controlled experiments with weedy nodding thistle (Carduus
nutans), warmer temperatures increased survival evenly across size classes, but smaller individuals disproportionately
increased seed production in response to warming (Zhang et al., 2011). Similarly, whether large or small yellow-
bellied marmots (Marmota flaviventris) have a better chance at reproduction depends on environmental conditions
(Ozgul et al., 2010).

The environment is not just abiotic conditions, as biotic interactions also contribute to the total environment ex-
perienced by individuals. For example, plant defenses from herbivores typically change or develop over a plant’s
lifespan, hence different life stages have different responses to time-varying herbivore pressure (Barton & Boege,
2017). Insofar as individual size and life stage are correlated, this implies different sized individuals will have differ-
ent sensitivity to herbivory. Similarly, size-selective predation creates asymmetries in mortality rates between small
and large individuals that can influence animal population dynamics (e.g., Sprules, 1972; Hülsmann et al., 2011).

These case studies are important for understanding the mechanisms by which individuals are affected by environ-
mental conditions, but what remains unknown is whether and how size-by-environment interactions impact population
dynamics. Understanding the effects of environmental conditions on individuals of different size could be essential for
models with population structure, and ignoring differences due to size could bias predictions by over-emphasizing the
response of the most numerous size classes. For example, the size distribution in many plant populations is skewed
toward small individuals, but large individuals have the most impact on population dynamics (e.g., Dalgleish et al.,
2011). If survival rates of smaller individuals vary more year-to-year in response to environmental fluctuations than
do large individuals, and small individuals comprise a large proportion of the dataset, statistical models with size-
independent survival variation would be biased toward fitting the signal from small individuals. In this case, the
interannual variance of survival for large individuals would be overestimated, which could strongly impact projected
population dynamics. When different size classes within a population vary in sensitivity to environmental fluctuations,
or respond to environmental conditions in opposite directions, models assuming size-independent environmental sen-
sitivity will average those distinct responses and incorrectly predict temporal variation (or predict it correctly for the
wrong reasons).

We propose that size-by-environment interactions may create additional pathways for environmental variation to
influence population dynamics. They may allow for negative covariation among sizes for one vital rate (e.g., small
and large individuals have negatively covarying survival rates) and/or reduced variance of a vital rate in one size
class relative to another (e.g., survival of large individuals varies less than small individuals through time). Whether
these phenomena affect population dynamics depends on how they are mediated by elasticities and how environmental
variability is translated through individual-level responses up to population dynamics. Elasticities determine whether
size-by-interactions matter because they must affect sizes and vital rates that have large contributions to population
growth. How environmental variability impacts population dynamics through size-by-environment interactions de-
pends on norms of reaction, which determine if reduced variance produces negative or positive effects. In this paper,
we elaborate on these ideas and demonstrate them with an empirical analysis of fifteen species from five semiarid
plant communities using a general analytical framework that can be easily applied to other time series of species’
abundances.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/329771doi: bioRxiv preprint 

https://doi.org/10.1101/329771
http://creativecommons.org/licenses/by-nc-nd/4.0/


We begin by reviewing core concepts that link life history, environmental fluctuations, and population dynamics,
and we introduce size as a new dimension to which these concepts apply. We then outline our statistical approach,
including empirical examples from 15 perennial plant populations. Using the fitted statistical models, we probe model
results and simulations of population dynamics to understand the impacts of size-by-environment interactions.

Our focus is on size-structured population models where size is a continous variable. Age- and stage-structured
models often include (st)age-by-environment interactions implicitly by fitting time varying parameters for different
(st)ages. For example, Hunter et al. (2010) parameterized a six-stage population model for polar bears (Ursus mar-
itimus) where the extent of sea ice individually affected each stage transition. Thus, each stage is allowed to experience
the environment in unique ways; the other extreme is represented by models which assume that environmental fluc-
tuations affect all (st)ages the same way. What we propose below is a compromise that draws on the flexibility of
generalized linear mixed effects models and their direct incorporation into integral projection models. Synthesis stud-
ies using stochastic matrix models with time-varying projection matrices have found that reduced variance of older
individual’s survival can buffer populations against environmental variability (Morris et al., 2008; Gamelon et al.,
2016). These findings set the stage for asking whether size-by-environment interactions provide similar opportunities
for species to buffer themselves against environmental variability. Likewise, integral projection models with continu-
ous size structure allow a greater opportunity to identify size-by-environment interactions because population structure
is more finely resolved.

Size-by-Environment Interactions

and Population Dynamics

Size is one of the most important traits distinguishing individuals within a species, and demographic processes such as
survival and growth are often largely determined by individual size (De Roos et al., 2003). The relationships between
size and vital rates are often assumed to be static through time. However, if vital rates do actually vary through time,
this variability will affect population growth rates, often negatively (Lewontin & Cohen, 1969; Lande et al., 2003). The
negative effects of temporally variable vital rates suggests that species should evolve strategies to buffer themselves
against environmental variability (Gillespie, 1977). This logic underlies the demographic buffering hypothesis, which
states that species should evolve to have negatively covarying vital rates through time (Knops et al., 2007) and/or have
reduced variance of vital rates most important for fitness (Pfister, 1998).

Theoretical and empirical studies on demographic buffering have focused extensively on how vital rates vary
through time without considering whether individual size mediates the temporal responses of species to environmental
fluctuations. Previous studies have shown that different (st)ages of a population have unique responses to the envi-
ronment (Coulson et al., 2001) and that trade-offs among (st)age classes can lead to demographic buffering (Morris
et al., 2008; Gamelon et al., 2016), suggesting that size-by-environment interactions may also be important. Conclu-
sions from (st)age-structured models might also apply to size-structured populations, if size and (st)age are positively
correlated.

Size-by-environment interactions provide a distinctive way for species to be buffered against environmental vari-
ability. In the presence of size-by-environment interactions, demographic buffering can arise through two similar
mechanisms, as described above (Fig. 1). If different size classes within a population respond to the environment
in opposite directions, such negative covariance could buffer population growth (path a in Fig. 1). This is similar to
the idea of negative covariation between vital rates (e.g., survival and fecundity), but here the negative covariation is
between size classes, within one vital rate. Buffering can also occur if the size classes that contribute most to pop-
ulation growth are the least sensitive to environmental conditions (path b in Fig. 1). This is similar to the idea of

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/329771doi: bioRxiv preprint 

https://doi.org/10.1101/329771
http://creativecommons.org/licenses/by-nc-nd/4.0/


Size-by-Environment
Interaction

Population
Dynamics

Year

V
ita

l r
a
te

Small individual
Large individual

V
ita

l r
a
te

Year
a

b E
la

st
ic

iti
e
s

N
o
n
lin

e
a
rit

ie
s

Figure 1: Conceptual overview of how size-by-environment interactions can impact population dynamics. If size-by-environment
interactions are statistically important in vital rate regressions, there are two pathways by which they can impact population dynam-
ics. In a, differently sized individuals have negatively covarying vital rates. For example, survival of small and large plants may be
highest in different types of years. In b, the vital rate of one size varies less relative another sized individual. For example, small
plant survival may vary more over time than large plant survival. Whether pathways a and b impact population dynamics depends
on how they pass through the filters of elasticities and model functional form. The vital rates that negatively covary by size (a) must
be the vital rates that are most elastic. Likewise, the sizes that vary more or less relative to other sizes must do so for the size-vital
rate combinations that are most elastic. Last, whether pathway b has a positive or negative effect on population dynamics depends
on the functional form of the vital rate’s relationship with size. For example, a concave-up relationship between size and growth
rate would mean that large plants varying more than small plants is beneficial for population growth. Source code for figure insets:
SizeByYear schematic.R.

reduced variance in particular vital rates and/or (st)ages (Morris et al., 2008; Gamelon et al., 2016). Thus, individual
size provides another dimension across which demographic buffering can occur.

However, size-by-environment interactions only matter for population dynamics if they affect sizes and vital rates
that are important for population growth in stochastic environments. This rather obvious statement is implicit in em-
pirical tests of the demographic buffering hypothesis. Typical tests involve calculating correlations between elasticities
of vital rates and their temporal (co)variances (Morris & Doak, 2004). Considering size-by-environment interactions
adds another layer: size and vital rate combinations must have high elasticity to impact population growth and fitness
(Fig. 1).

The demographic buffering hypothesis assumes that environmental variation negatively affects population growth.
If environmental variation was ‘good’, why would species evolve strategies to buffer themselves against it? This
assumption is grounded in mathematical theory showing that short term variation in fitness reduces long term fitness
when reaction norms are linear (Lande et al., 2003; Morris et al., 2008). If reaction norms are nonlinear, however,
environmental variability can actually increase long term fitness (Drake, 2005; Koons et al., 2009; Lawson et al.,
2015), a consequence of Jensen’s inequality (Jensen, 1906). In particular, concave-up and sigmoidal reaction norms
provide the necessary conditions for environmental fluctuations to increase long term fitness and population growth.
Environmental fluctuations can increase both the mean and the variance of annual population growth rate, consequently
environmental fluctuations only benefit the long-run population growth rate lS (the geometric mean of a sequence a
l ) if the increase in the mean overwhelms the negative effect of increasing the variance. Therefore, whether size-
by-environment interactions, which introduce temporal variability into the relationship between an individual’s size
at time t and its size or probability of remaining alive at time t + 1, have positive or negative affects on population
growth rate depends on the underlying reaction norm between individual-level vital rates and the environment. This
reaction norm can be modeled as function of a measured environmental variable, or it can be estimated from random
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fluctuations in the response variable (e.g., individual survival). We take the latter approach in this paper, as described
below.

Detecting Size-by-Environment Interactions

A flexible statistical approach

Detecting and quantifying size-by-environment interactions requires statistical estimates of interactions between size
and time-varying environmental covariates. Variables related to weather conditions are obvious candidates for size-by-
climate interactions, but it is difficult to quantify the effects of weather on demography or fitness. Identifying exactly
which weather covariates, over which time scales, actually impact demographic rates is a thorny model selection
problem. It requires longer time series than typically available to ecologists (Teller et al., 2016; van de Pol et al.,
2016), or else it requires a priori assumptions about how weather should be aggregate into a few covariates, such as
“spring rainfall” or “degree days.” Likewise, readily available weather data rarely exist at the fine spatial scales relevant
to individual plants, meaning that measured weather covariates are the same for all individuals within a population.
This makes detecting weather effects more difficult because the signal may be washed out if the temporal (e.g., across
months) and spatial (e.g., across a site) aggregation scheme does not match the underlying, and unknown, relationships
between weather and demographic rates. We therefore take an alternative, phenomenological approach by modeling
size-dependent plant responses to environmental conditions using random year effects. What random year effect
models lack in mechanism, they gain in general applicability to a range of ecological problems. The generality stems
from the fact that random year effect models essentially use a single index to account for all climate covariates, which
also has the added benefit of avoiding over-fit models.

We are interested in whether environmental responses depend on individual size, so we compare two types of vital
rate models. The first GLMM assumes that environmental responses are independent of size, meaning that random
year effects are applied only to model intercepts. The second GLMM assumes that environmental responses vary
depending on individual size, meaning that random year effects are applied to both model intercepts and to the effect
of individual size (e.g., a random intercepts, random slopes model). At their simplest, our vital rate statistical models
take the form:

µi,t+1 =

(
b0,t +b1zi,t + ei if no size⇥year interaction (1a)

b0,t +b1,t zi,t + ei if size⇥year interaction (1b)

where µi,t+1 could represent predicted individual size1 or the logit of survival probability for individual i at time t +1,
zi,t is the size of individual i at time t, b0,t is the intercept for year t, b1 is the effect of individual size, and eee are i.i.d.
errors. The only difference between the two models is that the effect of size, b1, includes a subscript t in eqn. (1b)
that allows the effect to vary across years when we wish to explicitly model a size⇥year interaction. Without the t
subscript (eqn. 1a), the effect of size is the same every year. Models with and without size⇥year interactions can then
be compared using likelihood ratio tests.

An empirical example: perennial plant populations

To demonstrate our approach, we use long-term data for fifteen perennial plant species from five semi-arid grasslands
(Chu & Adler, 2015). Each site includes a set of 1-m2 permanent quadrats within which all individual plants were
identified and mapped annually using a pantograph (Hill 1920). The resulting mapped polygons represent basal cover

1“Size” is often a log-transformed measurement, such as log of a plant’s diameter or log of an animal’s body weight.
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for grasses and canopy cover for shrubs. Data come from the Sonoran desert in Arizona (Anderson et al., 2012),
sagebrush steppe in Idaho (Zachmann et al., 2010), southern mixed prairie in Kansas (Adler et al., 2007), northern
mixed prairie in Montana (Anderson et al., 2011), and Chihuahuan desert in New Mexico (Chu & Adler, 2015).
Demographic data on plant growth, survival, and recruitment was extracted using the computer algorithm described
by Lauenroth & Adler (2008), Chu et al. (2014), and Chu & Adler (2015). The time span of the data range from 13
to 38 year-to-year transitions. The data include observations of likely seedlings and individuals of age 1, which are all
given the same arbitrarly small size. We removed these observations before conducting the statistical analysis below to
avoid biasing our results toward these individuals of unknown, but very small, size. We fit a separate model describing
the probability of a seedling transitioning to a known size for our integral projection model (SI Section SI.1)

We modeled the survival probability and growth of an individual genet as a function of genet size, permanent
spatial location (group of quadrats), the crowding experienced by the focal genet from conspecific neighbors, and
temporal variation among years. We fit models with and without a size-by-year interaction for each vital rate. The
survival probability (S) of genet i in quadrat group g from time t to t +1 is estimated as:

logit(Si,g,t+1) =

(
b0,t +b1zi,t +bg +bwwi,t no size⇥year interaction (2a)

b0,t +b1,t zi,t +bg +bwwi,t size⇥year interaction (2b)

where b0,t is the intercept for year t, b1,t is the effect of log plant size (zi,t ) in year t, bg is the intercept offset for
quadrat group g, and bw is the effect of intraspecific crowding (wi,t ). Similarly, we model the log size (z) of genet i in
quadrat group g at time t +1 as:

zi,g,t+1 =

(
b0,t +b1zi,g,t +bg +bwwi,t + ei no size⇥year interaction (3a)

b0,t +b1,t zi,g,t +bg +bwwi,t + ei size⇥year interaction (3b)

where the bbb s are as described for the survival model in equation 2. We modeled the intraspecific crowding effect
(w) based on the size of neighboring conspecifics and their distance from each focal genet (SI Section SI.2). We fit
the survival and growth models for each of our 15 species using the lme4::lmer() function (Bates et al., 2015) in
the statistical computing environment R (R Core Team, 2016). We compared models with and without size-by-year
interactions for each vital rate and species using likelihood ratio tests based on the expected likelihood ratio distribution
under the null hypothesis of no size-by-year interaction. We performed the likelihood ratio tests in this way because
standard likelihood ratio tests based on a c2 distribution are not appropriate for comparing random effects structures
(SI Section SI.3).

The effect of a size-by-year interaction coefficient on a focal vital rate depends on the size of the individual.
Simply comparing the interaction coefficients through time for different sizes does not give us much information on
the correlation of responses through time or the variance of those responses. Therefore, to compare large and small
individual’s responses to the environment, we calculated growth and survival anomalies, which measure how much
the size-dependent expected growth rate or survival probability in a given year deviates from the across-year average
of the same quantity.

To calculate anomalies for growth, for each year (i.e., each year-specific set of regression coefficients) we calcu-
lated the predicted log-size (zi,t+1) of a small individual (10th percentile for the species) and a large individual (90th

percentile), assuming an average level of competition (w). For each individual, we then calculated the difference
between the predicted log-size (zt+1) and the original log-size (zt ). We then repeated these calculations for the same
individuals in an average year (average coefficients). The differences between each year-specific projected size change
for year t, and the average year projected size change, is defined as the growth anomaly Gt for that individual. Simi-
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larly, to calculate the annual survival anomaly (St ), we compared size-specific predicted survival probabilities in each
year to the predicted survival in an average year, for large and small individuals.

We used these anomalies to evaluate the correlation of large and small plant responses using the R function cor(x,
y, method = "pearson") and the cor.test() function to calculate P values. We also calculated the responsive-
ness of small and large plants to environmental fluctuations as the standard deviation of the yearly anomalies, s(Gt)

and s(St). To test whether small and large plants have different responsiveness, we performed two-way Analysis of
Variance (ANOVA) using the empirical values of s(Gt) and s(St) pooled across species treated as data and plant size
as the sole predictor. We ran the ANOVA in R, using the lm() function to fit the model and the Anova() function
to extract F and P values. A significant P-value (P < 0.05) would indicate that small and large plants have different
responsiveness to environmental variability. Together, the correlation tests and the responsiveness tests tell us whether
paths a (negatively covarying sizes) or b (reduced variance of one size) in Fig. 1 are possible.

Statistical results

We found a significant size-by-year interaction in most species-site combinations (Table 1), indicating that size inter-
acts with individual responses to environmental conditions. Survival models with a size⇥year effect received more
support than models without a size⇥year effect for 11 out of 15 species. Growth models with a size⇥year effect
received more support than models without a size⇥year effect for all 15 species. These statistical results suggest that
size-by-environment interactions are common, especially for growth. Size-by-environment interactions may appear
more common for growth than survival in part because real-valued responses (growth) have greater statistical precision
than binary responses (survival), making interactions easier to detect.

Table 1: Results from comparing models with and without a size⇥year effect using likelihood ratio tests as described in the main
text. LRobs. > 95% LRnull indicates a significant size⇥year interaction for the random effects, indicated by bold font for the value
of LRobs.. Source code: anomaly analysis.R.

Survival Growth

State Species 95% LRnull LRobs. 95% LRnull LRobs.

Idaho ARTR 2.76 13.51 4.31 91.39

Idaho HECO 4.43 2.63 4.43 68.95

Idaho POSE 4.16 1.39 4.43 23.14

Idaho PSSP 3.81 13.59 5.10 110.90

Montana BOGR 3.86 225.51 4.48 50.07

Montana HECO 3.61 30.87 4.39 37.77

Montana PASM 3.84 61.79 4.42 156.57

Montana POSE 3.89 18.46 5.17 44.02

Arizona BOER 4.55 1.83 3.94 5.79

Arizona BORO 4.02 9.52 4.75 110.94

New Mexico BOER 4.34 4.46 4.36 26.12

New Mexico SPFL 4.21 9.66 4.62 16.47

Kansas ANGE 4.46 9.15 4.83 21.98

Kansas BOCU 4.03 7.67 4.66 31.33

Kansas BOHI 3.72 1.12 4.68 21.59

The next question is whether demographic variations at different sizes negatively covary, or if particular sizes
are less sensitive to environmental variation through time. We addressed these questions using our computed annual
anomalies. The year-specific anomalies for large (90th percentile of the empirical size distribution) and small (10th

percentile) plants of each species tended to be positively correlated (Figure 2A-B). Cases where small and large
plants had opposing responses were relatively rare (SI section SI.4). Only two species had marginally significant
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Figure 2: Scatterplots of annual growth (Gt ) and survival (St ) anomalies by state (panels) and species (colors). (A) Relationship
between small and large plant growth anomalies (Gt ). (B) Relationship between small and large plant survival anomalies (St ).
Negative or null correlations indicate the potential for demographic buffering via size-related tradeoffs. Each point is an annual
anomaly associated with a random year effect for the intercept and the size effect. Note the change in x- and y-axis scalings across
panels. Source code: plot sxy statistics.R, anomaly analysis.R.

negative correlations between small and large plant responses: survival anomalies for large and small Bouteloua
gracilis (BOGR, Montana) were negatively correlated (Pearson’s r = �0.66, P = 0.014) and growth anomalies for
large and small Pascopyrum smithii (PASM, Montana) were negatively correlated (Pearson’s r =�0.60, P = 0.029).
Variance of year-specific anomalies was similar between small and large plants for growth (F1,28 = 0.241, P = 0.627)
but different for survival (F1,28 = 12.11, P = 0.002) when pooling all species (Fig. 3). Thus, we found little evidence
for negative covariances between size-based anomalies (path a in Fig. 1), but we did find evidence for large plants
having reduced variance of survival relative to small plants (path b in Fig. 1). This finding is consistent with previous
work based on matrix population models (Morris et al., 2008).

Impact of Size-by-Environment Interactions

on Population Dynamics

Statistically significant size-by-environment interactions imply interesting biology: differently sized individuals have
distinct responses to environmental variation. But whether size-by-environment interactions impact population dy-
namics depends on how they are mediated by elasticities and nonlinearities in model functional forms, which reflect
a combination of biology and statistical choices. For example, dramatic environmental responses for certain size-vital
rate combinations might catch our attention, but they may not impact population growth. Alternatively, seemingly
small differences among sizes for a given vital rate (e.g., slightly lower variance of large individual survival) can have
large impacts on population dynamics. In the next two sections, we discuss how elasiticities and model functional
form combine to determine the influence of individual-level responses on population dynamics.
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Figure 3: Within-species variation across years in growth (A) and survival (B) using standard deviations of annual anomalies
[s(Gt) and s(St)] from models with size-dependent environmental responses. Each point is the standard deviation of the yearly
anomalies for a given species. Colors represent different sites and the dashed line is 1:1. Source code: plot sxy statistics.R,

anomaly analysis.R.

Elasticities

Elasticities of population models tell us which vital rates and sizes most impact population dynamics. Elasticities
quantify the proportional change in population growth rate that results from a proportional change in demographic
processes such as survival, growth, and recruitment (de Kroon et al., 1986). In the context of size-by-environment
interactions, the relevant elasticities are the elasticity of stochastic population growth rate (lS) to between-year variance
at different locations in the projection kernel or matrix.

To demonstrate this, we return to our empirical example of 15 perennial plant populations. We used the fitted
growth and survival regressions from above, along with a regression for plant recruitment at the quadrat scale, to build
a size-structured integral projection model (IPM) for each species (SI section SI.5). Seedlings for some of our species
had distinct vital rates, different from what would be predicted in a strictly size-based model fitted to all plants. We
therefore used a two-stage, size-structured IPM for four of the fifteen species (SI section SI.5). We used survival and
growth regressions with the size⇥year effect (eqns. 2b and 3b).

Elasticities showed that larger plants are most important for population growth for most species (Fig. 4). However,
small plants were important for Pseudoroegneria spicata (PSSP, Idaho), Pascopyrum smithii (PASM, Montana), and
Poa secunda (POSE, Montana) (Fig. 4). For all species, the survival-growth kernel creates a ridge of high elasticity,
indicating survival and growth are most important for population growth in these perennial species, with little contri-
bution from recruitment. Our statistical analysis showed that large plants have reduced variance in survival relative to
small plants. Combined with the elasticity results, this could indicate demographic buffering through selection for re-
duced sensitivity of large plant survival. However, whether reduced variance would be selected for or against depends
on the norm of reaction between the environment and the focal vital rate.

Model nonlinearities

As mentioned above (Size-by-environment interactions and population dynamics), stochastic matrix model and
IPM theory suggest that demographic variability in matrix entries or kernel values will always decrease population
growth rate, and that selection therefore will always favor decreased variance (i.e., demographic buffering). But
demographic variance can, in theory, increase fitness and population growth rates because of nonlinear averaging
(Rees et al., 2004; Koons et al., 2009).
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Figure 4: Elasticities for each species. The greyscale surface is on the squareroot scale to increase visibility. Contours are on the
arithmetic scale. Two-stage IPMs can be identified by the vertical ridge at small values of size (z) on the x-axis. Source code:
plot sensitivities.R, sensitivity analysis.R.

A nonlinear average is the average of a nonlinear function of some variable over that variable’s distribution, and
is typically different from the value of the function at the mean of the distribution. For example, if metabolic rate is a
nonlinear function of temperature, metabolic rate at the average temperature is likely to differ from the metabolic rate
averaged over many instances of observed temperature. Whether the nonlinear average is greater or less than the value
at the mean of the variable quantity depends on the shape of the function (Jensen, 1906), which is often called the
norm of reaction to the variable. Much previous work has focused on norms of reaction between population growth
rate (l ) and environmental variables (x) such as temperature (Drake, 2005). If the function is concave-up, the mean
and variance of l will increase as the variance of x increases. Concave-up norms of reaction do not automatically
imply that environmental fluctuations are beneficial – it depends on the relative impacts on the arithmetic mean and
variance of l over time, though increasing log-concave up relationships tend to increase geomtric means (Cohen,
1980; Drake, 2005). If the function is linear or concave-down, the arithmetic mean of l decreases, and the variance of
l increases, as the variance of x increases. This is always bad for population growth because decreasing the arithmetic
mean and increasing the variance of population growth through time both act to reduce the geometric mean of l ,
which represents long-run population growth rate (lS).

The possible impacts (positive and negative) of environmental fluctuations on population growth are consequences
of Jensen’s inequality (Jensen, 1906), and lead to two evolutionary hypotheses. First, linear and concave-down norms
of reaction between population growth rate and the some environmental variable should select for demographic buffer-
ing, where the most important vital rates vary less than other vital rates in fluctuating environments (Morris et al.,
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2008). Second, concave-up norms of reaction can select for demographic lability, where the most important vital rates
track fluctuating environments (Koons et al., 2009).

As we have shown statistically, size-by-environment interactions allow different size individuals to have more or
less variability over time (Fig. 3). Analagous to the situation with vital rates, whether such reduced sensitivity to
environmental fluctuations has a positive, negative, or null impact on population growth rate depends on the reaction
norms between individual-level vital rates and the environment. However, our statistical models do not include explicit
relationships between vital rates and the environment because we used random year effects to approximate the effect of
a temporally fluctuating environment. The relevant reaction norm is therefore the implicit one between the year effect
and each vital rate (SI Section SI.6). For growth, the reaction norm between the year effect and growth is concave-up
because we fit the growth model based on the log of plant area. This is because the exponentiated growth function
is concave-up with respect to the year effects (Fig. SI-1A). If including size-by-year interactions in addition to year
effects on the intercept alters the distribution of expectations of year-specific growth, then size-by-year interactions
might benefit population growth.

For survival, the reaction norm between the year effect and survival is concave-up before the inflection point in
the logistic function – i.e., for predicted survival 0.5 or lower – and concave-down after the inflection point (Fig.
SI-1B). Therefore, including size-by-year interactions in addition to year effects on the intercept can be beneficial
for population growth under the following conditions: (i) the size-by-year effects alter the distribution of survival
expectations and (ii) small sizes (with low survival) are more variable. In contrast, size-by-year interactions can
hurt population growth under the following conditions: (i) the size-by-year effects alter the distribution of survival
expectations and (ii) large (with high survival) sizes are more variable. Note that, for both growth and survival,
size-by-year interactions will have no impact on population growth if the interactions do not alter the distribution of
year-specific expectations.

Given our model functional forms and our elasticity surfaces (Fig. 4), we might expect increased variance of
large plant growth to benefit population growth (because of the concave-up reaction norm between growth and the
random year effects) and increased variance of large plant survival to negatively impact population growth (concave-
down reaction norm). Similarly, we might expect high survival variance of small plants, which we observe, to have a
positive impact population through demographic lability (concave-up reaction norm).

To test these predictions, we used the IPMs for each species in simulation experiments where we manipulated the
variance of either large or small individuals in response to environmental fluctuations. The starting point of the analysis
are the fitted growth and survival regressions without size⇥year interactions. We then varied the size-dependence of
interannual variability, while keeping the total amount of variability constant (SI Section SI.7). We then calculated
the stochastic low-density growth rate for each species from the IPM for three experiments: (1) size-independent year
effects, (2) size-dependent year effects with large plants more variable than small plants, and (3) size-dependent year
effects with small plants more variable than large plants.

In many cases, making small or large plants more variable had little impact on population growth (Fig. 5). But
where the scenarios did make an impact, the impacts match our expecations. Making large plant growth more variable
increased population growth rates by as much as 20% (Fig. 5), reflecting the benefit conferred to population growth by
the concave-up reaction norm between the environment and growth. Perturbing survival variance had much less impact
than perturbing growth (Fig. 5). Thus, for our focal species, size-by-environment interactions ca impact population
growth through large plant variance in individual growth. Our empirical models, however, showed that large plant
growth is not more variable than small plant growth. We did find a difference in variance for survival between large
and small plants, but, as our buffering experiments show, altering survival variance among sizes has little impact on
population growth.
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Figure 5: Results from buffering experiments. Standardized stochastic population growth rate (lS) is the estimated stochastic low-
density growth rate from each simulation divided by the stochastic low-density growth rate from the “none” simulations (i.e.,
no size⇥year interactions). Source code: plot buffering experiments.R, ipm no overlap sxy onestage lambda.R,

ipm no overlap sxy twostage lambda.R.

Population simulations

The elasticity and buffering analyses make it clear that the observed size-by-environment interactions will not impact
population dynamics for our focal species. That is, if we have two population models, one with vital rate models with
size⇥year effects and one with random effects only on the intercepts, the stochastic steady-state plant cover from the
two models will probably be similar. Although the high survival variance for small plants and low survival variance
for large plants that we estimate (Fig. 3) are in line with evolutionary expectations stemming from Jensen’s inequality,
our elasticity analysis shows that small plants are not very important for population growth (Fig. 4) and perturbing
the size-specific variance of survival has little impact on population growth (Fig. 5). Therefore, the benefit of high
survival variance for small plants will not impact population-level dynamics. As a sanity check, however, we can
perform simulations to validate these arguments.

We simulated the IPM to estimate the stochastic equilibrium and temporal variance of cover for each species with
and without the size⇥year effect. We also use the IPM to simulate transient dynamics after a perturbation to small size
classes, allowing us to test whether including the size⇥year interaction impacts the return time to equilibrium cover.
In all of our simulations, we set the random effects due to quadrat group to zero, meaning that we are simulating
dynamics on a hypothetical average plot. We refer to this as a “hypothetical average plot” because the relationship
between quadrat group effect and demographic response is also nonlinear, so setting the group effect to zero is not a
way to estimate average cover across groups. We used kernel selection (Metcalf et al., 2015) to incorporate temporal
environmental variation, meaning that at each time step we randomly selected model coefficients corresponding to one
observation year for the survival, growth and recruitment models.
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For equilibrium runs, we initialized species with very low cover and ran the model for 500 time steps (years)
to allow the community to reach its steady-state pattern of fluctuations in response to environmental variability. We
calculated the average steady-state cover (c) for each species by simulating an additional 2000 time steps and averaging
cover over this period. We also stored the entire 2000 year simulation for each species to examine its distribution.
Equilibirum runs were conducted with and without the size⇥year interaction.

For transient runs, we initialized each species with very low cover composed of only small plants and ran the model
for 100 time steps, long enough for each species to reach average steady-state cover (c, as calculated from equilibrium
runs). We did this 50 times for each species, and for each run calculated the number of iterations it took to reach
average steady-state cover. We then averaged those number of iterations across the 50 simulations to estimate mean
return time to equilibrium.

The results are a direct consequence of the fact that the sizes whose variance change most when we model size-by-
environment interactions have low elasticity. The larger variation of small plant survival in response to environmental
conditions (Fig. 3) had no impact on simulated equilibrium cover or the temporal variance of cover (Fig. 6A). Like-
wise, transient dynamics, defined as return time to equilibrium after a perturbation to small size classes, were not
affected by the size⇥year effect, except for Artemisia tripartita (ARTR, Idaho) (Fig. 6B). Return time to equilib-
rium took longer with the size⇥year effect (mean over 50 simulations = 32.4 years) than without it (mean over 50
simulations = 20.6 years), but these means are associated with high variability (error bars in Fig. 6B).
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Figure 6: Distribution of plant cover (A) and transient dynamics (B) from IPM simulations with and without a size⇥year effect.
Boxplots in A show the median cover (solid horizontal line), the 25th and 75th percentiles (the box), the highest and lowest values no
further than 1.5⇥ the interquartile range (whiskers), and extreme values beyond the whiskers (points). In B, “Time to Equilibrium”
is the mean (over 50 simulations) return time from very low cover to equilibrium cover. Error bars represent the minimum and
maximum time to equilibrium from the 50 simulations. Source code: analyze ipm results.R.
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Discussion

A central focus of population ecology has been quantifying how species respond to environmental fluctuations as a con-
sequence of vital rate-environment relationships (Lewontin & Cohen, 1969; Lawson et al., 2015). Many populations
are size-structured and empirical evidence is mounting that different size individuals often have different responses
to the environment (e.g., Morris et al., 2008; Ozgul et al., 2010; Zhang et al., 2011; Lindmark et al., 2018). Just as
different vital rates may have negative covariances (Morris & Doak, 2004), environmental responses by individuals
of different sizes may negatively covary, or some sizes may be less sensitive to envrionmental fluctuations than oth-
ers (Fig. 1). Whether such size-by-environment interactions have positive or negative population-level consequences
depends on the norms of reaction between environment variables and the demographic responses (Fig. 1). How these
reaction norms align with size-dependent elasticities determines the population-level impacts of size-by-environment
interactions.

Size-by-environment interactions are common

Our case study of 15 plant populations from five semiarid grasslands showed that statistically significant size-by-year
interactions are common (Table 1). Assuming that the variability modeled by random year effects in our regression
models represent the species’ response to fluctuating environmental conditions, these statistical results suggest that
size-by-environment interactions are a potentially common phenomenon. Stage- and age-structured matrix popula-
tion models include (st)age-by-environment interactions when elements of the projection matrix are allowed to vary
through time (e.g., Morris et al., 2008), but whether each element should be allowed to vary through time is rarely
tested statistically. Our statistical approach can be easily applied to age-structured populations because age is a con-
tinuous trait.

Because they may be common, it is important to conduct statistical tests for size-by-year interactions whether
or not they ultimately impact population dynamics. Statistically significant size-by-year interactions help reduce
unexplained variance in models of vital rates, while also representing more faithfully the variability in data (Clark,
2003). Assuming all individuals share a common response to interannual variation (i.e., no size⇥year interaction)
can misrepresent the variability of the data by producing estimates of random year effects that do not actually apply
to any particular size. For example, averaging over distinct responses of small and large individuals could result in
parameter estimates that fall somewhere in between the two real responses. This could leave substantial unexplained
variance that can cause problems when models also include explicit time-varying covariates because too much residual
variation can be attributed to the covariate effects2. To avoid these potential pitfalls, we suggest demographic modelers
test for size-by-year interactions using our mixed-effects framework.

The strength of the mixed-effects modeling approach is that it does not require estimating separate parameters for
individual size, stage, or age classes. Likewise, our approach is general because we assume random year effects repre-
sent the response of species and sizes to interannual variation in the environment. Thus, our approach can be applied to
any dataset with multiple years of data, and the basic demographic models are all generalized linear models. Our use
of random year effects is also the main weakness of our approach because we cannot attribute environmental responses
to particular environmental drivers and thus cannot predict responses to environmental change. But given the difficulty
and number of years of data required for identifying correctly the environmental drivers of population dynamics and
selecting among competing models (Teller et al., 2016), we think that our phenomenological approach will often be
a good compromise between ignoring size-dependent responses and the ideal situation where size-specific responses
are linked to identified time-varying environmental covariates. However, fitting random year effects requires mak-

2We have seen this in our own work, where including random year effects diminished the importance of an external weather covariate.
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ing statistical choices that can bias model-based inference, as we discuss below (The importance of model functional
form).

Population level impacts of size-by-year interactions

We found that small and large plants tended to respond similarly to temporal environmental fluctuations (Fig. 2). This
indicated that negative covariance among sizes’ responses to the environment did not occur, and therefore could not
lead to demographic buffering. The other route to population-level effects, size-dependent magnitude of sensitivity to
environmental fluctuations, was possible because large plant survival (where variability is harmful) was less variable
than small plant survival (where variability is helpful, Figs. 3 and SI-1).

Ultimately, our empirical results do not suggest demographic buffering or demographic lability in our study popu-
lations, despite statistically significant size⇥year effects. Demographic buffering or lability requires that the size being
acted upon be important for population dynamics. Because small plants have low elasticity for population growth rate,
natural selection for lability should be weak for small plants, as implied by our statistical results and model functional
forms. On the contrary, large plants have high elasticity, making them candidates for strong natural selection. How-
ever, we found no evidence of high growth variance for large plants, which would be beneficial for population growth
according to our analysis. Thus, several ingredients for evolution of demographic buffering or lability via size-by-
environment interations were present in our case studies, but they did not all align to impact population dynamics. In
part, our “negative” results are due to the fact that including size-by-environment interactions did not alter the average
expectation across years for small or large plants, for both growth and survival (Figs. SI-3 and SI-4). Whether our
results are generalizable depends on if our results are system specific.

If our results are system specific, then they might not be generalizable beyond similar species (semi-arid perennial
bunchgrasses). Semi-arid plants may not be particularly sensitive to environmental fluctuations due to bet-hedging, in
which case adding size-dependence to models of temporal variability would not have a large impact (Figs. SI-3 and
SI-4). Moreover, the difference of environmental responses between small and large perennial bunchgrasses might be
small despite being statistically significant. Species with larger average differences in size between small and large
individuals might display larger differences in environmental responses, just as the magnitude of trait differences at
the species-level corresponds to differences in environmental responses among species (Polis, 1984; Angert et al.,
2009). Species with larger ranges of size than our focal species might exhibit stronger size-by-year interactions. For
example, stage-structured models of forests treat seedlings and adult trees as essentially different species because
their vital rates and the environment they experience (extreme shade for seedlings, high light for adult trees) are
so different (e.g., Freckleton et al., 2003). As a result, the response of seedlings and adult trees to environmental
fluctuations are probably also distinct, and their differences are likely more extreme than the differences between
small and large bunchgrass individuals. Size-by-environment interactions may still prove to be important in other
systems and investigating size-by-environment interactions could reveal what kinds of species exploit environmental
fluctuations and what kinds of species merely cope with environmental fluctuations.

If, on the contrary, our results are generalizable to other systems because population dynamics are not generally
affected by size-dependent responses to the environment, it would be in spite of the prevalence of size-by-environment
interactions. Several of the other potential mechanisms by which populations may buffer against environmental vari-
ability have been examined, including reduction of the variance of sensitive vital rates and correlations among vital
rates (Jongejans et al., 2010; Lawson et al., 2015; Compagnoni et al., 2016; McDonald et al., 2017). Across studies
and mechanisms, empirical evidence suggests that some populations seem buffered against variability, while others
do not. It is also true that scientists (including ourselves) tend to study species where individuals exist in abundance
(Crone et al., 2013). It then stands to reason that population biologists also tend to study species under environmental
conditions where their populations persist, perhaps even despite measurable size-dependent responses and/or a lack of

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/329771doi: bioRxiv preprint 

https://doi.org/10.1101/329771
http://creativecommons.org/licenses/by-nc-nd/4.0/


buffering. These artifacts of study design are not necessarily uninformative; instead it may suggest that, under most
circumstances, normal environmental fluctuations should not be expected to strongly affect populations where indi-
viduals exist in abundance. More research is required to show whether size-dependent responses have more significant
population-level impacts at range centers versus range edges, or under changing conditions.

Here we have examined plant populations, but our core ideas and the analytical approach apply to animal popula-
tions, too. Size-by-environment interactions may be especially influential in animal populations because of complex
ontogeny in animals. For example, certain fish and reptiles span four or more orders of magnitude in body weight
over the course of development (reviewed in Werner & Gilliam, 1984), making young (small) and adult (large) indi-
viduals within a population as dissimilar as individuals from different species (e.g., Polis, 1984). Likewise, Bieber &
Ruf (2005) showed that the importance of different life-stages for population growth of wild boar (Sus scrofa) shift
depending on environmental conditions. These lines of evidence suggest size-by-environment interactions may be
common in animal populations.

The importance of model functional form

Are our results actually indicative of species’ life histories? Or, are our results and conclusions pre-determined by
our choice of model functional forms? We log-transformed individual size in our growth models in order to obtain
a simple model: linear, with variance that was not strongly size-dependent. We also compared the log transform
with square root, third root, and other transformations before settling on log transformation. Log transformation is
appealing because it reduces heteroscedasticity, and growth is typically a multiplicative biological process. When
growth is determinate (i.e., expected growth is positive below some size, and negative above that size), a linear growth
model on log scale automatically results in absolute growth rate (on arithmetic scale) being maximized at intermediate
sizes, and relative growth rate decreasing with size, patterns that are commonly observed in nature (Ellner et al., 2016,
Ch. 2). But another unavoidable consequence is that the growth model is concave-up as a function of random intercept
and slope coefficients, which we assume represent environmental fluctuations, in the linear predictor of the growth
regression (SI Section SI.6). Any subsequent model-based inquiry within our mixed-models framework as to whether
a species is better off with higher or lower sensitivity to environmental fluctuations at a given size is constrained, by
Jensen’s inequality, to one possible answer: higher variability increases mean growth rate.

A similar “one possible answer” situation is present in our survival model, a GLMM with the conventional sig-
moidal (logit) link function for fitting to binomial data. A logistic regression for survival as a linear function of size z,
is concave-up for survival < 0.5, concave-down for survival > 0.5, and approximately linear near the inflection point.
Therefore, variability in random effects coefficients for survival will be beneficial for small plants, which tend to have
lower survival rates in the concave-up portion of the link function, and harmful for large plants which tend to have
higher survival rates in the concave-down portion of the model. If survival in an average year is near 1, then a good
year cannot help much, but a bad year can hurt.

To disentangle true size-dependent (or size-independent) responses to environmental variability from effects of
model functional form, modellers need to pay special attention to the curvature of demographic responses to envi-
ronmental variability. Standard practices such as log-transforming individual size or logistic regression for survival
should be checked against alternatives, and against more flexible modeling approaches such as generalized additive
models (e.g., Wood, 2000; Ramsay et al., 2009), which have the potential to capture both positive and negative curva-
ture where they exist (Rees et al., 2014). Another possibility is to choose different distributions for the random effects
(e.g, assume random year effects vary around the mean following a lognormal rather than normal distribution). How-
ever, flexible regression modeling functions are not a cure-all. The built-in criteria and algorithms for choosing model
complexity (like conventional model selection criteria such as AIC) try to identify optimal models for predicting the
response, not optimal models for predicting the curvature of the response (e.g., Fan & Gijbels, 1996), and they often
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achieve parsimony by biasing estimates towards a simple conventional model such as logistic or linear regression. As
a result, default smoothing methods can seem to give you an answer about curvature when the real situation is “not
enough data.” For example, if a model of y as a linear function of x receives as much support as a model of y as a
linear function of

p
x, then the real answer is “not enough data.” Exploratory data analyses, such as plotting average

survival or average growth rates for binned subsets of the population, may be the most informative approach.

Conclusions

Size-by-environment interactions might be an important way for species to cope with and/or exploit environmental
variation. Or, they might not matter much in terms of population growth rate, despite being biologically interesting.
Indeed, we found that size-by-environment interactions are common in perennial plant species, but they have little
impact on population dynamics. Given the vast literature on size-based differences among intraspecific individuals, it
is likely that size-by-environment interactions are common in many other species. Unfortunately, it is difficult to guess
whether size-by-environment interactions, if present, will tend to impact population dynamics in other species. This
is because of the many contingencies involved: reaction norms must be nonlinear, size-by-environment interactions
must impact sizes and vital rates with high elasticity, and size-by-environment interactions must alter the variance of
individual-level vital rates. Only future research in other systems can tell if our results are generalizable.

Our case studies did bring into stark relief how statistical choices can impact model-based inference. In particular,
the link functions used in our vital rate models inherently introduce nonlinearity in vital rate responses to environmen-
tal variability, when environmental variability is represented as random year effects. The functional forms of vital rate
models represent a mixture of biology and convenience. On the convenience side, modeling growth on log-transformed
scale makes for a well-behaved model, as does assuming that random year effects have a normal distribution centered
on zero, rather than some other mean effect of the environment that might be nonzero. On the biological side, indi-
vidual growth is a multiplicative process and patterns of increased variance with size are common in nature. Making
progress will require new developments that allow demographic modellers to select vital rate models based on their
ability to predict a response as well as the curvature of that response (Ye & Hooker, 2018). We hope that this paper
serves as a catalyst for these developments.
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Supporting Information

Section SI.1 Are seedlings different?

We excluded likely seedlings from our analysis of size-(in)dependent environmental responses, but we need
to include seedlings in our IPMs to accurately reproduce population dynamics. Seedlings are only partially
identified in the original quadrat maps from which our demographic data is derived. So for the IPM analyses
presented in the main text, likely seedlings were identified by size and age for fitting vital rate models as
follows. An individual recorded as age=1 in the original data is apparently being identified as a seedling.
However, such individuals in a quadrat that was not observed the previous year are actually of unknown
age. If they are small, such individuals might be seedlings or they might be older individuals that shrank to
a seedling-like size. So for all analyses of seedlings only, or of older individuals only, we removed from the
data set all such “doubtful” individuals: small (size  0.25 cm2) and recorded as age=1 in a quadrat that
was not observed the previous year. With doubtful individuals removed, any remaining individual who is
small (size  0.25 cm2) and recorded as age=1 are classified as seedlings, and all others are classified as
older. This assumes that any individual larger than 0.25 cm2 not a seedling, regardless of their recorded age.

To test whether seedlings are demographically different, we fit survival models that included a factor
variable flagging likely seedlings. A significantly nonzero coefficient for this variable implies that seedlings
behave differently, all else being equal. Specifically, we fitted the model

gam(survives ~ logarea + W + Group + seedling + seedling:Group

+ s(year,bs="re") + s(year,by=logarea,bs="re")

+ s(year,by=W,bs="re"), family=binomial)

where W is within-species competition and Group is the quadrat group. The model includes random year
effects on the intercept, the slope in size, and the slope in W .

The results from these model fits are shown in Table SI-1. All the Idaho species have seedlings that are
different, requiring the two-stage IPM described in the main text. Likewise, B. eriopoda in Arizona and S.

flexuosus in New Mexico also require a two-stage IPM.
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Table SI-1: Results from fitting GAMMs for survival with a seedling effect. Shown here are just the P-values for the
seedling effect. Kansas has no genets that get flagged as seedlings.

State Species P-value
Arizona BOER 0.0088

Arizona BORO 0.2560
Idaho ARTR 0.0054

Idaho HECO 0.0019

Idaho POSE <0.001

Idaho PSSP <0.001

Kansas ANGE NA
Kansas BOCU NA
Kansas BOHI NA
Montana BOGR 0.3738
Montana HECO 0.0517
Montana PASM 0.9159
Montana POSE 0.1812
New Mexico BOER 0.1936
New Mexico SPFL 0.0134
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Section SI.2 Modeling local crowding

We modeled the crowding experienced by a focal genet in each year t as a function of the distance to and
size of neighbor genets. In previous work, we assumed that the decay of crowding with neighbor distance
followed a Gaussian function (Chu & Adler, 2015), but here we use a data-driven approach (Teller et al.,
2016). We model the crowding experienced by genet i of species j from it conspecific neighbors as the sum
of neighbor areas across a set of concentric annuli, k, centered at the plant,

v

i jk,t = F

j

(d
k

)A
i jk,t (SI.1)

where F

j

is the competition kernel (described below) for effects of intraspecific crowding on species j, d

k

is the average of the inner and outer radii of annulus k, and A

i jk,t is the total area of genets of species j in
annulus k around the focal genet in year t. The total crowding on the focal genet exerted by its own species
is

w

i j,t = Â
k

v

i jk,t . (SI.2)

The w’s are then included as covariates in the survival and growth regressions. Note that we drop the
subscript j in our equations for vital rates for clarity because interspecific competition is not considered in
this paper.

We assume that competition kernels F

j

(d) are non-negative and decreasing, so that distant plants have
less effect than close plants. Otherwise, we let the data dictate the shape of the kernel by fitting a spline
model using the methods of Teller et al. (2016). The shape of F

j

is determined by a set of spline basis
coefficients~b

jm

and a smoothing parameter h that controls the complexity of the fitted kernel. Demographic
models such as our survival model,

logit(S
i,g,t+1) = b0 +b1z

i,t +b
g

+b
w

w

i,t + e
i

, (SI.3)

then have e , bbb , ~b and h as parameters to be fitted. We implemented this in the statistical computing en-
vironment, R (R Core Team, 2016), by making the spline coefficients and h the arguments of an objective
function that calculates each v

i jk,t value using the input spline coefficients, calls the model-fitting functions
lmer and/or glmer (Bates et al., 2015) to fit the other parameters in the survival and growth regressions, and
returns an approximate AIC value and model degrees of freedom (d f ) for survival and growth combined.
We used the~b values at the smoothest (smallest d f ) local minimum of AIC as a function of d f , as in Teller
et al. (2016). This approach assumes that one measure of crowding affects survival and growth.

Once we had estimated the competitions kernels, we used them to calculate the w

i jk,t values for each
individual in each year, and fitted the full survival and growth regressions, which include the interspecific
interaction coefficients, w (see main text). All genets in a quadrat were included in calculating the w’s, but
plants located within 5 cm of quadrat edges were not used in fitting the regressions.
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Section SI.3 Likelihood ratio tests for size-by-year interactions

We compared models with and without size-by-year interactions for each vital rate and species using like-
lihood ratio tests based on the expected likelihood ratio distribution under the null hypothesis of no size-
by-year interaction. We performed the likelihood ratio tests in this way because standard likelihood ratio
tests based on a c2 distribution are not appropriate for comparing random effects structures This is because
the reduced model is on the boundary of the set of parameter values for the full model – it is at s = 0 for
one of the variance components (Scheipl et al., 2008). Specifically, we simulated responses from the fitted
models without size-by-year interactions (Eqs. 2a, 3a), used those values as data to refit models with (Eqs.
2b, 3b) and without (Eqs. 2a, 3a) a size-by-year interaction, and then calculated the likelihood ratio between
those two fits. By repeating this procedure 500 times, we generated the likelihood ratio distribution under
the null hypothesis of no size-by-year interaction. We then compared the observed likelihood ratio to the
95th quantile of the null distribution to perform a one-sided significance test. If the observed likelihood ratio
exceeds the 95th quantile of the null distribution, then the size-by-year interaction is statistically significant.
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Section SI.4 Descriptive statistics from anomaly analysis

Section SI.4.1 Tally of anomalies with equal signs: comparing large and small plants

In the output below, offs refers to the number of annual anomalies that have different signs (plus or minus)
for small and large plants, ons refers to the number of annual anomalies that have the same sign (plus or
minus) for small and large plants, and off perc and off perc are those tallies represented as percentage
of the number of anomalies.

state species vital offs ons off_perc on_perc

1 Arizona BOER grow 2 14 12.500000 87.50000

2 Arizona BOER surv 0 17 0.000000 100.00000

3 Arizona BORO grow 5 12 29.411765 70.58824

4 Arizona BORO surv 0 17 0.000000 100.00000

5 Idaho ARTR grow 8 13 38.095238 61.90476

6 Idaho ARTR surv 11 10 52.380952 47.61905

7 Idaho HECO grow 6 15 28.571429 71.42857

8 Idaho HECO surv 5 16 23.809524 76.19048

9 Idaho POSE grow 9 12 42.857143 57.14286

10 Idaho POSE surv 5 16 23.809524 76.19048

11 Idaho PSSP grow 6 15 28.571429 71.42857

12 Idaho PSSP surv 3 18 14.285714 85.71429

13 Kansas ANGE grow 14 24 36.842105 63.15789

14 Kansas ANGE surv 11 27 28.947368 71.05263

15 Kansas BOCU grow 18 19 48.648649 51.35135

16 Kansas BOCU surv 6 31 16.216216 83.78378

17 Kansas BOHI grow 1 33 2.941176 97.05882

18 Kansas BOHI surv 5 30 14.285714 85.71429

19 Montana BOGR grow 4 9 30.769231 69.23077

20 Montana BOGR surv 11 2 84.615385 15.38462

21 Montana HECO grow 2 11 15.384615 84.61538

22 Montana HECO surv 4 9 30.769231 69.23077

23 Montana PASM grow 10 3 76.923077 23.07692

24 Montana PASM surv 1 12 7.692308 92.30769

25 Montana POSE grow 2 11 15.384615 84.61538

26 Montana POSE surv 4 9 30.769231 69.23077

27 NewMexico BOER grow 7 23 23.333333 76.66667

28 NewMexico BOER surv 8 22 26.666667 73.33333

29 NewMexico SPFL grow 7 22 24.137931 75.86207

30 NewMexico SPFL surv 10 20 33.333333 66.66667

Grouped by state and vital rate,

state vital offs ons off_perc on_perc

1 Arizona grow 7 26 21.21212 78.78788

2 Arizona surv 0 34 0.00000 100.00000

3 Idaho grow 29 55 34.52381 65.47619

4 Idaho surv 24 60 28.57143 71.42857

5 Kansas grow 33 76 30.27523 69.72477

6 Kansas surv 22 88 20.00000 80.00000
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7 Montana grow 18 34 34.61538 65.38462

8 Montana surv 20 32 38.46154 61.53846

9 NewMexico grow 14 45 23.72881 76.27119

10 NewMexico surv 18 42 30.00000 70.00000

Grouped by vital rate,

vital offs ons off_perc on_perc

1 grow 101 236 29.97033 70.02967

2 surv 84 256 24.70588 75.29412

Section SI.4.2 Tally of anomalies with equal signs: comparing growth and survival

In the output below, offs refers to the number of annual anomalies that have different signs (plus or minus)
for growth and survival, ons refers to the number of annual anomalies that have the same sign (plus or
minus) for growth and survival, and off perc and off perc are those tallies represented as percentage of
the number of anomalies.

state species plant_size offs ons off_perc on_perc

1 Arizona BOER Large Plants 1 15 6.25000 93.75000

2 Arizona BOER Small Plants 3 13 18.75000 81.25000

3 Arizona BORO Large Plants 7 10 41.17647 58.82353

4 Arizona BORO Small Plants 8 9 47.05882 52.94118

5 Idaho ARTR Large Plants 8 13 38.09524 61.90476

6 Idaho ARTR Small Plants 3 18 14.28571 85.71429

7 Idaho HECO Large Plants 11 10 52.38095 47.61905

8 Idaho HECO Small Plants 8 13 38.09524 61.90476

9 Idaho POSE Large Plants 10 11 47.61905 52.38095

10 Idaho POSE Small Plants 10 11 47.61905 52.38095

11 Idaho PSSP Large Plants 8 13 38.09524 61.90476

12 Idaho PSSP Small Plants 9 12 42.85714 57.14286

13 Kansas ANGE Large Plants 24 14 63.15789 36.84211

14 Kansas ANGE Small Plants 17 21 44.73684 55.26316

15 Kansas BOCU Large Plants 11 26 29.72973 70.27027

16 Kansas BOCU Small Plants 13 24 35.13514 64.86486

17 Kansas BOHI Large Plants 17 17 50.00000 50.00000

18 Kansas BOHI Small Plants 17 17 50.00000 50.00000

19 Montana BOGR Large Plants 5 8 38.46154 61.53846

20 Montana BOGR Small Plants 4 9 30.76923 69.23077

21 Montana HECO Large Plants 2 11 15.38462 84.61538

22 Montana HECO Small Plants 4 9 30.76923 69.23077

23 Montana PASM Large Plants 3 10 23.07692 76.92308

24 Montana PASM Small Plants 8 5 61.53846 38.46154

25 Montana POSE Large Plants 3 10 23.07692 76.92308

26 Montana POSE Small Plants 5 8 38.46154 61.53846

27 NewMexico BOER Large Plants 13 17 43.33333 56.66667

28 NewMexico BOER Small Plants 10 20 33.33333 66.66667

29 NewMexico SPFL Large Plants 12 17 41.37931 58.62069

30 NewMexico SPFL Small Plants 9 20 31.03448 68.96552
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Grouped by state and vital rate

state plant_size offs ons off_perc on_perc

1 Arizona Large Plants 8 25 24.24242 75.75758

2 Arizona Small Plants 11 22 33.33333 66.66667

3 Idaho Large Plants 37 47 44.04762 55.95238

4 Idaho Small Plants 30 54 35.71429 64.28571

5 Kansas Large Plants 52 57 47.70642 52.29358

6 Kansas Small Plants 47 62 43.11927 56.88073

7 Montana Large Plants 13 39 25.00000 75.00000

8 Montana Small Plants 21 31 40.38462 59.61538

9 NewMexico Large Plants 25 34 42.37288 57.62712

10 NewMexico Small Plants 19 40 32.20339 67.79661

Grouped by vital rate

plant_size offs ons off_perc on_perc

1 Large Plants 135 202 40.05935 59.94065

2 Small Plants 128 209 37.98220 62.01780

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2018. ; https://doi.org/10.1101/329771doi: bioRxiv preprint 

https://doi.org/10.1101/329771
http://creativecommons.org/licenses/by-nc-nd/4.0/


Section SI.5 Integral projection model details

Section SI.5.1 Modeling recruitment

Unlike the survival and growth models, our recruitment model does not include an effect of individual size
because a new recruit has no size at time t � 1 by definition. Therefore, the recruitment model does not
include a size⇥year interaction. Following previous work (Chu & Adler, 2015), we model recruitment at
the level of the quadrat becuase the data do not attribute new genets to specific parents. We assume the
number of recruits (y) in quadrat q in a given year follows a negative binomial distribution, whose mean
is a function of the cover of the species, quadrat group, temporal variation among years, and intraspecific
interactions as a function of species’ cover within a quadrat. The recruitment model is:

y

q,t+1 ⇠ Negative Binomial(l
q,t+1,k)

l
q,t+1 = A

0
q,t ⇥ e

(b0,t+b
g

+b
w

p
A

0
q,t)

(SI.4)

where l is the mean number of recruits occuring across space, k is the dispersion parameter, the bbb s are as
in the survival and growth regressions, and A

0 is the effective cover of the focal species. We define “effective
cover” as a mixture of observed cover in the focal quadrat, q, and the mean cover, A across the group, g, in
which the focal quadrat is located:

A

0
q,t = p⇥A

q,t +(1� p)⇥A

g,t (SI.5)

where p is a mixing fraction between 0 and 1, estimated by the model.
We fit the recruiment model in JAGS (Just Another Gibbs Sampler) (Plummer, 2003), using the rjags

package (Plummer, 2014) to connect JAGS and R. Posterior distributions of all unknown parameters were
sampled from three parallel MCMC (Monte Carlo Markov Chain) chains that ran for 20,000 iterations,
thinned by 50, after an initial burn-in of 10,000 iterations. We assessed convergence of MCMC chains
visually and by ensuring the multivariate scale reduction factor was less than 1.1 (Gelman & Rubin, 1992).
The multivariate scale reduction factor was calculated using the coda::gelman.diag() function (Plummer
et al., 2006).

Section SI.5.2 Survival and growth models for seedlings

We excluded seedlings from the data for fitting the statistical models above because they would have biased
our tests of whether individual size interacts with interannual environmental variability. However, when
we move to modeling species’ populations with the IPM, we will need information on the seedling stage:
what is the probability that a seedling survives? What is the probability that a seedling transitions to a non-
seedling size class, and what is the distribution of possible sizes? Our model for seedling survival is similar
to that of non-seedlings, except we exclude the effect of genet size because all seedlings have the same size.
The model for seedling survival (lowercase s) is:

s

i,g,t+1 = logit(b0,t +b
g

+b
w

w

i,t + e
i

) (SI.6)

where the terms are as in equation 2 in the main text.
Our model for seedling growth combines two probabilities: (1) the probability that a seedling transitions

to a non-seedling size class and (2) the probability of being a given non-seedling size. We use a mixture
of two Guassians, which combine a left peak of seedlings and a right peak of non-seedlings. The seedling
peak has mean = log(0.25) and standard deviation = 0.2 by fiat. The distribution parameters of the non-
seedling peak are the fraction in the left peak ( f ), and the mean (µ) and standard deviation (s ) of the
size of age 2 seedlings that became large enough to measure. The mixture distribution takes the form:
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f ⇥N
�
log(0.25),0.22�+(1� f )⇥N

�
µ,s2�. All parameters were estimated by maximum likelihood using

the stats4::mle(..., method = ‘‘Nelder-Mead’’) function in R (R Core Team, 2016).

Section SI.5.3 Integral projection models for perennial plants

We used two single species IPM structures, depending on whether seedlings were identified as behaving
differently than non-seedlings for a given species. Seedlings may have lower probability of survival than
non-seedlings, on average, meaning we would need to separate the life stages in those cases. To test whether
seedlings are different from non-seedlings, we fit survival models where genets were flagged as seedling
or non-seedling based on their recorded age and size. The seedling factor was included in the survival
model for each species. If the seedling factor was significant (P< 0.05), we concluded that seedlings were
different and used a two-life stage model for those species. We first describe the one-stage IPM, which is
similar to our previous work (Chu & Adler, 2014; Tredennick et al., 2017), and then describe the two-stage
IPM.

In the one-stage IPM, the size distribution of a species is represented by a density function n(u, t) which
gives the density of genets of size u at time t. The size distribution function at time t +1 is given by

n(v, t +1) =
Z

U

L

k(v,u,w(u))n(u, t)du (SI.7)

where k(v,u,w(u)) is the population kernel that describes all possible transitions from size u to v and w(u)
is a scalar representing the average intraspecific crowding experienced by a genet of size u. The integral is
evaluated over all possible sizes between predefined lower (L) and upper (U) size limits that extend beyond
the range of observed genet sizes. The kernel (k(v,u,w(u))) is constructed from our fitted survival (S),
growth (G), and recruitment (R) regression models.

k(v,u,w(u)) = S(u,n,w(u))⇥G(v,u,n,w(u))+R(v,u,n). (SI.8)

The recruitment regression predicts the number of recruits per unit area, and we assume that the number
of recruits increases linearly with genet size, R(v,u,n) = exp(u)R(v,u,n), to incorporate recruitment in the
IPM (Chu & Adler, 2015).

Adler et al. (2010) developed a mean field approximation for local crowding when the competition
kernels are all Gaussian functions, F

j

(d) = e

�a
jm

d

2 . The approximation is explained in the online SI to
Adler et al. (2010) and in section 5.3 of Ellner et al. (2016). Here we explain how that approximation
was modified for the IPMs in this paper, which used fitted nonparametric competition kernels (Adler et al.,
2018). The mean field approximation is based on the observed spatial distribution patterns of the species
(Chu & Adler, 2015). In the observed data conspecific individuals displayed non-random, size-dependent
patterns: small genets were randomly distributed, while large genets were segregated from each other. The
overdispersion of large conspecific genets is incorporated into the IPM with a ‘no-overlap’ rule, as in (Adler
et al., 2010).

We assume that conspecifics cannot overlap (‘no-overlap‘ rule). Genet shapes are irregular, but we
nonetheless implement the no-overlap rule by assuming that a genet of log area u

i

is a circle of radius r

i

where pr

2
i

= e

u

i . The no-overlap rule is then that the centroids of two conspecific individuals must be
separated by at least the sum of their radii.

For any one focal genet, the no-overlap restriction on its neighbors’ locations affects only a negligibly
small part of the habitat. The expected cover of individuals in the places where they can occur (relative to
one focal plant) is thus assumed to equal their expected locations in the habitat as a whole.

Let C

j

(u) be the total cover of species j genets of radius r or smaller,

C

j

(r) =
Z log(pr

2)

L

e

z

n

j

(z, t)dz. (SI.9)
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A focal genet of radius r cannot have any conspecific neighbors centered at distances less than r. It can have
a neighbor centered at distance x > r if that neighbor’s radius is no more than x� r. Adding up the expected
cover of all such possible neighbors for a focal genet of radius r,

W

j

(r) = 2p
Z •

r

F

j

(x)xC

j

(x� r)dx (SI.10)

This integral is finite and computable because the kernels F fall to 0 at finite x.
Our two-stage IPM is exactly the same as the one-stage IPM for non-seedlings whose log(area) > 0.25,

but includes separate dynamics for seedlings, whose size we set by definition to log(0.25) (see Survival and

growth models: seedlings). In the two-stage IPM, the size distribution of a species is still represented by a
density function n(u, t). But the population kernel (k) is composed of two parts, one for seedlings and one
for non-seedlings:

k(v,u,w(u)) = k1(v,0.25,w(0.25))+ k2(v,u,w(u)), (SI.11)

where k1 is the seedling kernel defining all possible transitions from the seedling size (0.25) to non-seedling
sizes and k2 is the non-seedling population kernel as in equation SI.8. The seedling population kernel is
defined as k1(v,0.25,w(0.25)) = s(w(0.25))⇥ g, where s is the seedling survival regression (eq. SI.6) and
g is the mixture distribution for seedling growth (see Survival and growth models: seedlings). Table SI-1
indicates for which species we use the one-stage IPM and for which we use the two-stage IPM.
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Section SI.6 Year effect reaction norms

Here we provide additional details on the relationship between vital rates, size, and the environment. As
mentioned in the main text, the reaction norm of interest for our vital rate statistical models is the implicit
one between the vital rate and the random year effects. We need to know whether the variability among year-
specific responses results in a concave-up, concave-down, or parabolic reaction norm to guide our inference
on the impacts of year effects and size-by-year interaction effects on population growth. We discuss our
growth model first, and then discuss the survival model.

Section SI.6.1 Year effect reaction norms: growth

Recall the growth model with random year effects on the intercept, aimed at predicting size (z) at time t,

z

i,g,t+1 = b0,t +b1z

i,g,t +b
g

+b
w

w

i,t + e
i

, (SI.12)

where we can rewrite b0,t as b0 +E

t

such that b0 is the mean intercept and E

t

is the random effect of year t.
Then we can rearrange Eq. SI.12 to express growth (G = z

t+1 � z

t

) of a given individual in real size (area,
rather than log area), ignoring quadrat group effects and intraspecific crowding, as

G = g(E,z)+ e, (SI.13)
g(E) = [exp(b0 +E +b1z)� exp(z)] , (SI.14)

where z is log size, b0 is the mean intercept, E is the random effect (E = “environment”), and e is random
error, meaning that g(E) is concave-up as a function of E (Fig. SI-1A). To make things concrete, the
expectation of a log-normal(µ , s ) is exp(µ +s2/2). Or specifically, if you fit a random effect with mean
zero on log-transformed scale, this is equivalent to multiplication by a random positive number on arithmetic
scale, and that positive number has mean exp(s2/2). I.e., modifying Eq. SI.14

E[g(E)] = exp(s2/2)⇥ [exp(b0 +b1z)� exp(z)]. (SI.15)

We can introduce random effect specification into this model in several equivalent ways. Here we use
the conventional approach of specifying random effects in the same units as the linear predictor, yielding
Jensen’s inequality after we re-exponentiate.

The reaction norm between growth and the environment is also concave-up when we include size-by-
year interactions, where

G = g(E1,E2,z)+ e, (SI.16)
g(E1,E2,z) = [exp(b0 +E1 +b1z+E2z)� exp(z)] , (SI.17)

and the second derivatives of g with respect to E1 and E2 are positive,

g

00(E1) = exp(b1z+E2z+b0 +E1)> 0

g

00(E2) = z

2exp(b1z+E2z+b0 +E1)> 0.
(SI.18)

Section SI.6.2 Year effect reaction norms: survival

Recall the survival model with a random year effect on the intercept

logit(S
i,g,t+1) = b0,t +b1z

i,t +b
g

+b
w

w

i,t (SI.19)
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where we can again rewrite b0,t as b0 +E

t

such that b0 is the mean intercept and E

t

is the random effect for
year t. Then for a given individual of size z, we can rewrite Eq. SI.19 with the antilogit transform applied as

S

t+1 = f (E), (SI.20)

f (E) =
exp(b0 +E +b1z)

1+ exp(b0 +E +b1z)
. (SI.21)

At a given size z, the second derivative of f with respect to E is

f

00(E) =
exp(b0 +E +b1z)(1� exp(b0 +E +b1z))

(1+ exp(b0 +E +b1z))3 . (SI.22)

f is therefore concave-up ( f

00 > 0) if and only if exp(b0 +E +b1z)< 1. This is equivalent to the predicted
survival probability S being less than 0.5, the value of the response at the inflection point in the logistic
function e

u/(1+e

u), which is in turn equivalent to the linear predictor in the logistic regression, b0+E+b1z,
being less than 0. Thus, the reaction norm between year effects and survival is concave-up before the
inflection point, and concave-down after the inflection point (Fig. SI-1B). The same is true when we include
a size⇥year interaction.
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Figure SI-1: Concavity of the implicit reaction norms between the random year effects (E) and the vital rates,
growth (A) and survival (B). In B, the dashed blue line shows the location of the inflection point (0.5); concave-
up reaction norms occur where f

00(E) > 1 and concave-down reaction norms occur where f

00(E) < 1. Source code:
reaction norms.R.
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Section SI.7 Vital rate buffering experiments

The starting point is a demographic model with a size-independent year effect,

ŷ

i,t+1 = a0 +a1z

i,t +a
t

. (SI.23)

Here ŷ

i,t+1 is the predicted mean response for individual i in the subsequent year t+1, z

i,t is that individual’s
size in year t, a

t

is the year effect for year t. In our models, ŷ could be logit survival, the mean of the
conditional size distribution, or expected production of new recruits.

We assume that the average of a
t

over years is exactly 0. Depending on the fitting method, this might
be true or it might just be approximately true. But it can always be made true, by subtracting the mean from
each a

t

and adding it to the intercept a0.
We want to vary the size-dependence of interannual variability, while keeping the total amount of

variability constant. We measure “total amount” from the perspective of individuals, as follows. Let
Z = {z

j

, j = 1,2, · · · ,N} be the set of all sizes of all individuals observed in the data set, regardless of
year. The anomaly a

j,t for individual j in year t is the difference between the value of ŷ

j,t+1 including
year-specific random effects, and what ŷ

j,t+1 would be if all year-specific random effects in the model were
set to zero. The RMS anomaly A is the root-mean-square all a

j,t
j

values,

A =

 
1

mN

m

Â
t=1

N

Â
j=1

a

2
j,t

!1/2

(SI.24)

Note that an anomaly is defined for each size⇥year combination: we put every observed size in every
observed year, and ask what the anomaly would be. The reason for doing this is that the IPM is simulated
by drawing years at random from those in the data set. So for matching the IPM to the true level of between-
year variability, our measure of the “true level” should be one in which years are weighted equally, rather
than weighted by sample size.

For the baseline model (SI.23), in a given year all sizes have the same anomaly, so the RMS anomaly is

A

b

=

 
1
m

m

Â
t=1

a2
t

!1/2

. (SI.25)

Figure SI-2 shows three size⇥year models that can be tuned to have the same RMS anomaly as the
baseline model.

Small are more variable. First, we make small plants more variable than large plants. To do this, we
choose a size z̃ representing a typical plant. We use an exponential tapering of variance so that we don’t
have to worry about lines crossing (instead of converging) at sizes representing large and small plants.

ŷ

i,t+1 = a0 +a1z

i,t +qexp(�c(z� z̃))a
t

. (SI.26)

The anomalies are qexp(�c(z� z̃))a
t

; q is determined by computing the RMS anomaly with q = 1, and
then adjusting q so that the RMS anomaly becomes A

b

. The value of c > 0 determines how much difference
there is between large and small plant variability. A plant of size z̃ has the same anomalies as in the baseline
model.

Large are more variable. Second, we make large plants more variable than small plants. This looks the
same as above, except that the tapering goes the other way,

ŷ

i,t+1 = a0 +a1z

i,t +qexp(c(z� z̃))a
t

. (SI.27)
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with c > 0.
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Figure SI-2: Red lines are the responses with year effect set to 0. Blues lines are responses in different years, such
that the root mean square anomaly is the same in all plots. In (A), regressions are shown on the log scale. In (B), the
same regressions are shown on the arithmetic scale. In (C), the response is logit-transformed to demonstrate the effect
of size-by-environment interactions on survival regressions. Note the difference in scales on the y-axes across panels.
Source code: BufferingExperiments.R.
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Section SI.8 Additional figures
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Figure SI-3: Comparison of growth expectations, averaged over year-specific expectations, from models with and
without size⇥year interactions for each species (15 points), in both log space and arithmetic space. The mean expecta-
tions are very similar, meaning that adding size⇥year interactions will not induce a Jensen’s effect beyond that already
present due to the reaction norm between the year effects and growth.
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Figure SI-4: Comparison of survival expectations, averaged over year-specific expectations, from models with and
without size⇥year interactions for each species (15 points), in both logit and antilogit space. The mean expectations
are very similar, meaning that adding size⇥year interactions will not induce a Jensen’s effect beyond that already
present due to the reaction norm between the year effects and survival.
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