
Kovtun et al.

SOFTWARE

MXP: Modular eXpandable framework for
building bioinformatics Pipelines
Mikhail Kovtun*, Igor Akushevich, Konstantin Arbeev and Anatoliy Yashin

Abstract

Background: Pipelines are a natural tool in bioinformatics applications. Virtually any meaningful processing of
biological data involves the execution of multiple software tools, and this execution must be arranged in a
coherent manner. Many tools for the building of pipelines were developed over time and used to facilitate work
with increasing volume of bioinformatics data. Here we present a flexible and expandable framework for
building pipelines, MXP, which we hope will find its own niche in bioinformatics applications.

Results: We developed MXP and tested it on various tasks in our organization, primarily for building pipelines
for GWAS (Genome-Wide Association Studies) and post-GWAS analysis. It was proven to be sufficiently
flexible and useful.

Conclusions: MXP implements a number of novel features which, from our point of view, make it to be more
suitable and more convenient for building bioinformatics pipelines.

Keywords: bioinformatics; pipeline; bash

Background
MXP is a tool developed with intention to allow one
to build pipelines easily.

MXP core (called “MXP base” below) is a set of
Bash scripts that arrange execution of other scripts,
called “methods”. This arranged execution is a pipeline.
Drawing the analogy between MXP and languages like
Python or R, MXP core corresponds to language in-
terpreter, groups of methods correspond to packages,
and pipelines correspond to end-user applications.

Pipelines may be very general or very specific, as
any program can be. A distinguishing feature of MXP
is that it allows you to easily modify or extend existing
pipelines without changing the original pipeline code.

Two other distinguishing MXP features are using di-
rectories as units which pipelines operate on and the
way to decide whether a target is up-to-date or should
be rebuilt. These problems are significant in bioinfor-
matics, and all tools for building pipelines have to
struggle with them. MXP presents a novel approach
to these problems.

In terminology of [1], MXP is an implicit configuration-
based framework with a command-line interface.

*Correspondence: mikhail.kovtun@duke.edu

Biodemography of Aging Research Unit, Social Science Research Institute,

Duke University, 27708, Durham, NC, USA

Full list of author information is available at the end of the article

Implementation
Approach
An important decision that should be made at the
very beginning is what are units which framework op-
erates on. In bioinformatics, the unit rarely is a single
file. Much more often it is group of files, and some-
times very complex groups of files. For example, even
alignment of paired-end reads requires to specify 2 in-
put files; PLINK normally uses a triplet of files (.bed,
.bim, .fam), and often it should be accompanied with
files specifying set of SNPs to work with, phenotypic
files, etc.
For these reasons, MXP uses filesystem directories

as units. A directory can accommodate virtually any
file structure. Additionally, it provides an easy solu-
tion for problems of where to store and how to find
support files needed for the framework itself and help-
ful to the user (e.g., configuration that was used to
obtain a target, log files, etc.).
Another important decision is to define the way to

decide whether a target should be rebuilt. Often such
a decision is made based on file timestamps: a target
should be rebuilt if any required target is newer. This
approach is inspired by make [2], and in the case of
make it is very natural approach. However, in bioinfor-
matics applications it is a rare case when input files
are changed; instead, a user usually wants to change

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/329110doi: bioRxiv preprint 

mailto:mikhail.kovtun@duke.edu
https://doi.org/10.1101/329110


Kovtun et al. Page 2 of 5

some parameters for an application (thresholds, win-
dow sizes, etc.) and re-run application with these new
parameters. Detecting what targets are affected by
such changes and therefore should be rebuilt is cum-
bersome.
To cope with this problem, MXP stores all param-

eters and scripts used to obtain a target, and checks
whether they were changed in order to decide whether
a target should be rebuilt. Our use of MXP demon-
strated that the overhead caused by this approach is
negligible.
MXP base is the core engine that executes a

method’s scripts in the order prescribed by the Make-
file.
MXP is written in pure Bash, and all units which

are handled by MXP — methods, parameter sets, even
Makefile — are Bash scripts. Of course, method scripts
may invoke applications written in other languages,
but any MXP-related script is still a Bash script.
This approach gives all power of the Bash to the

pipeline writer. On the other hand, it has its own
drawbacks, as Bash syntax is very cryptic and restric-
tive. However, we believe that the advantage of having
the full power of Bash at hand outweighs the inconve-
niences.

MXP overview and concepts
A pipeline is a sequence of operations that leads to a
required result.
What exactly “result” means, and what kind of “op-

erations” are used, depends heavily on the application
domain. The expected application domain influences
the design of a tool for building pipelines.
The famous Unix utility make [2], known since 1976,

was, probably, the first tool for building pipelines (al-
though the word “pipeline” is rarely used in conjunc-
tion with make). Virtually all of the tools for building
pipelines borrow from make, and MXP is not an ex-
ception. But what makes these tools different are the
elementary units which the pipeline operates on, how
steps of pipeline are described, and the rules that are
used to determine whether to re-execute a step or to
use its existing results. This difference eventually influ-
ences the language used to describe the pipelines (e.g.,
Makefile syntax and semantics).
The units which MXP operates on are called (just

like in make) targets. A target is represented by a di-
rectory containing an arbitrary set of files (and pos-
sibly subdirectories). We often use the word “target”
instead more exact term “target directory”.
As in case of make, the execution of MXP consists of

obtaining target specified in the command line. In or-
der to obtain a target, other target(s) may be needed.
MXP checks whether the required targets have been

already obtained and if they are up-to-date; if not,
MXP automatically rebuilds the required targets —
which may require other targets, i.e., this is a recursive
process. What targets are required for a given target,
and how a given target should be obtained from the
other ones is specified in Makefile (again, the term is
borrowed from make).

What is Makefile and how to use it
Makefile consists of rules. In MXP, Makefile is a Bash
script. Here is a simple example of a rule:
MXP_MAKEFILE[d01_pdata]=" \

(idata_DIR = d00_idata) pdata_0 : pdata"

It is a Bash statement. It assigns string " (idata_DIR

= d00_idata) pdata_0 : pdata" to an entry in
associative array MXP_MAKEFILE indexed by string
"d01_pdata".
This rule states that:
• target d01_pdata requires target d00_idata
• method pdata with parameters pdata_0 should

be used to obtain target d01_pdata from target
d00_idata

• during execution of method pdata environmental
variable idata_DIR will be set to a full path to
target directory d00_idata

Also, it implicitly states that:
• there is an analysis directory (current directory or
directory explicitly specified in MXP command-
line arguments) that contains a subdirectory mxp,
and a file Makefile.sh inside of it

• the target directory named d01_pdata will be cre-
ated within the analysis directory as a result of
obtaining target d01_pdata (or, if this directory
already exists, MXP will check whether this di-
rectory is up-to-date and rebuild it if it is not)

• there is a file pdata.sh containing a Bash script
that will be executed in order to obtain target
d01_pdata

• there is a file pdata_0.params.sh containing a
Bash script (that define parameters) that will be
executed in order to obtain the target d01_pdata

Strictly speaking, there is no difference between a
parameter script and a method script. MXP introduces
this distinction to encourage the pipeline developers to
clearly separate parameters from methods. Parameters
could be changed by the pipeline user (for example, the
user may want to use his own parameters for quality
control), while methods are much more stable and are
not expected to change from one pipeline application
to another.
To determine if the target is up-to-date, MXP will

check if:
• the target directory exists
• the last attempt to build target was completed
successfully

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/329110doi: bioRxiv preprint 

https://doi.org/10.1101/329110


Kovtun et al. Page 3 of 5

• all required targets are up-to-date
• the rule used to obtain target has not been up-
dated

• method and parameter scripts used to obtain tar-
get have not been updated

Chaining pipelines
An important feature of MXP is that it allows for cre-
ating new pipelines by re-using pieces from existing
pipelines. Each pipeline has a parent; only the root
pipeline (which is a part of MXP base) does not have
a parent. Makefile, methods and parameter sets de-
fined in the parent pipeline are available in the child
pipeline, and the child pipeline may override exactly
those pieces from the parent pipeline that need to be
changed.
In particular, the parent pipeline may be read-only,

and still any fine-grained modifications of the parent
pipeline are available to the user.
We anticipate that this feature will be widely used.

Logging
Another important feature of MXP is logging. When
a target is built, a full log is automatically written in
the target directory. This log can be examined later
to learn how exactly the target was built (in the case
of successful build) or find out why the target build
failed (in the case of failure).
It is also possible to save a log of a full MXP run,

which may involve building multiple targets.

Sharing and publishing pipelines
Reproducibility is very important for biological anal-
yses, and, unfortunately, it is a weak point of many
publications. We hope that MXP will significantly im-
prove the ability of the researcher to publish informa-
tion that describes exactly how results were obtained.
To accomplish this, one needs to compress the mxp

subdirectory of the analysis directory and submit the
compressed file as a part of supplementary data.

Results
We used MXP in our organization to build various
pipelines. Primarily, we were interested in GWAS and
post-GWAS analysis. MXP proved to be a convenient
and easy-to-use tool for this purpose. We plan to pub-
lish an MXP-based GWAS pipeline as soon as it is
finalized and documented.
Another application was the creation of a pipeline

for obtaining and preprocessing files from public
databases that are needed for annotating results of
our analyses.
Using Bash as a programming language may seem to

make the framework very slow. However, it is not the

case. We use Bash carefully, and optimize all areas that
may cause a slowdown. Running MXP when a target is
already built (in this case MXP analyses hierarchy of
Makefiles, checks that everything is up-to-date, reports
it and terminates) takes about 1 second.

Discussion
At the moment, multiple tools for building bioinfor-
matics pipelines exist. [3] lists about 100 such tools.
So, the question “why one more tool?” should be an-
swered.

The novel features
MXP has a few novel features (that up to our knowl-
edge were not implemented in other tools). We already
mentioned them in different contexts; here is the sum-
mary.
Directories as targets. Targets in MXP are repre-

sented by directories. It serves several purposes.
First, it simplifies specification of methods’ input
and output: when a method uses multiple input
files and produces multiple output files, there is no
need to specify all individual files explicitly (which
is tricky when a set of input/output files is vari-
able) – it is sufficient to specify output directory
(i.e., the target being built) and input directories
(i.e., the list of required targets). Second, it gives
a simple answer to the question where to store
supplementary files (i.e., files used by framework
itself, logs, etc.). Third, it gives the user flexibil-
ity to combine several operations in one method
(e.g., add reformatting the output of the main ap-
plication of the method). This allows the user to
reduce the number of targets, and make overall
pipeline more manageable.

Comparing scripts to decide whether a target

is up-to-date. In bioinformatics, tuning appli-
cation parameters get correct result (e.g., qual-
ity control parameters may depend on dataset).
When parameters for a target are changed, this
target should be rebuilt, as well as all other tar-
gets that depend on it. To achieve this automat-
ically, MXP stores all scripts used to obtain tar-
get in .mxp subdirectory of target directory. Then,
when MXP checks whether a target is up-to-date,
it compares the stored scripts with the current
version of these scripts. If any difference is found,
target will be rebuilt. The same effect may be
achieved with other pipeline building tools, but
it requires special work, while MXP does this au-
tomatically.

Ability to replace arbitrary piece of code with-

out updating everything. Recall that every
pipeline has a parent pipeline (except the root

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/329110doi: bioRxiv preprint 

https://doi.org/10.1101/329110


Kovtun et al. Page 4 of 5

pipeline). When MXP needs to execute a script,
it first searches the mxp subdirectory of the cur-
rent analysis directory for this script. If not found,
it searches parent pipeline, etc. Thus, if the user
needs the parent pipeline with modification to a
single script, he puts the modified script in mxp

subdirectory of his analysis directory — and that
is all what is needed.
The parent pipeline remains untouched (it may be
read-only for the user). Other users who use the
same parent pipeline are unaffected.

The choice of languages
At least two languages are involved into construction of
a tool for building pipelines: first, implementation lan-
guage (which may be a combination of languages) and
domain specific language (DSL), which is used to spec-
ify a pipeline. The better cooperation between these
languages, the more convenient tool will be.
Python is often used as implementation language

(Ruffus [4], Rubra [5], Omicspipe [6], Moa [7], pype-
FLOW [8], PyPPL [9], Snakemake [10], and many
other). Java and Groovy is another popular choice
(BigDataScript [11], Bpipe [12], Nextflow [13], etc.).
Occasionally, other languages like Prolog (Biomake
[14]) or R (flowr [15]) were used.
Of course, languages like Python or Java have better

syntax than Bash does and provide much more flexible
data structures.
But at the very end pipeline should execute shell

commands. Consequently, DSL contains lines (some-
time quoted) that a shell commands. These commands
necessary contain variables, which leads to a question
who have to perform variable substitution: DSL imple-
mentation or shell? If DSL is chosen, the substitution
is usually limited (no one is willing to implement the
full analogue of Bash); if shell should perform substi-
tution, the ability to communicate variable values to
shell is a limiting factor.
For these reasons we chose Bash as the language to

implement MXP. The only place where DSL is used in
MXP is a rule for obtaining a target; i.e., the string
value assigned to an entry in MXP_MAKEFILE associa-
tive array is a DSL statement. Makefile as a whole
is a Bash script. Using Bash gives MXP several ad-
vantages. First, MXP may provide (and it does) con-
venience Bash functions that can be used in scripts
implementing methods. Second, Bash arrays may be
passed from parameter scripts to method scripts (as
parameter and method scripts are sourced—rather
than executed—in Bash subshell). Third, as Makefile
is a Bash script, it may use all Bash features to create
rules: for example, many similar rules may be gener-
ated in a simple Bash loop.

MXP versus other tools
First, let us note that virtually any tool can be success-
fully used to build virtually any pipeline. For exam-
ple, [16] demonstrates that even make can be used for
bioinformatics pipelines. The question is convenience
for specific applications.
MXP shares many features with other frameworks.

We describe its distinguishing features above; from our
point of view, they may provide MXP its own niche.

Conclusions
MXP is a tool for creating pipelines, and therefore may
be useful for researchers who are knowledgeable in pro-
gramming are willing to create their own pipelines.
Our goal is to create reusable pipelines, primarily in

the domain of GWAS and post-GWAS analyses. This
work is similar to the one done in Omicspipe [6], which
extends Ruffus [4] to create pipelines for analysis of
results of Next Generation Sequencing (NGS). For our
purpose, we consider MXP as more suitable for out
tasks tool.
MXP is a stable and ready to use software. On the

other hand, it is under development, and new features
are added.

Availability and requirements

Project name: MXP: Modular eXpandable framework for building

bioinformatics Pipelines

Project home page: https://sites.duke.edu/barusoftware/MXP

Operating system: Linux/Unix

Programming language: Bash

Other requirements: Bash v.4.0 or higher

License: MIT (https://opensource.org/licenses/MIT)

List of abbreviations

DSL: Domain-Specific Language

GWAS: Genome-Wide Association Study

MXP: Modular eXpandable framework for building bioinformatics Pipelines

NGS: Next Generation Sequencing

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

Research reported in this publication was partly supported by the National

Institute on Aging of the National Institutes of Health (NIA/NIH) under

Award Numbers P01AG043352, R01AG046860, and P30AG034424. The

content is solely the responsibility of the authors and does not necessarily

represent the official views of the National Institutes of Health.

Authors’ contributions

MK designed and implemented MXP core. IA and KA participated in

discussions about MXP design and implemented a number of methods for

GWAS and post-GWAS analysis. AY provided overall guidance.

Acknowledgments

Not applicable.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/329110doi: bioRxiv preprint 

https://sites.duke.edu/barusoftware/MXP
https://opensource.org/licenses/MIT
https://doi.org/10.1101/329110


Kovtun et al. Page 5 of 5

References

1. Leipzig, J.: A review of bioinformatic pipeline frameworks. Brief

Bioinform 18(3), 530–536 (2017). doi:10.1093/bib/bbw020

2. Stallman, R.M., McGrath, R., Smith, P.D.: GNU Make: A Program for

Directing Recompilation : GNU Make Version 4.2. A GNU manual.

Free Software Foundation, Boston, USA (2016).

https://www.gnu.org/software/make/manual/make.pdf

3. A curated list of awesome pipeline toolkits.

https://github.com/pditommaso/awesome-pipeline

4. Goodstadt, L.: Ruffus: a lightweight python library for computational

pipelines. Bioinformatics 26(21), 2778–2779 (2010).

doi:10.1093/bioinformatics/btq524

5. Pope, B., Sloggett, C., Philip, G., Wakefield, M.: Rubra: Infrastructure

code to support DNA pipeline. https://github.com/bjpop/rubra

6. Fisch, K.M., Meißner, T., Gioia, L., Ducom, J.-C., Carland, T.M.,

Loguercio, S., Su, A.I.: Omics pipe: a community-based framework for

reproducible multi-omics data analysis. Bioinformatics 31(11),

1724–1728 (2015). doi:10.1093/bioinformatics/btv061

7. Moa: Lightweight workflows in bioinformatics.

https://github.com/mfiers/Moa

8. pypeFLOW: A simple lightweight workflow for data analysis scripting.

https://github.com/PacificBiosciences/pypeFLOW

9. PyPPL: A Python PiPeLine framework.

https://github.com/pwwang/pyppl

10. Köster, J., Rahmann, S.: Snakemake—a scalable bioinformatics

workflow engine. Bioinformatics 28(19), 2520–2522 (2012).

doi:10.1093/bioinformatics/bts480

11. Cingolani, P., Sladek, R., Blanchette, M.: Bigdatascript: a scripting

language for data pipelines. Bioinformatics 31(1), 10–16 (2015).

doi:10.1093/bioinformatics/btu595

12. Sadedin, S.P., Pope, B., Oshlack, A.: Bpipe: a tool for running and

managing bioinformatics pipelines. Bioinformatics 28(11), 1525–1526

(2012). doi:10.1093/bioinformatics/bts167

13. Nextflow — A DSL for parallel and scalable computational pipelines.

https://www.nextflow.io/

14. Biomake: GNU-Make-like utility for managing builds and complex

workflows. https://github.com/evoldoers/biomake

15. flowr: Robust and efficient workflows using a simple language agnotstic

approach. https://github.com/sahilseth/flowr

16. Smith, B.J.: Reproducible bioinformatics pipelines using Make.

https://bsmith89.github.io/make-bml

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/329110doi: bioRxiv preprint 

http://dx.doi.org/10.1093/bib/bbw020
https://github.com/pditommaso/awesome-pipeline
http://dx.doi.org/10.1093/bioinformatics/btq524
https://github.com/bjpop/rubra
http://dx.doi.org/10.1093/bioinformatics/btv061
https://github.com/mfiers/Moa
https://github.com/PacificBiosciences/pypeFLOW
https://github.com/pwwang/pyppl
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1093/bioinformatics/btu595
http://dx.doi.org/10.1093/bioinformatics/bts167
https://www.nextflow.io/
https://github.com/evoldoers/biomake
https://github.com/sahilseth/flowr
https://bsmith89.github.io/make-bml
https://doi.org/10.1101/329110

	Abstract

