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 2 

SUMMARY 30 
 31 

In many cognitive processes, lapses (spontaneous errors) are attributed to nuisance 32 
processes like sensorimotor noise or disengagement. However, some lapses could also be caused 33 
by exploratory noise: behavioral randomness that facilitates learning in changing environments. 34 
If so, strategic processes would need only up-regulate (rather than generate) exploration to adapt 35 
to a changing environment. This view predicts that lapse rates should be correlated with 36 
flexibility because they share a common cause. We report that when macaques performed a set-37 
shifting task, lapse rates were negatively correlated with perseverative error frequency. 38 
Furthermore, chronic exposure to cocaine, which impairs cognitive flexibility, increased 39 
perseverative errors, but, surprisingly, improved overall performance by reducing lapse rates. We 40 
reconcile these results with a model in which cocaine decreased exploration by deepening 41 
attractor basins corresponding to rules. These results support the idea that exploratory noise 42 
contributes to lapses, meaning that it affects rule-based decision-making even when it has no 43 
strategic value. 44 

45 
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INTRODUCTION 46 
 47 

Decision-makers can implement arbitrary rules (i.e. stimulus-response mappings) and 48 
flexibly change them when contingencies change (Miller and Cohen, 2001; Wallis et al., 2001). 49 
Yet even sophisticated decision-makers occasionally fail to implement well-learned rules. Why 50 
do these lapses occur? In general, lapses of rule adherence, are tacitly dismissed as the result of 51 
ancillary nuisance processes, such as memory deficits, sensorimotor noise, or disengagement 52 
(McVay and Kane, 2009; Reason, 1990; Van der Linden et al., 2003; Weissman et al., 2006). An 53 
alternative view is that some lapses occur because of the same adaptive processes that allow rule 54 
learning and cognitive flexibility in a changing environment. Determining whether lapse rates 55 
are somehow linked to the capacity for flexibility could provide insight into psychiatric illnesses 56 
in which lapse rates are abnormal (e.g. (Ciesielski and Harris, 1997; Floresco et al., 2009; 57 
Heinrichs and Zakzanis, 1998)), and into the basic mechanisms of rule use. 58 

In changing environments, decision-makers mostly exploit valuable strategies, but they 59 
also occasionally explore, i.e. deviate from valuable strategies to sample alternatives (Berg and 60 
Brown, 1972; Ebitz et al., 2018; Kaelbling et al., 1996; Pearson et al., 2009; Sutton and Barto, 61 
1998; Wilson et al., 2014). In many algorithms for exploration, the likelihood of exploration 62 
depends on uncertainty or the value of exploring (Daw et al., 2006; Kaelbling et al., 1996; Sutton 63 
and Barto, 1998). In these phasic algorithms, exploration occurs most often when reducing 64 
perseveration has the greatest benefit. In tonic algorithms, conversely, the decision does not 65 
depend on uncertainty or the value of exploration (Kaelbling et al., 1996; Sutton and Barto, 66 
1998). Although tonic exploration may appear suboptimal, it eliminates the need to calculate the 67 
value of exploration at every time step, is robust to errors in calculating the value of exploration, 68 
and it can perform nearly as well as phasic exploration in many circumstances (Dayan and Daw, 69 
2008; Ebitz et al., 2018; Sutton and Barto, 1998). Tonic exploration also has costs: when the 70 
environment is stable it produces errors of rule adherence that have no immediate strategic 71 
benefit. That is, it produces lapses. 72 

It remains unclear whether exploration occurs even when it has no strategic value. One 73 
way to address this question is by looking at behavior in a “change-point” task (Behrens et al., 74 
2007; Nassar et al., 2012; O’Reilly et al., 2013; Wilson et al., 2010). Change-point tasks have 75 
stable periods—in which there is no uncertainty and exploratory noise has no strategic benefit—76 
and also rapid changes in reward contingencies that require adaptation and learning. If 77 
exploration occurs tonically—if it does contribute to lapses—then spontaneous lapses during 78 
stable periods should be related to the ability to discard a rule. That is, across animals and days, 79 
lapse rates should be negatively correlated with perseverative errors. An alternative hypothesis is 80 
that exploration is phasic, generated only at change points. If so, then lapse rates would not be 81 
correlated with perseverative errors (because they are caused by different processes), or perhaps 82 
positively correlated (because they are both errors). 83 

Furthermore, if lapse rates and adaptation at change points are both caused by tonic 84 
exploration, then it should be possible to identify an intervention that simultaneously alters both 85 
behaviors because it regulates this underlying common cause. One candidate intervention is 86 
chronic cocaine exposure, which reduces cognitive flexibility (Bechara, 2005; Everitt and 87 
Robbins, 2005; Jentsch et al., 2002; Lucantonio et al., 2012; Robbins and Everitt, 1999). Cocaine 88 
abusers make more perseverative errors in classic set-shifting tasks such as the Wisconsin Card 89 
Sort Task (WCST; (Beatty et al., 1995; Colzato et al., 2009; van der Plas et al., 2009; Woicik et 90 
al., 2011)). Both rodents and monkeys exposed to cocaine show deficits in reversal learning 91 
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(Porter et al., 2011; Schoenbaum et al., 2004) and fail to change behavior in the face of aversive 92 
outcomes (Vanderschuren and Everitt, 2004). This inflexibility may contribute to the cycle of 93 
abuse in cocaine users (Everitt and Robbins, 2005; Robbins and Everitt, 1999; Turner et al., 94 
2009).  95 

If cocaine exposure regulates tonic exploration, then it should not only cause 96 
perseverative errors, but also decrease lapse rates. It should simultaneously decrease flexibility 97 
yet improve performance in set-shifting tasks. Indeed, at least one observational study reported 98 
that human cocaine abusers performed better in the WCST, compared to controls (Hoff et al., 99 
1996). However, it remains unclear whether chronic cocaine is sufficient to simultaneously 100 
reduce lapse rates and increase perseverative errors. Addressing this question has the potential to 101 
reconcile seemingly paradoxical results in the cocaine literature, and, at the same time, to address 102 
a fundamental question about whether lapses are caused by the same tonic exploration process 103 
that facilitates adaptation and learning. 104 

Therefore, we examined behavior of rhesus macaques performing the cognitive set 105 
shifting task (CSST) (Moore et al., 2005; Sleezer and Hayden, 2016; Sleezer et al., 2016, 2017; 106 
Yoo et al., 2018), a primate analogue of the WCST, both before and after exposure to cocaine. 107 
This task is ideal to address the present question because it combines a change point task with a 108 
rule-based decision-making task. Consistent with tonic exploration, we found evidence of a 109 
common cause of lapse rates during stable periods and flexibility following change points. 110 
Moreover, cocaine not only reduced flexibility, but simultaneously and proportionally decreased 111 
lapse rates, suggesting that cocaine regulates tonic exploration. Finally, we fit a model to the 112 
dynamics of behavior, in which cocaine decreased exploration via deepening the attractor basins 113 
that correspond to rule states. Together these results suggest that exploration occurs tonically and 114 
may be well-described as variation in the depth of attractor basins corresponding to rule states. 115 

116 
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RESULTS 117 
 118 
Two macaques performed 147 sessions of a primate analogue of the WCST (the CSST 119 

(Moore et al., 2005; Sleezer and Hayden, 2016; Sleezer et al., 2016, 2017; Yoo et al., 2018); 120 
Figure 1A) before and after chronic self-administration of cocaine (n = 89 baseline sessions 121 
before cocaine administration, monkey B: n = 62, monkey C: n = 27; n = 58 post-cocaine 122 
sessions after, monkey B: 33, monkey C: 25). In a trial, monkeys were sequentially offered three 123 
choice options that differed in both color and shape (drawn from nine possible combinations of 124 
three colors and three shapes). On each trial, one of the six stimulus features was associated with 125 
reward. The rewarded rule was chosen randomly and remained fixed until a rule change was 126 
triggered (by successful completion of 15 trials). Rule changes were not cued. We have not 127 
previously examined this data in the way presented below nor have we previously reported the 128 
results of cocaine exposure. 129 

Monkeys chose the most rewarding option frequently (81.4% of trials ± 6.5% STD across 130 
sessions, monkey B = 83.9% ± 5.8% STD, monkey C = 77.1% ± 5.7% STD; average of 576 131 
trials per session, 470 rewarded) and adapted quickly to rule changes (Figure 1B). Most errors 132 
were perseverative (repeated either the color or shape of the previous option; 64 ± 8.5% STD 133 
across sessions; average of ). Pre-cocaine sessions were collected after 3 months of training. We 134 
observed no measurable trend in performance across the pre-cocaine sessions (Figure 2A; 135 
percent correct, GLM with terms for main effects of monkey and session number, session 136 
number beta = 0.0002, p = 0.6, df = 86, n = 89). Thus, performance had reached stable levels 137 
before data collection began. 138 

 139 
Relationship between lapse rates and perseverative errors 140 

 Lapses are a failure to adhere to a good policy when the environment has not changed. 141 
Perseverative errors are the continued adherence to a bad policy when the environment has 142 
changed. These two behaviors could be related (or unrelated) for a variety of reasons. 143 

We considered three hypotheses, each of which predicted a different relationship between 144 
lapses during stable periods and perseverative errors after change points. First, if spontaneous 145 
errors of rule adherence (lapses) are caused by the same process that helps to discard a rule when 146 
it is no longer rewarded (e.g. tonic exploratory noise) then lapse rates would be negatively 147 
correlated with perseverative errors across sessions (Figure 2B). Second, if lapses and 148 
perseverative errors are regulated by different processes (e.g. if lapses occur because of a 149 
transient memory deficit, while perseverative errors occur because of a failure of inhibitory 150 
control), then the frequency of lapses and perseverative errors would not be correlated (Figure 151 
2C). Third, if some nuisance process causes both types of errors (e.g. disengagement or fatigue), 152 
then lapses and perseverative errors would be positively correlated (Figure 2D). 153 

We compared perseverative errors in the five trials after change points (when learning 154 
was maximal; Figure 1B) with lapse rates in the ten trials before change points (a non-155 
overlapping subset of trials in which learning had reached asymptote). Lapse rates and 156 
perseverative errors were negatively correlated (Figure 2E; both monkeys: Pearson’s r = -0.52, p 157 
< 0.0001, n = 89). This was not a trivial consequence of a performance offset between the 158 
monkeys: the effect was strongly significant just within the monkey in which we had more 159 
baseline data (monkey C: n = 62 sessions, r = -0.45, p < 0.0002; same sign in monkey B: n = 27 160 
sessions, r = -0.26, p = 0.25). A negative correlation between lapses and perseverative errors 161 
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indicates that the rate of lapses in rule adherence is positively correlated with the ability to 162 
discard a rule when it is no longer rewarded. 163 

Lapse rates in one epoch cannot directly cause flexibility in another epoch (or vice versa), 164 
so this correlation implies that both behaviors share some common, underlying cause. One 165 
possibility is tonic exploration, which would cause monkeys to occasionally sample an 166 
alternative to the current best option, regardless of change points. Another possibility is a failure 167 
to learn, which would cause lapses (because the rule is never discovered) and reduce 168 
perseverative errors (because a rule that is never discovered is cannot persevere). The failure-to-169 
learn view predicts that perseverative errors in one block should be best explained by the lapses 170 
in the immediately preceding block. However, the probability of perseverative errors in each 171 
individual block was best explained by the global lapse rate for the session, not to the lapse rate 172 
or the rate of learning in the previous block (Figure 2F; see Methods; last-block lapse rate 173 
model: log likelihood = -6063.4, AIC = 12133, BIC = 12152; last-block learning rate model: log 174 
likelihood = -6067.8, AIC = 12142, BIC = 12160; global lapse rate model: log likelihood = -175 
6044.2, AIC = 12094, BIC = 12113; best model = global lapse rate model, all other AIC and BIC 176 
weights < 0.0001). Thus, the negative correlation between lapse rates and perseverative errors 177 
was not due to a failure to learn in some blocks, but instead to some global common cause, such 178 
as tonic exploration. 179 

In this task, the outcome of the previous trial provides perfect information about whether 180 
or not that choice was correct. If monkeys were rewarded on the last trial, then either the color or 181 
shape of the last choice matched the rewarded rule and the best response is to repeat either the 182 
color or shape or both in the next trial. Conversely, if the monkeys were not rewarded, then 183 
neither the color or shape of the last choice was consistent with the rewarded rule and the best 184 
response is to choose a novel option—one that matches neither the color nor the shape of the 185 
previous choice. However, tonic exploration would sometimes cause monkeys to choose novel 186 
options following reward delivery—when it is clearly incorrect to do so. Indeed, the monkeys 187 
did choose novel options after both reward delivery (monkey B: 15.8% novel choices, monkey 188 
C: 9.6%) and omission (monkey B: 31.6% novel choices, monkey C: 25.2%). However, tonic 189 
exploration not only predicts that these choices should occur, but that their frequency should be 190 
governed by a common underlying process. That is, the frequency of novel choices after reward 191 
delivery should be correlated with the frequency of novel choices after reward omission. Indeed, 192 
these choices were strongly correlated (Figure 2G; Pearson’s r = 0.72, p < 0.0001, n = 89). This 193 
was individually significant within the animal in which we had more baseline sessions (monkey 194 
C: n = 62 sessions, r = 0.68, p < 0.0001; monkey B: n = 27 sessions, r = -0.04, p = 0.9). Thus, the 195 
monkeys’ decisions to deviate from choice history—to try something new—also co-varied, 196 
regardless of whether or not that was correct, consistent with a common cause. 197 
 198 

Cocaine self-administration 199 
The variability in the baseline behavior suggested a common process regulating the 200 

decision to deviate from a rule, regardless of whether or not it is correct to do so. If this is true, 201 
then it should be possible to co-regulate lapses and perseverative errors by regulating this 202 
process. Therefore, we next allowed both monkeys to self-administer cocaine—exposure to 203 
which is known to affect the ability to adapt to a changing environment (Bechara, 2005; Everitt 204 
and Robbins, 2005; Jentsch et al., 2002; Lucantonio et al., 2012; Porter et al., 2011; Robbins and 205 
Everitt, 1999). 206 
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Monkeys self-administered cocaine through an implanted venous port (see Methods). 207 
Briefly, for 3 hours each day, 5 days a week, over a total of 6 to 7 weeks (monkey B: 50 days, 208 
monkey C: 42 days), monkeys were placed in front of a touch screen display and pressed a 209 
centrally located cue a set number of times (see Methods), which resulted in cocaine infusion. 210 
Monkeys initially underwent self-administration training (10 days). During this time, the 211 
cumulative dose of cocaine self-administered per day increased from 0.8 mg/kg to 4 mg/kg at 3 212 
responses/reward (FR3), followed by a ramp-up period to 30 responses/reward (FR30; 7 days at 213 
4 mg/kg), after which we began examining behavioral data during chronic cocaine exposure. We 214 
collected behavior in the morning, while monkeys self-administered cocaine in the afternoon in a 215 
separate session (with a minimum of 1 hour of home cage time in between). This experimental 216 
design allowed us to determine the long-term effects of chronic cocaine self-administration 217 
without the drug “on board” at the time of testing. Over all self-administration sessions, monkey 218 
B administered a cumulative total of 179.9 mg/kg of cocaine, while monkey C administered 219 
153.2 mg/kg cocaine. 220 

 221 
Effects of cocaine on behavior 222 
Because chronic cocaine exposure is associated with decreased flexibility and increased 223 

perseveration, we first asked whether cocaine administration changed the proportion of 224 
perseverative errors. It did (Figure 3A; fraction of all errors that were perseverative, post cocaine 225 
compared to pre, t-test: p < 0.0001, t(145) = 6.13, mean increase in fraction perseverative errors 226 
= 7.7%, 95% CI = 5.1% to 10.0%; monkey B: p < 0.0001, t(58) = 7.70; monkey C: p < 0.0001, 227 
t(85) = 6.99). One concern in any study of chronic drug use is that practice alone could change 228 
behavior and appear to be a drug effect. To test for this possibility, we developed a generalized 229 
linear model (GLM) to differentiate between the effects of drugs and practice (see Methods). 230 
There was no effect of practice on perseverative errors (β2 = 0.003, p = 0.7) and including a term 231 
for session number did not change the magnitude of the effect of cocaine (β1 = 0.097, p < 232 
0.0001), indicating that practice explained little, if any, change in perseverative errors in post-233 
cocaine sessions. 234 

If cocaine increased perseveration by decreasing tonic exploration, then it might also 235 
improve overall performance in this set-shifting task by reducing lapse rates. Cocaine reduced 236 
whole-session error rates (Figure 3B; percent correct, post cocaine compared to pre, t-test: p < 237 
0.001, t(145) = 3.36, mean increase = 3.6%, 95% CI = 1.5% to 5.7%; monkey B: p < 0.0001, 238 
t(58) = 6.30; monkey C: p < 0.002, t(85) = 3.22). Again, session number did not affect accuracy 239 
(β2 = 0.001, p = 0.9) and accounting for session number only increased the apparent magnitude 240 
of the effect of cocaine (compare 3.6% change to β1 = 0.054, p < 0.0005). This was likely driven 241 
by the substantial decrease in the frequency of lapses in the 10 trials before change points (figure 242 
3C; two-sample t-test; monkey B: p < 0.0001, t(58) = 5.57, mean difference = 7.1%, 95% CI = 243 
4.6% to 9.7%; monkey C: p < 0.0006, t(85) = 3.59, mean = 4.0%, 95% CI = 1.8% to 6.2%). 244 

The hypothesis that cocaine regulates a common cause of flexibility and lapses makes a 245 
strong prediction: that cocaine should simultaneously shift lapses and perseverative errors along 246 
the axis on which they endogenously co-vary (line in Figure 2E). This is because this axis 247 
reflects the consequences of any common cause on both lapses and perseverative errors. 248 
Therefore, any modulation of this common cause should be constrained to shifts along this 249 
manifold. Therefore, we measured the projection of the pre- and post-cocaine sessions onto the 250 
line along which the two behaviors endogenously co-varied (see Methods). Cocaine significantly 251 
shifted behavior along this axis (two-sample t-test, both monkeys: p < 0.0001, t(145) = 7.60, 252 
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mean shift in standardized projection = 0.77, 95% CI = 0.57 to 0.98). The effect was significant 253 
and of comparable magnitude in both monkeys (monkey B: p < 0.0002, t(58) = 4.09, mean = 254 
0.72, 95% CI = 0.37 to 1.07; monkey C: p < 0.0001, t(85) = 5.48, mean = 0.68, 95% CI = 0.44 to 255 
0.93). This is precisely the effect that we would expect if cocaine regulated the underlying cause 256 
of both behaviors. 257 

Next, we asked whether cocaine had similar effects on monkeys’ decisions to deviate 258 
from their own previous policy. That is, the probability of novel choices (Figure 2G). A 259 
decrease in tonic exploration would decrease the likelihood of novel choices regardless of 260 
previous reward outcome, so asked whether chronic cocaine decreased novel choices following 261 
both reward delivery and omission. Cocaine decreased the probability of novel choices both after 262 
reward omission (when novel choices were the best option, Figure 3D; two-sample t-test, both 263 
monkeys, p < 0.0001, t(145) = 6.16, mean change = -5.1%, 95% CI = -3.4 to -6.7%; monkey B: 264 
p < 0.0001, t(58) = 7.99; monkey C: p < 0.0001, t(85) = 8.57; not due to practice β1 = -0.057, p < 265 
0.0001; β2 = -0.008, p = 0.1) and after reward delivery (when novel choices were the worst 266 
option, both monkeys, p < 0.006, t(145) = 2.83, mean change = -1.7%, 95% CI = -0.5 to -2.9%; 267 
monkey B: p < 0.0001, t(58) = 6.97; monkey C: p < 0.001, t(85) = 3.50; not due to practice β1 = -268 
0.024, p < 0.002; β2 = -0.005, p = 0.2). It is important to note that if cocaine decreased learning 269 
(i.e. the effect of reward on behavior), then it would decrease the difference between choices 270 
following reward delivery and reward omission (Figure 3E). However, cocaine instead 271 
decreased the probability of novel choices, regardless of reward outcome, consistent with tonic 272 
exploration (Figure 3F). 273 

If these effects are due to cocaine’s effects on tonic exploration, then cocaine should 274 
simultaneously alter the probability of novel choices regardless of previous outcome. That is, 275 
cocaine should shift novel choice probability along the axis of endogenous co-variability 276 
between rewarded and non-rewarded trials (line in Figure 2G). It did so (Figure 3D: two-sample 277 
t-test, both monkeys, p < 0.0001, t(145) = 5.78, mean change = 0.49, 95% CI =0.32 to 0.66; 278 
monkey B: p < 0.09, t(58) = 1.73; monkey C: p < 0.0001, t(85) = 7.85). Thus, cocaine appeared 279 
to regulate the probability of making novel choices directly, rather than modulating the effect of 280 
rewards on novel choices. Because tonic exploration would produce novel choices both when 281 
they are useful and when they are not, this result is consistent with the idea that chronic cocaine 282 
down-regulates tonic exploration. 283 

 284 
 Hidden Markov model 285 

We previously developed a method to identify whether individual choices are exploratory 286 
or exploitative based on a hidden Markov model (HMM) (Ebitz et al., 2018). Here, we extend 287 
this model to dissociate exploratory choices from choices that were made while using rules 288 
(Figure 4A). We chose this framework for two reasons. First, because HMMs are useful for 289 
interring the latent “states” that underlie a sequence of observations (such as the explore and rule 290 
goal states that underlie the sequences of choices here). Second, because HMMs describe 291 
behavior in terms of the dynamics of these underlying states, which allowed us to analyze how 292 
cocaine changed the dynamics of explore and rule goal states.  293 

We reasoned that rule-states would only generate choices that matched the rule, but while 294 
exploring monkeys would choose many different kinds of choices. Therefore, we next asked 295 
whether there was evidence of these different dynamics in behavior. Indeed, there were distinct 296 
dynamics associated with repeated choices within a feature dimension (i.e. following a rule) and 297 
rapid samples across feature dimensions (i.e. exploring; Figure S1). These rapid samples 298 
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occurred more frequently than expected, suggesting a distinct exploratory state (Figure S2). We 299 
also found that the duration of choice runs depended on reward (Figure S3). To account for this, 300 
we extended model so the outcome of the last trial affected the probability of transitioning 301 
between states (“transmissions”, see Methods; (Bengio and Frasconi, 1995)). The final HMM 302 
(see Methods) qualitatively reproduced the reward-dependent state durations (Figure S3) and 303 
the latent states inferred by this model successfully differentiated choices that occurred due to 304 
each of these dynamics (example in Figure 4B). In addition, the latent states inferred by the 305 
model were strongly aligned with the change points in the task, indicating that the model was 306 
most likely to identify choices as exploratory at precisely the time when the monkeys were 307 
actually searching for a new rule (compare Figure 4C and Figure 1B). 308 

Next we asked whether the model was capable of reproducing the major behavioral 309 
effects of cocaine. We fit one model to all the baseline sessions and a second model to the post-310 
cocaine sessions, then simulated observations from each model. The changes in model 311 
parameters across the baseline and post-cocaine sessions were sufficient to reproduce the major 312 
behavioral results: an increase in both task performance (Figure 5A; mean increase in percent 313 
correct = 14.5%, 95% CI = 12.8 to 16.1%, p < 0.0001, t(145) = 17.70) and perseverative errors 314 
(Figure 5B; mean increase in percent perseverative errors = 4.8%, 95% CI = 3.9 to 5.8%, p < 315 
0.0001, t(145) = 9.89). Thus, the model captured the main effects of cocaine on behavior. 316 

 317 
Cocaine reduces HMM-inferred exploration 318 
Next, we asked whether cocaine affected the probability of exploration, as inferred from 319 

the model using a standard algorithm (Viterbi algorithm). One model was fit to each session, 320 
then each choice was labeled by its max a posteriori latent state. The monkeys had different 321 
levels of exploration, but within each monkey, there were fewer explore-state choices in post-322 
cocaine treatment sessions, compared to baseline sessions (Figure 5C; monkey B: p < 0.0002, 323 
t(58) = 4.03, mean change = -9.3%, 95% CI = -4.7 to -13.9%; monkey C: p < 0.004, t(85) = 3.01, 324 
mean = -5.0%, 95% CI = -1.7 to -8.4%; not due to practice: β1 = 0.052, p < 0.03; β2 = 0.011, p = 325 
0.3). Thus, monkeys explored less often after cocaine delivery, consistent with the idea that 326 
cocaine alters tonic exploration. 327 

 328 
Effects of cocaine on model dynamics 329 
The stationary distribution of a HMM is the equilibrium probability distribution over 330 

states (Murphy, 2012). Here, the HMM’s stationary distribution is the relative occupancy of 331 
explore-states and rule-states that we would expect after infinite realizations, given the outcome 332 
of the last trial (see Methods). That is, it provides a measure of the energetic landscape of the 333 
behavior the model is fit to. If a state has very low potential energy—if its basin of attraction is 334 
deep—then we will be more likely to observe the process in this state, and the stationary 335 
distribution will be shifted towards this state (Ambegaokar, 2017). Therefore, we will refer to the 336 
stationary distribution probability of exploration as the “relative depth” of exploration. 337 

As expected, reward delivery reduced the relative depth of explore states (Figure 5D; 338 
and increased the relative depth of the rule states; see Methods; β1 = -0.49, p < 0.0002). Cocaine 339 
also decreased the relative depth of explore states (β2 = -0.05, p < 0.02). There was a significant 340 
offset between monkeys (β4 = -0.05, p < 0.0002) and no effect of practice (β5 = 0.0003, p = 0.4) 341 
or interaction between reward and cocaine (β3 = 0.016, p = 0.4). This suggested that cocaine 342 
uniformly altered the depth of exploration, rather than the effect of reward on exploration. To 343 
test this, we asked whether the effect of cocaine on explore state depth differed after reward 344 
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delivery, compared to reward omission. There was no significant difference after controlling for 345 
the expected effect of differing baselines (see Methods; paired t-test: p = 0.9, t(144) = -0.09, 346 
mean change = 1%, 95% CI = -25% to 23%). Moreover, the depth of exploration was correlated 347 
across reward outcome within the baseline sessions (both monkeys: r = 0.38, p < 0.0001, n = 89) 348 
and cocaine delivery did not disrupt these correlations (both monkeys: Pearson’s r = 0.23, p < 349 
0.005, n = 147). Thus, cocaine uniformly decreased the relative depth of exploration, regardless 350 
of reward outcomes. 351 

 352 
Effects of cocaine on model parameters 353 

 Did cocaine reduce the relative depth of explore states by increasing the absolute depth of 354 
exploration or by increasing the absolute depth of rule states? To arbitrate between these 355 
interpretations, we next asked how cocaine changed the parameters of the model. The model had 356 
4 parameters (Figure 5E), reflecting the probability of staying in each of the two states (explore 357 
and the generic rule state) following the two outcomes (reward delivery and omission). If 358 
cocaine largely affected the probability of staying in exploration, then that would suggest that 359 
cocaine specifically decreased the depth of explore states. This is because the average dwell time 360 
in a state (that is, the inverse of the rate of leaving that state) has a natural relationship to the 361 
energetic depth of that state, relative to the energy barrier between states (Hänggi et al., 1990). 362 
Alternatively, if cocaine largely affected the probability of staying in a rule, then that would 363 
suggest that cocaine specifically increased the depth of rule states. We also considered a third 364 
possibility: that cocaine had different effects following reward delivery and omission—i.e. 365 
decreasing the depth of rules after reward omission, but increasing depth of exploring after 366 
reward delivery. This last effect would be hard to reconcile with the idea of a unified effect on 367 
tonic exploration. 368 
 Within each monkey, there were significant changes in the same two model parameters in 369 
post-cocaine sessions (Table 1). Cocaine increased the probability of staying in rule states 370 
following reward omission (monkey B: p < 0.0001, t(58) = 5.69; monkey C: p < 0.02, t(85) = 371 
2.57; not due to practice: β1 = 0.070, p < 0.04, β2 = 0.027, p = 0.1) and cocaine increased the 372 
probability of staying in rule states following reward delivery (monkey B: p < 0.001, t(58) = 373 
3.45; monkey C: p < 0.003, t(85) = 3.06; not due to practice: β1 = 0.004, p < 0.01, β2 = 0.0002, p 374 
= 0.8). Cocaine had no significant effect on the depth of explore states following either reward 375 
omission (β1 = -0.004, p > 0.9) or reward delivery (β1 = 0.03, p = 0.7). However, there was a 376 
trend towards a decrease in the depth of explore states with practice in both conditions 377 
(omission: β2 = -0.03, p = 0.1, delivery: β2 = -0.06, p = 0.09). Thus, the weight of evidence 378 
suggests that cocaine selectively deepened rule states (Figure 5E): it decreased tonic exploration 379 
via increasing the tendency to adhere to a rule, regardless of reward outcomes. 380 
 381 
  382 
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DISCUSSION 383 
We found that spontaneous lapses and perseverative errors were not independent 384 

observations, but instead were inversely related across monkeys and sessions. This was not a 385 
trivial consequence of the monkeys’ ability to learn the rewarded rule. Instead, there was a global 386 
common cause of both lapses and perseverative errors, which meant that the two types of error 387 
inversely co-varied along a one-dimensional manifold. Moreover, chronic cocaine—a 388 
perturbation known to decrease flexibility and increase perseveration (Bechara, 2005; Everitt and 389 
Robbins, 2005; Jentsch et al., 2002; Lucantonio et al., 2012; Porter et al., 2011; Robbins and 390 
Everitt, 1999)—did not uniquely increase perseverative errors, but instead shifted the animals 391 
along this manifold. That is, cocaine produced a concomittant decrease in lapse rates. To 392 
understand these results, we fit and analyzed a HMM, which revealed that cocaine decreased 393 
exploration via deepening attractor basins corresponding to rule states. 394 

These results suggest that the same process that facilitates flexibility in a dynamic 395 
environment is responsible for at least some spontaneous lapses in rule adherence when the 396 
environment is stable. That is, these results suggest that exploratory noise is tonically present, 397 
and causes deviations from established decison policies, both when these deviations are useful 398 
and when they are not. 399 

 400 
Relationship to previous theories of lapses and flexibility 401 
We are not proposing that tonic exploratory noise is categorically different from other 402 

processes that are typically implicated in lapses, such as disengagement, memory deficits, 403 
sensorimotor noise, or attentional or executive disengagement (McVay and Kane, 2009; Reason, 404 
1990; Van der Linden et al., 2003; Weissman et al., 2006). Instead, we propose that these may be 405 
valid psychological descriptions of the effect that exploratory noise has on behavior. 406 

What, then, is exploratory noise in the brain? Exploratory decisions are associated with 407 
sudden disruption in the choice-predictive organization of populations of neurons the prefrontal 408 
cortex (Ebitz et al., 2018). It is possible that this disorganization reflects a disruption of the 409 
prefrontal attractor dynamics that are thought to underpin working memory (Brody et al., 2003; 410 
Chaudhuri and Fiete, 2016; Compte et al., 2000; Kopec et al., 2015; Wimmer et al., 2014), motor 411 
control (Li et al., 2016), decision-making (Machens et al., 2005; Wang, 2002, 2008), and 412 
executive control (Ardid and Wang, 2013; Rougier et al., 2005). These dynamics could allow 413 
these regions to influence the behavior of lower-order circuitry (Ebitz and Moore, 2017), perhaps 414 
via amplifying the information available to the prefrontal cortex (Wang, 2008). Disrupting these 415 
dynamics, then, could have a range of psychological effects, which might be unified if thought of 416 
as randomizing behavior with respect to information or policies held in the prefrontal cortex. 417 

On the surface, the link between lapses and perseverative errors that we report here may 418 
appear to conflict with previous views of errors in similar tasks as reflecting separate and 419 
dissociable cognitive processes. Many modern theories of flexibility view perseveration as 420 
measuring the (in)ability to inhibit a previous rule and lapses as measuring the (in)ability to 421 
either maintain a rule or to inhibit distraction from irrelevant options (Barceló, 1999; Barceló and 422 
Knight, 2002; Block et al., 2007; Floresco et al., 2006, 2009; Ragozzino, 2007). The present 423 
results can be reconciled with these theories if increasing depth of a rule makes it both easier to 424 
maintain and harder to inhibit. Increasing the depth of a rule could also decrease distraction, 425 
either by regulating the frequency of exploration or by regulating the strength of rule processes 426 
that otherwise outcompete distraction. There is precedent for the view that internal states linked 427 
to exploration (Jepma and Nieuwenhuis, 2011) also predict increased distraction (Ebitz and Platt, 428 
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2015; Mather and Sutherland, 2011). Moreover, tonic exploration almost certainly cannot 429 
explain all errors of task performance and it remains likely that increases in the number of lapses 430 
following other perturbations arise from changes in other cognitive processes (Barceló, 1999; 431 
Barceló and Knight, 2002; Block et al., 2007; Floresco et al., 2006, 2009; Ragozzino, 2007). 432 
 433 

Relationship to previous views of cocaine 434 
The fact that cocaine administration increases perseverative responding is well-435 

established (Bechara, 2005; Everitt and Robbins, 2005; Jentsch et al., 2002; Lucantonio et al., 436 
2012; Porter et al., 2011; Robbins and Everitt, 1999). However, here cocaine simultaneously 437 
improved overall performance in a set-shifting task—the exact type of task in which 438 
perseveration should interfere with performance. At least one previous study reported that 439 
chronic cocaine use correlates with improved performance in a set shifting task (Hoff et al., 440 
1996). Here, we replicate both results within the same animals in a causal study. We also 441 
reconcile both results with a simple formalism—a hidden Markov model in which cocaine 442 
deepened the attractor basins corresponding to rule states. Together, these results suggest that 443 
cocaine acts to stabilize rules, making it harder to break out from using a rule, either 444 
spontaneously or in response to feedback from the environment. 445 

The perseverative effects of chronic cocaine use have previously been interpreted as a 446 
shift from goal-directed, action-outcome or model-based control systems to habitual, stimulus-447 
response or model-free control systems (Bechara, 2005; Everitt and Robbins, 2005; Jentsch and 448 
Taylor, 1999; Jentsch et al., 2002; LeBlanc et al., 2013; Lucantonio et al., 2012; Robbins and 449 
Everitt, 1999; Robinson and Berridge, 1993). The present results support these views. In 450 
particular, these results support the influential hypothesis that cocaine shifts monkeys into a 451 
model-free decision-making regime, in which learning is slow and choices are habitual 452 
(Lucantonio et al., 2012). Although cocaine had no effect on the animals’ sensitivity to rewards 453 
(there was no change in the difference in behavior following reward omission and delivery), it 454 
did increases the hysteresis of response policies—that is, the tendency to persist in a policy 455 
simply because you have been using it (Lau and Glimcher, 2005). This is consistent with 456 
previous observations that cocaine selectively interferes with learning when a previously-learned 457 
response must be overcome (Jentsch et al., 2002; Lucantonio et al., 2012; Porter et al., 2011) and 458 
observations that cocaine directly increases the probability of repeating responses (LeBlanc et 459 
al., 2013; Stout et al., 2004). We are not the first to note the link between exploratory noise and 460 
the balance between model-free and model-based decision-making (Dayan and Daw, 2008) and 461 
the present results suggest that regulating tonic exploratory noise may be the mechanism by 462 
which cocaine causes a shift towards model-free decision-making. 463 

 464 
Basic insights into the mechanistic bases of flexibility 465 

 The lawful relationship between lapses and perseverative errors was not an artificial 466 
consequence of cocaine exposure. Instead, cocaine shifted behavior along the axis of endogneous 467 
co-variability that already existed between these error types: tonic exploration was a meaningful 468 
parameter that was controlled by cocaine administration, not introduced by it. Thus, the 469 
neurobiological targets of cocaine exposure may be promising targets for understanding the 470 
neural basis of tonic exploration. 471 
 One important cortical target of chronic cocaine administration is the orbitofrontal cortex 472 
(OFC) (Lucantonio et al., 2012; Schoenbaum et al., 2004; Stalnaker et al., 2009): a region that is 473 
implicated in rule encoding (Baeg et al., 2009; Sleezer et al., 2016; Tsujimoto et al., 2011; Wallis 474 
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et al., 2001; Yamada et al., 2010). Orbitofrontal damage leads to a deficit in maintaining 475 
performance during stable, steady periods in the WCST (Stuss et al., 2000) and results in choice 476 
behavior that is consistent with an inability to learn or maintain rules (Walton et al., 2010). Of 477 
course, other cortical regions are also likely to contribute to regulating flexibility, particularly the 478 
anterior cingulate cortex (Ebitz and Hayden, 2016; Ebitz and Platt, 2015), and there are 479 
functional and structural difference in both the cingulate and the OFC in chronic cocaine 480 
exposure (Baeg et al., 2009; Franklin et al., 2002). Thus, these region are an important target for 481 
future studies of both cognitive flexibility and the effects of drugs of abuse. 482 

Cocaine exposure also has profound effects on the brains’ neuromodulatory landscape. 483 
Chronic cocaine alters the dopamine (DA) (Bradberry et al., 2000; Burchett and Bannon, 1997; 484 
Gifford and Johnson, 1992; Hurd et al., 1990; Pettit et al., 1990), norepineprine (NE) (Beveridge 485 
et al., 2005; Burchett and Bannon, 1997; Macey et al., 2003), acetylcholine (ACh) (Gifford and 486 
Johnson, 1992; Hurd et al., 1990), and serotonin (Burchett and Bannon, 1997) systems. ACh, DA 487 
and NE, in particular, have been previously implicated in regulating exploratory decision-making 488 
(Aston-Jones and Cohen, 2005; Doya, 2002; Yu and Dayan, 2005). Moreover, lesions of ACh 489 
interneurons in the dorsomedial striatum may be sufficient to produce a change in lapse rates and 490 
perseverative errors simular to those reported here (Aoki et al., 2015). The effects of cocaine 491 
here support hypotheses linking these neuromodulatory systems to exploration, but the 492 
hypothesis that cocaine regulates exploration via regulating these neuromodulatory systems will 493 
need to be tested empirically. 494 
  495 
 Conclusions 496 
 Why would exploratory noise influence behavior even when it has no strategic benefit? 497 
One possibility is that tonic exploration may have conferred such substantial benefits over 498 
evolutionary time that our brains evolved to maintain it even when it has no value in the moment. 499 
What benefits might these be? For one, up-regulating an existing stochastic noise process may 500 
simply be a more efficient use of metabolic resources than overcoming an embedded strategy de 501 
novo. For another, tonic exploratory noise could reduce the energetic and/or computational costs 502 
of deciding when to explore. In tonic exploration there is no need to calculate the value of 503 
exploration at each time step (Dayan and Daw, 2008). 504 

Oddly, tonic exploration could also facilitate rule adherence by eliminating this 505 
calculation. In artificial intelligence literature, temporally-extended behavioral policies—known 506 
as “options”—can speed planning, reduce computational costs, and increase the capacity for 507 
complex and abstract goals (Sutton et al., 1999). Clearly there are parallels between options and 508 
cognitive rules (Miller and Cohen, 2001). It is notoriously difficult, however, for agents to learn 509 
to use options because it is always more valuable to re-evaluate the choice of option at each time 510 
step than to commit to one (Harb et al., 2017; Sutton et al., 1999). This is because commitment 511 
to an option imposes opportunity costs, even when the value of the alternatives is very low (Harb 512 
et al., 2017; Lloyd and Dayan, 2018). Tonic exploration would solve this problem because it 513 
ensures that alternatives to the current policy are occasionally sampled, but without the need to 514 
calculate the value of alternatives or indeed the need to represent the opportunity cost of 515 
extended commitment. Moreover, allowing agents to only probabilistically commit to a rule 516 
lowers the opportunity cost of commitment (Lloyd and Dayan, 2018). Thus, tonic exploratory 517 
noise may be an important part of how we evolved the ability to apply rules, as well as an 518 
intrinsic part of how we apply rules today. 519 
  520 
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 521 
 522 
Figure 1. Task design and baseline behavior. A) The CCST task. Three options, which 523 
differed in both shape and color were sequentially presented. Choosing an option that matched 524 
the rewarded rule produced a green outline around the chosen option and a reward. Choosing 525 
either of the other two options produced a red outline and no reward. Middle row, left: Rules 526 
could be any of the three shapes or any of the three colors. Right: The options that matched a rule 527 
were the set of stimuli that shared the rule’s feature. Bottom: After the monkeys achieved 15 528 
correct choices, the rewarded rule changed, which forced the monkeys to search for the new rule. 529 
B) Percent correct as a function of trials before and after rule changes. The 0th trial is the last trial 530 
before the rule changed. Gray shading +/- STD. 531 

532 
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 533 
 534 
Figure 2: Behavior in baseline sessions. A) Percent correct as a function of session-number in 535 
the baseline sessions, plotted separately for monkey C (green dots) and monkey B (orange). 536 
Lines are GLM fits for each monkey (Results). n.s. = not significant. B-D) Cartoon depicting the 537 
possible relationships between lapse rates and perseverative errors under different hypotheses. B) 538 
Some spontaneous lapses are caused by the same process that facilitates learning and reduces 539 
perseveration at change points. C) Lapses and perseveration are caused by different underlying 540 
error processes. D) Lapses and perseveration are both caused by a common error process, such as 541 
disengagement. E) The observed relationship between lapses in the 10 trials proceeding change 542 
points and perseverative errors in the 5 trials after change points. F) Model comparison to 543 
determine whether perseverative errors are more closely related to the rate of learning or lapse 544 
rate in the last block or to the global lapse rate in that session. G) The correlation between the 545 
likelihood of novel choices (matching neither the last color nor last shape), given reward delivery 546 
and omission. Best fit lines = ordinary least squares. 547 

548 
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 549 
 550 
Figure 3: Changes in CSST behavior after cocaine administration. A) The probability of 551 
perseverative errors before and after cocaine treatment (before = light, after = dark), plotted 552 
together for both monkeys (gray) as well as separately for monkey B (orange bars) and monkey 553 
C (green). Error bars +/- SEM throughout and * p < 0.05, two-sample t-test. B) Same as A, for 554 
the percent of total correct trials in the pre- and post-cocaine sessions. C) Cocaine’s effects on 555 
the relationship between spontaneous lapses and perseverative errors. Same as 2E, but now 556 
illustrating post-cocaine sessions (dark) and pre-cocaine sessions (light). The vectors reflect the 557 
shift in the mean with cocaine for monkey B (orange) and monkey C (green). D) Cocaine’s 558 
effects on the relationship between novel choices after reward delivery (ordinate) and omission 559 
(abscissa). Same as 2G, but with the conventions of 3C. Inset) Change in novel choice 560 
probability, plotted separately for reward omission (gray) and delivery (blue). Pre-cocaine = 561 
light, post cocaine = dark. E) An illustration of the hypothesis that cocaine decreases learning 562 
rates. We would have expected to see a decrease in the difference between novel choices 563 
following reward delivery and reward omission in D, inset. F) Same as E, for the hypothesis that 564 
cocaine decreases exploration, in which case it would reduce all novel choices, without regard to 565 
previous reward outcome. 566 

567 
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 568 
 569 
Figure 4: Hidden Markov model (HMM) design and fit to behavior. A) The structure of the 570 
HMM, with one latent state for each possible rule, plus one latent “explore state”. Emissions (not 571 
shown) match the rule in the rule states, and are randomly allocated during the explore state. The 572 
box around the model indicates that this model has multiple “plates”, which depend on the 573 
reward of the previous trial (bottom right). That is, each path (transition probability between 574 
states) depends on whether the animal was or was not rewarded on the previous trial. B) The 575 
posterior probability of explore states and any of the rule states (1-p(search)) is illustrated as a 576 
function of trials relative to change points in the rewarded rule. Shading: +/- STD. C) Top: A 577 
sequence of 300 chosen options, separated vertically by whether the chosen option was in 578 
location 1, 2, or 3. Bottom, the state probabilities from a fitted HMM. Colored lines with colored 579 
boxes correspond to the color-rule states (blue, yellow, and magenta). Black lines with black 580 
shape icons correspond to shape-rule states (triangle, circle, square). The gray shaded line 581 
corresponds to the explore state probability. 582 

583 
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 584 
 585 
Figure 5: HMM predictions and effects of cocaine on model behavior. A) The increase in the 586 
probability correct after cocaine. Plotted separately for both monkeys together (gray bar), 587 
monkey B (orange) and monkey C (green), next to the increase in probability correct in 588 
simulated data from the model (white bar). Bars: Satterthwaite approximation of the +/ 99 CI. B) 589 
Same as A, for change in perseverative errors. C) The probability that exploration was identified 590 
as the most probable cause of each choice, before and after cocaine. Gray=both monkeys 591 
together, orange=monkey B, green=monkey C. Bars +/- SEM. D) The stationary probability of 592 
the explore state, given the outcome of the previous trial (rewarded=blue, not rewarded=gray) 593 
and the cocaine condition (pre=before cocaine, post=after). E) Effect of cocaine on the the 4 free 594 
parameters in the model (top left). Change in parameters (Cohen’s d, post-cocaine minus 595 
baseline) in monkey B (top) and monkey C (bottom). * p < 0.05, t-test (see Table 1). Note that 596 
the slight decrease in the probability of staying in exploration was likely due to practice (see 597 
Results). Bottom right) A cartoon illustrating the effect of cocaine on model parameters (see 598 
Table 1) in terms of an attractor landscape. Here, exploration and rule adherence correspond to 599 
some local minima in a behavioral landscape, across which the monkeys move stochastically. 600 
Reward outcomes act to shift the baseline landscape (light line) from strongly favoring rule 601 
adherence following reward delivery (left) to a slight preference for exploration following 602 
reward omission (right; compare to panel D). Cocaine (dark line) globally increases the duration 603 
of rule-states, which suggests that it specifically deepens the attractor basin corresponding to 604 
rules, regardless of reward outcome. 605 

606 
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 607 

Parameter 
Monkey B Monkey C 

Baseline Post-cocaine Baseline Post-cocaine 

Reward 
p(rt|rt-1) 0.978 (0.008) 0.984 (0.006)** 0.995 (0.005) 0.998 (0.002)** 

p(et|et-1) 0.73 (0.17) 0.64 (0.21) 0.30 (0.30) 0.25 (0.25) 

No reward 
p(rt|rt-1) 0.02 (0.07) 0.19 (0.14)*** 0.04 (0.11) 0.11 (0.12)* 

p(et|et-1) 0.28 (0.16) 0.22 (0.17) 0.18 (0.14) 0.14 (0.12) 
 608 
Table 1: Effects of cocaine on model parameters. Mean parameter estimate (standard 609 
deviation) across all models. p(et) = probability of exploration. p(rt) = probability of rule. Bold: 610 
significant change in post-cocaine sessions, relative to baseline within each monkey: * p < 0.05, 611 
** p < 0.005, *** p < 0.0001, t-test (see Results for test statistics). 612 
 613 

614 
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Methods. 615 
 616 
General surgical procedures. All animal procedures were approved by the University 617 

Committee on Animal Resources at the University of Rochester and were conducted in 618 
accordance with the Public Health Service’s Guide for the Care and Use of Animals. Two male 619 
rhesus macaques (Macaca mulatta) served as subjects. The animals had previously been 620 
implanted with small prosthetics for holding the head (Christ Instruments), which allowed us to 621 
monitor eye position and use this as the response modality. These procedures have been 622 
described previously (Strait et al., 2014). To allow for chronic cocaine self-administration, we 623 
also implanted a subcutaneous vascular access port (VAP) in these animals (Access 624 
Technologies, Skokie, IL, USA), which was connected via an internal catheter to the femoral 625 
vein. Additional details of the VAP implantation procedure have been reported previously 626 
(Bradberry et al., 2000; Wojnicki et al., 1994). The VAP allowed monkeys to self-administer 627 
cocaine daily, and obviated the need for chemical or physical restraint, which might have 628 
unintended consequences for behavior. Animals received appropriate analgesics and antibiotics 629 
after all procedures, per direction of University of Rochester veterinarians. The animals were 630 
habituated to laboratory conditions and trained to perform oculomotor tasks for liquid reward 631 
before training on the conceptual set shifting task (CCST) began. Both animals participated in 632 
laboratory tasks for at least two years before the present experiment. 633 
 634 

Self-administration protocol. The monkeys sat in a primate chair placed in a behavioral 635 
chamber with a touchscreen (ELO Touch Systems, Menlo Park, CA, USA). Syringe Pump Pro 636 
software (Version 1.6, Gawler, South Australia) controlled and monitored a syringe pump (Cole 637 
Parmer, Vernon Hills, IL, USA), which delivered cocaine into the monkeys’ VAP. Monkeys 638 
pressed a centrally located visual cue on the touchscreen to obtain venous cocaine injections 639 
(cocaine provided by National Institutes of Drug Abuse, Bethesda, MD, USA), delivered in a 5 640 
mg/ml solution at a rate of 0.15 ml/s. Monkeys were acclimated to cocaine self-administration 641 
across ten days of training, during which the response requirement and dose increased from 3 642 
responses/reward (FR3) and 0.1 mg/kg (0.8 mg/kg of cocaine daily) to 30 responses/reward 643 
(FR30) and 0.5 mg/kg (4 mg/kg of cocaine daily). Monkeys were given 3 hours to complete 644 
infusions each day (in practice, monkeys typically completed the all 8 infusions within 1-2 645 
hours). Monkeys self-administered cocaine 5 days a week. 646 
 647 

Behavioral task. Specific details of this task have been reported previously (Sleezer and 648 
Hayden, 2016; Sleezer et al., 2016, 2017; Yoo et al., 2018). Briefly, the present task was a 649 
version of the CSST: an analogue of the WCST that was developed for use in nonhuman 650 
primates (Moore et al., 2005). Task stimuli are similar to those used in the human WCST, with 651 
two dimensions (color and shape) and six specific rules (three shapes: circle, star, and triangle; 652 
three colors: cyan, magenta, and yellow; figure 1A). Choosing a stimulus that matches the 653 
currently rewarded rule (i.e. any blue shape when the rule is blue; any color of star when the rule 654 
is star) results visual feedback indicating that the choice is correct (a green outline around the 655 
chosen stimulus) and, after a 500 ms delay, a juice reward. Choosing a stimulus that does not 656 
match the current rule results in visual feedback indicating that the choice is incorrect (a red 657 
outline), and no reward is delivered after the 500 ms delay. 658 

The rewarded rule was fixed for each block of trials. At the start of each block, the 659 
rewarded rule was drawn randomly. Blocks lasted until monkeys achieved 15 correct responses 660 
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that matched the current rule. This meant that blocks lasted for a variable number of total trials 661 
(average = 22.5), determined by both how long it took monkeys to discover the correct objective 662 
rule and how effectively monkeys exploited the correct rule, once discovered. Block changes 663 
were uncued, although reward-omission for a previously rewarded option provided noiseless 664 
information that the reward contingencies had changed. 665 

On each trial, three stimuli were presented asynchronously, with each stimulus presented 666 
at the top, bottom left, or bottom right of the screen. The color, shape, position, and order of 667 
stimuli were randomized. Stimuli were presented for 400 msec and were followed by a 600-msec 668 
blank period. (The blank period was omitted from Figure 1A because of space constraints). 669 
Monkeys were free to look at the stimuli as they appeared, and, though they were not required to 670 
do so, they typically did (Sleezer and Hayden, 2016). After the third stimulus presentation and 671 
blank period, all three stimuli reappeared simultaneously with an equidistant central fixation 672 
spot. When they were ready to make a decision, monkeys were required to fixate on the central 673 
spot for 100 msec and then indicate their choice by shifting gaze to one stimulus and maintaining 674 
fixation on it for 250 msec. If the monkeys broke fixation within 250 milliseconds, they could 675 
either again fixate the same option or could change their mind and choose a different option 676 
(although they seldom did so). Thus, the task allowed the monkeys ample time to deliberate over 677 
their options, come to a choice, and even change their mind, without penalty of error. 678 

 679 
General data analysis techniques. Data were analyzed with custom MATLAB scripts and 680 

functions. All t-tests were two-sample, two-sided tests, unless otherwise noted. All generalized 681 
linear models (GLMs) included a dummy-coded term to account for a main effect of monkey 682 
identity (1 for monkey B, 0 for monkey C) and were fit to session-averages, rather than 683 
individual trials. One session (1/147) was excluded from these analyses because one of its 684 
transmission matrices did not admit a stationary distribution. No data points were excluded for 685 
any other reason. Observation counts for each analysis are reported in figure legends and/or 686 
Results. 687 
 688 

Differentiating the effects of cocaine treatment from practice. Task performance reached 689 
stable levels in both monkeys before the baseline, pre-cocaine sessions began (figure 2A). 690 
Nevertheless, we were concerned that putative effects of cocaine self-administration might 691 
instead be trivial consequences of the increased experience with the task in the post-cocaine 692 
sessions. Any effect of cocaine treatment would produce a step change in behavior that was 693 
aligned to the start of cocaine administration. Conversely, the effects of practice would change 694 
gradually across sessions. Therefore, to determine whether individual behavioral effects were 695 
due to practice or cocaine, we fit the following GLM to the session-averaged behaviors of 696 
interest: 697 
 698 

 699 
 700 
Where “tx” is a logical vector indicating whether the session was conducted before or 701 

after chronic cocaine self-administration (a step change term) and “session” was a vector of 702 
session number within the experiment for each monkey (a gradual ramping term). One additional 703 
term “monkey” accounted for the random effect of monkey identity, and the model included the 704 
standard intercept and noise terms (β0 and η, respectively). Thus, β1 captured any offset due to 705 
chronic cocaine administration, while β2 captured any effect of practice for each analysis. 706 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/328872doi: bioRxiv preprint 

https://doi.org/10.1101/328872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

 707 
Probability of novel choices: Only 3 of the 9 possible stimuli (i.e. 9 combinations of 3 708 

colors and 3 shapes) were available on each trial, so the likelihood of repeating choices that 709 
shared neither feature was constrained by the available options. Therefore, we calculated the 710 
monkeys’ probability of choosing each number of feature repeats as the total number of times a 711 
certain number of features was repeated, divided by how many times it was possible to repeat 712 
that number of features. Both terms were calculated within session. 713 

 714 
Hidden Markov Model. In the HMM framework, choices (y) are “emissions” that are 715 

generated by an unobserved decision process that is in some latent, hidden state (z). Latent states 716 
are defined by both the probability of each emission, given that the process is in that state, and by 717 
the probability of transitioning to or from each state to every other state. Straightforward 718 
extensions of this framework allow inputs, such as rewards, to influence state transitions (Bengio 719 
and Frasconi, 1995), in which case the latent states can be thought of as a kind of discretized 720 
value function. 721 

The observation model for each hidden state is the probability choosing each option when 722 
the process that state. These emissions models differed across the two broad classes of states in 723 
the model—the explore states and rule states—based on the fact that there were two different 724 
dynamics in the choice behavior: one reflecting random choosing while exploring and one 725 
reflecting long staying durations due to persistent rules (Figures S1 and S2). Therefore, the 726 
observation model for any choice option n during explore states was: 727 

 728 

  729 
 730 
Where N is the number of stimuli that were presented (i.e. N=3). During rules, the observation 731 
model was conditioned on a match between each stimulus and the current rule:  732 
 733 

  734 
 735 
The latent states in this model are Markovian meaning that they are time-independent. They 736 
depend only on the most recent state (zt) and most recent reward outcome (ut): 737 
 738 

 739 
 740 
This means that the probabilities of each state transition are described by reward-dependent 741 
transmission matrix, Ak = {ai,j}k = P(zt = j | zt-1 = i, ut-1 = k) where k ∈{rewarded, not rewarded}. 742 
There were 7 possible states (6 rule states and 1 explore state) but parameters were tied across 743 
rule states such that each rule state had the same probability of beginning (from exploring) and of 744 
sustaining itself. Similarly, transitions out of explore were tied across rules, meaning that it was 745 
equally likely to start using any of the 6 rules after exploring. Because monkeys could not divine 746 
the new rule following a change point and instead had to explore to discover it, transitions 747 
between different rule states were not permitted. The model assumed that monkeys had to pass 748 
through explore in order to start using a new rule, even if only for a single trial. Thus, each plate 749 
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k of the transition matrix had only two parameters, meaning there were a total of 4 parameters in 750 
the reward-dependent model. 751 

The model was fit via expectation-maximization using the Baum Welch algorithm 752 
(Bilmes, 1998; Murphy, 2012). This algorithm finds a (possibly local) maxima of the complete-753 
data likelihood, which is based on the joint probability of the hidden state sequence Z and the 754 
sequence of observed choices Y, given the observed rewards U: 755 
 756 

 757 
 758 
The complete set of parameters Θ includes the observation and transmission models, discussed 759 
already, as well as an initial distribution over states, typically denoted as π. Because monkeys 760 
had no knowledge of the correct rule at the first trial of the session, we assumed the monkeys 761 
began in the explore state. The algorithm was reinitialized with random seeds 100 times, and the 762 
model that maximized the observed (incomplete) data log likelihood was ultimately taken as the 763 
best for each session. The model was fit to individual sessions, except to generate simulated data, 764 
in which case one model was fit to all baseline sessions and a second to all post-cocaine sessions. 765 
To decode latent states from choices, we used the Viterbi algorithm to discover the most 766 
probable a posteriori sequence of latent states (Murphy, 2012). 767 

To simulate data from the model, we created an environment that matched the monkeys’ 768 
task (choices between 3 options with 2 non-overlapping features and a randomly selected 769 
rewarded rule that changed after 15 correct trials). We then probabilistically drew latent states 770 
and choice emissions as the model interacted with the environment. The only modification to the 771 
model for simulation was that the choice of rule state following a explore state was constrained 772 
to match one of the two features of the last choice, chosen at randomly. 773 
 774 

Stationary distribution. To gain insight into how cocaine changed the likelihood of rule 775 
states following reward delivery and omission, we examined the stationary distributions of the 776 
model. The transmission matrix of a HMM is a system of stochastic equations describing 777 
probabilistic transitions between each state. That is, each entry of a transmission matrix reflects 778 
the probability that the monkeys would move from one state (e.g. exploring) to another (e.g. 779 
using a rule) at each moment in time. In this HMM, there were two transmission matrices, one 780 
describing the dynamics after reward delivery and one describing the dynamics after reward 781 
omission. Moreover, because the parameters for all the rule states were tied, each transition 782 
matrix effectively had two states—an explore state and a generic rule-state that described the 783 
dynamics of all rule states. Each of these transition matrices (Ak) describes how the entire 784 
system—an entire probability distribution over explore and rule states—would evolve from time 785 
point to time point given the outcome of the previous trial, k. You can observe how these 786 
dynamics would change any probability distribution over states π by applying the dynamics to 787 
this distribution: 788 

 789 
 790 

Over many iterations of these dynamics, ergodic systems will reach a point where the state 791 
distributions are unchanged by continued application of the transmission matrix as the 792 
distribution of states reaches its equilibrium. That is, in these systems, there exists a stationary 793 
distribution, π*, such that: 794 
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 795 

If it exists, this distribution is a (normalized) left eigenvector of the transition matrix Ak with an 796 
eigenvalue of 1, so we solved for this eigenvector to determine the stationary distribution of each 797 
Ak, if it had one. (Only one of the Ak matrices did not admit a stationary distribution, so this 798 
session was not included in analyses related to this measure.) 799 
 800 

Analyzing stationary distributions. To determine how cocaine affected the relative depth 801 
of exploration and the generic rule state, we constructed a GLM. The model included terms to 802 
describe the effects of reward, cocaine, and the interaction between the two on the depth of 803 
exploration. This interaction allowed the model to describe a phasic, reward-dependent effect of 804 
cocaine on the depth of exploration, if it were present: 805 

 806 

 807 
 808 
The model thus accounted for any offset between monkeys (“monkey”, 1 for monkey B, 0 for 809 
monkey C) or practice effects (“session”). It also included terms to describe the effects of reward 810 
(“rwd”, 1 for reward delivery, 0 for omission), cocaine (“cocaine”, 1 for pre-cocaine baseline 811 
sessions, 0 for post-cocaine sessions), and the interaction between reward and cocaine. This 812 
allowed the model to describe a phasic, reward-dependent effect of cocaine on model dynamics 813 
or a tonic, reward-independent form of exploration. 814 
 815 

Comparing changes in probabilities. We calculated log odds ratios to compare the 816 
magnitude of changes in probability when baseline probabilities differed. Because probabilities 817 
are bounded, they are necessarily nonlinear transformations of an unbounded latent process of 818 
interest. This means that a fixed change in an underlying linear process can produce very 819 
different magnitude changes in probability, depending on the baselines. For intuition, picture a 820 
logistic function—a typical nonlinear transformation used to covert linear observations into 821 
probabilities. The effect of an equivalent change in the x-axis on the y-axis is depends on the 822 
baseline position on the x-axis: an identical shift on the x-axis has a large effect on y when x 823 
starts close to the midpoint of the function, but a small effect on y when x starts close to either 824 
end. The logit transformation linearizes the relationship between different observed probabilities 825 
because it is the inverse of the the logistic function: 826 

 827 

  828 
 829 

The difference between log odds (also known as the log odds ratio) then provides us with a 830 
linearized measure of effect magnitude (less sensitive to differing baseline levels). It is: 831 

 832 
  833 

834 
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Supplemental Figures and References. 1076 

 1077 
Supplemental Figure 1) Hidden Markov Model development (related to figures 4 and 5). To 1078 
determine whether an HMM was an appropriate descriptive model for this dataset, we first asked 1079 
whether there were different behavioral dynamics that might correspond to using a rule and 1080 
exploring. One way to do this is to examine the distribution of runs of repeated choices within 1081 
some choice dimension (Ebitz, Albarran, & Moore, 2018). If monkeys are exploiting a rule, then 1082 
they would have to repeatedly choose options that are consistent with this rule. During a rule, 1083 
runs of repeated choices—or interswitch intervals—would be long. However, exploration, 1084 
monkeys need to briefly sample the options to determine whether or not they are currently 1085 
rewarded. That is, during exploration runs of repeated choices should be very brief: on the order 1086 
of single trials. 1087 

To the extent that choice runs end because of stochastic events (an assumption of the 1088 
HMM framework), inter-switch intervals will be exponentially distributed (Berg, 1993). 1089 
Moreover, if there are multiple latent regimes (such as exploring and rule-following), then we 1090 
would expect to see inter-switch intervals distributed as a mixture of exponential distributions, 1091 
because choice runs have a different probability of terminating in each latent regime. The 1092 
distribution of inter-switch intervals (n interswitch intervals = 49,059) resembled an exponential 1093 
(left), but was better described by a mixture of two discrete exponential distributions (blue lines; 1094 
1 exponential: 1 parameter, log-likelihood = -142077.0, AIC = 284156.1, AIC weight < 0.0001, 1095 
BIC = 284165.6, BIC weight < 0.0001; (Burnham and Anderson, 2003)) than a single 1096 
distribution (black line; 2 exponential: 3 parameters, log-likelihood = -119773.2, AIC = 1097 
239552.4, AIC weight = 1, BIC = 239580.7, BIC weight = 1). Adding additional exponential 1098 
distributions did not improve model fit (right), suggesting that there were only two regimes (3 1099 
exponentials: 5 parameters, log-likelihood = -119773.2, AIC = 239556.4, AIC weight < 0.14, 1100 
BIC = 239603.7, BIC weight < 0.0001; 4 exponentials: 7 parameters, log-likelihood = -119773.2, 1101 
AIC = 239560.4, AIC weight < 0.02, BIC = 239626.6, BIC weight < 0.0001). The best-fitting 1102 
model, the two-exponential mixture had one long-latency component (half life = 9.0), consistent 1103 
with a persistent rule-following response mode. It also had one short latency component (half life 1104 
1.4; consistent with random choice between 3 options). 1105 
 1106 
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 1107 
Supplemental Figure 2) Short choice runs occur more frequently than expected (related to 1108 
figures 4 and 5). Because rules only operated on either the color or shape of the option, we 1109 
quantified the duration of inter-switch intervals independently within the color and shape 1110 
domains (i.e. a magenta star choice followed by a magenta circle choice be counted as part of the 1111 
same choice run in the color domain, but would part of different choice runs in the shape 1112 
domains). This meant that choices would inevitably be randomized within one feature domain 1113 
during repeated choices in the other domain. Thus, the existence of a mode with a short half-life 1114 
is not sufficient evidence of short-latency search dynamics. However, if randomization in the 1115 
other domain was the sole cause of short duration samples, then observations from the short 1116 
sampling mode would occur exactly as frequently as observations from the persistent mode. 1117 
However, short choice runs occurred more frequently than expected. To determine this, we 1118 
calculated the expected time in each state as the product of the average run length in that state 1119 
and the probability of being in that state. Then, we normalized the expected time in the short 1120 
state by the sum of expected times in all states. That is, this measure would be at 0.5 if 1121 
observations from the short state were equally as frequent, and greater than 0.5 if they were more 1122 
frequent. The expected number of short state observations was significantly greater than 0.5 1123 
(both subjects, paired t-test, p < 0.0001, t(88) = 17.02; subject B: p < 0.0003, t(26) = 4.18; 1124 
subject C, p < 0.0001, t(61) = 27.6), indicating that both subjects had more frequent short 1125 
duration samples than would be expected if those short duration samples were merely caused by 1126 
choices along a different dimension. Thus, both subjects exhibited strong evidence for a separate 1127 
search state, in which they made short duration runs of choices to the different options. 1128 
 1129 
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 1131 
  1132 
Supplemental Figure 3) An input-output HMM accounts for reward-dependent decisions 1133 
(related to figures 4 and 5). Inter-switch intervals were largely exponential—consistent with the 1134 
Markovian assumptions of an HMM—and we observed different search and rule dynamics. 1135 
However, it is important to note that in the log plot (top left), there were significant deviations 1136 
from the predictions of simple exponential mixture model. These were likely due to the changes 1137 
in reward contingencies that were triggered each time 15 correct trials were completed. To 1138 
account for the obvious dependence on reward, we extended a simple 2 parameter HMM model 1139 
to allow state transition probabilities to depend on previous reward outcomes (Bengio and 1140 
Frasconi, 1995). Accounting for this reward dependence (4-parameter ioHMM) qualitatively 1141 
reproduced these dynamics (bottom left) and quantitatively improved model fit in both monkeys 1142 
(right; both monkeys: 2 parameter HMM, log-likelihood = -39614, 4 parameter ioHMM, log-1143 
likelihood = -30240, log-likelihood ratio test: statistic 18749, p < 0.0001; monkey B: HMM, log-1144 
likelihood = -12973, ioHMM = -11714, log-likelihood ratio test: statistic = 2518.7 p < 0.0001; 1145 
monkey C: HMM, log-likelihood = -26641, ioHMM = -18526, log-likelihood ratio test: statistic 1146 
= 16230, p < 0.0001). 1147 
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